
An Ontology of States

Andrew Polonsky1 and Henk Barendregt1,2

1 Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands

2 Netherlands Institute for Advanced Study, Wassenaar

1 Introduction

The notion of state is ubiquitous in analysis of computational systems. State
introduces intensional content into a dynamical process which cannot be directly
observed from outside. Without a state, the process is defined purely by its input-
output behaviour, and is thus expected to run itself out toward a final result, ie,
compute some function. The injunction of internal data that has causal effect
on the execution of a system can thus be said to be the step that extends the
concept of a function to that of a process, which is no longer guaranteed to
terminate.

On the hardware level, this step is observed as one ascends from combinational
circuits to sequential circuits. The former concerns logical circuits that produce
values that depend only on the given input. The latter refers to circuits that have
‘memory’: an internal state that depends on the previous history of execution
in addition to the input data. The fundamental circuit element that allows for
state behavior is the flip-flop, that can store one bit of data in a virtual feedback
loop. (This circuit also exhibits another characteristic of systems with memory:
the presence of some clock mechanism.) The significance of circuits with state
is that they make it possible to construct a fully functional computer system —
which requires registers, arithmetic processors, instruction sequencing, storage,
etc.

On the software level, this distinction manifests itself as the difference be-
tween programs which execute some specific algorithm and then terminate (e.g.
compilers, text analysers, theorem provers, database search) and those that in-
teract with their environment while they are running (e.g. text editors, web
servers, operating systems). In the latter family, the behavior of the program at
a particular moment may be determined not only by the current user input, but
by the previous history also, so that there is additional information needed to
determine how the program will act at a given instant.

On the level of language design, the presence of intensional data is part of
the great divide between the pure functional languages and imperative (also,
object-oriented) languages. Because of referential transparency, the meaning of
an expression in purely functional languages is defined independently of the con-
text or history of execution. In contrast, languages in the latter family also allow
destructive operations on data which makes it possible to have data structures
whose internal content changes over time.

P. Achten and P. Koopman (Eds.): Plasmeijer Festschrift, LNCS 8106, pp. 18–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



An Ontology of States 19

Functional languages are very convenient for writing programs of the first
kind, where the input data must be transformed in some algorithmically com-
plex way; indeed, the syntax of languages such as Clean very closely mirrors
the actual mathematical definition of the function being computed. Thus func-
tional programs are much easier to analyze and prove properties of than their
imperative counterparts.

However, many real-world applications require programs of the second kind;
for this, stateful programming becomes unavoidable (similarly to how purely
combinational circuits become inadequate for building complex computational
systems). Thus, much of the research in the field of functional programming has
been devoted to finding the most clean way of incorporating intensional content
into functional programs. The design of the Clean language is directly based on
the fruits of this research, as is made evident in its very name. In addition to
fundamental innovations in language design, this work also introduced ideas in
programming language theory of independent mathematical interest, [3] and [4].

The practical possibilities offered by the Clean-style uniqueness typing solu-
tion to the state problem can be observed in the implementation of the iTasks
system, [5] and [6].

In this paper, we offer a meta-level investigation of the notion of a state from
the conceptual/logical points of view. We will show that there are several ways
with which a state specifies the intensional content of a sytem.

2 Agents and Systems

An agent is a system that receives input from the environment and comes into
action. Classes of agents are (in historical order)

1. Molecules and molecular machines.
2. Organims, from unicellular ones to homo sapiens.
3. Computer systems, from ad-hoc chips to super-computers.

The simplest way to describe an agent is recording its input-output (I/O)
behaviour. This may be done in natural or testing circumstances. This leads to
a behaviour function. Denoting the set of possible inputs by I and the set of
possible actions by A, we see that such a purely behavioral system is nothing
but a map

M : I → A (1)

which specifies which actions are to be taken for every input. One may rewrite
this as

M(i) = a∈A (1′).

In most cases this behaviouristic approach is limited. Nevertheless some agents
can be described in this way. Their actions uniquely result from the input, either
in a deterministic way or in a non-deterministic way.

More interesting agents may react differently under the same circumstances.
This is the reason that the notion of state is important, as the model (1) is
inadequate.



20 A. Polonsky and H. Barendregt

3 What Is a State?

Observing an agent we may tentatively say that its behaviour depends on a
state. The behaviour function now becomes

M : I × S→A. (2)

One also may write
M(i, s) = a∈A. (2′)

But do these states exist? To a biologist a state that fully determines together
with the input the action may seem doubtful. Using some mathematical hubris
one can nevertheless affirm that states do exist. An agent M1 at moment t1 can
be said to be in the same state as a similar (having the same classes of I/O)
agent M2 at moment t2 iff M1 and M2 react on an input i∈ I with the same
action. In particular one has defined now when an agent M is at moment t1
and t2 in the same state by taking M1 = M2 = M . Now with the principle of
abstraction, see [1], one can define ‘state’ from the relation ‘to be in the same
state’:

Definition. A state is an equivalence relation consisting of pairs (M, t) all
being in the same state.

In this way a state is a higher-order concept: a specific I/O relation.
Like the notion of state of a gas in a closed vat (a vector in a 6 ∗ 1023 space

describing for all (1023) gas molecules its 3 position and 3 momentum coordi-
nates) the state of a biological organism or even of a digital device can never be
fully known: the amount of data is over-astronomical. So one may wonder why
to introduce states, being what seems to be an example of mathematical hubris.
The reason to have states is that one may reason about them.

The ontology for state as determined by (2) is a (deterministic or non-
deterministic) map. If s : I→A, then one can interpret the action (2) as

M(i, s) = s(i)∈A. (2′′)

Although this ontology is satisfactory for the states used in (2), there is a need
for a more complex notion of state.

4 Turing-Like Machines

It is well known that a classical Turing machine can be described as a triple
〈Σ,Q, δ〉, where Σ is a set of symbols, with b∈Σ is a special element (‘blank’),
Q is a set of ‘states’ with q0 ∈Q a special state (start), and finally

δ : Σ ×Q⇀Σ ×Q × {L,R},

is a partial map. A set of ‘final states’ is not needed as it can be simulated
by states q ∈Q such that δ(q,−) is never defined. There is a two sided infinite
linear tape consisting of cells of order type Z and a read-write head placed on



An Ontology of States 21

one of the cells. If the machine is in state q and the head reads a symbol a and
δ(a, q) = 〈a′, q′, L|R〉 is defined, then
I the machine jumps to state q′ and symbol a is overwritten by a′;
II the head moves over the tape to the left or right, depending

on whether the last element of the output was an L or an R.

This description can be slightly generalized in such a way that the resulting
‘Turing-like’ machines describe ‘agents’ dealing with input/output (I/O) that
include robots, animals and even humans in an abstract way. Now the machine
is described as a 4-tuple 〈I,Q,A, δ〉, where I is a set of inputs, Q is a set of
states, A is a set of actions, and finally

δ : I ×Q⇀A×Q

is a partial map. By taking I = σ and A = {L,R}∪ {W (a) | a∈Σ}, with W (a)
having as meaning ‘write the symbol a, the classical Turing machine can be seen
as a Turing-like machine. But now I also can be seen as information presented
from the outside world through sensors, or the inner world part of memory;
and A can be seen as actions including movements of the robot, and focussing
attention on a part of memory, relevant in the given environmental context.

If we now suppose that every step taken by the agent M depends also on
some current state that is preserved between successive cycles of execution, then,
letting S denote the set of these states, such a machine is specified by a map

M : I × S → A× S (3)

Thus M sends the pair (i, s) of an input and a state to a pair (a, s) consisting
of the action to be taken as well as the new state the system is put into.

In this model, the state space S acts as a hidden parameter in the specification
of the system.

Modelling living beings in this way, one can ask the question whether there
does exists something like a state that determines action (and the next state).
The extensional apporach is to say that an agent at different moments is in the
same state whenever equal inputs deliver equal actions (and new states). So a
state is seen as a map transforming input to action (and a possibly new state).
This yields the recursive domain equation

S ∼= (I → (A× S)) (3′)

5 Solving the Recursive Domain Equation

We now solve the recursive domain equation

S ∼= (I → (A× S)) (4)

Since the variable S appears positively on the left side, the initial solution to this
equation is an inductive type. Categorically, this universal solution turns out to



22 A. Polonsky and H. Barendregt

be empty, because ∅maps initially to every object and satisfies (A×∅)I ∼= ∅I ∼= ∅.
(Unless I itself is empty, in which case the unique solution to (4) is the singleton
set consisting of the empty map ∅ : ∅ → (A× {∅}).)

It is therefore preferrable to assume that we begin with some initial set of
states S0, and take the closure by the functor F (X) = (A×X)I . (This solution
is universal among all sets containing S0.)

Explicitly, such a solution is found by infinitely iterating the functor F and
taking the direct limit:

S0 = S0

S1 = F (S0) = (A× S0)
I = AI × SI

0

S2 = F (S1) = (A× (AI × SI
0 ))

I

∼= AI × (AI)I × (SI
0 )

I

∼= AI+I2 × SI2

0

S3 = F (S2) = (A× (AI+I2 × SI2

0 ))I

∼= AI × (AI+I2

)I × (SI2

0 )I

∼= AI ×AI2+I3 × SI3

0

∼= AI+I2+I3 × SI3

0

S4 = F (S3) ∼= AI+I2+I3+I4 × SI4

0

...

Sn = AI+···+In × SIn

0

...

The limit of the above sequence is the type

S := Sω = AI+ × SIω

0

where

X+ :=
∑

n>1

Xn

is the set of strings of positive length over a set X . It satisfies the equation

X+ ∼= X +X ×X+ (5)

On the other hand, Xω is the set of all sequences (or streams) over X , which
satisfies the equation

Xω ∼= X ×Xω (6)



An Ontology of States 23

Using (5) and (6), we trivially verify that

F (S) = (A× S)I

∼= AI × SI

= AI × (AI+ × SIω

0 )I

∼= AI × (AI+

)I × (SIω

0 )I

∼= AI ×AI×I+ × SI×Iω

0

∼= AI+I×I+ × SI×Iω

0

∼= AI+ × SIω

0

= S

So that F (S) ∼= S, as desired.
Notice that the inductive process that builds up S is correlated with the time

axis of execution: the n’th approximant Sn contains precisely enough data to
run the machine for n steps.

Another curiousity of this space of solutions is that it is a product of two
function spaces. Indeed, S = AI+ × SIω

0 consists of pairs of maps (f, g), with
f : I+ → A and g : Iω → S0. We will now analyze the meaning of these
constituent functions.

We note that the first factor, specifying a function f : I+ → A, serves to
determine which action is taken by M after some finite sequence of inputs i =
(i1, . . . , in). This corresponds to the extensional part of the specification of M ,
as every value of this function can be observed by feeding M a required string
of inputs. Note that it has no relation to the initial set S0.

The second factor, on the other hand, declares a function g : Iω → S0. It is
curious that no value of g can be known after finitely many inputs. Rather, g
may be interpreted by stipulating that, given an infinite sequence x = (xn) of
inputs (running the system ‘to the end of time’), M ultimately comes to some
‘state’ sx ∈S0, which ascribes it intrinsic identity that cannot be measured by
any actions it takes. In other words, g is the intensional part of the specification
of M .

By taking S0 := 1 = {0} to be a singleton, we find the space of purely
extensional solutions, where the second component is projected away: Se =
AI+ × 1I

ω ∼= AI+

If we furthermore stipulate any machine M ∈S takes some action a∈A before
the first input is given, then the space of solutions is

S = A×AI+ ∼= A1+I+ ∼= AI∗

where I∗ is the space of finite strings of non-negative length. This set S is nothing
but the set of A-labelled trees over I.

In conclusion, every system specified by a map m : I × S → A × S consists
of two components: an extensional (or behavioral) part, given by an A-labelled



24 A. Polonsky and H. Barendregt

I-branching tree, and an intensional part, that merely stipulates some ‘hidden
variable’ determined only by the whole run of the system to infinity.

6 Solution via Scott Domains

The calculation of the recursive type F (S) = S is somewhat better behaved if
we work in the category of Scott domains, see [2]. This is effected by turning
every set in question (I, A, S) into a flat cpo by adjoing a bottom element ⊥ and
declaring it to be below every other element.

In this setting, we may find S0 as a subset of the limit Sω via the embedding
s �→ (⊥A, cs) which sends s∈S0 to the pair consisting of the bottom action
and the constant function with value s. Here Sω with this embedding is indeed
universal among all algebras X for the functor F together with an embedding
S0 ↪→ X .

Furthermore, since every cpo has a bottom element, the functor F itself has
the universal solution in which S0 is terminal cpo {⊥}. Note that this cpo doesn’t
grow during the iteration {⊥}, {⊥}I, {⊥}I2

, . . . So in the limit, the second factor
appears as the 1-element cpo, giving the pure extensional solution, which is the
initial algebra for the functor F in the category of cpos.

7 Continuous Time

As a final rumination, let us consider how the former analysis could be employed
in a continuous setting. The first suggestion could be to take the sets I, S,A to
be topological spaces, and consider a continuous map

Φ = (u(i, s), a(i, s)) : I × S → S ×A

representing evolution of state and action with respect to input and previous
state. Since we want the state s∈S to evolve “continuously” with each appli-
cation of Φ, it seems necessary that, whenever Φ(i, s) = (s′, a′), we must have
s = s′. But then repeated iteration of Φ can never move the state!

The resolution of this dilemma is to consider Φ = (u, a) as a family of operators
of smaller and smaller “clock ticks”. The input, state, and action then become
functions that depend on time.

Thus the question of realizability of a prescribed behavior using a stateful
system takes the following form:

Given functions i(t) : [0, 1] → I and b(t) : [0, 1] → A, when can we find a
space S admitting functions s : [0, 1] → S and a : I × S → A such that

1. b(t) = a(i(t), s(t))
2. s(t+ dt) depends on i(t) and s(t) in a “continuous way”.

In order to expore a more precise formulation of the second condition, let
us simplify the analysis by first considering the case where the input is held
constant: i(t) = i0. We want to think of the evolution of the state during this



An Ontology of States 25

interval as a “continuous application” of some state function v(s). This wish
could be attained if we are provided a map v0 : S → S together with an infinite
collection of “compositional square roots”: maps

vn : S → S, n ≥ 0

such that
vn+1 ◦ vn+1 = vn

We then define vt for every t∈ [0, 1] by prescribing its values on the dyadic
rationals: for t = t1

2 + t2
4 + · · ·+ tn

2n , put

v(s, t) = vt11 ◦ · · · ◦ vtnn (s)

This would define a continuous map v from S × [0, 1] to S if we can provide,
for each s∈S, that

lim
n→∞ vn(s) exists

and that the value of this limit varies continuously with s.
In fact, it must then follow that the limit above is actually equal to s, capturing

the intuition that v(s, t) represents infinitesimal evolution of u(i, s).
Now, given s0 ∈S, we can define s : [0, 1] → S by

s(t) =

{
s0 t = 0

v(s0, t) t > 0

Thus, the right way to ask the question of what is the “next value” of Φ is to
consider the infinitesimal change in the state after an infinitesimal tick of time.
This naturally leads to the question of the derivative of s.

In fact, in order to accomodate the possibility of changing input, passing to
the derivative cannot be avoided, because the small changes in the value of the
input must be integrated into the changes of the state from the very beginning.

Now, suppose that the following expression is well-defined for each s∈S:

v̇(s) = lim
n→∞ 2n(vn(s)− s)

Notice that ds
dt (t) = ṡ(t) = v̇(s(t)). Considering v̇(t) as a known function and

s(t) an indeterminate one, this identity becomes a differential equation

s′ = v̇(s)

Having reduced the problem to this form, we can now accomodate non-
constant input functions. Specifically, instead of having s′(t) be defined by a
function v̇ that depends only on s(t), we allow it to depend on i(t) as well. That
is, we write

s′ = u(s, i)

for some given function u. (Notice that i may now contain information about
time, as well as be equal to time.)



26 A. Polonsky and H. Barendregt

Together with a function a(s, i) that computes the output, we now have pre-
cisely the data needed to specify a behavior of a stateful system subject to the
boundary condition given by the input function i(t), t∈ [0, 1]. This can be seen
as the infinitesimal limit of the specification of Φ.

Remark. In order for the expression

1

ε
· (s(t) − s(t+ ε))

to be meaningful, the space S must have linear structure on it. As it happens,
the state spaces which usually appear in the dynamical systems of physics are in
fact vector spaces. Thus, we see that the idea of having internal state realize a
given continuous behavior naturally leads to the classical PDE view of dynamical
systems.

8 Conclusion

We have seen that the notion of internal state arises naturally when one pro-
gresses from the concept of a function, which gives raw input–output relation,
to that of a process, or a system, which evolves indefinitely as new input is
provided.

In the discrete case, the extensional contribution of a state is captured by an
infinite tree of its possible executions, which can be specified by a function from
strings over inputs to actions. The length of the string provides how many clock
ticks have elapsed since the execution has started.

In the continuous case, we are lead to the notion of dynamical systems as so-
lutions of differential operators. As in the previous case, the crucial role is played
by an intermediate structure, within which the intensional data of computation
resides.

References

1. Tarski, A.: Introduction to logic and to the methodology of deductive sciences.
Oxford university press (1941)

2. Gunter, C.A., Scott, D.S.: Semantic Domains. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 633–674 (1990)

3. Plasmeijer, R., van Eekelen, M.: Functional programming and parallel graph rewrit-
ing. Addison-wesley (1993)

4. Achten, P., Plasmeijer, R.: The Ins and Outs of Clean I/O. JFP 5(01), 81–110 (1995)
5. Lijnse, B.: TOP to the Rescue. PhD thesis (2013)
6. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-Oriented

Programming in a Pure Functional Language. In: Proceedings of the International
Conference on Principles and Practice of Declarative Programming, PPDP 2012,
Leuven, Belgium, pp. 195–206 (2012)


	An Ontology of States
	1 Introduction
	2 Agents and Systems
	3 What Is a State?
	4 Turing-Like Machines
	5 Solving the Recursive Domain Equation
	6 Solution via Scott Domains
	7 Continuous Time
	8 Conclusion
	References




