
Exercises

For the part taught by Henk barendregt of Computability Theory, Mastermath
Course, Fall 2014.

In red: correction found by some of the students or by me.

Notation N = {0, 1, 2, 3, · · · }. The disjoint union of two sets A,B ⊆ N is de-
noted by A∪∗B. The set of (closed) λ-terms is denoted by Λ (respectively Λø).
Remember K = {x | ϕx(x)↓}, true, λxy.x, false, λxy.y.

1. Week 6.10

1.1. Remember for n,m∈N∗ = N ∪ {∗} we write

nm = ϕn(m) (= ϕ(1)
n (m)) if defined;

= ∗ else, including ∗∈{n,m}.

We use association to the left.

(i) Show that there exists a w∈N satisfying for all x, y∈N∗

wxy = xyy.

Solution. As xyy is partially computable in x, y there is an index e
such that

xyy = ϕe(x, y)

= ϕS(e,x)(y), applying the s-m-n theorem

= ϕϕw(x)(y), idem.

(ii) Show that there exist x, y∈N such that wxy = ∗.
Solution. Let e be the index of the totally undefined function. Then

we0 ' e00 ' ∗0 = ∗.
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(iii) Show that there exists a k∈N satisfying for all x, y∈N

kxy = x.

Solution. Similar to (i).
(iv) Show that ∀x, y∈N∗.kxy = x doesn’t hold.

Solution. k0∗ = ∗ 6= 0.

1.2. Show that there exist e, e′∈N such that for all x∈N∗

ex = e′ + x & e′x = e+ 2x.

Solution. The double recursion theorem (1.11 of CT61014.pdf) states
that for total computable functions f, g of two arguments there are e1, e2
such that

e1 ∼ f(e1, e2) e2 ∼ g(e1, e2).

Now take f(a, b) such that ϕf(a,b)(x) = b+x (applying the S-m-n theorem
to ψ(a, b, x) = b+x) and g(a, b) such that ϕg(a,b)(x) = a+2x. Now apply
the double recursion theorem to obtain e, e′ such that

e ∼ f(e, e′) e′ ∼ g(e, e′).

1.3. Show that there exists a computable function f such that the set of its
fixed points

Ff = {e∈N | f(e) ∼ e}

is not computable, by showing that K ≤m Ff . [Hint. This is possible
for a relatively easy function f .]

Solution. For a certain computable function f we hope to construct a
computable g such that for all n∈N

n∈K ⇐⇒ f(g(n)) ∼ g(n)

⇐⇒ ∀x.ϕf(g(n))(x) ' ϕg(n)(x).

This goal is simplified by constructing f such that ∀x,m.ϕf(m)(x) = 0,
by applying the S-m-n theorem to ψ(m,x) = 0. Then we want a total
computable g such that

n∈K ⇐⇒ ∀x.0 = ϕg(n)(x).

Define

χ(n, x) =

{
0 if n∈K

↑ else.

}
= ϕg(n)(x),

by the S-m-n theorem. This g works.
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2. Week 20.10

2.1. Write down a closed CL-term W consisting of I,K,S using applications
such that (verify that it works!)

Wxy =CL xyy.

Solution. We know from theory that W ≡ [x]([y]xyy) works:

Wxy ≡ (([x]([y]xyy))x)y =CL ([y]xyy)y =CL xyy.

To write down this term we apply the algorithm (on p. 8 of CT201014.pdf):

[y]xyy = S([y]xy)([y]y) = S(S([y]x)([y]y))I = S(S(Kx)I)I. Hence W is

[x]([y]xyy) = [x]S(S(Kx)I)I

= S(S(KS)(S(S(KS)(S(KK)I))(KI)))(KI).

More efficiently (we use [x]P = KP and [x]Px = P if x /∈ FV(P ))

[y]xyy = S([y]xy)([y]y) = SxI. Hence W is

[x]([y]xyy) = [x]SxI

= S([x]Sx)([x]I)

= SS(KI).

Verification: SS(KI)xy = Sx(KIx)y = xy(Iy) = xyy, indeed!

2.2. Write down an F∈Λø such that (verify that it works!)

Fx =β xF.

Solution. The desired equation follows from F =β λx.xF , and this fol-
lows from F =β (λfx.xf)F . Thus we may take F as the fixed point
of (λfx.xf), for example F ≡ Y(λfx.xf) =β (λzx.x(zz))(λzx.x(zz)).
Verification, writing D = (λzx.x(zz)):

Fx ≡ DDx ≡ (λzx.x(zz))Dx→→β x(DD) ≡ xF.

2.3. Let ω , λx.xx and 1 , λfx.fx (≡ c1). We may think that ω1 =β Kω
(why?), but actually ω1 =β 1. Show that from ω1 = Kω one can derive
any equation.

Solution. The following is seductive, but wrong:

ω1→β 11 ≡ (λfx.fx)1→β λx.1x ≡ λx.(λfx.fx)x→β λx.(λx.xx) =β Kω.

The correct derivation from λx.1x is:

λx.1x ≡ λx.(λfx′.fx′)x→β λx.(λx
′.xx′) ≡ λxx′.xx′ ≡α λfx.fx ≡ 1.
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For the derivation of a contradiction (any equation) note

ω1 = Kω ⇒ ω1ab = Kωab

⇒ 11ab = ωb

⇒ ab = bb

Taking a = KX, b = KY , we get KX(KY ) = KY (KY ), hence X = Y .

3. Week 27.10

3.1. Let P = {n∈N | ∃p>n.p and p+ 2 are primes}. Let f be a computable
function of two arguments. Define Q = {n∈N | ¬∃m.f(n,m) = m}.
(i) Show as warm-up that

K ∪K ≤m K ∪∗ K;

K ∪∗ K 6≤m K ∪K.

Solution. We have to show N ≤m K ∪∗ K, and K ∪∗ K 6≤m N.
Let k∈K; then 〈k, 0〉∈K∪∗K. Taking f(x) = 〈k, 0〉, we have trivially
f : N ≤m K∪∗K. For the inequality, note that we have k /∈ K, hence
〈k, 1〉 /∈ K ∪∗ K. Suppose g : K ∪∗ K ≤m N. Then we should have
g(〈k, 1〉) /∈ N, which is impossible. Therefore K ∪∗ K 6≤m N.

(ii) Now show

P ≤m K ∪∗ K;

Q ≤m K ∪∗ K.

Solution. Note that P is a ce set. Hence f : P ≤m K, for some
computable f , as K is ce-complete. Define f ′(n) = 〈f(n), 0〉. Then
f ′ : P ≤m K ∪∗ K:

n∈P ⇐⇒ f(n)∈K ⇐⇒ f ′(n) = 〈f(n), 0〉∈K ∪∗ K.

Similarly Q is co-ce, hence h : Q ≤m K, for h : Q ≤m K. Define
h′(n) = 〈h(n), 1〉. Then similarly h′ : Q ≤m K ∪∗ K.

(iii) Show that in the future of mathematics it could be the case that
P ≤m K ∪K.

Solution. It may be proved in the future that there are infinitely
many prime twins. Then P = N and trivially P ≤m K ∪K.

(iv)∗ Show that already today P ≤m {2n | n∈N}, but not intuitionisti-
cally so!

Solution. By classical logic either there are infinitely many prime
twins or not. In the first case P = N and taking f(n) = 0 one
has f : P ≤m {2n | n∈N}. In the second case P = {0, . . . , p}, with
p, p+ 2 the last prime twin. Define g(x) = 0, if x ≤ p, else 1. Then
g : P ≤m {2n | n∈N}.
This reasoning uses the excluded middle and is not intuitionistic.
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3.2. (i) Define the predicate

P (e, x) , ϕe is total and ϕe(x) ∼ x.

Show that P∈Π0
2.

Solution. Note that P (e, x) ⇐⇒

∀n∃s.ϕe,s(n)↓ & ∀m∃s.[ϕϕe,s(x),s(m) = ϕx,s(m)].

This is of the form ∀∀∃∃, hence in Π0
2.

(ii) What is the best position in the Arithmetical Hierarchy for P?

Solution. We claim that K2 ≤m P ; then P is m-complete for Π0
2,

as K2 is m-complete for Σ0
2. It follows that Π0

2 is the lowest level for
P in the arithmetical hierarchy.

To show the claim, remember e∈K2 ⇐⇒ ∀x∃s.ϕ2
e,s(e, x)↓. Define

ψ(e, x) =

{
x if ϕe(e, x)↓
↑ else

}
= ϕS(e)(x),

by the S-m-n theorem. Then ϕS(e) is the identity if e∈K2 and always

undefined otherwise. Therefore S : K ≤m P , since in case e∈K2

every x is a fixed point of ϕS(e), being the identity.

3.3. (i) Construct λ-defining terms for (see Syllabus CT) pd (predecessor),
−̇ (truncated subtraction), χ≥.

Solution. Remember the defining schemes for these three functions:

pd(0) = 0

pd(x+ 1) = x

x −̇0 = x

x −̇(y + 1) = pd(x −̇y)

χ≥(x, y) = sg((x+ 1) −̇y)

sg(0) = 0

sg(n+ 1) = 1.

The λ-defining term for the successor is suc, λnfx.f(nfx).

The λ-defining terms for pd, −̇, χ≥ are pred, −̇, F≥ respectively de-
fined as follows.

pred = λn.nT [0, 0] false, with T = λz.[suc(z true), z true];

monus = λxy.y predx;

F≥ = λxy.sg(monus(sucx)y).
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(ii) Use the previous item and exercise 2 of CT271014.pdf to construct
a λ-defining term of

g(n) = µx.[x+ x ≥ n].

Solution. First we construct a B∈Λø such that

Bc0 = false,

Bck+1 = true,

taking B,λn.n(K true) false. We want an H∈Λø such that intuitively

Hnx = x if x+ x ≥ n
= Hn(x+ 1) else.

Then we can take G, λn.Hnc0.
This H can be obtained by a fixed point construction satisfying

H =β λnx.B(F≥(A+xx)n)x(Hn(sucx)).

It suffices to take

H , Y(λhnx.B(F≥(A+xx)n)x(hn(sucx))).

4. Week 10.11

4.1. Let Y,λf.(λx.f(xx))(λx.f(xx)) and Θ,(λab.b(aab))(λab.b(aab)). These
terms are the fixed point combinators of Haskell Curry and Alan Turing,
respectively. Show that
(i) Yf =β f(Yf) and Θf =β f(Θf).

Solution. Define ωf , λx.f(xx). Then

Yf ≡ (λf.ωfωf )f =β ωfωf =β f(ωfωf ) =β f(Yf).

(ii) Yf 6→→β f(Yf).
Solution. The reduction graph Gβ(Yf) is:

Yf ≡ (λf.f(ωfωf ))f
β
//

β

��

(λf.f2(ωfωf ))f
β
//

β

��

(λf.f3(ωfωf ))f
β

//

β

��

· · ·

f(ωfωf )
β

// f2(ωfωf )
β

// f3(ωfωf )
β

// · · ·

We see that f(Yf) never appears.
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(iii) Θf →→β f(Θf).

Solution. Write A, ( ab.b(aab)). Then

Θf ≡ AAF →β (λb.b(AAb))f →β f(AAf) ≡ f(Θf).

(iv) There exists an F∈Λø such that Fx→→β xF .

Solution. Fx→→β xF follows from F →→β lx.xF , which follows from

F →→β (λfx.xf)F . We can take F , Θ(λfx.xf) and apply (iii).

4.2. Define

F1 = {M∈Λ | FV(M) = {x}},
F2 = {M∈Λ | ∃N∈Λ.M =β N & FV(N) = {x}}.

Which of these two sets is decidable (after coding)? Prove your answers.

Solution. F1 is decidable, because when (a code of) M is given, then we
can compute (a code of ) FV(M) and see whether it is {x}.
We have F2 6= Λ: one has y/∈F2; indeed, if y =β N , then by the Church-
Rosser theorm N →→β y and hence FV(N) = {x} is impossible, as free
variables cannot be created during a reduction. Also F2 6= ∅: one has
x∈F2. Finally F2 is by definition closed under =β. By Scott’s theorem
it follows that F2 is undecidable.

4.3. Show that there exists a term F∈Λø such that for all G∈Λ one has

F G =

{
true if G ≡ F
false else

[Hint. F may be called a selfish term. Use that ≡ (up to α-equivalence)
is decidable, that computable functions are λ-definable, and the second
fixed point theorem.]

Solution. Following the hint there exists an H∈Λø such that

H F G =

{
c0, if F ≡ G
c1, else.

We can modify H to H ′ , λfg.Hfg(Ktrue) false such that

H ′ F G =

{
true, if F ≡ G
false, else.

By the second fixed point theorem there exists an F∈Λ such that

H ′ F =β F.

Then FV(F ) = FV(H ′) = ∅, so F∈Λø, and has the required property

F G = H ′ F G

{
true, if F ≡ G
false, else.

.
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5. Week 17.11

5.1. Show that there is a term D∈Λø such that for all M∈Λø

D M =β M M .

Solution. Note that E M =β M and Num M =β M for all M∈Λø.

Hence we can take D , λm.Em(Num m).

5.2. (i) Find a term M∈Λ such that its reduction graph Gβ(M) looks like

M 99
xx

. (ii) Idem for M 99
ww

.

.  

AAAAAAAA ��

��������

Solution. (i) We try M ≡ AB, with A ≡ λa.a · · · , B ≡ λb.C[b]. Then
M ≡ AB →β B · · · →β C[· · · ]. If the latter is going to be AB, then

choosing A , λa.aIa, B , λba.aba works: AB →β BIB →β (λa.aIa)B.

Simpler: A, λa.aaa, B , λx.A. Then

AB →β BBB ≡ (λx.A)BB →β AB.

(ii) Take M , (λx.I)(AB), with AB as in (i). With the second solution
of (i) one can take M ,B(AB).

5.3. Find (simple) types for the following λ-terms: (i) λxy.xy(xyy).
(ii) λxy.x(yx). (iii) λxy.x(yxx).

Solution.
(i)

x:α2→α, y:α ` xy : α→α x:α2→α, y:α ` xyy : α

x:α2→α, y:α ` xy(xyy) : α

x:α2→α ` λy.xy(xyy) : α→α

` λxy.xy(xyy) : (α2→α)→α→α
This solution is not complete: the ‘axiom’

x:α2→α, y:α ` xy : α→α

really should have been derived

x:α2→α, y:α ` x : α→α→α x:α2→α, y:α ` y : α
,

x:α2→α, y:α ` xy : α→α
and similarly for the other ‘axiom’ x:α2→α, y:α ` xyy : α.

(ii)

x:α→β, y:(α→β)→α ` x : α→β x:α→β, y:(α→β)→α ` yx : α

x:α→β, y:(α→β)→α ` x(yx) : β

x:α→β ` λy.x(yx) : ((α→β)→α)→β

` λxy.x(yx) : (α→β)→((α→β)→α)→β
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(iii) In this item we show how the types are found, working ‘bottom up’.
We want

` λxy.x(yxx) : 1

This can come only from

x:2 ` λy.x(yxx) : 3

` λxy.x(yxx) : 1 = 2→3

And this only from

x:2, y:4 ` x(yxx) : 5

x:2 ` λy.x(yxx) : 3 = 4→5

` λxy.x(yxx) : 1 = 2→3

For this we need 4 = 2→2→6 and 2 = 6→5, obtaining

x:(6→5), y:(6→5)2→6 ` x(yxx) : 5

x:(6→5) ` λy.x(yxx) : ((6→5)2→6)→5

` λxy.x(yxx) : (6→5)→((6→5)2→6)→5

Or with a renaming

x:(α→β), y:(α→β)2→β ` x(yxx) : α

x:(α→β) ` λy.x(yxx) : ((α→β)2→α)→β

` λxy.x(yxx) : (α→β)→((α→β)2→α)→β

6. Week 01.12

6.1. Let o∈TTA. Remember that 0 = o, n+ 1 = n→o. Define

Λ(A) = {M∈Λø | `λcu
→
M : A}.

We will show that for A∈{0, 2, , 4, · · · } one has Λ(A) = ∅.
(i) Show Λ(0) = ∅. [Hint. Suppose that `λcu

→
M : 0, with M∈Λø. We

may assume that M is in β-nf (why?). If M ≡ PQ, then M is not in
nf. If `M ≡ λx.P : A, then A ≡ B→C. If M ≡ x, then M /∈ Λø.]

Solution. Suppose M∈Λ(0). By the normalization theorem M has
a normal form N . By the Church-Rosser theorem M →→β N . Since
typing is preserved under β-reduction one has N∈Λ(0). Every (un-

typed) lambda term is of the form λ~x.y ~R or λ~x.(λy.P )Q~R. Since 0
is an atomic type for N∈Λ(0) one has ~x = ∅: this means that N is

either of the form y ~R or (λy.P )Q~R. The first case is not possible as
N is closed, the second not as N is in normal form.
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(ii) Show Λ(2) = ∅. [Hint. use that I∈Λ(1) and (i).]

Solution. If M∈Λ(2), then M I∈Λ(0), which is not possible by (i).

(iii) Show Λ(3) 6= ∅. [Hint. Consider M ≡ λF 2.F 2I).]
(iv) Show Λ(4) = ∅. Similar to (ii), using (iii).
(v) Show Λ(2n− 1) 6= ∅, Λ(2n) = ∅, for all n > 0.

Solution. We show Λ(5) 6= ∅ from which follows as before that
Λ(6) = ∅. An inhabitant M5∈Λ(5) should be of the form M5 ≡
λF 4.N , with N of type 0. We can find such an N by taking N ≡
F 4M3, with M3∈Λ(3), according to (iii). The general argument is
by induction.

6.2. We study ways in which the proof of SN for λCH
→ after some modification

doesn’t hold.
(i) If one doesn’t add constants, where does the proof break down?

Solution. We need terms in C in order to be able to substitute and
give arguments to a term in C∗; this is needed in the proof of (4) on
page 7/11 in CT011214.pdf.

(ii) If one defines C∗A , CA, where does the proof break down?

Solution. In the proof of (5), in the same proof, step (7) case M ≡
(λx.P ) would fail. In that step we want to show that (λx.P )∈C∗,
knowing that P∈C∗. The argument Q∈C given to (λx.P ) gets swal-
lowed by P resulting in P [x: =Q] and the induction hypothesis (P∈C∗)
needs to deal with substituion results.

(iii) If one defines CA, {M∈Λ(A) |M∈SN}, where does the proof break
down?

Solution. Now in the case M ≡ PQ of step (7) in the same proof
we (perhaps) don’t have that P,Q∈SN ⇒ (PQ)∈SN.

6.3. We will show that `λcu
→
N : A & M →→β N 6⇒ `λcu

→
M : A.

(i) Show that SK→→β false.

Solution.

SK ≡ (λabc.ac(bc)K→β λbc.Kc(bc)→β λbc.c ≡ false.

(ii) Show ` false : α→β→β. Solution.

x:α, y:β ` y : β

x:a ` λy.y : β→β

` λxy.y : α→β→β

10



(iii) Show ` SK : (β→γ)→β→β.

Solution.

x:α→β→γ, y:α→β, z:α ` xz(yz) : γ

x:α→β→γ, y:α→β ` λz.xz(yz) : α→γ

x:α→β→γ ` λyz.xz(yz) : (α→β)→α→γ

` S ≡ λxyz.xz(yz) : (α→β→γ)→(α→β)→α→γ

x:α, y:β ` x : α

x:a ` λy.x : β→α

` K ≡ λxy.x : α→β→α

In order to fit K as argument for S we must unify the types by
substitution [γ: = α]:

x:α→β→α, y:α→β, z:α ` xz(yz) : α

x:α→β→α, y:α→β ` λz.xz(yz) : α→α

x:α→β→α ` λyz.xz(yz) : (α→β)→α→α

` S ≡ λxyz.xz(yz) : (α→β→α)→(α→β)→α→α

x:α, y:β ` x : α

x:a ` λy.x : β→α

` K ≡ λxy.x : α→β→α

` SK : (α→β)→α→α

This type for SK is a renaming variant of (β→γ)→β→β.

(iv) Show 6` SK : α→β→β.

Solution. The derivation under (iii) of a type for SK shows it is
minimal.
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