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Abstract. For Labelled Transition Systems, an important question is
when two states in such a system are bisimilar. Here we study the dual, in
the sense of logical opposite, of bisimilarity, known as “apartness”. This
gives a positive way of distinguishing two states (stating that they are
not bisimilar). In [3] we have studied apartness (and bisimilarity) in gen-
eral co-algebraic terms. As opposed to bisimilarity, which is co-inductive,
apartness is an inductive notion and we have given and studied proof
systems for deriving that two states are apart. In the present paper we
continue the study of apartness in the light of Hennessy-Milner theo-
rems that establish an equivalence between bisimulation and validity of
(modal) formulas: two states are bisimilar if and only if they satisfy the
same set of formulas. Using the apartness view, this can be dualized: two
states are apart if and only there is a formula that distinguishes them.
We work this out for three situations: bisimulation for labelled transi-
tion systems (LTSs), weak bisimulation for LTSs with silent (τ) steps
and branching bisimulation for LTSs with silent (τ) steps. We study the
equivalences with the well-known variants of Hennessy-Milner logic and
show how an apartness proof gives rise to a distinguishing formula.

1 Introduction

The standard way of looking at equality of states in a Labeled Transition Systems
(LTS) is indistinguishability, which is captured via the notion of bisimulation.
States are observed through “destructors”, which in an LTS are the transition-
steps. A bisimulation is a relation that satisfies the “transfer principle”: if two
states are related, and we take a transition-step, then we get two new related
states. Two states are bisimilar if and only if they are observationally indistin-
guishable, i.e. there is a bisimulation that relates them. The coinduction principle
states that two states that are bisimilar (have the same observations) are equal.

In previous work [3], we have described apartness as the dual of bisimula-
tion for systems that are defined as co-algebras. Categorically, bisimulation is
described in the category of relations Rel, and apartness in the “fibred opposite”
of Rel. Here, we take a more pedestrian approach and use apartness to provide
a new look on some concrete known results about various forms of bisimula-
tion. The basic idea is that two states are apart in case they are observationally
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Jansen et al. (Eds.): Vaandrager Festschrift 2022, LNCS 13560, pp. 266–282, 2022.
https://doi.org/10.1007/978-3-031-15629-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15629-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-15629-8_14


Apartness and Distinguishing Formulas 267

distinguishable: there is a sequence of observations that can be made on one state
but not on the other. Apartness is a positive notion: two states are apart if there
is a positive way to distinguish them, and being apart is the negation of being
bisimilar. Bisimilarity is co-inductive: it is the union of all bisimulation relations
and therefore the largest bisimulation relation (and a final co-algebra). Apart-
ness is inductive: it is the intersection of all apartness relations and therefore the
smallest apartness relation (and an initial algebra). As apartness is inductive,
there is a proof system with derivation rules to derive that two states are apart.

In the present paper, we study the proof systems for deriving apartness
for some concrete cases. First we look into well-known non-deterministic LTSs,
where we have transitions of the form q →a q′, with q, q′ states and a a label.
The non-determinism means that from a state q there are multiple a-transitions
possible (or none). The apartness we get here is the dual, in the sense of the log-
ical opposite, of standard bisimulation. Then we add silent (τ) steps, which we
study modulo weak bisimulation (giving rise to its dual ‘weak apartness’) and
modulo branching bisimulation (giving rise to its dual ‘branching apartness’).
For each case, we give the deduction rules for deriving that two states are apart.

To argue that apartness is a fruitful way of looking at distinguishability, we
establish for each of these cases a Hennessy-Milner connection with a modal logic.
This is a very well-known connection between bisimulation and logic [2,6] that
we now re-establish via apartness. In bisimulation terms, the Hennessy-Milner
Theorem says that two states are bisimilar if and only if the same modal formulas
hold in these states, where of course the notion of bisimulation and the logic for
formulas depends on the type of systems under study. In terms of apartness, the
Hennessy-Milner Theorem gets a more “positive flavor” saying that two states
are apart if and only if there is a modal formula that distinguishes them (i.e.
that holds in one state, but not in the other). So, from a proof of the apartness
of two states q and p, we can derive a formula ϕ such that ϕ holds for q and ¬ϕ
holds for p: the formula ϕ gives a positive ‘witness’, an explanation, for the fact
that q and p are distinguishable. We illustrate this with some examples.

As a matter of fact, the present paper can be seen as an “apartness footnote”
[3] to the original papers by Hennessy and Milner [6], De Nicola and Vaandrager
[2] and Van Glabbeek and Weijland [4], where bisimulation has been studied in
various forms for various systems with motivating examples, and its properties
have been established, also in terms of modal logic.
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2 Bisimulation and Apartness for LTSs

We start from labeled transition systems over a set of actions A, and study the
well-known notion of bisimulation and the (less well-known) notion of apartness
for these systems.

Definition 1. Let A be a fixed set of actions. A labelled transition system over
A or LTS over A, is a pair (S,→) where S is a set of states and → ⊆ S ×A×S.
For (q, a, p) ∈→, we write q →a p and we call the LTS image finite in case the
set {p | q →a p} is finite for each q, a. On an LTS we define the notions of
bisimulation and apartness

1. A relation R ⊆ S × S is a bisimulation if it is symmetric and it satisfies the
following transfer property

q1 →a q2 R(q1, p1)
(↔)∃p2(p1 →a p2 ∧ R(q2, p2))

Two states q, p ∈ S are bisimilar, notation q ↔ p, is defined by

q ↔ p := ∃R ⊆ S × S (R is a bisimulation and R(q, p)).

2. A relation Q ⊆ S × S is an apartness if it is symmetric and satisfies the
following rule

q1 →a q2 ∀p2 ∈ S(p1 →a p2 =⇒ Q(q2, p2))
(in#)

Q(q1, p1)

Two states q, p ∈ S are apart, notation q # p, is defined by

q # p := ∀Q ⊆ S × S (if Q is an apartness, then Q(q, p)).

As an immediate consequence of the definition, q # p if and only if (q, p)
is in the intersection of all apartness relations, and # is the smallest apartness
relation. It is standard that in an LTS, two states are bisimilar if and only if
they are not apart, so we have

q ↔ p ⇐⇒ ¬(q # p).

Also, apartness is an inductive notion, and so we can equivalently define q
and p to be apart, q # p, if this can be derived using the deduction rules in
Fig. reffig.aptrules. So, we can use the rules that define what an apartness rela-
tion is as the deduction rules for a proof system to derive q # p.

It should be noted that in case the LTS is image-finite, the rule above can
also be written with a finite set of hypotheses:

q1 →a q2
∧

{p2∈S|p1→ap2}
q2 # p2

(in#)
q1 # p1

Before moving to formulas that distinguish states, we first give an example
to see what a proof of apartness looks like concretely.
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q1 →a q2 ∀p2 ∈ S(p1 →a p2 =⇒ q2 # p2)
(in#)

q1 # p1

p # q
(symm)

q # p

Fig. 1. The deduction system for deriving q # p

Example 1. We consider the LTS with actions {a, b, c} and states and transitions
as indicated in the figure.

q

q′

q1 q2

a

b c

p

p1 p2

p3 p4

a a

b c

It is well-known that q and p are not bismilar. They can be shown to be
apart using the following derivation

q →a q′

q′ →c q2 �
q′ # p1

q′ →b q1 �
q′ # p2

∀p′(p →a p′ =⇒ q′ # p′)

q # p

Note that the apartness q′ # p1 holds because q′ →c q2 and there is no c-
transition from p1, expressed by the check-mark. So the universal quantification
∀p′′(p1 →c p′′ =⇒ . . .) is empty, and therefore holds. These are the “base cases”
of the inductive definition of apartness: where we can do some transition from q
but not from p, and therefore q # p.

2.1 Hennessy-Milner Logic for Bisimulation

We now introduce the well-known modal logic that captures bisimulation logi-
cally and we prove the well-known Hennessy-Milner theorem using apartness.

Definition 2. Given a set of actions A, we define the Hennessy-Milner logic
for A, HMLA by the following set of formulas ϕ, where a ∈ A.

ϕ ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ.

Let (S,→) be an LTS over A. For q ∈ S and ϕ a formula of HMLA, we define
the notion ϕ holds in state q, notation q |= ϕ, as follows, by induction on ϕ.
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– q |= � always holds.
– q |= ¬ϕ if q �|= ϕ.
– q |= ϕ1 ∧ ϕ2 if q |= ϕ1 and q |= ϕ2.
– q |= 〈a〉ϕ if there is a q′ such that q →a q′ and q′ |= ϕ.

For (S,→) an LTS over A, q, p ∈ S, and ϕ ∈ HMLA, we say that ϕ distinguishes
q, p if q |= ϕ and p |= ¬ϕ.

The well-known Hennessy-Milner theorem [2,6] states that q ↔ p if and only
if ∀ϕ(q |= ϕ ⇔ p |= ϕ). We prove the apartness analogon of this, where we
compute a distinguishing formula from an apartness proof.

Proposition 1. Given an image-finite LTS (S,→) over A, and q, p ∈ S, we
have

q # p ⇐⇒ ∃ϕ(q |= ϕ ∧ p |= ¬ϕ).

Proof. (⇒) by induction on the proof of q # p.

– If the last applied rule is symm, then by IH we have ϕ that distinguishes p, q,
and therefore ¬ϕ distinguishes q, p.

– If the last applied rule is (in#), then we have

q →a q′ ∧

{p′∈S|p→ap′}
q′ # p′

(in#)
q # p

where the conjunction is over a finite set of formulas, say {p′ ∈ S | p →a

p′} = {p1, . . . , pn}. By IH we have ϕi (1 ≤ i ≤ n) such that ϕi distinguishes
q′, pi. Now we take ϕ := 〈a〉∧

1≤i≤n ϕi and we have
1. q |= ϕ: q →a q′ with q′ |= ϕi for every i, so q |= 〈a〉∧

1≤i≤n ϕi.
2. p |= ¬ϕ: for each p′ with p →a p′ there is an i with p′ |= ¬ϕi, and

therefore p′ |= ¬∧
1≤i≤n ϕi. So p |= ¬〈a〉∧

1≤i≤n ϕi.

(⇐) by induction on ϕ, where q |= ϕ and p |= ¬ϕ.

– ϕ = � cannot occur, because p |= ¬� never holds.
– ϕ = ¬ψ. Then p |= ψ and q |= ¬ψ, so by induction we have a derivation of

p # q. By rule (symm) we have a derivation of q # p.
– ϕ = ϕ1 ∧ ϕ2. Then q |= ϕ1 and q |= ϕ2, and also p |= ¬ϕ1 or p |= ¬ϕ2. In

case p |= ¬ϕ1 we have, by induction, a derivation of q # p, and similarly in
case p |= ¬ϕ2, so we are done.

– ϕ = 〈a〉ψ. We know q |= 〈a〉ψ, so let q′ be such that q →a q′ and q′ |= ψ.
Also p |= ¬〈a〉ψ, so for all p′ with p →a p′ we have p′ |= ¬ψ. By induction
hypothesis we have derivations of q′ # p′ for all p′ with p →a p′, so we have
the following derivation of q # p, using rule (in#)

q →a q′ ∀p′ ∈ S(p →a p′ =⇒ q′ # p′)
(in#)

q # p

��
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It is well-known ([6]) that image finiteness is needed for Proposition 1 to
hold. This can also be observed from the proof of (⇒), where the image finite-
ness guarantees that the generated distinguishing formula contains finitely many
conjunctions. So the implication (⇒) only holds for image finite systems, while
the implication (⇐) holds in general.

Example 2. We continue Example 1 by giving the formula that distinguishes
states q and p. It can be derived from the derivation of q # p, by following the
steps in the proof of Proposition 1. The distinguishing formula is

ϕ := 〈a〉(〈c〉� ∧ 〈b〉�),

which can be read as saying: “we can do an a-step such that after that we can
do both a b-step and a c-step”.

Example 3. As another example we show how we can use apartness for non-
deterministic finite automata, which have also been discussed in [3]. In this
example we use a special step, a c-transition (ending up in state qf ) to mimic
that a state is final.

q0 q1 q2

q3 qf

a, b

b

a, b

a, b

a
a, b

c

c

q3 →a q0

[q0 →a q1]

q1 →c qf

[ ] �
∀q′(q0 →c q′ =⇒ qf # q′)

q1 # q0

q0 # q1

∀q′(q0 →a q′ =⇒ q0 # q′)

q3 # q0

It can be shown that q3 # q0 by the derivation given above. In the derivation,
we indicate between [. . .] all possible transitions that we need to prove a universal
hypothesis of the form ∀q′(. . . → q′ =⇒ . . .). Note that q0 →a q1 is the only a-
step from q0. The check-mark denotes the empty side-hypothesis that vacuously
holds, as there is no c-step possible from q0. The distinguishing formula computed
from this derivation is 〈a〉¬〈c〉�, saying that from q3 one can do an a-step to a
state where one cannot do a c-step, while for q0 this is not the case.
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3 Weak Bisimulation and Apartness for LTSs

We now add silent steps, or τ -steps to labeled transition systems and we study
the (well-known) notion of weak bisimulation and the (less well-known) notion
of weak apartness for LTSs with τ .

Definition 3. Let A be a fixed set of basic actions. We denote by Aτ := A∪{τ}
the set of all actions, which includes the silent action τ . We let α (and β, γ, . . .)
range over Aτ and a (and b, c, . . .) range over A. A labelled transition system
with τ -steps over A or LTSτ , is a pair (S,→) where S is a set of states and
→⊂ S × Aτ × S. For (q, α, p) ∈→, we write q →α p.

We will be interested in the transitive reflexive closure of →τ , which we denote
by �τ . We call the LTSτ image finite in case the set {q′ | ∃q1, q2(q �τ q1 →α

q2 �τ q′} is finite for each q, α.

On an LTSτ , we define the notions of weak bisimulation [2,6] and weak apart-
ness. The first is well-known and the second is its dual and has been discussed
in [3].

Definition 4. Let (S,→) be an LTSτ over A.

1. A relation R ⊆ S × S is a weak bisimulation if it is symmetric and the
following two rules hold for R.

q →τ q′ R(q, p)
(biswτ )∃p′(p �τ p′ ∧ R(q′, p′))

q →a q′ R(q, p)
(bisw)∃p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ ∧ R(q′, p′′′))

States q, p are weakly bismilar, notation q ↔w p, if there exists a weak bisim-
ulation relation R such that R(q, p).

2. A relation Q ⊆ S × S is a weak apartness in case Q is symmetric and the
following rules hold for Q.

q →τ q′ ∀p′(p �τ p′ =⇒ Q(q′, p′))
(inwτ )

Q(q, p)

q →a q′ ∀p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ =⇒ Q(q′, p′′′))
(inw)

Q(q, p)

The states q and p are weakly apart, notation q #
w

p, if for all weak apartness
relations Q, we have Q(q, p).

Again, as an immediate consequence of the definition, q #
w

p if and only if
(q, p) is in the intersection of all weak apartness relations, and #

w
is the smallest

weak apartness relation.
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Just as in LTSs, for LTSτ s we also have that two states are weakly bisimilar
if and only if they are not weakly apart, so we have

q ↔w p ⇔ ¬(q #
w

p).

Weak apartness is an inductive notion, and so also in this case, we have a
derivation system for proving q #

w
p, using the three deduction rules of Fig. 2.

q →τ q′ ∀p′(p �τ p′ =⇒ q′ #
w
p′)

(inwτ )
q #

w
p

q →a q′ ∀p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ =⇒ q′ #
w
p′′′)

(inw)
q #

w
p

p #
w
q
(symm)

q #
w
p

Fig. 2. The deduction system for deriving q #
w

p

In case the LTSτ is image-finite, the rules above can be written with a finite
set of hypotheses:

q →τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(inwτ )
q #

w
p

q →a q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(inw)
q #

w
p

3.1 Hennessy-Milner Logic for Weak Bisimulation

We now introduce the well-known modal logic that captures weak bisimulation
logically and we prove the well-known Hennessy-Milner theorem [2] using weak
apartness.

Definition 5. We adapt the formulas of the logic of Definition 2 by just adding
τ in the modality, so we have, given a set of actions A, the formulas of HMLτA

given by the following set, where α ∈ Aτ .

ϕ ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈α〉ϕ.

Let (S,→) be an LTSτ over A. For q ∈ S and ϕ a formula of HMLτA, we define
the notion ϕ holds in state q, notation q |=w ϕ, as follows, by induction on ϕ.
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– q |=w � always holds.
– q |=w ¬ϕ if q �|=w ϕ.
– q |=w ϕ1 ∧ ϕ2 if q |=w ϕ1 and q |=w ϕ2.
– q |=w 〈a〉ϕ if ∃q1, q2, q3(q �τ q1 →a q2 �τ q3 ∧ q3 |=w ϕ).
– q |=w 〈τ〉ϕ if ∃q′(q �τ q′ ∧ q′ |=w ϕ).

For q, p ∈ S, and ϕ ∈ HMLτA, we say that ϕ distinguishes q, p if q |=w ϕ and
p |=w ¬ϕ.

Again, the well-known Hennessy-Milner theorem states that q ↔w p if and
only if ∀ϕ ∈ HMLτA(q |=w ϕ ⇔ p |=w ϕ). We prove the apartness analogon of
this, where we compute a distinguishing formula from an apartness proof. For
this it is useful to adapt the derivation rules for #

w
a bit. This adaptation is

borrowed from the “bisimulation side”, where it is easily shown to be equivalent.
The rules (biswτ ) and (bisw) for weak bisimulation can easily seen to be

equivalent to the following ones, where we replace a one-step transition by a
multiple step transition. (The equivalence is standard, e.g. from [2].)

q �τ q′ R(q, p)
(bis′

wτ )∃p′(p �τ p′ ∧ R(q′, p′))

q �τ q1 →a q2 �τ q′ R(q, p)
(bis′

w)∃p′, p′′, p′′′(p �τ p′ →a p′′ �τ p′′′ ∧ R(q′, p′′′))

Therefore, by duality, taking the logical opposite, we also have the following
equivalent set of rules for weak apartness.

Lemma 1. Weak apartness, as defined in Definition 4 can equivalently be cap-
tured using the following derivation rules (where we use the set notation, as
that’s the one we will be using later, when we restrict to image-finite systems).

q �τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(in′
wτ )

q #
w

p

q �τ q1 →a q2 �τ q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(in′
w)

q #
w

p

p #
w

q
(symm)

q #
w

p

Proposition 2. Given (S,→), an image-finite LTSτ over A, and q, p ∈ S, we
have

q # p ⇐⇒ ∃ϕ ∈ HMLτA(q |=w ϕ ∧ p |=w ¬ϕ).
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Proof. (⇒) by induction on the proof of q # p.

– If the last applied rule is symm, then by IH we have ϕ that distinguishes p, q,
and therefore ¬ϕ distinguishes q, p.

– If the last applied rule is (in′
wτ ), we have

q �τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(in′
wτ )

q #
w

p

Say {p′ | p �τ p′} = {p1, . . . , pn}. By induction hypothesis we have
ϕ1, . . . , ϕn with q′ |=w ϕi and pi |=w ¬ϕi for all i (1 ≤ i ≤ n). Now take
ϕ := 〈τ〉(ϕ1 ∧ . . . ∧ ϕn). Then q |=w ϕ and p |=w ¬ϕ.

– If the last applied rule is (in′
w), we have

q �τ q1 →a q2 �τ q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(in′
w)

q #
w

p

Say {p′′′ | ∃p′, p′′(p �τ p′ →a p′′ �τ p′′′)} = {p1, . . . , pn}. By induction
hypothesis we have ϕ1, . . . , ϕn with q′ |=w ϕi and pi |=w ¬ϕi for all i (1 ≤
i ≤ n). Now take ϕ := 〈a〉(ϕ1 ∧ . . . ∧ ϕn). Then q |=w ϕ and p |=w ¬ϕ.

(⇐) by induction on ϕ, where q |=w ϕ and p |=w ¬ϕ.

– The case ϕ = �, ϕ = ¬ψ and ϕ = ϕ1 ∧ ϕ2 are exactly the same as in the
proof of Proposition 1.

– ϕ = 〈τ〉ψ. We know q |=w 〈τ〉ψ, so let q′ be such that q �τ q′ and q′ |=w ψ.
Also p |=w ¬〈a〉ψ, so for all p′ with p �τ p′ we have p′ |=w ¬ψ. By induction
hypothesis we have derivations of q′ # p′ for all p′ for which p �τ p′, so we
have the following derivation of q # p, using rule (in′

wτ )

q �τ q′ ∧

{p′|p�τ p′}
q′ #

w
p′

(in′
wτ )

q #
w

p

– ϕ = 〈a〉ψ. We know q |=w 〈a〉ψ, so let q1, q2, q3 be such that q �τ q1 →a

q2 �τ q3 and q3 |=w ψ. Also p |=w ¬〈a〉ψ, so for all p1, p2, p3 with p �τ p1 →a

p2 �τ p3 we have p3 |=w ¬ψ. By induction hypothesis we have derivations
of q′ # p3 for all p3 ∈ {p′′′ | ∃p′, p′′(p �τ p′ →a p′′ �τ p′′′)}, so we have the
following derivation of q # p, using rule (in′

w)

q �τ q1 →a q2 �τ q′ ∧

{p′′′|∃p′,p′′(p�τ p′→ap′′�τ p′′′)}
q′ #

w
p′′′

(in′
w)

q #
w

p

��
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4 Branching Bisimulation and Apartness for LTSs

We now study the notions of branching bisimulation and branching apartness on
Labelled Transition Systems with τ -steps. So the systems we consider are still
the LTSτ systems of Definition 3, but now with a different notion of equivalence,
branching bisimulation, that takes the branching structure due to the τ -steps into
account. It is well-known that weak bisimulation is really weaker than branching
bisimulation (if s ↔b t, then s ↔w t, but in general not the other way around)
and similarly, weak apartness is really stronger than branching apartness (if
s #

w
t, then s #

b
t, but in general not the other way around).

On an LTSτ , we define the notions of branching bisimulation [2,4] and
branching apartness. The first is well-known and the second is its dual and
has been discussed in [3].

Definition 6. Given (S,→), an LTSτ over A (see Definition 3), a relation R ⊆
S × S is a branching bisimulation relation if the following rules hold for R.

q →τ q′ R(q, p)
(bisbτ )

R(q′, p) ∨ ∃p′, p′′(p �τ p′ →τ p′′ ∧ R(q, p′) ∧ R(q′, p′′))

q →a q′ R(q, p)
(bisb)∃p′, p′′(p �τ p′ →a p′′ ∧ R(q, p′) ∧ R(q′, p′′))

R(q, p)
(symm)

R(p, q)

The states q, p are branching bisimilar, notation q ↔b p if and only if there
exists a branching bisimulation relation R such that R(q, p).

We say that Q ⊆ S × S is a branching apartness in case the following rules
hold for Q.

q →τ q′ Q(q′, p) ∀p′, p′′(p �τ p′ →τ p′′ =⇒ Q(q, p′) ∨ Q(q′, p′′))
(inbτ )

Q(q, p)

q →a q′ ∀p′, p′′(p �τ p′ →a p′′ =⇒ Q(q, p′) ∨ Q(q′, p′′))
(inb)

Q(q, p)

Q(p, q)
(symm)

Q(q, p)

The states q and p are branching apart, notation q #
b

p, if for all branching
apartness relations Q, we have Q(q, p).

Again, as an immediate consequence of the definition, q #
b

p if and only if
(q, p) is in the intersection of all branching apartness relations, and #

b
is the

smallest branching apartness relation.
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Just as for weak bisimulation and weak apartness we also have that two states
are branching bisimilar if and only if they are not branching apart, so we have

q ↔b p ⇐⇒ ¬(q #
b

p).

Being branching apart is the smallest branching apartness relation, so is an
inductive definition that we can define using a derivation system. We can capture
q #

b
p using the derivation rules of Fig. 3, where we use a conjunction because in

the following we will be studying branching apartness for image-finite systems.

q →τ q′ q′ #
b
p

∧

{p,p′′|p�τ p′→τ p′′}
q #

b
p′ ∨ q′ #

b
p′′

(inbτ )
q #

b
p

q →a q′ ∧

{p′,p′′|p�τ p′→ap′′}
q #

b
p′ ∨ q′ #

b
p′′

(inb)
q #

b
p

p #
b
q
(symm)

q #
b
p

Fig. 3. The deduction system for deriving q #
b

p

4.1 Hennessy-Milner Logic for Branching Bisimulation

We now introduce the modal logic that captures branching bisimulation. The
logic is an adaptation of the logic HMLτA with an “until” operator instead of a
simple unary modality. We also state the well-known Hennessy-Milner theorem
using apartness:

q #
b

p ⇐⇒ ∃ϕ(q |=b ϕ ∧ p |=b ¬ϕ),

of which we only prove the (⇒) case, which produces a distinguishing formula
from an apartness proof. We will illustrate this with some examples.

Of course the (⇐) implication above also holds, and it can be proven by
contra-position, by proving q ↔b p =⇒ ∀ϕ(q |=b ϕ =⇒ p |=b ϕ), a proof of
which can be found e.g. in [2]. It would be nice to prove it directly, by induction
on ϕ, similar to the proofs of Propositions 1 and 2, but that turns out to be
difficult, and we have not yet been able to establish a direct proof.

Definition 7. We define HMLτbA by the following set of formulas, given a set
of actions A (where α ∈ Aτ ):

ϕ ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1〈α〉ϕ2.
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Let (S,→) be an LTSτ over A. For q ∈ S and ϕ a formula of HMLτbA, we
define the notion ϕ holds in state q, notation q |=b ϕ, as follows, by induction
on ϕ.

– q |=b � always holds.
– q |=b ¬ϕ if q �|= ϕ.
– q |=b ϕ1 ∧ ϕ2 if q |= ϕ1 and q |= ϕ2.
– q |=b ϕ〈a〉ψ if there are states q1, . . . , qn, qn+1 such that

q = q1 →τ . . . →τ qn →a qn+1 ∧ ∀i(1 ≤ i ≤ n) qi |= ϕ ∧ qn+1 |= ψ.
– q |=b ϕ〈τ〉ψ if q |= ψ or there are states q1, . . . , qn, qn+1 such that

q = q1 →τ . . . →τ qn →τ qn+1 ∧ ∀i(1 ≤ i ≤ n) qi |= ϕ ∧ qn+1 |= ψ.

For q, p ∈ S, and ϕ ∈ HMLτbA, we say that ϕ distinguishes q, p if q |=b ϕ and
p |=b ¬ϕ.

Again, the well-known Hennessy-Milner theorem states that q ↔b p if and
only if ∀ϕ ∈ HMLτbA(q |=b ϕ ⇔ p |=b ϕ). We state the apartness analogon of
this, where we compute a distinguishing formula from an apartness proof.

Proposition 3. Given (S,→), an image-finite LTSτ over A, and q, p ∈ S, we
have

q #
b

p ⇐⇒ ∃ϕ ∈ HMLτbA(q |=b ϕ ∧ p |=b ¬ϕ).

Proof. The Proposition is of course a corollary of the bisimulation version, which
is just the contra-positive, and which is proved, e.g. in [2]. We only prove (⇒)
by induction on the proof of q #

b
p.

– If the last applied rule is symm, then by IH we have ϕ that distinguishes p, q,
and therefore ¬ϕ distinguishes q, p.

– If the last applied rule is (inb), then we have

q →a q′ ∧

{p′,p′′|p�τ p′→ap′′}
q #

b
p′ ∨ q′ #

b
p′′

(inb)
q #

b
p

where the conjunction is over a finite set of formulas, say that {(p′, p′′) |
p �τ p′ →a p′′} = {(p1, r1) . . . , (pm, rm)}, so the pairs (pj , rj) are the states
for which we have p �τ pj →a rj . By IH we have for each j (1 ≤ j ≤ m) a
ϕj such that ϕj distinguishes q and pj (q |=b ϕj , pj |=b ¬ϕj), or a ψj such
that ψj distinguishes q′ and rj (q′ |=b ψj , rj |=b ¬ψj). Now we take

Φ :=
∧

1≤j≤m

ϕj ,

Ψ :=
∧

1≤j≤m

ψj ,

ϕ := Φ〈a〉Ψ.
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We have
1. q |=b ϕ: For q →a q′ we have q |= Φ and q′ |=b Ψ .
2. p |=b ¬ϕ: let p1, . . . , pn, pn+1 be such that p = p1 →τ . . . →τ pn →a pn+1.

We know by induction hypothesis that for some j, pn |=b ¬ϕj (and then
pn |=b ¬Φ) or pn+1 |=b ¬ψj (and then pn+1 |=b ¬Ψ). So ∃i ≤ n(pi |=b ¬Φ)
or pn+1 |=b ¬Ψ , which what we needed to prove.

– If the last applied rule is (inbτ ), then we have

q →τ q′ q′ #
b

p
∧

{p,p′′|p�τ p′→τ p′′}
q #

b
p′ ∨ q′ #

b
p′′

(inbτ )
q #

b
p

where the conjunction is over a finite set of formulas, say that {(p′, p′′) | p �τ

p′ →τ p′′} = {(p1, r1) . . . , (pm, rm)}, so the pairs (pj , rj) are the states for
which we have p �τ pj →τ rj . By IH we have a ϕ0 for which q′ |=b ϕ0 and
p |=b ¬ϕ0. Also by IH we have for each j (1 ≤ j ≤ m) a ϕj such that q |=b ϕj

and pj |=b ¬ϕj , or a ψj such that q′ |=b ψj and rj |=b ¬ψj . Now we take

Φ :=
∧

1≤j≤m

ϕj ,

Ψ := ϕ0 ∧
∧

1≤j≤m

ψj ,

ϕ := Φ〈τ〉Ψ.

We have
1. q |=b ϕ: For q →τ q′ we have q |= Φ and q′ |=b Ψ .
2. p |=b ¬ϕ: p |=b ¬Ψ (by p |=b ¬ϕ0) and for p1, . . . , pn, pn+1 with p = p1 →τ

. . . →τ pn →a pn+1 we know by induction hypothesis that for some j:
pn |=b ¬ϕj (and then pn |=b ¬Φ) or pn+1 |=b ¬ψj (and then pn+1 |=b ¬Ψ).
So ∃i ≤ n(pi |=b ¬Φ) or pn+1 |=b ¬Ψ , which what we needed to prove. ��

4.2 Examples

We now give some examples of how to compute a distinguishing formula from
an apartness proof.

Example 4. The first example is a well-known LTSτ with two states that are
not branching bisimilar and we give the proof of their branching apartness and
compute the distinguishing formula from that proof.

s

s1

s4

s3
s2

τ d
c

c

r

r1

r3

r2

τ

d

c
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We give a derivation of s #
b

r, where we indicate between [. . .] all possible
transitions that we need to prove a hypothesis for (just one in the case of the
c-step; none in the case of the d-step).

s →c s2

[r →τ r1 →c r3]

s →d s3

[ ] �

∀r′, r′′(r1 �τ r′ →d r′′ =⇒ s #
b

r′ ∨ s3 #
b

r′′)

s #
b

r1

s #
b

r1 ∨ s2 #
b

r3

∀r′, r′′(r �τ r′ →c r′′ =⇒ s #
b

r′ ∨ s2 #
b

r′′)

s #
b

r

The distinguishing formula that we compute from this derivation, following the
proof of Proposition 3 is

(�〈d〉�)〈c〉�,

which holds in state s and expresses that there is a τ -path to a state where a
c-step is possible, and in all states along that τ -path, a d-step is possible.

Example 5. We have the LTS given below, for which we have q0 #
b

p0, which
we prove and then compute the distinguishing formula.

q0

q1

q2

q3 q4

d

d

ce c

d

c

p0

p1

p2

p3

d

τ

ce d c

A derivation of q0 #
b

p0 is the following, where for space reasons, we singled
out the sub-derivation of q0 #

b
p2, which we call Σ. Again, we indicate between

[. . .] all possible transitions that we need to prove a hypothesis for.

q0 →d q2

[p0 →d p1]

p1 →e p0

p1 #
b

q2

q2 #
b

p1

q0 #
b

p0 ∨ q2 #
b

p1 [p0 �τ p2 →d p3]

Σ

q0 #
b

p2 ∨ q2 #
b

p3

∀p′, p′′(p0 �τ p′ →d p′′ =⇒ q0 #
b

p′ ∨ q2 #
b

p′′)

q0 #
b

p0

And here is the sub-derivation Σ of q0 #
b

p2:

Σ :=
q0 →d q1

[p2 �τ p2 →d p3]

q1 →e q0

q1 #
b

p3

q0 #
b

p2 ∨ q1 #
b

p3

∀p′, p′′(p2 �τ p′ →d p′′ =⇒ q0 #
b

p′ ∨ q1 #
b

p′′)

q0 #
b

p2
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The distinguishing formula that we compute from Σ is �〈d〉 (�〈e〉�). The
distinguishing formula for q0 #

b
p0 is

Φ := (�〈d〉 (�〈e〉�)) 〈d〉 ¬(�〈e〉�)

We have q0 |=b Φ and p0 |=b ¬Φ.

Example 6. We can also use the proof system for #
b

to establish that q ↔b p.
Here is a simple example to illustrate this.

q

q′

a a p

a

If q #
b

p, then there is a shortest derivation of q #
b

p, and we notice that
it doesn’t exist. Therefore we can conclude that ¬q #

b
p and so q ↔b p. In our

search for a derivation of q #
b

p we have to keep track of goals that we have
already encountered; the search would proceed as follows:

q →a q′

q′ →a q

fail

q′ #
b

p ∨ q #
b

p

q′ #
b

p

q #
b

p ∨ q′ #
b

p

q #
b

p

4.3 Related and Further Work

Of course, the concept of observations is well-known and tightly related to bisim-
ulation. Korver [8] presents an algorithm that, if two states are not branching
bisimilar, produces a formula in Hennessy-Milner [6] logic with until operator
that distinguishes the two states. This work implicitly uses the notion of apart-
ness without singling out its proof rules. Another work is Chow [1] on testing
equivalence of states in finite state machines and more recent work is by Smet-
sers et al. [9], where an efficient algorithm is presented for finding a minimal
separating sequence for a pair of in-equivalent states in a finite state machine.
It would be interesting to see whether this work, and the idea of finding such a
separating sequence, can be formulated in terms of apartness, and if the algo-
rithms can be improved using that approach. In general it would be interesting to
understand the various efficient algorithms for checking branching bisimulation
[5,7] in terms of apartness. A first concrete application of apartness for studying
systems has been made by Vaandrager and colleagues [10] in the development
of a new automata learning algorithm.

For the meta-theoretic study of bisimulation, it sometimes pays off to go to
the “dual view” of apartness, for one because apartness is an inductive notion, so
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we have an induction principle. There are examples of that in [3]. Also, sometime,
the apartness view just gives a different, fresh, angle on bisimulation which
might be fruitful. We have also seen examples where the bisimulation view works
much better than the apartness view, e.g. in the proof of the reverse implication
of Proposition 3, which we have not been able to establish directly (without
first going from the apartness-view to the bisimulation-view). It is interesting to
understand why this is the case.

Finally, we believe that apartness and the proof system for apartness may
provide useful in studying more quantitative or qualitative notions of distin-
guishability: how “different” are two states and in which points do they differ?
The latter is already established by the Hennessy-Milner formula, but one can
also think of this in a more “directed sense”, by studying a notion of “directed
apartness” (as a dual to simulation?) and witnesses establishing that states are
not simulated by others.
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