
26 1. The simply typed lambda calculus

1C. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed inhabitants
in β-nf of a given type A∈TT. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. The algorithm will be used by concluding
that a certain type A is uninhabited or more generally that a certain class of terms
exhausts all inhabitants of A.
Because the various versions of λA

→ are equivalent as to inhabitation of closed β-nfs,
we flexibly jump between the set

{M ∈ΛCh
→ (A) |M closed and in β-nf}

and

{M ∈Λ |M closed, in β-nf, and ⊢Cu
λ→

M : A},
thereby we often write a Curry context {x1:A1, · · · , xn:An} as {xA1

1 , · · · , xAn
n } and a

Church term λx0.x0 as λx0.x, an intermediate form between the Church and the de
Bruijn versions.
We do need to distinguish various kinds of nfs.

1C.1. Definition. Let A = A1→· · ·An→α and suppose M ∈ΛCh
→ (A).

(i) Then M is in long-nf , notation lnf , ifM ≡ λxA1
1 · · ·xAn

n .xM1 · · ·Mn and eachMi

is in lnf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a lnf if M =βη N and N is a lnf.

In Exercise 1E.14 it is proved that if M has a β-nf, which according to Theorem 2B.4 is
always the case, then it also has a unique lnf and this will be its unique βη−1 nf. Here
η−1 is the notion of reduction that is the converse of η.

1C.2. Examples. (i) λx0.x is both in βη-nf and lnf.
(ii) λf1.f is a βη-nf but not a lnf.
(iii) λf1x0.fx is a lnf but not a βη-nf; its βη-nf is λf1.f .

(iv) The β-nf λF 2
2 λf

1.Ff(λx0.fx) is neither in βη-nf nor lnf.
(v) A variable of atomic type α is a lnf, but of type A→B not.
(vi) A variable f1→1 has as lnf λg1x0.f(λy0.gy)x =η f

1→1.

1C.3. Proposition. Every β-nf M has a lnf M ℓ such that M ℓ ։η M .

Proof. Define M ℓ by induction on the depth of the type of the closure of M as follows.

M ℓ ≡ (λ~x.yM1 · · ·Mn)
ℓ , λ~x~z.yM ℓ

1 · · ·M ℓ
n~z

ℓ

where ~z is the longest vector that preserves the type. Then M ℓ does the job.

We will define a 2-level grammar , see van Wijngaarden [1981], for obtaining all closed
inhabitants in lnf of a given type A. We do this via the system λCu

→ .

1C.4. Definition. Let L = {L(A; Γ) | A∈TTA; Γ a context of λCu
→ }. Let Σ be the al-

phabet of the untyped lambda terms. Define the following two-level grammar as a notion
of reduction over words over L ∪ Σ. The elements of L are the non-terminals (unlike in

1C. Normal inhabitants 27

a context-free language there are now infinitely many of them) of the form L(A; Γ).

L(α; Γ) =⇒ xL(B1; Γ) · · ·L(Bn; Γ), if (x: ~B→α)∈Γ;
L(A→B; Γ) =⇒ λxA.L(B; Γ, xA).

Typical productions of this grammar are the following.

L(3; ∅) =⇒ λF 2.L(0;F 2)

=⇒ λF 2.FL(1;F 2)

=⇒ λF 2.F (λx0.L(0;F 2, x0))

=⇒ λF 2.F (λx0.x).

But one has also

L(0;F 2, x0) =⇒ FL(1;F 2, x0)

=⇒ F (λx01.L(0;F
2, x0, x01))

=⇒ F (λx01.x1).

Hence (=⇒=⇒ denotes the transitive reflexive closure of =⇒)

L(3; ∅) =⇒=⇒ λF 2.F (λx0.F (λx01.x1)).

In fact, L(3; ∅) reduces to all possible closed lnfs of type 3. Like in simplified syntax we
do not produce parentheses from the L(A; Γ), but write them when needed.

1C.5. Proposition. Let Γ,M,A be given. Then

L(A; Γ) =⇒=⇒M ⇔ Γ ⊢M : A &M is in lnf.

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all β-nfs.

1C.6. Definition. The 2-level grammar N is defined as follows.

N(A; Γ) =⇒ xN(B1; Γ) · · ·N(Bn; Γ), if (x: ~B→A)∈Γ;
N(A→B; Γ) =⇒ λxA.N(B; Γ, xA).

Now the β-nfs are being produced. As an example we make the following production.
Remember that 1 = 0→0.

N(1→0→0; ∅) =⇒ λf1.N(0→0; f1)

=⇒ λf1.f.

1C.7. Proposition. Let Γ,M,A be given. Then

N(A,Γ) =⇒=⇒M ⇔ Γ ⊢M : A &M is in β-nf.

28 1. The simply typed lambda calculus

Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine MA producing
the set of closed lnfs of that type. If one is interested in terms containing free variables
xA1
1 , · · · , xAn

n , then one can also find these terms by considering the machine for the
type A1→· · ·→An→A and looking at the sub-production at node A. This means that
a normal inhabitant MA of type A can be found as a closed inhabitant λ~x.MA of type
A1→· · ·→An→A.
1C.8. Examples. (i) A = 0→0→0. Then MA is

0→0→0
λx0λy0 // 0 // x

y
��

This shows that the type 12 has two closed inhabitants: λxy.x and λxy.y. We see that
the two arrows leaving 0 represent a choice.

(ii) A = α→((0→β)→α)→β→α. Then MA is

α→((0→β)→α)→β→α

λaαλf (0→β)→αλbβ

��
α

f
��

// a

0→β λx0
// β // b

Again there are only two inhabitants, but now the production of them is rather different:
λafb.a and λafb.f(λx0.b).
(iii) A = ((α→β)→α)→α. Then MA is

((α→β)→α)→α

λF (α→β)→α

��
α

F // α→β λxα
// β

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A = 1→0→0. Then MA is

1→0→0

λf1λx0

��

f 0@GAFBE // x

This is the type Nat having the Church’s numerals λf1x0.fnx as inhabitants.

1C. Normal inhabitants 29

(v) A = 1→1→0→0. Then MA is

1→1→0→0

λf1λg1λx0

��

f 0 g@GAFBE AFBECD

��
x

Inhabitants of this type represent words over the alphabet Σ = {f, g}, for example

λf1g1x0.fgffgfggx,

where we have to insert parentheses associating to the right.
(vi) A = (α→β→γ)→β→α→γ. Then MA is

(α→β→γ)→β→α→γ

λfα→β→γλbβλaα

��
γ

��
a αoo oo f // β // b

giving as term λfα→β→γλbβλaα.fab. Note the way an interpretation should be given

to paths going through f : the outgoing arcs (to α and β) should be completed both

separately in order to give f its two arguments.
(vii) A = 3. Then MA is

3

λF 2

��

0

��

F **
1

λx0

jj

x

This type 3 has inhabitants having more and more binders:

λF 2.F (λx00.F (λx
0
1.F (· · · (λx0n.xi)))).

The novel phenomenon that the binder λx0 may go round and round forces us to give new
incarnations λx00, λx

0
1, · · · each time we do this (we need a counter to ensure freshness of

the bound variables). The ‘terminal’ variable x can take the shape of any of the produced
incarnations xk. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.

30 1. The simply typed lambda calculus

(viii) A = 3→0→0. Then MA is

3→0→0

λΦ3λc0

��

f 0@GAFBE Φ
++

��

2
λf1

kk

c

This type, called the monster M, does have a potential infinite amount of binding, having
as terms e.g.

λΦ3c0.Φ(λf11 .f1Φ(λf
1
2 .f2f1Φ(· · · (λf1n.fn · · · f2f1c)..))),

again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f1 in this case) becomes necessary, as the f going from 0 to itself needs
to be one that has already been incarnated.
(ix) A = 12→0→0. Then MA is

12→0→0
λp12λc0 // 0

��

// c

p

JJ TT

This is the type of binary trees, having as elements, e.g. λp12c0.c and λp12c0.pc(pcc).

Again, as in example (vi) the outgoing arcs from p (to 0) should be completed both
separately in order to give p its two arguments.

(x) A = 12→2→0. Then MA is

1

λx0

12→2→0

λF 12λG2
// 0

G

JJ

��

// x

F

JJ TT

The inhabitants of this type, which we call L, can be thought of as codes for untyped
lambda terms. For example the untyped terms ω ≡ λx.xx and Ω ≡ (λx.xx)(λx.xx) can
be translated to (ω)t ≡ λF 12G2.G(λx0.Fxx) and

(Ω)t ≡ λF 12G2.F (G(λx0.Fxx))(G(λx0.Fxx))
=β λFG.F ((ω)tFG)((ω)tFG)
=β (ω)t ·L (ω)t,

where forM,N ∈L one definesM ·LN = λFG.F (MFG)(NFG). All features of produc-
ing terms inhabiting types (bookkeeping bound variables, multiple paths) are present in
this example.

1D. Representing data types 31

Following the 2-level grammar N one can make inhabitation machines for β-nfs Mβ
A .

1C.9. Example. We show how the production machine for β-nfs differs from the one
for lnfs. Let A = 1→0→0. Then λf1.f is the (unique) β-nf of type A that is not a lnf.

It will come out from the following machine Mβ
A .

1→0→0

λf1

��

0→0 //

λx0

��

f

f 0@GAFBE // x

So in order to obtain the β-nfs, one has to allow output at types that are not atomic.

1D. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in λ0

→. This means that an algebra A can be embedded into the set of closed terms in
β-nf in ΛCu

→ (A). That we work with the Curry version is as usual not essential.
We start with several examples: Booleans, the natural numbers, the free monoid over

n generators (words over a finite alphabet with n elements) and trees with at the leafs
labels from a type A. The following definitions depend on a given type A. So in fact
Bool = BoolA etcetera. Often one takes A = 0.

Booleans

1D.1. Definition. Define Bool ≡ BoolA

Bool, A→A→A;
true, λxy.x;

false, λxy.y.

Then true∈Λø
→(Bool) and false∈Λø

→(Bool).

1D.2. Proposition. There are terms not, and, or, imp, iff with the expected behavior on
Booleans. For example not∈Λø

→(Bool→Bool) and

not true=β false,

not false=β true.

Proof. Take not , λaxy.ayx and or , λabxy.ax(bxy). From these two operations the
other Boolean functions can be defined. For example, implication can be represented by

imp, λab.or(not a)b.

A shorter representation is λabxy.a(bxy)x, the normal form of imp.

