
§1 (3.7) The recursion theorem



—————————————————————————————
HB Computability Theory October 6, 2014

The S-m-n theorem revisited. Combinatory logic (Curry) flavour
—————————————————————————————
1.1. Definition. (i) N ∗ = N ∪ {∗}.

(ii) (Application: ‘app’) For n,m∈N ∗ define

n.m = ϕn(m), if n,m∈N and ϕn(m)↓

= ∗, else

1.2. Notation (Currying).

Let e, x1, . . . ,xn ∈N ∗. Write (application to the left)

ex1 . . . xn = (..((e.x1)x2) . . . xn).

1.3. Proposition. (i) For every n, e∈N there exists an e′ ∈N such
that for all ~x = x1, . . . ,xn ∈N

ϕn
e (~x) ≃ e′~x.

(ii) ∀n∈N ∃sn ∈N ∀e, ~x = x1, . . . ,xn ∈N .ϕn
e (~x) ≃ sne~x

Moreover, ϕsn is primitive recursive and ∀e, x1, . . . ,xn−1.snex1 . . . xn−1↓.

Moral: apart from ‘app’ we don’t need functions with several variables.

This is simpler than ∀n, e∃e′∀x1, . . . ,xn.ϕ
n
e (~x) = ϕ1

e′(〈~x〉).



—————————————————————————————
HB Computability Theory October 6, 2014

Proof sketch of Prop 1.3
—————————————————————————————

For n = 3 and e we construct e′ such that ϕ3
e(x1, x2, x3) = e′x1x2x3.

ϕ3
e(x1, x2, x3) = ϕS(e,x1,x2)(x3)

= ϕϕp(e,x1,x2)(x3)

= ϕϕS′(p,e,x1)
(x2)(x3)

= ϕϕϕ
S′′(p′,e)(x1)

(x2)(x3)

= ϕϕϕ
e′

(x1)
(x2)(x3)

= e′x1x2x3.

1.4. Exercise. (i) Express this e′ in terms of e, 3, using the S-m-n
functions.

(ii) Give the complete proof of Proposition 1.3
(iii) Can you derive the S-n-m theorem from Proposition 1.3?



—————————————————————————————
HB Computability Theory October 6, 2014

Extensional equivalence
—————————————————————————————

1.5. Definition. Let n, n′ ∈N. Write (extensional equivalence)

n ∼ n′ ⇐⇒△ ∀x.nx ≃ n′x.

1.6. Theorem (Recursion Theorem). Let f be a (total) computable
function. Then

∃e.f(e) ∼ e.

1.7. Corollary. There exists an e such that for all x

ϕe(x) = x2, if x is even,

≃ ϕe+1(x), else.

}

(1)

Proof. There exists a partially computable ψ such that for all e, x

ψ(e, x) = x2, if x is even,

≃ ϕe+1(x), else.

From the S-m-n theorem ψ(e, x) ≃ ϕS(e)(x). By the recursion theorem
S(e) ∼ e for some e. But then this e satisfies (1)

ϕe(x) ≃ ϕS(e)(x) ≃ ψ(e, x).



—————————————————————————————
HB Computability Theory October 6, 2014

More corollaries
—————————————————————————————

In general

1.8. Corollary. Let ψ(e, ~x) be partial computable. There exists
an e such that

ϕe(~x) ≃ ψ(e, ~x).

Sharper version of the recursion theorem (with similar proof).

1.9. Proposition. There exists a total computable function y of
one argument such that if ϕp is total, then e = y(p) satisfies

ϕp(e) ∼ e.

1.10. Corollary. Given a computable function g with two argu-
ments, there exists a unary computable function f such that

g(n, f(n)) ∼ f(n).

Proof. Let g(n, e) = ϕs(n)(e). Then take f(n) = y(s(n)):

f(n) = y(s(n)) ∼ ϕs(n)(y(s(n))) = g(n, y(s(n))) = g(n, f(n)).



—————————————————————————————
HB Computability Theory October 6, 2014

More corollaries 2
—————————————————————————————

1.11. Corollary. Let g, h be computable functions of two argu-
ments. Then there exists e1, e2 such that

e1 ∼ g(e1, e2);

e2 ∼ h(e1, e2).

Proof. By Prop 1.10 there exists a computable function f such that

f(n) ∼ h(n, f(n)). (1)

By the recursion theorem there exists an a such that a ∼ g(a, f(a)).
Now take b = f(a). Then a ∼ g(a, b), and b ∼ h(a, b) by (1).

1.12. Corollary. Let ψ1(e, e
′, ~x), ψ2(e, e

′, ~y) be partial computable.
There exist e1, e2 such that for all ~x, ~y

ϕe1(~x, ~y) ≃ ψ1(e1, e2, ~x),

ϕe2(~x, ~y) ≃ ψ2(e1, e2, ~y).

Proof. Exercise.



—————————————————————————————
HB Computability Theory October 6, 2014

Proof of the recursion theorem
—————————————————————————————

1.6. Theorem (Recursion Theorem). Let f be a (total) computable
function. Then

∃e.f(e) ∼ e.

Proof. The partial computable function ϕn(m) can be made total
modulo ∼

ϕn(m) ∼ s(n,m),

by considering

ϕϕn(m)(x) ≃ ψ(n,m, x) ≃ ϕq(n,m, x) ≃ ϕs(n,m)(x).

Given f = ϕp total recursive, define

h(n) , f(s(n, n)) = ϕr(n);

e , s(r, r)

Then
e = s(r, r) ∼ ϕr(r) = f(s(r, r)) = f(e).

Clearly e depends uniformly on the program p of f .

This gives the sharper version Proposition 1.9.



—————————————————————————————
HB Computability Theory October 6, 2014

§2 (3.5) Many-one reducibility



—————————————————————————————
HB Computability Theory October 6, 2014

Many-one reducibility ≤m
—————————————————————————————

2.1. Definition. Let A,B ⊆ N . We say that A is (many-one)
reducible to B, written A≤m B, if for some computable f :N→N

∀n∈N [n∈A ⇔ f(n)∈B]

If we require f to be 1-1, then we write A≤1 B (one reducibility).

2.2. Proposition. Suppose A≤m B. Then
(i) B is computable ⇒ A is computable.
(ii) A is non-computable ⇒ B is non-computable.

Proof. (i) x∈A ⇔ f(x)∈B ⇔ χB(f(x)) = 1. So

χA = χB ◦ f.

Hence if B is computable, then by definition χB is computable, so is
χA and hence A.

(ii) By (i).

Non-computable of a set B one can often proved by showing B≤mK.

2.3. Exercise. Show that A is c.e. iff A≤m K.


