Exercises

For the part taught by Henk barendregt of Computability Theory, Mastermath Course, Fall 2014.

In red: correction found by some of the students or by me.

Notation $\mathbb{N} = \{0, 1, 2, 3, \cdots\}$. The disjoint union of two sets $A, B \subseteq \mathbb{N}$ is denoted by $A \cup^* B$. The set of (closed) λ -terms is denoted by Λ (respectively Λ^{\emptyset}). Remember $K = \{x \mid \varphi_x(x) \downarrow\}$, true $\triangleq \lambda xy.x$, false $\triangleq \lambda xy.y$.

1. Week 6.10

- 1.1. Remember for $n, m \in \mathbb{N}_* = \mathbb{N} \cup \{*\}$ we write
 - $\begin{array}{lll} nm & = & \varphi_n(m) \ (= \varphi_n^{(1)}(m)) & \quad \text{if defined}; \\ \\ & = & \ast & \quad \text{else, including } \ast \in \{n, m\}. \end{array}$

We use association to the left.

(i) Show that there exists a $w \in \mathbb{N}$ satisfying for all $x, y \in \mathbb{N}_*$

$$wxy = xyy.$$

Solution. As xyy is partially computable in x, y there is an index e such that

(ii) Show that there exist $x, y \in \mathbb{N}$ such that wxy = *.

Solution. Let e be the index of the totally undefined function. Then

 $we0\simeq e00\simeq *0=*.$

(iii) Show that there exists a $k \in \mathbb{N}$ satisfying for all $x, y \in \mathbb{N}$

$$kxy = x.$$

Solution. Similar to (i).

(iv) Show that $\forall x, y \in \mathbb{N}_* . kxy = x$ doesn't hold.

Solution. $k0* = * \neq 0$.

1.2. Show that there exist $e, e' \in \mathbb{N}$ such that for all $x \in \mathbb{N}_*$

$$ex = e' + x \& e'x = e + 2x.$$

Solution. The double recursion theorem (1.11 of CT61014.pdf) states that for total computable functions f, g of two arguments there are e_1, e_2 such that

$$e_1 \sim f(e_1, e_2)$$
 $e_2 \sim g(e_1, e_2)$

Now take f(a, b) such that $\varphi_{f(a,b)}(x) = b + x$ (applying the S-m-n theorem to $\psi(a, b, x) = b + x$) and g(a, b) such that $\varphi_{g(a,b)}(x) = a + 2x$. Now apply the double recursion theorem to obtain e, e' such that

$$e \sim f(e, e') \quad e' \sim g(e, e').$$

1.3. Show that there exists a computable function f such that the set of its fixed points

$$\mathcal{F}_f = \{e \in \mathbb{N} \mid f(e) \sim e\}$$

is not computable, by showing that $K \leq_m \mathcal{F}_f$. [Hint. This is possible for a relatively easy function f.]

Solution. For a certain computable function f we hope to construct a computable g such that for all $n \in \mathbb{N}$

$$\begin{array}{rcl} n \in K & \Longleftrightarrow & f(g(n)) \sim g(n) \\ & \Longleftrightarrow & \forall x. \varphi_{f(g(n))}(x) \simeq \varphi_{g(n)}(x). \end{array}$$

This goal is simplified by constructing f such that $\forall x, m.\varphi_{f(m)}(x) = 0$, by applying the S-m-n theorem to $\psi(m, x) = 0$. Then we want a total computable g such that

$$n \in K \quad \Longleftrightarrow \quad \forall x.0 = \varphi_{g(n)}(x).$$

Define

$$\chi(n,x) = \left\{ \begin{array}{cc} 0 & if \ n \in K \\ \uparrow & else. \end{array} \right\} = \varphi_{g(n)}(x),$$

by the S-m-n theorem. This g works.

2. Week 20.10

2.1. Write down a closed CL-term W consisting of $\mathsf{I},\mathsf{K},\mathsf{S}$ using applications such that (verify that it works!)

$$Wxy =_{\mathsf{CL}} xyy.$$

Solution. We know from theory that $W \equiv [x]([y]xyy)$ works:

 $\mathsf{W}xy \equiv (([x]([y]xyy))x)y =_{\mathsf{CL}} ([y]xyy)y =_{\mathsf{CL}} xyy.$

To write down this term we apply the algorithm (on p. 8 of CT201014.pdf): [y]xyy = S([y]xy)([y]y) = S(S([y]x)([y]y))I = S(S(Kx)I)I. Hence W is

 $\begin{aligned} & [x]([y]xyy) &= [x]S(S(Kx)I)I \\ & = S(S(KS)(S(KS)(S(KK)I))(KI)))(KI). \end{aligned}$

More efficiently (we use [x]P = KP and [x]Px = P if $x \notin FV(P)$)

[y]xyy = S([y]xy)([y]y) = SxI. Hence W is

$$[x]([y]xyy) = [x]SxI$$
$$= S([x]Sx)([x]I)$$
$$= SS(KI).$$

Verification: SS(KI)xy = Sx(KIx)y = xy(Iy) = xyy, indeed!

2.2. Write down an $F \in \Lambda^{\emptyset}$ such that (verify that it works!)

$$Fx =_{\beta} xF.$$

Solution. The desired equation follows from $F =_{\beta} \lambda x.xF$, and this follows from $F =_{\beta} (\lambda f x.xf)F$. Thus we may take F as the fixed point of $(\lambda f x.xf)$, for example $F \equiv \Upsilon(\lambda f x.xf) =_{\beta} (\lambda z x.x(zz))(\lambda z x.x(zz))$. Verification, writing $D = (\lambda z x.x(zz))$:

$$Fx \equiv DDx \equiv (\lambda z x. x(zz)) Dx \twoheadrightarrow_{\beta} x(DD) \equiv xF.$$

2.3. Let $\omega \triangleq \lambda x.xx$ and $1 \triangleq \lambda fx.fx \ (\equiv \mathbf{c}_1)$. We may think that $\omega 1 =_{\beta} \mathsf{K}\omega$ (why?), but actually $\omega 1 =_{\beta} 1$. Show that from $\omega 1 = \mathsf{K}\omega$ one can derive any equation.

Solution. The following is seductive, but wrong: $\omega 1 \rightarrow_{\beta} 11 \equiv (\lambda f x. f x) 1 \rightarrow_{\beta} \lambda x. 1x \equiv \lambda x. (\lambda f x. f x) x \rightarrow_{\beta} \lambda x. (\lambda x. xx) =_{\beta} \mathsf{K} \omega.$ The correct derivation from $\lambda x. 1x$ is: $\lambda x. 1x \equiv \lambda x. (\lambda f x'. f x') x \rightarrow_{\beta} \lambda x. (\lambda x'. xx') \equiv \lambda x x'. xx' \equiv_{\alpha} \lambda f x. f x \equiv 1.$ For the derivation of a contradiction (any equation) note

$$\begin{split} \omega 1 = \mathsf{K}\omega & \Rightarrow \quad \omega 1ab = \mathsf{K}\omega ab \\ & \Rightarrow \quad 11ab = \omega b \\ & \Rightarrow \quad ab = bb \end{split}$$

Taking a = KX, b = KY, we get KX(KY) = KY(KY), hence X = Y.

3. Week 27.10

3.1. Let $P = \{n \in \mathbb{N} \mid \exists p > n.p \text{ and } p + 2 \text{ are primes}\}$. Let f be a computable function of two arguments. Define $Q = \{n \in \mathbb{N} \mid \neg \exists m.f(n,m) = m\}$. (i) Show as warm-up that

$$\begin{array}{ll} K \cup \overline{K} & \leq_m K \cup^* \overline{K}; \\ K \cup^* \overline{K} & \lessdot_m K \cup \overline{K}. \end{array}$$

Solution. We have to show $\mathbb{N} \leq_m K \cup^* \overline{K}$, and $K \cup^* \overline{K} \not\leq_m \mathbb{N}$. Let $k \in K$; then $\langle k, 0 \rangle \in K \cup^* \overline{K}$. Taking $f(x) = \langle k, 0 \rangle$, we have trivially $f : \mathbb{N} \leq_m K \cup^* \overline{K}$. For the inequality, note that we have $k \notin \overline{K}$, hence $\langle k, 1 \rangle \notin K \cup^* \overline{K}$. Suppose $g : K \cup^* \overline{K} \leq_m \mathbb{N}$. Then we should have $g(\langle k, 1 \rangle) \notin \mathbb{N}$, which is impossible. Therefore $K \cup^* \overline{K} \not\leq_m \mathbb{N}$. (ii) Now show

$$P \leq_m K \cup^* \overline{K};$$

$$Q \leq_m K \cup^* \overline{K}.$$

Solution. Note that P is a ce set. Hence $f: P \leq_m K$, for some computable f, as K is ce-complete. Define $f'(n) = \langle f(n), 0 \rangle$. Then $f': P \leq_m K \cup^* \overline{K}$:

$$n \in P \iff f(n) \in K \iff f'(n) = \langle f(n), 0 \rangle \in K \cup^* \overline{K}.$$

Similarly Q is co-ce, hence $h: Q \leq_m \overline{K}$, for $h: \overline{Q} \leq_m K$. Define $h'(n) = \langle h(n), 1 \rangle$. Then similarly $h': Q \leq_m K \cup^* \overline{K}$.

(iii) Show that in the future of mathematics it could be the case that $P \leq_m K \cup \overline{K}$.

Solution. It may be proved in the future that there are infinitely many prime twins. Then $P = \mathbb{N}$ and trivially $P \leq_m K \cup \overline{K}$.

(iv)* Show that already today $P \leq_m \{2n \mid n \in \mathbb{N}\}\)$, but not intuitionistically so!

Solution. By classical logic either there are infinitely many prime twins or not. In the first case $P = \mathbb{N}$ and taking f(n) = 0 one has $f: P \leq_m \{2n \mid n \in \mathbb{N}\}$. In the second case $P = \{0, \ldots, p\}$, with p, p + 2 the last prime twin. Define g(x) = 0, if $x \leq p$, else 1. Then $g: P \leq_m \{2n \mid n \in \mathbb{N}\}$.

This reasoning uses the excluded middle and is not intuitionistic.

3.2. (i) Define the predicate

$$P(e, x) \triangleq \varphi_e$$
 is total and $\varphi_e(x) \sim x$.

Show that $P \in \Pi_2^0$.

Solution. Note that $P(e, x) \iff$

$$\forall n \exists s. \varphi_{e,s}(n) \downarrow \& \forall m \exists s. [\varphi_{\varphi_{e,s}(x),s}(m) = \varphi_{x,s}(m)].$$

This is of the form $\forall \forall \exists \exists$, hence in Π_2^0 .

- (ii) What is the best position in the Arithmetical Hierarchy for P?
 - Solution. We claim that $\overline{K}_2 \leq_m P$; then P is m-complete for Π_2^0 , as K_2 is m-complete for Σ_2^0 . It follows that Π_2^0 is the lowest level for P in the arithmetical hierarchy.

To show the claim, remember $e \in \overline{K}_2 \iff \forall x \exists s. \varphi_{e,s}^2(e, x) \downarrow$. Define

$$\psi(e,x) = \left\{ \begin{array}{cc} x & if \varphi_e(e,x) \downarrow \\ \uparrow & else \end{array} \right\} = \varphi_{S(e)}(x),$$

by the S-m-n theorem. Then $\varphi_{S(e)}$ is the identity if $e \in \overline{K}_2$ and always undefined otherwise. Therefore $S \colon \overline{K} \leq_m P$, since in case $e \in \overline{K}_2$ every x is a fixed point of $\varphi_{S(e)}$, being the identity.

3.3. (i) Construct λ -defining terms for (see Syllabus CT) pd (predecessor), - (truncated subtraction), χ_{\geq} .

Solution. Remember the defining schemes for these three functions:

$$pd(0) = 0$$

$$pd(x+1) = x$$

$$x \div 0 = x$$

$$x \div (y+1) = pd(x \div y)$$

$$\chi_{\geq}(x,y) = sg((x+1) \div y)$$

$$sg(0) = 0$$

$$sg(n+1) = 1.$$

The λ -defining term for the successor is $\operatorname{suc} \triangleq \lambda nfx.f(nfx)$. The λ -defining terms for $pd, -, \chi_{\geq}$ are pred, $-, F_{\geq}$ respectively defined as follows.

(ii) Use the previous item and exercise 2 of CT271014.pdf to construct a $\lambda\text{-defining term of}$

$$g(n) = \mu x \cdot [x + x \ge n].$$

Solution. First we construct a $B \in \Lambda^{\emptyset}$ such that

 $\begin{array}{rcl} B\mathbf{c}_0 &=& \mathsf{false},\\ B\mathbf{c}_{k+1} &=& \mathsf{true}, \end{array}$

taking $B \triangleq \lambda n.n(\mathsf{K} \operatorname{true})$ false. We want an $H \in \Lambda^{\emptyset}$ such that intuitively

 $\begin{array}{rcl} Hnx &=& x & \quad if \ x+x \geq n \\ &=& Hn(x+1) & \quad else. \end{array}$

Then we can take $G \triangleq \lambda n.Hn\mathbf{c}_0$. This H can be obtained by a fixed point construction satisfying

 $H =_{\beta} \lambda n x. B(F_{>}(A_{+}xx)n)x(Hn(\operatorname{suc} x)).$

It suffices to take

 $H \triangleq \mathsf{Y}(\lambda hnx.B(F_{>}(A_{+}xx)n)x(hn(\mathtt{suc}\,x))).$

4. Week 10.11

- 4.1. Let $Y \triangleq \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ and $\Theta \triangleq (\lambda ab.b(aab))(\lambda ab.b(aab))$. These terms are the fixed point combinators of Haskell Curry and Alan Turing, respectively. Show that
 - (i) $\forall f =_{\beta} f(\forall f) \text{ and } \Theta f =_{\beta} f(\Theta f).$

Solution. Define $\omega_f \triangleq \lambda x.f(xx)$. Then

$$\mathbf{Y}f \equiv (\lambda f.\omega_f \omega_f)f =_{\beta} \omega_f \omega_f =_{\beta} f(\omega_f \omega_f) =_{\beta} f(\mathbf{Y}f).$$

(ii) $\forall f \not\twoheadrightarrow_{\beta} f(\forall f)$. Solution. The reduction graph $G_{\beta}(\forall f)$ is:

$$Yf \equiv (\lambda f.f(\omega_f \omega_f))f \xrightarrow{\beta} (\lambda f.f^2(\omega_f \omega_f))f \xrightarrow{\beta} (\lambda f.f^3(\omega_f \omega_f))f \xrightarrow{\beta} \cdots$$

$$\beta \downarrow \qquad \beta \downarrow$$

We see that f(Yf) never appears.

- (iii) $\Theta f \twoheadrightarrow_{\beta} f(\Theta f)$. Solution. Write $A \triangleq (ab.b(aab))$. Then $\Theta f \equiv AAF \rightarrow_{\beta} (\lambda b.b(AAb))f \rightarrow_{\beta} f(AAf) \equiv f(\Theta f)$.
- (iv) There exists an $F \in \Lambda^{\emptyset}$ such that $Fx \twoheadrightarrow_{\beta} xF$.

Solution. $Fx \twoheadrightarrow_{\beta} xF$ follows from $F \twoheadrightarrow_{\beta} lx.xF$, which follows from $F \twoheadrightarrow_{\beta} (\lambda fx.xf)F$. We can take $F \triangleq \Theta(\lambda fx.xf)$ and apply (iii).

4.2. Define

$$\begin{aligned} \mathcal{F}_1 &= \{ M \in \Lambda \mid \mathrm{FV}(M) = \{x\} \}, \\ \mathcal{F}_2 &= \{ M \in \Lambda \mid \exists N \in \Lambda. M =_\beta N \& \mathrm{FV}(N) = \{x\} \}. \end{aligned}$$

Which of these two sets is decidable (after coding)? Prove your answers.

Solution. \mathcal{F}_1 is decidable, because when (a code of) M is given, then we can compute (a code of) $\mathrm{FV}(M)$ and see whether it is $\{x\}$. We have $\mathcal{F}_2 \neq \Lambda$: one has $y \notin \mathcal{F}_2$; indeed, if $y \equiv_{\beta} N$, then by the Church-Rosser theorm $N \twoheadrightarrow_{\beta} y$ and hence $\mathrm{FV}(N) = \{x\}$ is impossible, as free variables cannot be created during a reduction. Also $\mathcal{F}_2 \neq \emptyset$: one has $x \in \mathcal{F}_2$. Finally \mathcal{F}_2 is by definition closed under $=_{\beta}$. By Scott's theorem it follows that \mathcal{F}_2 is undecidable.

4.3. Show that there exists a term $F \in \Lambda^{\emptyset}$ such that for all $G \in \Lambda$ one has

$$F^{\mathsf{T}}G^{\mathsf{T}} = \begin{cases} \text{true} & \text{if } G \equiv F \\ \text{false} & \text{else} \end{cases}$$

[Hint. F may be called a *selfish* term. Use that \equiv (up to α -equivalence) is decidable, that computable functions are λ -definable, and the second fixed point theorem.]

Solution. Following the hint there exists an $H \in \Lambda^{\emptyset}$ such that

$$H^{\ulcorner}F^{\urcorner}^{\ulcorner}G^{\urcorner} = \begin{cases} \mathbf{c}_{0}, & \text{if } F \equiv G \\ \mathbf{c}_{1}, & \text{else.} \end{cases}$$

We can modify H to $H' \triangleq \lambda fg.Hfg(\mathsf{Ktrue})$ false such that

$$H' \ulcorner F \urcorner \ulcorner G \urcorner = \begin{cases} \text{true,} & \text{if } F \equiv G \\ \text{false,} & \text{else.} \end{cases}$$

By the second fixed point theorem there exists an $F \in \Lambda$ such that

$$H'^{\Gamma}F^{\Gamma} =_{\beta} F.$$

Then $FV(F) = FV(H') = \emptyset$, so $F \in \Lambda^{\emptyset}$, and has the required property

$$F^{\Gamma}G^{\Gamma} = H'^{\Gamma}F^{\Gamma}G^{\Gamma} \begin{cases} \text{ true, } & \text{if } F \equiv G \\ \text{ false, } & else. \end{cases}$$

5. Week 17.11

5.1. Show that there is a term $D \in \Lambda^{\emptyset}$ such that for all $M \in \Lambda^{\emptyset}$

$$D^{\lceil}M^{\rceil} =_{\beta} M^{\lceil \lceil}M^{\rceil \rceil}$$

Solution. Note that $\mathsf{E}^{\lceil}M^{\rceil} =_{\beta} M$ and $\mathsf{Num}^{\lceil}M^{\rceil} =_{\beta} {}^{\lceil}M^{\rceil}$ for all $M \in \Lambda^{\emptyset}$. Hence we can take $D \triangleq \lambda m.\mathsf{E}m(\mathsf{Num}\ m)$.

5.2. (i) Find a term $M \in \Lambda$ such that its reduction graph $G_{\beta}(M)$ looks like

Solution. (i) We try $M \equiv AB$, with $A \equiv \lambda a.a..., B \equiv \lambda b.C[b]$. Then $M \equiv AB \rightarrow_{\beta} B... \rightarrow_{\beta} C[...]$. If the latter is going to be AB, then choosing $A \triangleq \lambda a.ala$, $B \triangleq \lambda ba.aba$ works: $AB \rightarrow_{\beta} BIB \rightarrow_{\beta} (\lambda a.ala)B$. Simpler: $A \triangleq \lambda a.aaa$, $B \triangleq \lambda x.A$. Then

 $AB \rightarrow_{\beta} BBB \equiv (\lambda x.A)BB \rightarrow_{\beta} AB.$

(ii) Take $M \triangleq (\lambda x.I)(AB)$, with AB as in (i). With the second solution of (i) one can take $M \triangleq B(AB)$.

5.3. Find (simple) types for the following λ -terms: (i) $\lambda xy.xy(xyy)$. (ii) $\lambda xy.x(yx)$. (iii) $\lambda xy.x(yxx)$.

Solution.

(i)

$$\frac{x:\alpha^2 \rightarrow \alpha, y:\alpha \vdash xy: \alpha \rightarrow \alpha \quad x:\alpha^2 \rightarrow \alpha, y:\alpha \vdash xyy: \alpha}{x:\alpha^2 \rightarrow \alpha, y:\alpha \vdash xy(xyy): \alpha}$$

$$\frac{x:\alpha^2 \rightarrow \alpha \vdash \lambda y.xy(xyy): \alpha \rightarrow \alpha}{\vdash \lambda xy.xy(xyy): (\alpha^2 \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha}$$
This solution is not complete: the 'axiom'

 $x: \alpha^2 \rightarrow \alpha, y: \alpha \vdash xy: \alpha \rightarrow \alpha$

really should have been derived

$$\frac{x{:}\alpha^2{\rightarrow}\alpha, y{:}\alpha \vdash x: \alpha{\rightarrow}\alpha{\rightarrow}\alpha \quad x{:}\alpha^2{\rightarrow}\alpha, y{:}\alpha \vdash y:\alpha}{x{:}\alpha^2{\rightarrow}\alpha, y{:}\alpha \vdash xy: \alpha{\rightarrow}\alpha}$$

and similarly for the other 'axiom' $x:\alpha^2 \rightarrow \alpha, y:\alpha \vdash xyy:\alpha$.

(ii)

$$\frac{x{:}\alpha{\rightarrow}\beta, y{:}(\alpha{\rightarrow}\beta){\rightarrow}\alpha \vdash x : \alpha{\rightarrow}\beta \quad x{:}\alpha{\rightarrow}\beta, y{:}(\alpha{\rightarrow}\beta){\rightarrow}\alpha \vdash yx : \alpha}{x{:}\alpha{\rightarrow}\beta, y{:}(\alpha{\rightarrow}\beta){\rightarrow}\alpha \vdash x(yx) : \beta}$$
$$\frac{x{:}\alpha{\rightarrow}\beta \vdash \lambda y. x(yx) : ((\alpha{\rightarrow}\beta){\rightarrow}\alpha){\rightarrow}\beta}{\vdash \lambda xy. x(yx) : (\alpha{\rightarrow}\beta){\rightarrow}((\alpha{\rightarrow}\beta){\rightarrow}\alpha){\rightarrow}\beta}$$

(iii) In this item we show how the types are found, working 'bottom up'. We want

$$\vdash \lambda x y. x (y x x) : 1$$

This can come only from

$$\frac{x:2 \vdash \lambda y. x(yxx): 3}{\neg \lambda x y. x(yxx): 1 = 2 \rightarrow 3}$$

And this only from

$$\frac{x:2, y:4 \vdash x(yxx):5}{x:2 \vdash \lambda y.x(yxx):3 = 4 \rightarrow 5}$$
$$\vdash \lambda xy.x(yxx):1 = 2 \rightarrow 3$$

For this we need $4 = 2 \rightarrow 2 \rightarrow 6$ and $2 = 6 \rightarrow 5$, obtaining

$$\frac{x:(6\rightarrow5), y:(6\rightarrow5)^2\rightarrow6\vdash x(yxx):5}{x:(6\rightarrow5)\vdash\lambda y.x(yxx):((6\rightarrow5)^2\rightarrow6)\rightarrow5}$$
$$-\lambda xy.x(yxx):(6\rightarrow5)\rightarrow((6\rightarrow5)^2\rightarrow6)\rightarrow5$$

Or with a renaming

$$\frac{x:(\alpha \to \beta), y:(\alpha \to \beta)^2 \to \beta \vdash x(yxx) : \alpha}{x:(\alpha \to \beta) \vdash \lambda y. x(yxx) : ((\alpha \to \beta)^2 \to \alpha) \to \beta}$$
$$\vdash \lambda xy. x(yxx) : (\alpha \to \beta) \to ((\alpha \to \beta)^2 \to \alpha) \to \beta$$

6. Week 01.12

6.1. Let $o \in \mathbb{T}^{\mathbb{A}}$. Remember that $0 = o, n + 1 = n \rightarrow o$. Define

$$\Lambda(A) = \{ M \in \Lambda^{\emptyset} \mid \vdash_{\lambda^{cu}} M : A \}.$$

We will show that for $A \in \{0, 2, .4, \cdots\}$ one has $\Lambda(A) = \emptyset$.

(i) Show $\Lambda(0) = \emptyset$. [Hint. Suppose that $\vdash_{\lambda \stackrel{cu}{\rightharpoonup}} M : 0$, with $M \in \Lambda^{\emptyset}$. We may assume that M is in β -nf (why?). If $M \equiv PQ$, then M is not in nf. If $\vdash M \equiv \lambda x.P : A$, then $A \equiv B \rightarrow C$. If $M \equiv x$, then $M \notin \Lambda^{\emptyset}$.]

Solution. Suppose $M \in \Lambda(0)$. By the normalization theorem M has a normal form N. By the Church-Rosser theorem $M \twoheadrightarrow_{\beta} N$. Since typing is preserved under β -reduction one has $N \in \Lambda(0)$. Every (untyped) lambda term is of the form $\lambda \vec{x}.y \vec{R}$ or $\lambda \vec{x}.(\lambda y.P)Q\vec{R}$. Since 0 is an atomic type for $N \in \Lambda(0)$ one has $\vec{x} = \emptyset$: this means that N is either of the form $y\vec{R}$ or $(\lambda y.P)Q\vec{R}$. The first case is not possible as N is closed, the second not as N is in normal form. (ii) Show $\Lambda(2) = \emptyset$. [Hint. use that $I \in \Lambda(1)$ and (i).]

Solution. If $M \in \Lambda(2)$, then $M \in \Lambda(0)$, which is not possible by (i).

- (iii) Show $\Lambda(3) \neq \emptyset$. [Hint. Consider $M \equiv \lambda F^2 \cdot F^2 \mathsf{I}$).]
- (iv) Show $\Lambda(4) = \emptyset$. Similar to (ii), using (iii).
- (v) Show $\Lambda(2n-1) \neq \emptyset$, $\Lambda(2n) = \emptyset$, for all n > 0.

Solution. We show $\Lambda(5) \neq \emptyset$ from which follows as before that $\Lambda(6) = \emptyset$. An inhabitant $M_5 \in \Lambda(5)$ should be of the form $M_5 \equiv \lambda F^4 \cdot N$, with N of type 0. We can find such an N by taking $N \equiv F^4 M_3$, with $M_3 \in \Lambda(3)$, according to (iii). The general argument is by induction.

- 6.2. We study ways in which the proof of SN for $\lambda_{\rightarrow}^{CH}$ after some modification doesn't hold.
 - (i) If one doesn't add constants, where does the proof break down?

Solution. We need terms in C in order to be able to substitute and give arguments to a term in C^* ; this is needed in the proof of (4) on page 7/11 in CT011214.pdf.

(ii) If one defines $\mathcal{C}_A^* \triangleq \mathcal{C}_A$, where does the proof break down?

Solution. In the proof of (5), in the same proof, step (7) case $M \equiv (\lambda x.P)$ would fail. In that step we want to show that $(\lambda x.P) \in C^*$, knowing that $P \in C^*$. The argument $Q \in C$ given to $(\lambda x.P)$ gets swallowed by P resulting in P[x:=Q] and the induction hypothesis $(P \in C^*)$ needs to deal with substituion results.

(iii) If one defines $C_A \triangleq \{M \in \Lambda(A) \mid M \in SN\}$, where does the proof break down?

Solution. Now in the case $M \equiv PQ$ of step (7) in the same proof we (perhaps) don't have that $P, Q \in SN \Rightarrow (PQ) \in SN$.

- 6.3. We will show that $\vdash_{\lambda \stackrel{cu}{\hookrightarrow}} N : A \& M \twoheadrightarrow_{\beta} N \not\Rightarrow \vdash_{\lambda \stackrel{cu}{\hookrightarrow}} M : A.$
 - (i) Show that $\mathsf{SK} \twoheadrightarrow_{\beta} \mathsf{false}$.

Solution.

$$\mathsf{SK} \equiv (\lambda abc.ac(bc)\mathsf{K} \to_{\beta} \lambda bc.\mathsf{K}c(bc) \to_{\beta} \lambda bc.c \equiv \mathsf{false}.$$

(ii) Show \vdash false : $\alpha \rightarrow \beta \rightarrow \beta$. *Solution*.

$$\frac{x:\alpha, y:\beta \vdash y:\beta}{x:a \vdash \lambda y.y:\beta \rightarrow \beta}$$
$$\vdash \lambda xy.y:\alpha \rightarrow \beta \rightarrow \beta$$

(iii) Show $\vdash \mathsf{SK} : (\beta \rightarrow \gamma) \rightarrow \beta \rightarrow \beta$.

Solution.

$x{:}\alpha{\rightarrow}\beta{\rightarrow}\gamma, y{:}\alpha{\rightarrow}\beta, z{:}\alpha \vdash xz(yz):\gamma$	
$\overline{x{:}\alpha{\rightarrow}\beta{\rightarrow}\gamma,y{:}\alpha{\rightarrow}\beta\vdash\lambda z.xz(yz):\alpha{\rightarrow}\gamma}$	$x{:}\alpha,y{:}\beta\vdash x:\alpha$
$\overline{x{:}\alpha{\rightarrow}\beta{\rightarrow}\gamma\vdash\lambda yz.xz(yz):(\alpha{\rightarrow}\beta){\rightarrow}\alpha{\rightarrow}\gamma}$	$\overline{x{:}a\vdash\lambda y{.}x:\beta{\rightarrow}\alpha}$
$\overline{\vdash S \equiv \lambda xyz.xz(yz) : (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma}$	$\vdash K \equiv \lambda xy.x: \alpha {\rightarrow} \beta {\rightarrow} \alpha$

In order to fit K as argument for S we must unify the types by substitution $[\gamma:=\alpha]:$

$x{:}lpha{ o}eta{ o}lpha, y{:}lpha{ o}eta, z{:}lphadash xz(yz): lpha$	
$\overline{x{:}\alpha{\rightarrow}\beta{\rightarrow}\alpha,y{:}\alpha{\rightarrow}\beta\vdash\lambda z.xz(yz):\alpha{\rightarrow}\alpha}$	$x{:}\alpha,y{:}\beta \vdash x:\alpha$
$\overline{x{:}\alpha{\rightarrow}\beta{\rightarrow}\alpha\vdash\lambda yz.xz(yz):(\alpha{\rightarrow}\beta){\rightarrow}\alpha{\rightarrow}\alpha}$	$\overline{x{:}a\vdash\lambda y{.}x:\beta{\rightarrow}\alpha}$
$\vdash S \equiv \lambda xyz.xz(yz) : (\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \alpha$	$\vdash K \equiv \lambda xy.x: \alpha {\rightarrow} \beta {\rightarrow} \alpha$
$\vdash SK : (\alpha {\rightarrow} \beta) {\rightarrow} \alpha {\rightarrow} \alpha$	

 $This type \ for \ \mathsf{SK} \ is \ a \ renaming \ variant \ of \ (\beta {\rightarrow} \gamma) {\rightarrow} \beta {\rightarrow} \beta.$

(iv) Show $\not\vdash \mathsf{SK} : \alpha \rightarrow \beta \rightarrow \beta$.

Solution. The derivation under (iii) of a type for SK shows it is minimal.