$\S1$ (3.7) The recursion theorem

The S-m-n theorem revisited. Combinatory logic (Curry) flavour

1.1. DEFINITION. (i) $\mathbb{N}_* = \mathbb{N} \cup \{*\}$. (ii) (Application: 'app') For $n, m \in \mathbb{N}_*$ define

> $n.m = \varphi_n(m), \quad \text{if } n, m \in \mathbb{N} \text{ and } \varphi_n(m) \downarrow$ = *, else

1.2. NOTATION (Currying).

Let $e, x_1, \ldots, x_n \in \mathbb{N}_*$. Write (application to the left)

$$ex_1 \dots x_n = (\dots ((e \cdot x_1) x_2) \dots x_n).$$

1.3. PROPOSITION. (i) For every $n, e \in \mathbb{N}$ there exists an $e' \in \mathbb{N}$ such that for all $\vec{x} = x_1, \ldots, x_n \in \mathbb{N}$

$$\varphi_e^n(\vec{x}) \simeq e'\vec{x}.$$

(ii) $\forall n \in \mathbb{N} \exists s_n \in \mathbb{N} \forall e, \vec{x} = x_1, \dots, x_n \in \mathbb{N} . \varphi_e^n(\vec{x}) \simeq s_n e \vec{x}$

Moreover, φ_{s_n} is primitive recursive and $\forall e, x_1, \ldots, x_{n-1}.s_n ex_1 \ldots x_{n-1} \downarrow$.

Moral: apart from 'app' we don't need functions with several variables. This is simpler than $\forall n, e \exists e' \forall x_1, \dots, x_n . \varphi_e^n(\vec{x}) = \varphi_{e'}^1(\langle \vec{x} \rangle).$

Proof sketch of Prop 1.3

 φ_e^3

For n = 3 and e we construct e' such that $\varphi_e^3(x_1, x_2, x_3) = e'x_1x_2x_3$.

$$(x_1, x_2, x_3) = \varphi_{S(e, x_1, x_2)}(x_3)$$

$$= \varphi_{\varphi_p(e, x_1, x_2)}(x_3)$$

$$= \varphi_{\varphi_{S'(p, e, x_1)}(x_2)}(x_3)$$

$$= \varphi_{\varphi_{\varphi_{S''(p', e)}(x_1)}(x_2)}(x_3)$$

$$= e'x_1x_2x_3. \blacksquare$$

1.4. EXERCISE. (i) Express this e' in terms of e, 3, using the S-m-n functions.

(ii) Give the complete proof of Proposition 1.3

(iii) Can you derive the S-n-m theorem from Proposition 1.3?

1.5. DEFINITION. Let $n, n' \in \mathbb{N}$. Write (extensional equivalence)

$$n \sim n' \iff \forall x.nx \simeq n'x.$$

1.6. THEOREM (Recursion Theorem). Let f be a (total) computable function. Then

$$\exists e.f(e) \sim e.$$

1.7. COROLLARY. There exists an e such that for all x

$$\varphi_e(x) = x^2, \quad if x \text{ is even,} \\ \simeq \varphi_{e+1}(x), \quad else.$$
 (1)

 $\ensuremath{\operatorname{PROOF}}$. There exists a partially computable ψ such that for all e,x

$$\psi(e,x) = x^2, \qquad \qquad \text{if } x \text{ is even,}$$

$$\simeq \varphi_{e+1}(x),$$
 else.

From the S-m-n theorem $\psi(e, x) \simeq \varphi_{S(e)}(x)$. By the recursion theorem $S(e) \sim e$ for some e. But then this e satisfies (1)

$$\varphi_e(x) \simeq \varphi_{S(e)}(x) \simeq \psi(e, x). \square$$

In general

1.8. COROLLARY. Let $\psi(e, \vec{x})$ be partial computable. There exists an e such that

$$\varphi_e(\vec{x}) \simeq \psi(e, \vec{x}).$$

Sharper version of the recursion theorem (with similar proof).

1.9. PROPOSITION. There exists a total computable function y of one argument such that if φ_p is total, then e = y(p) satisfies

$$\varphi_p(e) \sim e.$$

1.10. COROLLARY. Given a computable function g with two arguments, there exists a unary computable function f such that

$$g(n, f(n)) \sim f(n).$$

PROOF. Let $g(n, e) = \varphi_{s(n)}(e)$. Then take f(n) = y(s(n)):

 $f(n) = y(s(n)) \sim \varphi_{s(n)}(y(s(n))) = g(n, y(s(n))) = g(n, f(n)).$

1.11. COROLLARY. Let g, h be computable functions of two arguments. Then there exists e_1, e_2 such that

 $e_1 \sim g(e_1, e_2);$ $e_2 \sim h(e_1, e_2).$

PROOF. By Prop 1.10 there exists a computable function f such that

$$f(n) \sim h(n, f(n)). \tag{1}$$

By the recursion theorem there exists an a such that $a \sim g(a, f(a))$. Now take b = f(a). Then $a \sim g(a, b)$, and $b \sim h(a, b)$ by (1).

1.12. COROLLARY. Let $\psi_1(e, e', \vec{x}), \psi_2(e, e', \vec{y})$ be partial computable. There exist e_1, e_2 such that for all \vec{x}, \vec{y}

$$\varphi_{e_1}(\vec{x}, \vec{y}) \simeq \psi_1(e_1, e_2, \vec{x}),$$

$$\varphi_{e_2}(\vec{x}, \vec{y}) \simeq \psi_2(e_1, e_2, \vec{y}).$$

PROOF. Exercise.

1.6. THEOREM (Recursion Theorem). Let f be a (total) computable function. Then

 $\exists e.f(e) \sim e.$

Proof. The partial computable function $\varphi_n(m)$ can be made total modulo \sim

$$\varphi_n(m) \sim s(n,m),$$

by considering

$$\varphi_{\varphi_n(m)}(x) \simeq \psi(n, m, x) \simeq \varphi_q(n, m, x) \simeq \varphi_{s(n, m)}(x).$$

Given $f = \varphi_p$ total recursive, define

$$\begin{array}{rcl} h(n) & \triangleq & f(s(n,n)) & = & \varphi_r(n); \\ e & \triangleq & s(r,r) \end{array}$$

Then

$$e = s(r, r) \sim \varphi_r(r) = f(s(r, r)) = f(e).$$

Clearly e depends uniformly on the program p of f.

This gives the sharper version Proposition 1.9.

$\S2$ (3.5) Many-one reducibility

2.1. DEFINITION. Let $A, B \subseteq \mathbb{N}$. We say that A is (many-one) reducible to B, written $A \leq_m B$, if for some computable $f: \mathbb{N} \to \mathbb{N}$

$$\forall n \in \mathbb{N} \left[n \in A \iff f(n) \in B \right]$$

If we require f to be 1-1, then we write $A \leq_1 B$ (one reducibility).

- 2.2. PROPOSITION. Suppose $A \leq_m B$. Then (i) B is computable $\Rightarrow A$ is computable. (ii) A is non-computable $\Rightarrow B$ is non-computable.
- PROOF. (i) $x \in A \Leftrightarrow f(x) \in B \Leftrightarrow \chi_B(f(x)) = 1$. So

$$\chi_A = \chi_B \circ f.$$

Hence if B is computable, then by definition χ_B is computable, so is χ_A and hence A.

(ii) By (i). ■

Non-computable of a set B one can often proved by showing $B \leq_m K$.

2.3. EXERCISE. Show that A is c.e. iff $A \leq_m K$.