Exercises

For the part taught by Henk barendregt of Computability Theory, Mastermath
Course, Fall 2014.

In red: correction found by some of the students or by me.

Notation N = {0,1,2,3,---}. The disjoint union of two sets A, B C N is de-
noted by AU* B. The set of (closed) A-terms is denoted by A (respectively A?).
Remember K = {z | ¢, ()]}, true £ \zy.x, false = \zy.y.

1. Week 6.10
1.1.  Remember for n,meN, = NU {x} we write
nm = pu(m) (=9 (m))  if defined;
= x else, including x€{n, m}.
We use association to the left.

(i) Show that there exists a weN satisfying for all z, yeN,

wry = TYy.
Solution. As xyy is partially computable in x,y there is an index e
such that
zyy = pe(a,y)

= YS(e,n)(¥), applying the s-m-n theorem
= Py, (x) (y), idem.

(ii) Show that there exist x, y€N such that wry = *.
Solution. Let e be the index of the totally undefined function. Then

wel ~ e00 ~ *x0 = x*.



1.2.

1.3.

(iii) Show that there exists a k€N satisfying for all z, yeN
kxy = x.
Solution. Similar to (i).
(iv) Show that Vz,yeN,.kzy = x doesn’t hold.

Solution. kOx = % #£ 0.
Show that there exist e, ¢’€N such that for all zeN,

ex=¢ +x&er=e+ 2.

Solution. The double recursion theorem (1.11 of CT61014.pdf) states
that for total computable functions f,g of two arguments there are e, ey
such that

e1 ~ fler,ea) ea~ g(er,e2).

Now take f(a,b) such that ¢ p)(x) = b+ (applying the S-m-n theorem
to1(a,b,x) = b+x) and g(a,b) such that 4, p)(r) = a+2x. Now apply
the double recursion theorem to obtain e, e’ such that

e~ fle,e') € ~glee).

Show that there exists a computable function f such that the set of its
fixed points
Fr={eeN| f(e) ~ e}

is not computable, by showing that K <,, ;. [Hint. This is possible
for a relatively easy function f.]

Solution. For a certain computable function f we hope to construct a
computable g such that for all neN

neK <= f(g(n)) ~g(n)
= VEQp(gn)(T) = ©g(m)(T)

This goal is simplified by constructing f such that Yo, m.psm)(r) = 0,
by applying the S-m-n theorem to (m,x) = 0. Then we want a total
computable g such that

neK <= V2.0 = p4u,)(r).

0 ifnekK
X(TL,JZ) = { fne } = @g(n)(aj)v

Define

T else.
by the S-m-n theorem. This g works.



2. Week 20.10

2.1.

2.2.

2.3.

Write down a closed CL-term W consisting of |, K, S using applications
such that (verify that it works!)

Way =cL zyy.
Solution. We know from theory that W = [z]([y]ayy) works:
Way = (([2]([ylzyy))2)y =co (W]zyy)y =cL zyy.
To write down this term we apply the algorithm (on p. 8 of CT201014.pdf):

[ylzyy = S(lylzy)([yly) = S(S([ylz)([yly)I = S(S(Kz)I)I. Hence W is

[2)S(S(Kx)I)I
= S(S(KS)(S(S(KS)(S(KK)I))(KI)))(KI).

[z]([ylzyy)

More efficiently (we use [x]P = KP and [x]Px =P ifx ¢ FV(P))
[Wzyy = S([ylzy)([yly) = SzI. Hence W is
[z]([ylzyy) = [z]Sxl
—  S([alS=) (D)
= SS(KI).
Verification: SS(KI)xy = Sx(KIxz)y = zy(ly) = xyy, indeed!
Write down an FEA? such that (verify that it works!)

Fzx =8 xF.

Solution. The desired equation follows from F =g Ax.xF', and this fol-
lows from F =g (Afz.xf)F. Thus we may take F as the fized point
of Mfz.xf), for ezample F = Y (Afr.af) =5 (Azx.z(22))(Azz.2(22)).
Verification, writing D = (Azz.x(22)):

Fz = DDz = (A\zz.x(22))Dx —5 x(DD) = xF.

Let w2 A\z.xx and 1 £ Afz.fz (= c;). We may think that wl =5 Kw
(why?), but actually wl =g 1. Show that from wl = Kw one can derive
any equation.

Solution. The following is seductive, but wrong:
wl =5 11 = (A fz.f2)l =g Az.dz = de.(Afz.fz)r =5 Az.(Az.2z) =5 Kw.
The correct derivation from Ax.lx is:

Az lz = Ar.(\f2'.f2')r —p Av.(A\zx’.z2’) = Ava' .xx’ = Mz fo = 1.



For the derivation of a contradiction (any equation) note

wl =Kw = wlab= Kwab
= 1lab= wb

= ab="bb
Taking a = KX, b= KY, we get KX(KY)=KY(KY), hence X =Y.

3. Week 27.10

3.1. Let P = {neN | Ip>n.p and p+ 2 are primes}. Let f be a computable
function of two arguments. Define @ = {neN | =3Im. f(n,m) = m}.
(i) Show as warm-up that

KUK <, KU*K;
KUK £,KUK.

Solution. We have to show N <,,, K U* K, and K U* K £,, N.
Let keK; then (k,0)e KU*K. Taking f(z) = (k,0), we have trivially
f: N <, KU*K. For the inequality, note that we have k ¢ K, hence
(k,1) ¢ K U* K. Suppose g: K U* K <,, N. Then we should have
g((k,1)) ¢ N, which is impossible. Therefore K U* K %,, N.

(ii) Now show

P <, KU'K;

Q <., KU'K.
Solution. Note that P is a ce set. Hence f: P <,, K, for some
computable f, as K is ce-complete. Define f'(n) =

P <, KU"K:

neP < f(n)eK < f'(n)=(f(n),0)eK U* K.
Similarly Q is co-ce, hence h: Q <,, K, for h: ng K.
Kh'(n) = (h(n),1). Then similarly h': Q <,, K U* K.

(iii) Show that in the future of mathematics it could be the case that
P<, KUK.

Define

Solution. It may be proved in the future that there are infinitely
many prime twins. Then P =N and trivially P <,, K UK.

(iv)* Show that already today P <,, {2n | n€N}, but not intuitionisti-
cally so!

Solution. By classical logic either there are infinitely many prime
twins or not. In the first case P = N and taking f(n) = 0 one
has f: P <, {2n | neN}. In the second case P = {0,...,p}, with
p,p + 2 the last prime twin. Define g(x) =0, if x < p, else 1. Then
g: P <p{2n]|neN}.

This reasoning uses the excluded middle and is not intuitionistic.



3.2. (i) Define the predicate
P(e,x) = ¢, is total and ¢.(x) ~ z.

Show that PeIl.
Solution. Note that P(e,x) <=

Vn3s.pes(n)d & Vmﬂs.[go%,s(x)ys(m) = pz.s(m)].
This is of the form ¥YV33, hence in 119.
(ii) What is the best position in the Arithmetical Hierarchy for P?

Solution. We claim that Ko <,, P; then P is m-complete for 119,
as Ky is m-complete for $39. It follows that 113 is the lowest level for
P in the arithmetical hierarchy.

To show the claim, remember e€Ky <= Va3s.@? (e, x)]. Define

U(e,z) = { ? Z;,Ze(@’x)i } = ©g(e)(T),

by the S-m-n theorem. Then @g(.) is the identity if e€ Ko and always
undefined otherwise. Therefore S: K <,, P, since in case e€K»
every x s a fized point of s(c), being the identity.

3.3. (i) Construct A-defining terms for (see Syllabus CT) pd (predecessor),
— (truncated subtraction), x>.

Solution. Remember the defining schemes for these three functions:

=
%
=
i
o =z
-

) pd(z ~y)
) = sg((z+1)=y)
sg(0) = 0
) =
The A-defining term for the successor is suc = \nfx.f(nfx).

The A-defining terms for pd,—, x> are pred, —, F> respectively de-
fined as follows.

pred = An.nT|0,0]false, with T = A\z.[suc(z true), z true|;
monus = Awzy.ypredw;
F> = J\zy.sg(monus(sucx)y).



(ii) Use the previous item and exercise 2 of CT271014.pdf to construct
a A-defining term of

g(n) = px.[z+x > nl.
Solution. First we construct a BEN? such that

Bcy = false,

Begy1 = true,
taking B2 n.n(K true) false. We want an HEA? such that intuitively

Hnx = =z ife+x>n
= Hn(x+1) else.

Then we can take G = An.Hncy.
This H can be obtained by a fixed point construction satisfying

H =5 Az . B(F>(Apza)n)z(Hn(suc z)).
It suffices to take

H 2 Y (Ahnx.B(Fs (A xx)n)z(hn(sucx))).

4. Week 10.11

4.1.  Let Y2Af.(\z.f(zx))(\z.f(zx)) and ©=(\ab.b(aab))(Aab.b(aab)). These
terms are the fixed point combinators of Haskell Curry and Alan Turing,
respectively. Show that

(i) Y[ = f(Y[)and Of =5 f(OF).
Solution. Define wy = \z.f(zx). Then

Yf=Afwpwp)f =pwswr =p flwswy) =p f(Yf).

(i) Yf A5 F(YS)
Solution. The reduction graph Gg(Y f) is:

Y= O o) —= O L) f —= AP wpwn)) f 5— -

| | |

flwpwy) ————— fP(wjwf) ——— fP(wjwf) ——> -

B B B

We see that f(Y f) never appears.



4.2.

4.3.

(iii) ©f =5 f(O).
Solution. Write A= ( ab.b(aab)). Then
Of = AAF — 5 (Abb(AAD))f —5 f(AAF) = F(OF).

(iv) There exists an FEA? such that Fx —s5 zF.
Solution. Fx —»g o F follows from F —»g lz.xF, which follows from
F =5 M fz.xf)F. We can take F £ O(\fr.xf) and apply (iii).
Define
Fi = {MeA|FV(M)=/{z}},
Fo = {MeA|3INeAM =3 N & FV(N) = {z}}.
Which of these two sets is decidable (after coding)? Prove your answers.

Solution. Fi is decidable, because when (a code of ) M is given, then we
can compute (a code of ) FV(M) and see whether it is {x}.

We have Fo # A: one has y¢Fy; indeed, if y =g N, then by the Church-
Rosser theorm N —»5 y and hence FV(N) = {xz} is impossible, as free
variables cannot be created during a reduction. Also Fo # (): one has
xE€Fy. Finally Fy is by definition closed under =g. By Scott’s theorem
it follows that Fs is undecidable.

Show that there exists a term FeA? such that for all GEA one has
true ifG=F
F'GT =
false else

[Hint. F' may be called a selfish term. Use that = (up to a-equivalence)
is decidable, that computable functions are A-definable, and the second
fixed point theorem.]

Solution. Following the hint there exists an HeA? such that

a0 alres :{ co, ifF =G

ci, else.
We can modify H to H' & \fg.H fg(Ktrue) false such that

TG - § trues ifF=G
false, else.

By the second fized point theorem there exists an FeA such that
H'"F' =4 F.
Then FV(F) =FV(H') = 0, so FEA?, and has the required property

true, fF=G

FFGT — H/FFT FGT
false, else.



5. Week 17.11

5.1.  Show that there is a term DeA? such that for all MeA?
DTMT =3 MFFMTT'
Solution. Note that ETM" =5 M and Num™M " =5 "M for all MeA’.

Hence we can take D = Am.Em(Num m).
5.2. (i) Find a term M €A such that its reduction graph Gg(M) looks like

M TN - (ii) Idem for M

o X7

Solution. (i) We try M = AB, with A = Aa.a---, B = Xb.C[b]. Then
M = AB —p3 B--- —p Cl|---]|. If the latter is going to be AB, then
choosing A = \a.ala, B = \ba.aba works: AB —5 BIB —5 (\a.ala)B.
Simpler: A= \a.aaa, B2 \x.A. Then

AB —4 BBB = (Az.A)BB — AB.
(ii) Take M = (\z.1)(AB), with AB as in (i). With the second solution
of (i) one can take M = B(AB).
5.3. Find (simple) types for the following A-terms: (i) Azy.zy(zyy).
(ii) Ary.x(yx). (iil) Aey.z(yzx).
Solution.
(i)

zal—sa, ok oy a—a wdl—oyak zyy o

o —a,y:a b xy(ryy) - a

z:o? —a b \y.ay(ryy) : a—a

F \zy.ay(zyy) : (@ —a)—a—a
This solution is not complete: the ‘axiom’

el o, ok 2y a—a
really should have been derived

ral—so, ok asa—a mal—so, oy a

?

vl —a,ya by a—a
and similarly for the other ‘aziom’ z:0>—a,y:a - zyy : «.
(if)

va—=p,y:(a—=p)—abkz:a—=pf xa—by:(a—=p)—atyr: «

r:a—B,y:(a—=p)—at z(yx) : B

za—=BE dy.x(yr) : ((a=p)—a)=p

F Azy.xz(yx) : (a—=p)—=((a—p)—a)—p



(iil) In this item we show how the types are found, working ‘bottom up’.
We want

F A zy.x(yzx) : 1

This can come only from

x:2 - My.x(yzz) : 3

FAzy.a(yxz) : 1 =2—3
And this only from
x:2,y:4Ex(yzz) 0 5
x:2F Ay.x(yze) : 3 =4-5

F A zy.x(yex) : 1 =2-3
For this we need 4 = 2—2—6 and 2 = 6—5, obtaining
2:(6—5),y:(6—5)2—=6 F z(yzx) : 5
2:(6—5) F Ay.x(yzx) : ((6—5)%—6)—5
F \zy.a(yzz) : (6—=5)—=((6—5)2—=6)—5

Or with a renaming

z:(a—pB),y:(a—=p)° =B F z(yrx) : o
z:(a—p) F M\y.a(yzr) : ((a—p)?—=a)—=p

F \zy.z(yzx) : (a—B)—((a—B)*—a)—3

6. Week 01.12
6.1. Let oeTA. Remember that 0 = 0, n + 1 = n—o. Define
A(A) = {MeN | Fyew M : A}

We will show that for A€{0, 2, ,4,---} one has A(A) = ().

(i) Show A(0) = . [Hint. Suppose that Fyex M : 0, with MeA?. We
may assume that M is in S-nf (why?). If M = PQ, then M is not in
of. If - M = Az.P: A, then A= B—C. If M =, then M ¢ A?]

Solution. Suppose MeA(0). By the normalization theorem M has
a normal form N. By the Church-Rosser theorem M —»g N. Since
typing is preserved under [3-reduction one has NeA(0). Every (un-
typed) lambda term is of the form A\Z.yR or AZ.(\y.P)QR. Since 0
is an atomic type for NeA(0) one has & = 0): this means that N is
either of the form yﬁ or (Ay.P)Qﬁ. The first case is not possible as
N is closed, the second not as N is in normal form.



6.2.

6.3.

(ii) Show A(2) = (). [Hint. use that I€A(1) and (i).]

Solution. If MeNA(2), then M1€A(0), which is not possible by ().

(iii) Show A(3) # 0. [Hint. Consider M = AF?.F?l).]

(iv) Show A(4) = 0. Similar to (i), using (iii).

(v) Show A(2n —1) # 0, A(2n) =0, for all n > 0.
Solution. We show A(5) # O from which follows as before that
A(6) = 0. An inhabitant Ms€A(5) should be of the form Ms; =
AFA.N, with N of type 0. We can find such an N by taking N =
FAMs, with M3€A(3), according to (iii). The general argument is
by induction.

We study ways in which the proof of SN for A’ after some modification

doesn’t hold.

(i) If one doesn’t add constants, where does the proof break down?

Solution. We need terms in C in order to be able to substitute and
give arguments to a term in C*; this is needed in the proof of (4) on
page 7/11 in CT011214.pdf.

(ii) If one defines C* = Ca, where does the proof break down?

Solution. In the proof of (5), in the same proof, step (7) case M =
(Ax.P) would fail. In that step we want to show that (\x.P)eC*,
knowing that PEC*. The argument QC given to (Ax.P) gets swal-
lowed by P resulting in Plx: =Q] and the induction hypothesis (P€C*)
needs to deal with substituion results.

(iii) If one defines C4 = {M€A(A) | MESN}, where does the proof break
down?

Solution. Now in the case M = PQ of step (7) in the same proof
we (perhaps) don’t have that P,QeSN = (PQ)eSN.

We will show that Fyes N: A& M =5 N % byen M : A,
(i) Show that SK —»4 false.

Solution.

SK = (Aabc.ac(be)K — 5 Abe.Ke(be) —5 Abe.c = false.

(ii) Show I false : a—p—f. Solution.
o,y Sy B
r:a b Ayy: f—B
FAxy.y : a—p—p

10



(iii) Show F SK: (8—~)—S—0.
Solution.

r:a—=L—y, ya—0, ziak xz(yz) v

r:a—= =y, y:a—=p F Azaz(yz) : a—y o,y ST
r:a—=p—y E Ayzaz(yz) : (a—=B)—a—y xa b \y.x: f—a

FS = A\zyzaez(yz) : (a—=—y)—=(a—=p)—a—y FK=zya: a=B—a

In order to fit K as argument for S we must unify the types by
substitution [y: = a]:

rv:a—=f—a,y:a—f6, za b xz(yz) : a

r:a—f—a,y:a—p F Azxz(yz)  a—a o,y x

ra—f—at Ayz.az(yz) : (a—=F)—a—a ra b Ay.a: f—a

FS = Axyzaz(yz) : (a—p—a)—(a—=f)—a—a FK=M\yz: a=sf—a

FSK: (a—=pB)—a—a

This type for SK is a renaming variant of (f—~)—L—0.

(iv) Show I/ SK : a—5— 0.

Solution. The derivation under (iii) of a type for SK shows it is
minimal.
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