81 (3.7) The recursion theorem



The S-m-n theorem revisited. Combinatory logic (Curry) flavour

1.1. DEFINITION. (i) N, = NU {x}.
(ii)) (Application: ‘app’) For n,m € N, define

nm = w,(m), ifn,meNand ¢,(m)|

—  x else

Y,

1.2. NOTATION (Currying).
Let e, xq,...,2, € N,. Write (application to the left)

ery ... T, = (..((e.x1)xa) ... xn).
1.3. PROPOSITION. (i) For everyn,e €N there exists an € € N such
that for all x = x41,...,2, €N
O (T) ~ €T
(ii) VneN ds, e NVe, ¥ = x1,...,x, € N .0} (¥) ~ s,eT
Moreover, s, is primitive recursive and Ve, T1,. .., Tn—1.8n€L1 - .. Tn_1.
Moral: apart from ‘app’ we don’t need functions with several variables.

This is simpler than Vn, e3e'Vry, . .. ,2,.0" () = oL ((T)).
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Proof sketch of Prop 1.3

For n = 3 and e we construct ¢’ such that ©?(x1, 22, 23) = €'x12923.
Sﬁg(%, To, Ty) = @S(e,xl,@)(l’s)
= Oy, (e,r,22)(T3)
— 90905/@,6,9;1)(332)@3)
= 9090905,,@,,6)(9@1)(%2)(%3)
= Poy o @) (T3)

= eziz975. W

1.4. EXERCISE. (i) Express this ¢’ in terms of e, 3, using the S-m-n
functions.
(ii) Give the complete proof of Proposition 1.3
(iii) Can you derive the S-n-m theorem from Proposition [1.37?
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Extensional equivalence

1.5. DEFINITION. Let n,n’ € N. Write (extensional equivalence)
n~n <= Yenr ~n'z.

1.6. THEOREM (Recursion Theorem). Let f be a (total) computable
function. Then

Jde.f(e) ~ e.
1.7. COROLLARY. There exists an e such that for all x
pe(x) = 27, if T is even, }

~ pon(x), else

PROOF. There exists a partially computable 7 such that for all e, x

(1)

Yie,x) = a°, if z is even,

~ @epr(w),  else.

From the S-m-n theorem (e, ) ~ g (7). By the recursion theorem
S(e) ~ e for some e. But then this e satisfies (1)

Pe(T) = ps(e)(r) = Y(e,z). B
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More corollaries

In general

1.8. COROLLARY. Let y(e,T) be partial computable. There exists
an e such that

we(T) = (e, T).

Sharper version of the recursion theorem (with similar proof).

1.9. PROPOSITION. There exists a total computable function y of
one arqgument such that if @, is total, then e = y(p) satisfies

pple) ~ e.

1.10. COROLLARY. Given a computable function g with two arqgu-
ments, there exists a unary computable function f such that

g(n, f(n)) ~ f(n).
PROOF. Let g(n,e) = wsm)(e). Then take f(n) = y(s(n)):

f(n) =y(s(n)) ~ vsmy(y(s(n))) = g(n,y(s(n))) = g(n, f(n)). W
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More corollaries 2

1.11. COROLLARY. Let g, h be computable functions of two arqu-
ments. Then there exists ey, es such that

€1 9(61762);

€y v h(el, 62).

PROOF. By Prop [1.10 there exists a computable function f such that

f(n) ~ hin, f(n)) (1)

By the recursion theorem there exists an a such that a ~ g(a, f(a)).
Now take b = f(a). Then a ~ g(a,b), and b ~ h(a,b) by (1). B

1.12. COROLLARY. Let (e, €', T), (e, €, 1) be partial computable.
There exist e1, e5 such that for all X,y

Peq (fa g) -~ %(61, €2, f))

Speg(fa g) = ¢2(€17 €2, g)

PROOF. Exercise.
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Proof of the recursion theorem

1.6. THEOREM (Recursion Theorem). Let f be a (total) computable
function. Then

de.f(e) ~ e.

PROOF. The partial computable function ¢, (m) can be made total
modulo ~

Qpn(m) ™~ S(”? m)v
by considering
Spgon(m) ($> = ¢(n> m, .I’) = qu(n, m, l’) = Sps(n,m) (37)
Given f = ¢, total recursive, define

hn) = flsn,n)) = @(n);

2
e = s(r,r)

Then
e=s(r,r) ~pr(r) = f(s(r,r)) = f(e).

Clearly e depends uniformly on the program p of f.

This gives the sharper version Proposition 1.9. B
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82 (3.5) Many-one reducibility
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Many-one reducibility <,,

2.1. DEFINITION. Let A, B C N . We say that A is (many-one)
reducible to B, written A <,,, B, if for some computable f: N—N

VneNneA < f(n)eB]
If we require f to be 1-1, then we write A <; B (one reducibility).

2.2. PROPOSITION. Suppose A <,,, B. Then
(i) B is computable = A is computable.
(ii)) A is non-computable = B is non-computable.

PrROOF. (i) 1€ A & f(r)eB < xp(f(zr)) =1. So
Xa=Xxgol/

Hence if B is computable, then by definition yp Is computable, so is
Y4 and hence A.

(ii) By (i).

Non-computable of a set B one can often proved by showing B <,,, K.

2.3. EXERCISE. Show that A isc.e. iff A <,, K.
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