Lambda Calculus

Intended meaning

The meaning of

$$\lambda x.3x$$

is the function

$$x \longmapsto 3x$$

that assigns to x the value 3x (3 times x) So according to this intended meaning we have

$$(\lambda x.3x)(6) = 18.$$

The parentheses around the 6 are usually not written:

$$(\lambda x.3x)6 = 18$$

Principal axiom

$$(\lambda x.M)N =_{\beta} M[x:=N]$$

Aim of λ -calculus: to capture the notion of human computability

Alphabet

$$\Sigma = \{x,',(,),\lambda,=\}$$

Language

 $\begin{array}{lll} {\tt variable} & := & {\tt x} \mid {\tt variable'} \\ & {\tt term} & := & {\tt variable} \mid ({\tt term} \; {\tt term}) \mid (\lambda \, {\tt variable} \; {\tt term}) \\ & {\tt formula} & := & {\tt term} = & {\tt term} \end{array}$

Theory

Axioms
$$(\lambda x\,M)N = M[x:=N]$$

$$M = M$$
 Rules
$$M = N \Rightarrow N = M$$

$$M = N, N = L \Rightarrow M = N$$

$$M = N \Rightarrow ML = NL$$

$$M = N \Rightarrow LM = LN$$

$$M = N \Rightarrow \lambda x\,M = \lambda x\,N$$

Bureaucracy

Substitution

M	M[x:=N]
x	$\mid N \mid$
$\mid y \mid$	$\mid y \mid$
PQ	(P[x:=N])(Q[x:=N])
$\lambda x P$	$\lambda x P$
$\lambda y P$	$\lambda y \left(P[x:=N] \right)$

where $y \not\equiv x$

'Association to the left'

$$PQ_1 \dots Q_n \equiv (..((PQ_1)Q_2) \dots Q_n).$$

'Associating to the right'

$$\lambda x_1 \dots x_n M \equiv (\lambda x_1(\lambda x_2(..(\lambda x_n(M))..))).$$

Outer parentheses are often omitted. For example

$$(\lambda x.x)y \equiv ((\lambda xx)y)$$

Set of lambda terms: Λ

Functions of two arguments can be simulated by unary functions

Let
$$f(x,y) = x^2 + y$$

Define

$$F_x(y) = x^2 + y,$$
 that is $F_x = \lambda y.x^2 + y$
 $F(x) = F_x,$ that is $F = \lambda x.F_x$

Then $Fxy = F_xy = x^2 + y$. Thus $F = \lambda x.(\lambda y.x^2 + y)$

Fixed point theorem

THEOREM. For all $F \in \Lambda$ there is an $M \in \Lambda$ such that

$$FM =_{\beta} M$$

PROOF. Defines $W \equiv \lambda x.F(xx)$ and $M \equiv WW$. Then

$$M \equiv WW$$

$$\equiv (\lambda x.F(xx))W$$

$$= F(WW)$$

$$\equiv FM. \blacksquare$$

COROLLARY. For any 'context' $C[\vec{x}, m]$ there exists a M such that

$$M\vec{X} = C[\vec{X}, M].$$

PROOF. M can be taken the fixed point of $\lambda m\vec{x}.C[\vec{x},m]$.

Then
$$M\vec{X}=(\lambda m\vec{x}.C[\vec{x},m])M\vec{X}=C[\vec{X},M]$$
.

fall 2013

Consequences

We can construct terms Y, L, O, P such that

```
Yf = f(Yf) producing fixed points;

L = LL take L \equiv YD;

Ox = O take O \equiv YK;

P = Px.
```

More Bureaucracy

 $\lambda x.x$ and $\lambda y.y$ acting on M both give M

We write

$$\lambda x.x \equiv_{\alpha} \lambda y.y$$

"Names of bound variables may be changed".

NB

$$\begin{array}{ll} \mathsf{K} MN & \equiv & (\lambda xy.x)MN \\ & \equiv & (((\lambda x(\lambda y\ x))M)N) \\ & = & ((\lambda yM)N) \\ & = & M \end{array}$$
 assur

assuming that y not in M.

But

$$\begin{array}{lll} \mathsf{K} yz & \equiv & (((\lambda x(\lambda y \ x))y)z) & \mathsf{better:} & \mathsf{K} yz & \equiv & (((\lambda x'(\lambda y' \ x'))y)z) \\ & =_? & ((\lambda y \ y)z) & = & (\lambda y' \ y)z \\ & = & z?? & = & y & \mathsf{as} \ \mathsf{it} \ \mathsf{should}. \end{array}$$