
Inductive and Coinductive types with Iteration and Recursion

�

Herman Geuvers

y

,

Faculty of Mathematics and Computer Science,

University of Nijmegen,

Toernooiveld 1,

6525 ED Nijmegen,

The Netherlands

July 1992

Abstract

We study (extensions of) simply and polymorphically typed lambda calculus from a

point of view of how iterative and recursive functions on inductive types are represented.

The inductive types can usually be understood as initial algebras in a certain category and

then recursion can be de�ned in terms of iteration. However, in the syntax we often have

only weak initiality, which makes the de�nition of recursion in terms of iteration ine�cient

or just impossible. We propose a categorical notion of (primitive) recursion which can easily

be added as computation rule to a typed lambda calculus and gives us a clear view on

what the dual of recursion, corecursion, on coinductive types is. (The same notion has,

independently, been proposed by [Mendler 1991].) We look at how these syntactic notions

work out in the simply typed lambda calculus and the polymorphic lambda calculus. It

will turn out that in the syntax, recursion can be de�ned in terms of corecursion and vice

versa using polymorphism: Polymorphic lambda calculus with a scheme for either recursion

or corecursion su�ces to be able to de�ne the other. We compare our syntax for recursion

and corecursion with that of Mendler ([Mendler 1987]) and use the latter to obtain meta

properties as conuence and normalization.

1 Introduction

In this paper we want to look at formalizations of inductive and coinductive types in di�er-

ent typed lambda calculi, mainly extensions of the polymorphic lambda calculus. It is well-

known that in polymorphic lambda calculus, many inductive data types can be de�ned (see

e.g.[B�ohm and Berarducci 1985] and [Girard et al. 1989]). In this paper we want to look at how

functions on inductive types can be represented. Therefore, two ways of using the inductive

building up of a type to de�ne functions on that type are being distinguished, the iterative

way and the recursive way. An iterative function is de�ned by induction on the building up of

the type by de�ning the function value in terms of the previous values. A recursive function

is also de�ned by induction, but now by de�ning the function value in terms of the previous

values and the previous inputs. For functions on the natural numbers that is h : Nat ! A,

with h(0) = c; h(n + 1) = f(h(n)) (for c : A; f : A ! A) is iterative and h : Nat ! A, with

�

Extended notes of a talk given at the BRA-LF meeting in Edinburgh, May 1991

y

herman@cs.kun.nl

1

h(0) = c; h(n + 1) = g(h(n); n) (for c : A; g : A � Nat ! A) is recursive. If one has pairing,

the recursive functions can be de�ned using just iteration, which was essentially already shown

by [Kleene 1936]. But if we work in a typed lambda calculus where pairing is not surjective,

this translation of recursion in terms of iteration becomes ine�cient and sometimes impossible.

Moreover, if the calculus also incorporates some predicate logic, one would like to use the in-

ductivity in doing proofs, which is not always straightforward (or just impossible.) We shall not

go into the latter topic here; there is still a lot of work to be done in relating the work presented

here to systems like AF2 by Krivine and Parigot (connections may be found in [Parigot 1992])

and Coq ([Dowek e.a. 1991].)

This asks for an explicit scheme for recursion in typed lambda calculus, which yields for,

say, the natural numbers the scheme of G�odels T. To see how this can be done in general

for inductive types, we are going to de�ne a categorical notion of recursion (just like `initial

algebra' categorically represents the notion of iteration). One of the trade-o�s is that we can

dualize all this to get a notion of corecursion on coinductive types. These categorical notions of

recursion and corecursion have independently been found by Mendler (see [Mendler 1991]) who

treats these constructions in Martin-L�of type theory with predicative universes. What we de�ne

as (co)recursive (co)algebras are what Mendler calls `(co)algebras that admit simple primitive

recursion'. We shall always use the term `recursion', because, although the function-de�nition-

scheme has a strong avour of primitive recursion, one can de�ne many more functions in

polymorphic lambda calculus then just the primitive recursive ones. Coinductive types were

�rst described in [Hagino 1987a] and [Hagino 1987b], with only a scheme for coiteration and

without corecursion. Here we give a quite straightforward extension of simply typed lambda

calculus with recursive and corecursive types.

A very surprising result is that in a polymorphic framework, if we have a notion of recursive

types which reects our notion of recursive algebra, then we can de�ne corecursive types that

correspond to corecursive coalgebras. By duality, this also works the other way around. This

result will be given here syntactically: We de�ne a polymorphic lambda calculus with recursive

and corecursive types (that straightforwardly represents the categorical notions of recursive

algebra and corecursive coalgebra) and show that the scheme for recursive types can be de�ned

from the scheme for corecursive types and vice versa. We also look at a system of recursive and

corecursive types de�ned by [Mendler 1987] and show that with either the scheme for recursive

types or the scheme for corecursive types, there is a recursive �-algebra and a corecursive �-

coalgebra in the syntax for every syntactic functor � (where syntactic functors are positive type

schemes.)

2 The categorical perspective

As said, we shall get our intuitions about inductive and coinductive types from the �eld of cate-

gory theory. The main notions in category theory related to this issue come from [Lambek 1968].

De�nition 2.1 Let C be a category, T a functor from C to C.

1. A T -algebra in C is a pair (A; f), with A an object and f : TA! A.

2

2. If (A; f) and (B; g) are T -algebra's, a morphism from (A; f) to (B; g) is a morphism

h : A! B such that the following diagram commutes.

TA

f

> A

Th

_

=

_

h

TB

g

> B

3. A T -algebra (A; f) is initial if it is initial in the category of T -algebras, i.e. for every

T -algebra (B; g) there's a unique h which makes the above diagram commute.

In a category with products, coproducts and terminal object, the initial algebra of the

functor TX = 1+X is the natural numbers object, for which we write (Nat; [Z; S]). The initial

algebra of TX = 1+(A�X) is the object of �nite lists over A, (List

A

; [Nil;Cons]). In this paper

our pet-example of an initial algebra will be (Nat; [Z; S]), which will be used to illustrate the

properties we are interested in. First take a look at how the iterative and recursive functions

can be de�ned on Nat. (The example immediately generalizes to arbitrary initial algebras.)

Example 2.2 1. For g : 1+B ! B we write g

1

for g�in

1

: 1! B and g

2

for g�in

2

: B ! B.

The iteratively de�ned morphism from g

1

; g

2

, Elimg

1

g

2

, is de�ned as the unique morphism

h which makes the diagram commute, i.e. h � Z = g

1

and h � S = g

2

� h.

2. For g

1

: 1 ! B, g

2

: B � Nat ! B, the recursively de�ned morphism from g

1

and g

2

is

constructed as follows.

There exists a unique h which makes the diagram

1 + Nat

[Z; S]

> Nat

id+ h

_

=

_

h

1 + (B � Nat)

h[g

1

; g

2

]; [Z; S � �

2

]i

> B � Nat

commute. That is h � [Z; S] = h[g

1

; g

2

]; [Z; S � �

2

]i � id + h. If we write h

1

= �

1

� h and

h

2

= �

2

� h we have the equalities

h

1

� Z = g

1

;

h

1

� S = g

2

� h;

h

2

� Z = Z;

h

2

� S = S � h

2

:

Now h

2

= id

Nat

by uniqueness and also h = hh

1

; h

2

i, so

h

1

� Z = g

1

;

h

1

� S = g

2

� hh

1

; idi:

3

So h

1

satis�es the recursion equalities and we de�ne

Recg

1

g

2

:= h

1

:

De�nition 2.3 Let C be a category, T a functor from C to C.

1. A T -coalgebra in C is a pair (A; f), with A an object and f : A! TA.

2. If (A; f) and (B; g) are T -coalgebras, a morphism from (B; g) to (A; f) is a morphism

h : B ! A such that the following diagram commutes.

B

g

> TB

h

_

=

_

Th

A

f

> TA

3. A T -coalgebra (A; f) is terminal if it is terminal in the category of T -coalgebras, i.e. for

every coalgebra (B; g) there's a unique h which makes the above diagram commute.

Our pet example for terminal coalgebras is the one for TX = Nat�X , the object of in�nite

lists of natural numbers, for which we write (Stream; hH;Ti). We shall dualize the notions of

iterative and recursive function to get coiterative and corecursive functions to Stream. (Again

this example easily generalizes to the case for arbitrary terminal coalgebras.)

Example 2.4 1. For g : B ! Nat�B, write g

1

for �

1

�g : B ! Nat and g

2

for �

2

�g : B ! B.

The coiteratively de�ned morphism from g

1

and g

2

, Introg

1

g

2

: B ! Stream is the (unique)

morphism h for which the diagram commutes. That is, H � h = g

1

and T � h = h � g

2

.

If j is a morphism from Nat to Nat, one can de�ne the morphism from Stream to Stream

which applies f to every point in the stream as Intro(j � H)T . Note that it is not so

straightforward to de�ne (coiteratively) a morphism which replaces the head of a stream

by, say, zero. This, however, can easily be done using corecursion.

2. For g

1

: B ! Nat, g

2

: B ! B + Stream, the corecursively de�ned morphism from g

1

and

g

2

, Corecg

1

g

2

is de�ned by h � in

1

, where h is the (unique) morphism which makes the

diagram

B + Stream

[hg

1

; g

2

i; hH; in

2

� Ti]

> Nat� (B + Stream)

h

_

=

_

id � h

Stream

hH;Ti

> Nat � Stream

commute. If we write h

1

= h � in

1

; h

2

= h � in

2

, then we have for h the following equations

H � h

2

= H;

T � h

2

= h

2

� T;

H � h

1

= g

1

;

T � h

1

= h � g

2

:

4

Now h

2

= id by uniqueness and also h = [h

1

; h

2

], so

H � h

1

= g

1

;

T � h

1

= [h

1

; id] � g

2

:

These are the equations for corecursion; if g

1

: B ! Nat and g

2

: B ! B + Stream, then

j : B ! Stream is corecursively de�ned from g

1

and g

2

if H � j = g

1

and T� j = [j; id]� g

2

.

The function ZeroH : Stream ! Stream which changes the head of a stream into zero

can now be de�ned as ZeroH := Corec(Z�!)(in

2

� T), where ! is the unique morphism from

Stream to 1. (Informally, Z�! is of course just �s : Stream:0.)

As usual in categorical de�nitions, the de�nitions of initial algebra and terminal coalgebra

split up in two parts, the `existence part' (there's an h such that...) and the `uniqueness part'

(the h is unique.) In the following we shall sometimes refer to these two parts of the de�nition

as the existence property and the uniqueness property .

In the typed lambda calculi that we shall consider, the inductive and coinductive types will

not exactly represent initial algebras and terminal coalgebras. What the systems are lacking

is the uniqueness property for the morphism h in 2.1, respectively 2.3. Algebras, respectively

coalgebras, which only satisfy the existence property are called weakly initial , respectively weakly

terminal .

De�nition 2.5 For T an endofunctor in a category C, The T -algebra, respectively T -coalgebra,

(A; f) is weakly initial, respectively weakly terminal, if for every T -algebra, respectively T -

coalgebra, (B; g) there exists an arrow h that makes the diagram in 2.1, respectively 2.3, com-

mute.

Remark 2.6 The notion of weakly initial algebra is really weaker than that of initial algebra.

For example in the category Set, (2!; [Z; S]) is a weakly initial (�X:1 + X)-algebra, but also

(2!; [Z; S

0

]), with S

0

(n) = S(n), S

0

(! + n) = n is. (On weakly initial algebras, the behaviour of

morphisms is only determined on the standard part of the algebra, that is in settheoretic terms,

those elements that are constructed by �nitely many times applying the constructor f . Initiality

says that the algebra is standard.)

As we made serious use of the uniqueness property in constructing the recursive and core-

cursive functions, it's interesting to see how much we can do in weak initial algebras and weak

terminal coalgebras. The construction of the iterative and coiterative functions of examples 2.2

and 2.4 can be done in the same way; we only loose the uniqueness property of the iteratively

de�ned function. The construction of recursive and corecursive functions in a weak framework

is not so straightforward. We shall study again the examples of natural numbers and streams of

natural numbers. Fix a category C, which has weak products and coproducts. (So we do have

e.g. �

1

� ht

1

; t

2

i = t

1

and [t

1

; t

2

] � in

1

= t

1

, but not h�

1

� t; �

2

� ti = t and [t � in

1

; t � in

2

] = t.)

It will turn out that weak products and coproducts will cause some extra restrictions on the

de�nability of functions. Therefore we shall also study what happens if product and coproduct

are semi , that is for products hf; gi�h = hf �h; g�hi and for coproducts h� [f; g] = [h�f; h�g].

The reason for not considering the strong products and coproducts in these examples is that

in the syntax of typed lambda calculi product and coproduct are usually weak or semi. (The

notions of semi product and semi coproduct are taken from [Hayashi 1985].)

5

Example 2.7 (Recursion on a weak natural numbers object) Let Nat be a weakly initial �X:1+

X-algebra. Consider the diagram in 2.2, where we de�ned recursion in terms of iteration and

let h : Nat ! B � Nat be some morphism that makes the diagram commute, i.e.

h � [Z; S] = h[g

1

; g

2

]; [Z; S � �

2

]i � id + h:

Applying projections to the left and injections to the right of the equation we obtain the following

equalities (where h

1

= �

1

� h and h

2

= �

2

� h).

h

1

� Z = g

1

;

h

1

� S = g

2

� h;

h

2

� Z = Z;

h

2

� S = S � h

2

:

Nat doesn't satisfy the uniqueness properties, so not necessarily h

2

= id

Nat

but only

h

2

� S

n

� Z = S

n

� Z

for every n 2 N, where S

n

denotes an n-fold composition of S. Now we would like to deduce

h

1

� Z = g

1

;

h

1

� S

n+1

� Z = g

2

� hh

1

; idi � S

n

� Z;

which says that h

1

satis�es the recusion equations for the `standard' natural numbers.

� For weak products this conclusion is only valid if g

2

= k � �

i

for some k : B ! B or

k : Nat ! B. (Note that if g

2

= k � �

1

for some k : B ! B, then h

1

is just iteratively

de�ned from g

1

and k, so only the case for g

2

= k � �

2

gives us really new functions, for

instance the predecessor.)

� For semi products this conclusion is only valid for g

2

= k�h�

1

; �

2

i for some k : B�Nat !

B, which is not a serious restriction: Just replace g

2

by g

2

� h�

1

; �

2

i.

Example 2.8 (Corecursion on a weak stream object) Let Stream be a weakly terminal �X:Nat�

X-coalgebra. Consider the diagram in 2.4, where we de�ned corecursion in terms of coiteration

and let h : (B + Stream)! Stream be some morphism that makes the diagram commute. Write

h

1

= h � in

1

and h

2

= h � in

2

. We have the following equalities.

H � h

2

= H;

T � h

2

= h

2

� T;

H � h

1

= g

1

;

T � h

1

= h � g

2

:

Now we can not conclude h � in

2

= id, because we don't have uniqueness, but we do have

H � T

n

� h

2

= H � T

n

;

that is h

2

is the identity on the `standard' part of the stream (those points that can be obtained

by �nitely many applications of H or T.) Again we would like to conclude

H � h

1

= g

1

;

H � T

n+1

� h

1

= H � T

n

� [h

1

; id] � g

2

;

that is h

1

satis�es the corecursion equations for the `standard' part of the stream.

6

� For weak coproducts this conclusion is only valid if g

2

= in

i

� k for some k : B ! B or

k : B ! Stream. (Note that if g

2

= in

1

�k for some k : B ! B, then h

1

is just coiteratively

de�ned from g

1

and k, so only the case for g

2

= in

2

� k gives us really new functions, like

for instance the function ZeroH.)

� For semi coproducts this conclusion is only valid if g

2

= [in

1

; in

2

] � k for some k : B !

B + Stream. again this is not a serious restriction: Just replace g

2

by [in

1

; in

2

] � g

2

.

For the morphism ZeroH : Stream ! Stream which replaces the head by zero, de�ned in 2.4 by

Corec(Z�!)(in

2

� T), we now have (for either weak or semi coproducts)

H � ZeroH = Z;

H �T

n+1

� ZeroH = H � T

n+1

;

so ZeroH works �ne on the standard part of the stream. That one can not, in general, de�ne a

morphism ZeroH such that T � ZeroH = T will be shown later, when we look at these examples

in polymorphic lambda calculus which is an instance of a category with weakly initial algebras

and weakly terminal coalgebras, semi products and weak coproducts.

Remark 2.9 With strong products and coproducts we would have similar problems in de�ning

recursion and corecursion. The recursion equations would only be valid for the standard natural

numbers and the corecursion equations would only be valid for the standard part of streams. The

only advantage would be that the g

2

: B � Nat ! B, respectively the g

2

: B ! B + Stream can

be taken arbitrarily.

In Section 4 the polymorphic lambda calculus will be considered in which inductive and

coinductive types can be de�ned which correspond to weakly initial algebras and weakly terminal

coalgebras. It will be shown that recursion in that calculus is problematic from a point of view of

e�ciency. One solution could be to strengthen the reduction rules to get a stronger (extensional)

equality. However, it's not possible to add some relatively easy reduction rules to the syntax

to obtain the uniqueness property of initiality and terminality. (We can't say in an easy way

that the only objects of a structure are the standard ones.) This is because the equality of

(primitive) recursive functions can not be decided by an easy (decidable) equality. We can do

something di�erent, namely say that our functions should behave on the non-standard part as

they behave on the standard part. Categorically, this can be obtained by strengthening the

notion of weakly initial algebra and weakly terminal coalgebra a little bit, such that recursion

`works'. (That is forN, for c : A; g : A�Nat! A there is a function h : Nat! A, with h(0) = c

and h(n+ 1) = g(h(n); n).) These new notions will be called recursive algebra and corecursive

coalgebra. The de�nitions are not di�cult if one understands what makes it possible to de�ne

(co)recursion, in terms of (co)iteration.

Let in the following C be a category with weak products and weak coproducts and T a

functor from C to C.

7

De�nition 2.10 (A; f) is a recursive T -algebra if (A; f) is a T -algebra and for every g :

T (X �A)! X there exists an h : A! X such that the following diagram commutes.

TA

f

> A

T (hh; idi)

_

=

_

h

T (X � A)

g

> X

Notice that this is the same as saying that (A; f) is weakly initial and that moreover, in the

diagram for de�ning recursion in terms of iteration, h

2

= id. (See 2.2)

De�nition 2.11 (A; f) is a corecursive T -coalgebra if (A; f) is a T -coalgebra and for every

g : X ! T (X +A) there exists an h : X ! A such that the following diagram commutes.

X

g

> T (X + A)

h

_

=

_

T ([h; id])

A

f

> TA

Again this is the same as saying that (A; f) is a weakly terminal T -coalgebra and that

moreover, in the diagram for de�ning corecursion in terms of coiteration, h

2

= id. (See 2.4)

When talking about weakly initial or recursive T -algebras and weakly terminal or corecursive

T -coalgebras, it is convenient to denote the h that makes the diagram commute as a function of

g. So we shall denote a weakly initial T -algebra by (A; f;Elim), where Elimg denotes a morphism

h in 2.5 that makes the diagram commute. Similarly, we write (A; f; Intro) for a weakly terminal

T -coalgebra, (A; f;Rec) for a recursive T -algebra and (A; f;Corec) for a corecursive T -coalgebra.

Examples 2.12 1. If (Nat; [Z; S];Rec) is a recursive �X:1+X-algebra, Rec is a recursor on

Nat: For [g

1

; g

2

] : 1 + (X � Nat)! X,

Rec[g

1

; g

2

] � Z = g

1

;

Rec[g

1

; g

2

] � S = g

2

� hRec[g

1

; g

2

]; idi;

so Rec[g

1

; g

2

] is the recursively de�ned function from g

1

and g

2

. We can de�ne P :=

Rec[Z; �

2

] and we have

P � Z = Z;

P � S = id:

2. If (Stream; hH;Ti;Corec) is a corecursive �X:Nat�X-coalgebra. Then for hg

1

; g

2

i : X !

Nat� (X + Stream), the function Corechg

1

; g

2

i satis�es

H � Corechg

1

; g

2

i = g

1

;

T � Corechg

1

; g

2

i = [Corechg

1

; g

2

i; id] � g

2

;

8

so Corechg

1

; g

2

i is the corecursively de�ned function from g

1

and g

2

. We can de�ne

ZeroH := CorechZ�!; in

2

� Ti

with

H � ZeroH = Z�!;

T � ZeroH = T:

3 Extending simply typed lambda calculus with inductive and

coinductive types

In his thesis ([Hagino 1987a]) Hagino derives from the notions of initial algebra and terminal

coalgebra an extension of simply typed lambda calculus, which he calls categorical data types.

This amounts to adding two schemes for de�ning a new type from a covariant functor from

types to types. (In the notation of these schemes below we follow [Wraith 1989].) These new

types come together with some constants and reduction rules. A covariant functor from types

to types in � ! is a positive type scheme �(�), that is a type � in which the free variable �

occurs positively . (The type variable � occurs positively in the type � if � =2 FV(�), � � �

or if � � �

1

!�

2

and � occurs negatively in �

1

, positively in �

2

. The type variable � occurs

negatively in � if � =2 FV(�), � � � or if � � �

1

!�

2

and � occurs negatively in �

2

, positively

in �

1

.) If �(�) is a type scheme, with �(�) we mean the type � with � substituted for �. If

there's no ambiguity to which type variable � we're referring, we just write � in stead of �(�).

A positive, respectively negative type scheme � can be applied to a function f :�!�, ob-

taining �(f):�(�)!�(�), respectively �(f):�(�)!�(�) by lifting : �(f) � f , if � =2 FV(�),

�(f) � id

�

and if � occurs negatively in �

1

, positively in �

2

then

(�

1

!�

2

)(f) � �x:�

1

(�)!�

2

(�):�y:�

1

(�):�

2

(f)(x(�

1

(f)y));

(�

2

!�

1

)(f) � �x:�

2

(�)!�

1

(�):�y:�

2

(�):�

1

(f)(x(�

2

(f)y)):

De�nition 3.1 Let �

1

;�

2

; : : : ;�

n

be types in the simply typed lambda calculus in which the

typevariable � occurs positively. The sum scheme for constructing data types is the following.

� = sum � with constructors

c

1

: �

1

!�

c

2

: �

2

!�

.

.

.

c

n

: �

n

!�

end

A declaration of a type � using this sum scheme gives rise to an extension of the language of

�! with

1. a closed type �

2. constants c

i

:�

i

(�)!� for 1 � i � n,

3. for every type � , Elim

�

:(�

1

(�)!�)!(�

2

(�)!�)! : : :!(�

n

(�)!�)!�!� .

The reduction relation is extended with the rule

Elim

�

M

1

M

2

: : :M

n

(c

i

t) �!M

i

(�

i

(Elim

�

M

1

: : :M

n

)t)

9

An easy example of a type de�ned by the sum scheme is �+� (for � and � types), representing

the the disjoint sum of � and � .

� + � = sum � with constructors

inl : �!�

inr : �!�

end

with inl : �!� + � , inr : �!� + � and for M

1

:�!�, M

2

:�!�, [M

1

;M

2

] : � + �!�.

The sequence of type schemes in the sum scheme can also be empty, allowing us to de�ne

the unit type by

1 = sum � with constructors

� : �

end

We have � : 1 and for any t : � , !(t) : 1!� with !(t)(�) �! t.

De�nition 3.2 Let �

1

;�

2

; : : : ;�

n

be types in the simply typed lambda calculus in which the

typevariable � occurs positively. The product scheme for constructing new data types is the

following.

� = product � with destructors

d

1

: �!�

1

d

2

: �!�

2

.

.

.

d

n

: �!�

n

end

A declaration of a type � using this product scheme gives rise to an extension of the language

of �! with

1. a closed type �,

2. constants d

i

:�!�

i

(�), for 1 � i � n,

3. for every type � , Intro

�

:(�!�

1

(�))!(�!�

2

(�))! : : :!(�!�

n

(�))!�!�.

The reduction relation is extended with the rule

d

i

(Intro

�

M

1

M

2

: : :M

n

t) �! �

i

(Intro

�

M

1

: : :M

n

)(M

i

t)

The straightforward example of a type de�ned by the product scheme is �� � (for � and �

types), representing the the product of � and � .

� � � = product � with destructors

fst : �!�

snd : �!�

end

with fst : � � �!�, snd : � � �!� and for M

1

:�!�, M

2

:�!� , <M

1

;M

2

> : �!� � � .

Remark 3.3 The type � de�ned by the sum scheme from �

1

(�); : : :�

n

(�), will be denoted by

��:(�

1

(�) + : : : + �

n

(�)). The type � de�ned by the product scheme from �

1

(�); : : :�

n

(�),

will be denoted by ��:(�

1

(�) � : : :� �

n

(�)). This is also how these types should be read: as

(weakly) initial algebras of TX = �

1

(X) + : : : + �

n

(X) and (weakly) terminal coalgebras of

TX = �

1

(X)� : : :� �

n

(X), respectively. (So dualising is of course not the same as reversing

all the arrows in a sum scheme to obtain a product scheme!)

10

De�nition 3.4 � !

ind

is the simply typed lambda calculus extended with sum scheme and

product scheme.

Example 3.5 The iterative functions on an inductive type can be straightforwardly de�ned by

the Elim construct. Write Nat for ��:1 + �, then for c:� and f :�!� , Elim(�z:c)f :Nat!�

is the iteratively de�ned function from c and f . The recursive functions can be de�ned by

translating recursion in terms of iteration as is done in 2.2. For c:� , g:�!Nat!� , de�ne

Reccg := fst � Elim(�z:hc; 0i)(h�x:g(fstx)(sndx); S � sndi) and we have

Reccg0 �!�! c;

Reccg(S

n+1

(0)) �!�! g(Reccg(S

n

0))(snd(Elim(�z:hc; 0i)(h�x:g(fstx)(sndx); S � sndi)(S

n

(0)))):

This recursor only works for terms of type Nat which are of the form S

n

0, but moreover, it

is quite ine�cient (compared to, for instance, the recursor in G�odels T).

Proposition 3.6 The predecessor function of type Nat!Nat, de�ned in terms of iteration in

�!

ind

computes the predecessor of a numeral n + 1 in 3n+ 2 steps.

Proof The predecessor function P is the ��-normal form of Rec0(�xy:y), so

P � fst � Elim

Nat�Nat

(�z:h0; 0i)(hsnd; S � sndi):

Now

P (S

n+1

0) �!�!

2

snd(Elim(�z:h0; 0i)(hsnd; S � sndi)(S

n

(0)));

snd(Elim(�z:h0; 0i)(hsnd; S � sndi)(0)) �!�!

3

0

and with induction one proves that

snd(Elim(�z:h0; 0i)(hsnd; S�sndi)(S

n+1

(0))) �!�!

3

S(snd(Elim(�z:h0; 0i)(hsnd; S�sndi)(S

n

(0)))):

Proposition 3.7 In �!

ind

there is no term P :Nat!Nat with

P (S0) = 0 and

P (Sx) = x

for x a variable of type Nat.

Proof This follows by the Church-Rosser property for reduction in �!

ind

. (See [Hagino 1987b].)

If P (Sx) = x, then P (Sx) �!�! x. Analyzing the possible structure of P one can conclude that

if P (Sx) �!�! x, then not at the same time P (S0) �!�! 0. This proposition is also an immediate

corollary of the same proposition for system F in 4.

If one tries to do corecursion on the coinductive types in �!

ind

, a similar situation occurs.

For Stream := ��:Nat��, one can de�ne ZeroH:Stream!Stream which replaces the head by 0

using the de�nable corecursion in weakly terminal coalgebras. We do not have T (ZeroHs) = Ts,

for s a Stream, but just H(ZeroHs) = 0 and H(T

n+1

(ZeroHs)) = H(T

n+1

s). One can also

show that there can be no term ZeroH:Stream!Stream such that T (ZeroHs) = s for a variable

s:Stream. (Using the Church-Rosser property or as a corollary of the same proposition for

system F.)

11

There are of course ways to strengthen the equalities of the sum and product scheme to get

real recursion and corecursion. The initiality can be restored totally by adding the conditional

rewrite rule

If h(c

i

t) = M

i

(�

i

[h]t) for 1 � i � n and M

i

and t of appropriate type, then h �! Elim

�

M

1

: : :M

n

:

However, conditional rewrite rules are metatheoretically very complicated (the rewriting de-

pends on the typing and on the previously generated equality.) Another alternative, which

restores part of the unicity is to add a rewrite rule

Elim

�

c

1

: : : c

n

�! Id

�

;

for

� = sum � with constructors

c

1

: �

1

!�

c

2

: �

2

!�

.

.

.

c

n

: �

n

!�

end

This is not enough to obtain a recursive algebra, because the Elim constructor doesn't auto-

matically commute with pairing. One has to add

snd � Elim

���

hg

1

; c

1

� �

1

(snd)i; : : : ; hg

n

; c

n

��

n

(snd)i �! Elim

�

c

1

: : : c

n

:

In the proof of Proposition 3.6, we then have that Rec0(�xy:y)(S

n+1

0) �!�! S

N

(0) in a constant

number of steps. In this case it is of course better to take � (and + if we add similar rules

for the product scheme) as primitive type constructors. The new reduction rule is not a very

pretty one.

We can also follow the categorical de�nitions of recursion and corecursion and strengthen

the sum and product schemes themselves. (Again it is best to take � and + as primitives.) For

the sum scheme this would lead to the type � with the same constructors and further

1. for every type � , Rec

�

:(�

1

(� � �)!�)!(�

2

(� � �)!�)! : : : (�

n

(� � �)!�)!�!� ,

2. the reduction rule Rec

�

M

1

M

2

: : :M

n

(c

i

t) �!M

i

(�

i

[hRec

�

M

1

: : :M

n

; idi]t)

For the product scheme we would also get the same type � with the same destructors and

further

1. for every type � , Corec

�

:(�!�

1

(� + �))!(�!�

2

(� + �))! : : :(�!�

n

(� + �))!�!�,

2. the reduction rule d

i

(Corec

�

M

1

M

2

: : :M

n

t) �! �

i

[[id;Corec

�

M

1

: : :M

n

]](M

i

t).

Call the system �!

ind

with modi�ed sum and product scheme as above �!

rec

. Without proof

we give the following proposition.

Proposition 3.8 In the system �!

rec

the inductive types are recursive algebras and the coin-

ductive types are corecursive coalgebras. (For the appropriate functors.)

12

4 The polymorphic lambda calculus

We just give the rules to �x our notation and shall not go into the system further, assuming

it is familiar. We write � and + for the de�nable weak product and coproduct: � � � �

8�:(�!�!�)!� and � + � � 8�:(�!�)!(�!�)!�.) We could also have added � and +

as new type constructors with extra rules turning them into a weak product and coproduct.

This however is inconvenient: The added � and + would not be functorial (e.g. � : Types �

Types!Types does not preserve identities and composition), whereas the de�nable � and +

are functorial by construction if we assume an �-reduction rule. (See De�nition 4.2 and the

discussion.)

De�nition 4.1 1. The set of types of F , T, is de�ned by the following abstract syntax.

T ::= TypVar jT!T j 8TypVar:T

2. The expressions of F , T , are de�ned by the following abstract syntax.

T ::= Var jTT jTT j�Var:T:T j�TypV ar:T

3. A context is a sequence of declarations x:� (x 2 Var and � 2 T), where it is assumed

that if x:� and y:� are di�erent declarations in the same context, then x 6� y.

4. The typing rules for deriving judgements of the form � ` M :� for � a context, M an

expression and � a type, are the following.

� If x:� is in �, then � ` x:�,

�

� `M :�!� � ` N :�

� `MN :�

�; x:� `M :�

� ` �x:�:M :�!�

�

� `M :8�:�

� `M� :�[�=�]

if � 2 T.

� `M :�

� ` ��:M :8�:�

if � =2 FTV(�).

FTV denotes the set of free type variables (TypVar.)

5. The one step reduction rules are the following.

� (�x:�:M)N �!

�

M [N=x],

� �x:�:Mx �!

�

M if x =2 FV(M),

� (��:M)� �!

�

M [�=�],

� ��:M� �!

�

M if � =2 FTV(M).

FV denotes the free term variables (Var.) One step reduction, �!, is de�ned as the union

of �!

�

and �!

�

. The relations �!�! and = are respectively de�ned as the transitive,

reexive and the transitive, reexive, symmetric closure of �!.

Here, t

0

[t=u] denotes the substitution of t for the variable u in t

0

. Substitution is done

with the usual care, renaming bound variables such that no free variable becomes bound after

substitution.

13

Type variables will be denoted by the lower case Greek characters �, � and , term variables

will be denoted by lower case Roman characters. The set of expressions typable in the context

� with type � is denoted by Term(�;�).

We want to discuss categorical notions like weak initiality in the syntax and therefore de�ne

need a syntactic notion of functor. This will be covered by the (well-known) notion of positive

or negative type scheme.

De�nition 4.2 1. A type scheme in F is a type �(�) where � marks all occurrences (possibly

none) of �.

2. A type scheme �(�) can be positive or negative (but also none of the both), which is

de�ned by induction on the structure of �(�) as follows.

(a) If � =2 FTV(�(�)), then �(�) is positive and negative,

(b) if �(�) � � then �(�) is positive,

(c) if �(�) � �

1

(�)!�

2

(�), then �(�) is positive if �

1

(�) is negative and �

2

(�) is

positive, �(�) is negative if �

1

(�) is positive and �

2

(�) is negative,

(d) if �(�) � 8�:�

0

(�) then �(�) � 8�:�

0

(�) is positive (resp. negative) if �

0

(�) is

positive (resp. negative) .

3. A positive (resp. negative) type scheme �(�) works covariantly (resp. contravariantly) on

a term f :�!� , obtaining a term �(f) of type �(�)!�(�) (resp. �(�)!�(�)), by lifting,

de�ned inductively as follows. (Let f :�!� .)

(a) If � =2 FTV(�(�)), then �(f) := id

�(�)

,

(b) if �(�) � � then �(f) := f ,

(c) if �(�) � �

1

(�)!�

2

(�), then, if �(�) is positive,

�(f) := �x:�

1

(�)!�

2

(�):�y:�

1

(�):�

2

(f)(x(�

1

(f)y))), if �(�) is negative, �(f) :=

�x:�

2

(�)!�

1

(�):�y:�

2

(�):�

1

(f)(x(�

2

(f)y))),

(d) if �(�) � 8�:�

0

(�), then, if �(�) is positive, �(f) := �x:�(�):��:�

0

(f)(x�), if �(�)

is negative, then �(f) := �x:�(�):��:�

0

(f)(x�).

It is easy to check that the lifting preserves identity and composition: �(id) = id and if

�(�) is positive then �(f � g) = �(f) � �(g), if �(�) is negative then �(f � g) = �(g) � �(f).

This also works for type schemes containing � or +, if we interpret � and + as the de�nable

weak product and coproduct:

� � � =: 8�:(�!�!�)!�;

fst := �x:� � �:x�(�y:�:�z:�:y);

snd := �x:� � �:x�(�y:�:�z:�:z);

<f; g> := �z:�:��:�k:�!�!�:k(fz)(gz);

for f :�!�; g:�!�;

� + � =: 8�:(�!�)!(�!�)!�;

inl := �x:�:��:�f : �!�:�g:�!�:fx;

inr := �x:�:��:�f : �!�:�g:�!�:gx;

[f; g] := �z:� + �:z�fg;

for f :�!�; g:�!�:

14

It should be remarked here that if one lifts f :�!� via a type scheme �(�) � �

1

(�) �

�

2

(�) (respectively �(�) � �

1

(�) + �

2

(�)) according to De�nition 4.2, this does not give

the (expected) result �(f) = �x:�(�):<�

1

(f)(fstx);�

2

(f)(sndx)> (respectively �(f) = [inl �

�

1

(f); inr � �

2

(f)].) If we take the latter de�nition for lifting a function via a product or sum,

this doesn't yield functoriality of � and +. We introduce some new notation to denote this

lifting via � and +.

De�nition 4.3 Let f :�!� , g:�!�.

1. timesfg : � � �!� � � is de�ned by

timesfg := �z:� � �:��:�y:�!�!�:z�(�p:�:�q:�:y(fp)(gq)):

2. plusfg : � + �!� + � is de�ned by

plusfg := �z:� + �:��:�y

1

:�!�:y

2

:�!�:z�(y

1

� f)(y

2

� g):

Now for f :�!� , if �(�) = �

1

(�)� �

2

(�) then �(f) = times(�

1

(f))(�

2

(f)) and if 	(�) =

	

1

(�) + 	

2

(�) then 	(f) = plus(

1

(f))(

2

(f)). Let's state some more easy facts about times

and plus, some of which will be used later.

Fact 4.4 For f; g; h and k of the right type we have.

1. plusfg � inl = inl � f ,

2. plusfg � inr = inr � g,

3. plusfg � plushk = plus(f � h)(g � k),

4. timesfg � timeshk = times(f � h)(g � k),

5. [f; g] � plushk = [f � h; g � k],

6. plushk �<f; g> = <h � f; k � g>.

(In general we don't have fst � timesfg = f � fst or snd � timesfg = g � snd.)

Positive (negative) type schemes can really be viewed as (contravariant) functors in the

syntax of polymorphic lambda calculus. (Consider a syntax with countably many variables

of every type and view types as objects and terms of type �!� as morphisms from � to � .)

The positive type schemes are a syntactic version of covariant functors. Similarly we also have

syntactic versions of weakly initial (terminal) (co)algebras and (co)recursive (co)algebras.

De�nition 4.5 Suppose we work in (an extension of) polymorphic lambda calculus where we

have �xed a notation for weak products and coproducts (e.g. the second order de�nable ones.)

Let �(�) be a positive type scheme.

1. The triple (�

0

;M

0

;Elim) is a syntactic weakly initial �-algebra if

(a) �

0

2 T,

(b) `M

0

:�(�

0

)!�

0

,

15

(c) ` Elim:8�:(�(�)!�)!�

0

!�,

such that

Elim�g �M

0

= g � �(Elim�g)

for any � 2 T and � ` g:�(�)!� .

2. The triple (�

1

;M

1

; Intro) is a syntactic weakly terminal �-coalgebra if

(a) �

1

2 T,

(b) ` f

1

:�

1

!�(�

1

),

(c) ` Intro:8�:(�!�(�))!�!�

1

,

such that

M

1

� Intro�g = �(Intro�g) � g

for any � 2 T and � ` g:�!�(�).

3. The triple (�

0

;M

0

;Rec) is a syntactic recursive �-algebra if

(a) �

0

2 T,

(b) `M

0

:�(�

0

)!�

0

,

(c) ` Rec:8�:(�(� � �

0

)!�)!�

0

!�,

such that

Rec�g �M

0

= g � �(<Rec�g; id>)

for any � 2 T and � ` g:�(� � �

0

)!� .

4. The triple (�

1

;M

1

;Corec) is a syntactic corecursive �-coalgebra if

(a) �

1

2 T,

(b) ` f

1

:�

1

!�(�

1

),

(c) ` Corec:8�:(�!�(� + �

1

))!�!�

1

,

such that

M

1

� Corec�g = �([Corec�g; id]) � g

for any � 2 T and � ` g:�!�(� + �

1

).

We have the following proposition, of which the �rst part is a syntactic version of a result

in [Reynolds and Plotkin 1990] and the second part is a result of [Wraith 1989]. In fact, the

�rst part of the proposition says that the algebraic inductive data types can be represented in

F , which result originally goes back to [B�ohm and Berarducci 1985]. Here we just want to give

these representations in short; for further details one may consult [B�ohm and Berarducci 1985],

[Leivant 1989] or [Girard et al. 1989].

Proposition 4.6 We work in the system F . Let �(�) be a positive type scheme. Then

1. There is a syntactic weakly initial �-algebra.

2. There is a syntactic weakly terminal �-coalgebra.

16

Proof Let �(�) be a positive type scheme.

1. De�ne �

0

:= 8�:(�(�)!�)!�,M

0

:= �x:�(�):��:�g:�(�)!�:g(�(Elim�g)x), and Elim :=

��:�g:�(�)!�:�y:�:y�g. Now (�

0

;M

0

;Elim) is a syntactic weakly initial �-algebra.

2. De�ne �

1

:= 8�:(8�:(�!�(�))!�!�)!�,

M

1

:= �x:�:x(�(�))(��:�g:�!�(�):�z:�:�(Intro�g)(gx)), and

Intro := ��:�g:�!�(�):�y:�:��:�h:8:(!�())!!�:h�gy. Now (�

1

;M

1

; Intro) is a

syntactic weakly terminal �-coalgebra.

We don't know whether there are syntactic recursive algebras or syntactic corecursive coalge-

bras in F . The answer seems to be negative. The well-known de�nitions of algebraic data-types

in F (which are almost the ones de�ned in the proof above) do in general not allow recursion or

corecursion, as will be illustrated by looking at the examples of natural numbers and streams

of natural numbers. This means that recursion and corecursion have to be de�ned in terms of

iteration and coiteration, using the techniques discussed in the Examples 2.7 and 2.8. As was

noticed there, it makes a di�erence whether product and coproduct are weak or semi, so let's

note the following fact.

Fact 4.7 The de�nable coproduct in F is a weak coproduct, but the de�nable product in F is a

semi product.

(That is, <f; g> � h = <f � h; g � h>, but not h � [f; g] = [h � f; h � g])

Example 4.8 (See also Example 3.5 and Proposition 3.6.)We de�ne recursive functions on the

weak initial algebra of natural numbers.

Let (Nat;M

0

;Elim) be the syntactic weak initial algebra of �(�) = 1 + �, as given in the proof

of 4.6, where 1 and + are the second order de�nable ones. (One can also take the well-known

polymorphic Church numerals, which is a slight modi�cation of our type Nat. The exposition is

not essentially di�erent, but we want to use our categorical understanding of recursion of 2.7.)

So Nat = 8�((1 + �)!�)!�, M

0

= �x:1 + Nat:��:�g:g((id+ Elim�g)x) and

Elim = ��:�g:�y:Nat:y�g. Now we �rst de�ne Z :=M

0

� inl and S :=M

0

� inr.

Following Example 2.7, we now de�ne Recg = fst � Elim(� �Nat)(<g; [Z;S � snd]>), for g:1 +

� � Nat!� . If

g = [g

1

; k �<fst; snd>]

for some k:� �Nat!� , we obtain the recursion equalities for Recg:

Recg � Z = g

1

;

Recg � S

n+1

� Z = k �<Recg; id> � S

n

� Z:

(See 2.7 for the restriction on the form of g; the product is semi here.) The predecessor is now

de�ned by taking g = [Z; snd], so P := fst �Elim(� �Nat)(<[Z; snd]; [Z;S� snd]>). Notice that

P (St) = t only for standard natural numbers, i.e. for t = S

n

(Z�), with � the unique (closed)

term of type 1. Also notice that P computes the predecessor of a natural number n in a number

of steps of order n.

Example 4.9 We de�ne corecursive functions on streams of natural numbers. Take for Stream

the syntactic weakly terminal �-coalgebra as in the proof of 4.6, for �(�) = Nat � �. So

Stream = 8�:(8�:(�!(Nat � �))!�!�)!�, M

1

= �x:Stream:x(Nat � �)(��:�g:�!Nat �

17

�:�z:�:(id� Intro�g)(gx)), and

Intro = ��:�g:�!Nat� �:�y:�:��:�h:8:(!Nat�)!!�:h�gy. We can de�ne head and

tail functions by taking H := fst �M

1

and T := snd �M

1

. Following Example 2.8, we now

de�ne for g:�!Nat� (� +Stream) Corecg := Intro(� +Stream)([g; <H; inr �T>]) � inl. As the

coproduct is not semi, but weak (see 2.8), we �nd that only for g = <g

1

; in � k> for in is inr or

inl and some k:Stream!B or k:Stream!Stream we obtain the corecursion equations.

H � Corecg = g

1

;

T � Corecg = [Corecg; id] � snd � g:

The function that replaces the head of a stream by zero is now de�ned by ZeroH := Corec<Z; inr�

T>

It is really impossible to de�ne a `global' predecessor on the weakly initial natural numbers

as described above (and similarly for the polymorphic Church numerals.) Also it is impossible

to de�ne a global ZeroH-function on the weakly terminal streams as described above. This is

shown in the following proposition.

Proposition 4.10 1. For Nat = 8�((1 + �)!�)!�, there is no closed term P :Nat!Nat

such that P (Sx) = x for x a variable.

2. For Stream := 8�:(8:(!Nat)!(!)!!�)!� there is no closed term

ZeroH:Stream!Stream such that T(ZeroHy) = Ty and H(ZeroHy) = 0 for y a variable.

Proof Both cases immediately by the Church-Rosser property for the system F .

One can show in general that the (co)inductive types in system F as de�ned above do not

allow (co)recursion, i.e. they are weakly initial (terminal) (co)algebras.

5 Recursive algebras and corecursive coalgebras and polymor-

phism

We de�ne an extension of F which includes a syntactic formalization of recursive algebras and

corecursive coalgebras. Then we show the remarkable fact that in this system one can de�ne

recursive algebras in terms of corecursive coalgebras and vice versa, so one of the two is enough

to be able to de�ne the other. This fact has a counterpart in semantics in the form that every

K-model of polymorphic lambda calculus that has a recursive T -algebras for every expressible

functor T , also has a corecursive T -coalgebra for every expressible functor T and vice versa.

(The notion of K-model is in [Reynolds and Plotkin 1990]; it is a syntax dependent notion of

model for F , described by giving a set of constraints that a structure and an interpretation

function should satisfy in order to be a model. As it covers a lot of known models it serves well

as a framework for stating this property semantically. Also the notion of expressible functor

comes from [Reynolds and Plotkin 1990]; roughly speaking, a functor is expressible if there is a

type scheme whose interpretation in the model (as a function of the free type variable) is a the

functor.)

We then want to relate our extension of F with recursive (and corecursive) types to a sys-

tem described by [Mendler 1987]. The latter system has a di�erent scheme for recursive (and

corecursive) types, the syntax of which is a bit too weak to de�ne one in terms of the other.

18

We can, however, interpret our system with recursive and corecursive types in Mendler's (with

either recursive or corecursive types.) This is done by showing that the system has syntactic

recursive �-algebras and syntactic corecursive �-coalgebras for every positive type scheme �.

(See De�nition 4.5.)

De�nition 5.1 The system F

(co)rec

is the system F extended with the following.

1. The set of types T is extended with ��:�(�) and ��:�(�), for �(�) a positive type scheme.

2. For ��:�(�) and ��:�(�) we have the extra constants

In

�

: �(�)!� Rec

�

: 8�:(�(�� �)!�)!�!�;

Out

�

: �!�(�) Corec

�

: 8�:(�!�(�+ �))!�!�:

3. Reduction rules for � and �:

Rec�g(Inx) �!

�

g(�(<Rec�g; id>)x);

Out(Corec�gx) �!

�

�([Corec�g; id])(gx):

(� abbreviates ��:�(�) and � abbreviates ��:�(�).)

We now have the following theorem, stating that in polymorphic lambda calculus, if one has

recursive types the corecursive types can be de�ned and vice versa.

Theorem 5.2 In F we can de�ne �, Out and Corec in terms of �, In and Rec and vice versa.

Proof Suppose we only have the rules for �, In and Rec and let � be a positive type scheme.

De�ne

�(�) := 8:(8�:(�!�(� + �)� �)!)!;

� := ��:�(�);

Corec := ��:�g:�!�(�+ �):�x:�:In

�

(�:�h:8�:(�!�(� + �)� �)!:h�<g; x>);

Out := Rec

�

(�(�))(�z:�(�(�)� �):z(�(�))(�:�p:�([Corec(�(plus(id)(snd)) � p

1

); snd])(p

1

p

2

)));

where p

1

and p

2

abbreviate fstp and sndp (the type of p is (!�(+ (�(�)� �)))� �.) We

have

Rec

�

�g(In

�

x) �!

�

g(�(<Rec

�

�g; id>)x);

for any g and x of appropriate types and we want to show

Out(Corec�gx) �!�! �([Corec�g; id])(gx))

for g:�!�(� + �) and x:� .

To make things easier to read we omit the type information in lambda abstractions. Let

� be a type, g:�!�(� + �) and x:� and abbreviate F � �p:�([Corec(�(plus(id)(snd)) �

p

1

); snd])(p

1

p

2

): The lifting of an f via � is de�ned as (following 4.2)

�(f) � �tk:t(��z:k�(times(�yx:plus(id)f(yx))(id)z):

19

Now

Out(Corec�gx) �!�! Rec

�

(�(�))(�z:z(�(�))F)(In

�

(�h:h�<g; x>))

�!�! �(<Rec

�

(�(�))(�z:z(�(�))F); id>)(�h:h�<g; x>)(�(�))F

�!�! (��z:F�(times(�yx:�(plus(id)F)(yx)(id)z))�<g; x>

�!�! �([Corec�(�(plus(id)(snd)) � �(plus(id)F) � g; snd])(�(plus(id)F)(gx))

�!�! �([Corec�g; snd] � plus(id)F))(gx)

�!�! �([Corec�g; id])(gx):

The other way around, suppose we only have rules for �, Out and Corec and let � be a

positive type scheme. De�ne

�(�) = 8�:(�(� � �)!�)!�;

� := ��:�(�);

Rec := ���g:�(�� �)!�:�x:�:Out

�

x�g;

In := Corec

�

(�(�))(�z:�(�):��:�h:�(� � �(�))!�:h(�(<Rec�(h � �(id� inr)); inr>)z)):

We have

Out

�

(Corec

�

�gx) �!�! �([Corec

�

�g; id])(gx))

and we want to prove

Rec�g(Inx) �!�! g(�(<Rec�g; id>)x):

We omit again type information in lambda abstractions and abbreviate F � �z�h:h(�(<Rec�(h�

�(id� inr)); inr>)z). According to De�nition 4.2,

�(f) � �t�k:t�(�z:k(�(times(id)f)z)):

Now

Rec�g(Inx) �!�! Out

�

(Corec

�

(�(�))Fx)�g

�!�! �([Corec

�

(�(�))F; id])(��h:h(�(<Rec�(h � �(id� inr)); inr>)x)�g

�!�! (��h:h(�(<Rec�(h � �(id� inr)); inr>)x)�(�z:g(�(times(id)F)z))

�!�! g(�(times(id)F)(�(<Rec�(�z:g(�(times(id)F)z) � �(times(id)(inr)); inr>)x)

�!�! g(�(<Rec�(g � �(times(id)F) � �(times(id)(inr); id>)x)

�!�! g(�(<Rec�g; id>)x)

We now want to look at the system of recursive types, as de�ned by [Mendler 1987], let's

call it F

(CO)REC

. (The system also has corecursive types.)

De�nition 5.3 ([Mendler 1987]) The system F

(CO)REC

is de�ned by adding to the polymor-

phic lambda calculus the following.

1. The set of types T is extended with ��:�(�) and ��:�(�), for �(�) a positive type scheme.

2. For ��:�(�) and ��:�(�) we have the extra constants

in

�

: �(�)!� R

�

: 8�:(8:(!�)!(!�)!�()!�)!�!�;

out

�

: �!�(�)

�

: 8�:(8:(�!)!(�!)!�!�())!�!�:

20

3. Reduction rules for � and �:

R

�

�g(in

�

x) �!

�

g�(id

�

)(R

�

�g)x;

out

�

(

�

�gx) �!

�

g�(id

�

)(

�

�g)x:

(� abbreviates ��:�(�) and � abbreviates ��:�(�).)

In [Mendler 1987] it is shown that this system satis�es a lot of nice meta-properties, like

strong normalization and conuence of the reduction relation.

De�nition 5.4 The system F

(CO)REC

with only the rules for � will be called F

REC

and simi-

larly, F

(CO)REC

with only the rules for � will be called F

COREC

.

We show that the system F

(co)rec

can be de�ned in both F

REC

and F

COREC

, so both systems

have all syntactic recursive algebras and all syntactic corecursive coalgebras.

Proposition 5.5 1. The �-types of F

(co)rec

can be de�ned in F

REC

.

2. The �-types of F

(co)rec

can be de�ned in F

COREC

.

Proof Let �(�) be a positive type scheme.

1. Write � for ��:�(�) and take In = in,

Rec

�

= ��:�g:�(���)!�:R

�

�(��:�f :�!�:�k:�!�:g��(<k; f>)):Then �, In and Rec

�

together de�ne the �-type of F

(co)rec

in the sense that Rec

�

�g(Inx) = g(�(<Rec

�

�g; id>)x).

2. Write � for ��:�(�) and take Out = out,

Corec

�

= ��:�g:�!�(� + �):
�(��:�f :�!�:�k:�!�:�([k; f]) � g): Then �, Out and

Corec

�

together de�ne the �-type of F

(co)rec

becauseOut(Corec

�

�gx) = �([Corec

�

�g; id])(gx).

Corollary 5.6 1. F

(co)rec

can be de�ned in both F

REC

and F

COREC

.

2. For every positive type scheme �(�) both F

REC

and F

COREC

have a syntactic recursive

�-algebra and a syntactic corecursive �-coalgebra.

Proof Both immediately by the proposition and Theorem 5.2.

As a corollary of the translation of F

(co)rec

in to F

(CO)REC

we �nd that F

(co)rec

is strongly

normalizing.

Proposition 5.7 The reduction relation of the system F

(co)rec

is strongly normalizing and con-

uent.

Proof In order to prove strong normalization we de�ne a mapping [�] from the terms of F

(co)rec

to the term of F

(CO)REC

that preserves in�nite reduction paths. Then F

(co)rec

is strongly

normalizing by the fact that F

(CO)REC

is strongly normalizing (see [Mendler 1987].) One easily

veri�es that the system is weakly conuent (i.e. if M �! N and M �!P, then 9Q[N �!�!

Q&P �!�! Q].) The conuence then follows from Newman's lemma ([Newman 1942]), stating

that strong normalization and weak conuence together imply conuence.

21

The de�nition of [�] is very similar to the mapping de�ned in the proof of Proposition 5.5.

(As the types do not in any way interfere with the reduction process we omit the types in

abstractions.) De�ne [�] by

[Rec

�

] := ��g:R

�

�(��fk:g � �(<k; f>));

[Rec

�

�] := �g:R

�

�(��fk:g � �(<k; f>));

[Rec

�

�g] := R

�

�(��fk:g � �(<k; f>));

[In] := in;

[Corec

�

] := ��g:
�(��fk:�([k; f])� g);

[Corec

�

�] := �g:
�(��fk:�([k; f]) � g);

[Corec

�

�g] :=
�(��fk:�([k; f]) � g);

[Out] := out;

and further by induction on the structure of the terms. Then

M �!

�

N) [M] �!�!

+

�

[N];

M �!

�

N) [M] �!�!

�

[N];

M �!

�

N) [M] �!

�

[N];

M �!

�

N) [M] �!

�

[N];

where �!�!

+

�

denotes a reduction in at least one step. As there is no in�nite �-reduction in

F

(co)rec

, the mapping [�] maps an in�nite reduction path in F

(co)rec

to an in�nite reduction

path in F

(CO)REC

, so we are done.

It doesn't seem possible to de�ne the �-types in terms of the �-types in F

(CO)REC

, nor

to de�ne the system F

COREC

in the system F

corec

. When one attempts to do so, some extra

equalities seem to be required.

6 Discussion

As pointed out by Christine Paulin ([Paulin 1992]) the technique in the proof of Theorem 5.2

also applies to a polymorphic lambda calculus with a kind of `retract types' that we shall

describe now. We give the syntax as it has been communicated to us by Christine Paulin; it is

implicit in papers by Parigot ([Parigot 1988] and [Parigot 1992]), where extensions of the system

AF2 with recursive types are studied. (AF2 is a system of second oder predicate logic with an

interpretation of proofs as untyped lambda terms.) The connections between our system with

recursive types and the (extensions) of AF2 is a subject which needs further investigation; we

feel that this is not the place to do so.

De�nition 6.1 The system F

ret

is the extension of system F with the following.

1. The set of types T is extended with ��:�(�), for �(�) a positive type scheme.

2. For ��:�(�) we have the extra constants

i

�

: �(�)!�; o

�

: �!�(�):

22

3. Reduction rule for �:

o

�

(i

�

x) �!

�

x:

(� abbreviates ��:�(�).)

In this system one can construct for �(�) a positive type scheme a type � with �(�) < �

(�(�) is a retract of �.) As pointed out to us by [Paulin 1992], the technique of 5.2 can be

applied to obtain that both the systems F

rec

and F

corec

can be de�ned in F

ret

. Also the reverse

holds: F

ret

can be de�ned in both F

rec

and F

corec

. It would be an interesting subject for further

investigations to see how the retract types relate to the recursive and corecursive types on the

categorical level.

Theorem 6.2 The systems F

rec

and F

corec

can be de�ned in F

ret

and vice versa.

Proof To de�ne F

rec

in F

ret

take

��:�(�) := ��:8:(�(� �)!�)!�;

Rec

�

:= �:�f :�(� �)!:�x:�:oxf;

In

�

:= �x:�(�):i(�:�f :�(� �)!�:f(�(<Rec

�

f; id>))x));

and Rec

�

�g(In

�

x) �!�! g(�(<Rec

�

�g; id>)x) easily follows. To de�ne F

corec

in F

ret

take

��:�(�) := ��:9:(!�(+ �))!);

Corec

�

:= �:�f :!�(+ �):�x::i(���k:k<f; x>);

Out

�

:= �x:�:ox(�(�))(�:�f :!�(+ �)� �:�([Corec

�

(fstf); id])(fstf(sndf)));

and Out

�

(Corec

�

�g) �!�! �([Corec

�

�g; id])(gx) easily follows.

To de�ne F

ret

in terms of F

rec

or F

corec

, take respectively

��:�(�) := ��:�(�);

i := In

�

;

o := Rec

�

�(�)(�(snd))

(so o(ix) �!�! x) and

��:�(�) := ��:�(�);

o := Out

�

;

i := Corec

�

�(�)(�(inr))

(so again, o(ix) �!�! x.)

23

We can collect the results from Theorems 5.2 and 6.2 and Corollary 5.6 in a picture as

follows. (An arrow from A to B means that the system A can be translated in the system B.)

F

ret

�

�

�

�

�

��

	�

�

�

�

�

� I@

@

@

@

@

@

@

@

@

@

@

@R

F

rec

�

�

-

F

corec

? ?

F

REC

F

COREC

If we translate in F

rec

the type ��:�(�) in terms of the �-type, which is de�ned in terms

of the �-type, we obtain the type ��:8:(�(� �)!)!. A similar situation occurs if we

translate in F

ret

a �-type in terms of a �-type, which is de�ned in terms of the �-type: ��:�(�)

becomes ��:8:(�(��)!)!. Using these double translations, we can deduce the following

facts about the systems F

rec

, F

corec

and F

ret

themselves.

Fact 6.3 1. For � a retract type of 	(�) � 8:(�(��)!)! or of 	(�) � 9:(!�(+

�))� , � is also a retract type of �.

2. For � a recursive type of 	(�) � 8:(�(� �)!)!, � is also a recursive type of �.

3. For � a corecursive type of 	(�) � 9:(!�(+ �))� , � is also a corecursive type of

�.

We can also compose the translations to obtain new interpretations of �-types in �-types

and vice versa:

Fact 6.4 1. For �(�) a positive type scheme, we can interpret �-types in F

rec

by taking

��:�(�) and Corec

�

as in 5.2 and

Out

�

:� �x:Rec

�

(�(�))(�(snd))x(�(�))(�f:�([Corec(fstf); id])(fstf(sndf))):

2. For �(�) a positive type scheme, we can interpret �-types in F

corec

by taking ��:�(�) and

Rec

�

as in 5.2 and

In

�

:� �x:Corec

�

(�(�))(�(inr))(�f:f(�(<Recf; id>)x)):

References

[B�ohm and Berarducci 1985] C. B�ohm and A. Berarducci, Automatic synthesis of typed

�-programs on term algebras Theor. Comput. Science, 39, pp 135-154.

[Coquand and Huet 1988] Th. Coquand and G. Huet, The calculus of constructions,

Information and Computation, 76, pp 95-120.

24

[Coquand and Mohring 1990] Inductively de�ned types, In P. Martin-L�of and G. Mints

editors. COLOG-88 : International conference on computer logic, LNCS 417.

[Dowek e.a. 1991] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, B. Werner,

The Coq proof assistant version 5.6, user's guide. INRIA Rocquencourt - CNRS ENS

Lyon.

[Girard et al. 1989] J.Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Camb. Tracts in

Theoretical Computer Science 7, Cambridge University Press.

[Hagino 1987a] T. Hagino, A categorical programming language, Ph. D. thesis, University of

Edinburgh.

[Hagino 1987b] T. Hagino, A typed lambda calculus with categorical type constructions. In

D.H. Pitt, A. Poign�e and D.E. Rydeheard, editors. Category Theory and Computer

Science, LNCS 283 pp 140-157.

[Hayashi 1985] S. Hayashi, Adjunction of semifunctors: categorical structures in

nonextensional lambda calculus. Theor. Comp. Sc. 41, pp 95-104.

[Kleene 1936] S.C. Kleene, �-de�nability and recursiveness. Duke Math. J. 2, pp 340-353.

[Lambek 1968] J. Lambek, A �xed point theorem for complete categories. Mathematisches

Zeitschrift 103 pp 151-161.

[Leivant 1989] D. Leivant, Contracting proofs to programs. In P. Odifreddi, editor. Logic in

Computer Science, Academic Press, pp 279-327.

[Mendler 1987] N.P. Mendler, Inductive types and type constraints in second-order lambda

calculus. Proceedings of the Second Symposium of Logic in Computer Science. Ithaca,

N.Y., IEEE, pp 30-36.

[Mendler 1991] N.P. Mendler, Predicative type universes and primitive recursion. Proceedings

of the Sixth Annual IEEE Symposium on Logic in Computer Science. Amsterdam, The

Netherlands, IEEE, pp 173-184

[Newman 1942] M.H.A. Newman, On theories with a combinatorial de�nition of

\equivalence". Ann. of Math. (2) 43, pp 223-243.

[Paulin 1992] Ch. Paulin-Mohring, private communication.

[Parigot 1988] M. Parigot, Programming with proofs: a second order type theory. ESOP '88,

LNCS 300, pp 145-159.

[Parigot 1992] M. Parigot, Recursive programming with proofs. Theor. Comp. Science 94, pp

335-356.

[Reynolds and Plotkin 1990] J.C. Reynolds and G.D. Plotkin, On functors expressible in the

polymorphic lambda calculus. In G. Huet, editor. Logical Foundations of Functional

Programming, In `The UT Year of Programming Series', Austin, Texas, pp 127-152.

[Wraith 1989] G.C. Wraith, A note on categorical datatypes In D.H. Pitt, A. Poign�e and D.E.

Rydeheard, editors. Category Theory and Computer Science, LNCS 389 pp 118-127.

25

