
A short and exible proof of Strong

Normalization for the Calculus of Constructions

Herman Geuvers

?

Faculty of Mathematics and Computer Science,

Eindhoven University of Technology

The Netherlands

1. Introduction

In the literature there are several di�erent proofs of Strong Normalization (SN)

for the Calculus of Constructions (CC). Some of them are of purely syntacti-

cal nature (like the ones in [Coquand 1985], [Geuvers and Nederhof 1991] and

in [Coquand and Gallier 1990]), while others give a proof of normalization by de-

scribing an appropriate semantics (like [Ong and Ritter 1994] and [Altenkirch 1993],

who describe an denotational semantics, but also [Goguen 1994], who describes

a typed operational semantics). Apart from these, proofs of SN for CC can be

found in [Berardi 1988], [Luo 1990] (containing a proof of SN for the `Extend-

ed' Calculus of Constructions), [Terlouw 1993] and [Geuvers 1993] (containing

a proof of SN for CC with � and � reduction). Each of these proofs exploits

the idea of interpreting types as speci�c sets of strongly normalizing �-terms.

Then the terms are interpreted in such a way that, (1) if t is of type �, then the

interpretation of t is in the set associated with �, and (2) for any term t, if its

interpretation is SN, then t itself is SN.

For systems without type dependency (like the polymorphic � calculus), it

is rather well-known by now how to give a proof of SN using so called `saurated

sets' as interpretations for the types. These saturated sets are sets of untyped �

terms that satisfy some speci�c closure conditions and that are rather easy to

work with. A possible drawback of this approach is that the interpretation of

the typed term t should be an untyped term, and hence the interpretation will

remove all type information from the term t (and hence it may remove some

redexes). For the polymorphic � calculus, this is not a real problem, because

the reduction that comes from type-abstractions and type-applications can not

be the source of an in�nite reduction. In a system with type dependency, the

situation is rather more complicated, because types can contain terms as subex-

pressions. (So, if one removes all types, then one also removes some terms.) In

the Calculus of Constructions the situation is furthermore complicated by the

fact that the system is higher order, which means that there are reductions in

type-constructors.

One possible approach to coping with type dependency is to look at sets of

typed terms instead of untyped terms. This is done, for example, in [Berardi 1988]

and [Coquand and Gallier 1990]. Another possibility is to reduce the question

?

e-mail: herman@win.tue.nl

of SN for a system with type dependency to SN for a system without type de-

pendency. This is done in [Geuvers and Nederhof 1991]. Both approaches lead

to rather involved proofs that consist of putting several steps together. Further-

more, these proofs do not easily scale up to extensions of CC with other type

constructors.

The approach that we use here is based on saturated sets. It yields a (rela-

tively short) direct proof of SN for CC using two di�erent interpretations, [[�]]

�

and ([�])

�

. The �rst gives a set or a set-theoretic function for every type, con-

structor, kind or universe of CC. This is done modulo a valuation function �,

which assigns a set or set-theoretic function to the constructor variables. (For

those not familiar with CC, this terminology is explained below.) The second

gives an untyped term for every object, type, constructor or kind of CC. This

is done modulo a valuation function �, which assigns an untyped term to the

constructor variables and the object variables. SN for CC then follows from the

fact that

(1) if � and � are valuations that `agree with' the context � and � ` M : T ,

then ([M])

�

2 [[T]]

�

(2) one can choose these valuations � and � in such a way that ([M])

�

is SN if

and only if M is SN.

In 3.1 we give some more technical intuition for the proof.

One nice aspect of this approach is that the proof of SN for CC is carried

out in exactly the same structure as where the proof of SN for F! is usually

done. This again emphasises that the proof of SN for CC is of the same proof-

theoretic complexity as the proof of SN for F!. (This has already been shown in

[Berardi 1988] and [Geuvers and Nederhof 1991].) Furthermore, the proof uses

only a minimal part of the meta-theory of CC. This makes it possible to extend

the proof of SN for CC to larger systems (with more type constructors). In

Section 4 we show this by proving SN for CC with W -types. In Section 5 we

treat the extension with�-types and inductive kinds (where the inductive `types'

are of type 2; these are also called large inductive types). For each of these

extensions, the proof of SN is a natural generalization of the proof of SN for CC.

Of course there is a limitation to this: some meta-theory is still required and

the approach we have chosen here requires that we can always de�ne a kind of

`proof-irrelevant' interpretation (which interprets the types Pt and Pq as the

same saturated set, independent of the objects t and q). This implies that the

proof does not scale up to the extension with small inductive types (where the

inductive type is of type ?), because there one can form a type constructor P

such that P0 is convertible with ��:?:� and P1 is convertible with ��:?:�!�.

We discuss the restrictions of the method in more detail in the conclusions.

2. The Calculus of Constructions

We now give a precise de�nition of the Calculus of Constructions and at the

same time we �x some terminology. In CC there are two speci�c constants, ?

and 2. The �rst represents the universe of types (so we shall say that � is a type

if � : ?) and the second represents the universe of kinds (so we shall say that A

is a kind if A : 2). The universe ? is a speci�c example of a kind, so it will be

the case that ? : 2. To present the derivation rules for CC we �rst �x the set of

pseudoterms from which the derivation rules select the (typable) terms.

2.1. Definition. The set of pseudoterms, T, is de�ned by

T ::= ? j2 jVar j (�Var:T:T) j (�Var:T:T) jTT;

where Var is a countable set of expressions, called variables. Both � and � bind

variables and we have the usual notions of free variable and bound variable.

The substitution of N for v in M is denoted by M [N=v]. On T we have the

usual notion of �-reduction, denoted by �!

�

. We also adopt from the untyped

� calculus the conventions of denoting the transitive reexive closure of �!

�

by

�

�

and the transitive symmetric closure of �

�

by =

�

.

The typing of terms is done under the assumption of speci�c types for the

free variables that occur in the term. These are listed in a context , which is a

sequence of declarations v

1

:T

1

; : : : ; v

n

:T

n

, where the v

i

are distinct variables and

the T

i

are pseudoterms. Contexts are denoted by the symbol � . For � a context

and v a variable, v is said to be � -fresh if it is not among the variables that are

declared in � .

2.2. Definition. The Calculus of Constructions (CC) is the typed � calculus

with the following deduction rules.

(ax) ` ? : 2

(var)

� ` T : ?=2

�; v:T ` v : T

if v is � -fresh

(weak)

� ` T : ?=2 � ` M : U

�; v:T ` M : U

if v is � -fresh

(�)

� ` T : ?=2 �; v:T ` U : s

� ` �v:T:U : s

if s 2 f?;2g

(�)

�; v:T ` M : U � ` �x:T:U : ?=2

� ` �v:T:M : �v:T:U

(app)

� ` M : �v:T:U � ` N : T

� ` MN : U [N=x]

(conv)

� ` M : T � ` U : ?=2

� `M : U

T = U

The equality in the side condition to the conversion rule (conv) is the �-equality

on the set of pseudoterms T.

The set of terms of CC is de�ned by Term = fA j 9�;B[� ` A : B _� ` B : A]g:

2.1. Required meta-theory

The set of terms of CC is devided into layers, because, if M 2 Term, then one

of the following four situations occurs:

(1) M � 2

(2) � ` M : 2

(3) � ` M : T with � ` T : 2

(4) � ` M : T with � ` T : ?

Note that M � ? is a special case of (2) and � ` M : ? is a special case of (3).

It is well-known that these cases are disjoint if we are slightly more careful with

the presentation of the syntax. Hence the following de�nition is useful.

2.3. Definition. 1. The set of kinds is de�ned by Kind := fA j 9� [� ` A : 2]g.

2. The set of types is de�ned by Type := fA j 9� [� ` A : ?]g.

3. The set of constructors is de�ned by Constr := fP j 9A;� [� ` P : A : 2]g.

4. The set of objects is de�ned by Obj := fP j 9A;� [� ` P : A : ?]g.

Here � ` P : A : ? denotes the fact that � ` P : A and � ` A : ?.

2.4. Convention. We devide the set of variables Var in two disjoint sets Var

?

and Var

2

. Elements from Var

?

are called object variables; we use x; y and z to

denote object variables. Elements from Var

2

are called constructor variables; we

use �, � and to denote constructor variables.

In the (var) and (weak) rules we now make the restriction that, if � ` T : ?,

then the new variable has to be taken from the set Var

?

and if � ` T : 2, then

the new variable has to be taken from the set Var

2

.

The usefulness of this de�nition is due to the following lemma. (For a detailed

proof see [Geuvers 1993].)

2.5. Lemma (Classi�cation). In CC, Kind \Type = ; and Constr \Obj = ;:

The Lemma implies that, when we de�ne a mapping on terms of CC by

induction on the structure, we can always distinguish cases according to whether

a speci�c subterm is a kind or type, respectively a constructor or object, without

making reference to a speci�c context.

For the extensions of CC that are considered in later sections, this property

also holds. The usual proof of the Classi�cation Lemma uses the Church-Rosser

property, Subject Reduction and Uniqueness of Types. However, for CC and the

extensions of CC considered here, a direct proof can be given. (This can be done

along the lines of [Barbanera et al. 1995], where a proof of the Classi�cation

Lemma is given for the extension of CC with higher order algebtraic rewriting.)

Note however that, even if there is no Classi�cation Lemma, the de�nitions in

this paper can still go through (with slightly more technical e�ort) in case one

can distinguish cases according to whether a speci�c subterm is a type or kind in

a �xed context. The other property of type systems that is really actually required

for the constructions in this paper to go through is a slight strengthening of the

Stripping property (also called Generation). This property says, for example,

that if � ` �v:T:M : U has a derivation D, then one can �nd a subderivation of

D with conclusion �

0

; v:T ` M : T

0

, where �v:T:T

0

is convertible with U and

�

0

is a begin-part of � . (There are similar cases for terms of the formMN and

�v:U:T .) What we need in this paper is that the T

0

is not just such that �v:T:T

0

is convertible with U , but also that there is a path of reductions and expansions

from �v:T:T

0

to U that remains inside the set of well-typed terms. (Remember

that the side condition in the conversion rule says that U and T should be equal

as pseudoterms.) This strengthening of Stripping holds straightforwardly for CC,

because there we only consider �-conversion, which happens to be Church-Rosser

on the pseudoterms and one has the Subject Reduction property.

3. Strong Normalization for the Calculus of Constructions

3.1. Intuition for the proof

Before giving the technical details we want to give some (technical) intuition for

the proof. In order to do that we �rst look at the situation for F!. In that case

one de�nes mappings V : Kind!Set, [[�]]

�

: Constr!Set, and ([�])

�

: Obj!�.

Here, � is a valuation of constructor-variables and � is a valuation of object-

variables. These mappings are such that, if �; � form a valuation of � (this

notion will be de�ned in detail later), then

� ` P : A(: 2) =) [[P]]

�

2 V(A);

� ` t : �(: ?) =) ([t])

�

2 [[�]]

�

:

Furthermore, � can always be chosen in such a way that

([M])

�

is SN i� M is SN.

In fact, ([�])

�

will in almost all cases be the extension of the valuation � to a

substitution. (So, ([M])

�

is the term obtained by substituting �(v) for v in M for

all variables v.)

The situation is represented in the �rst picture on the next page. Here SAT

denotes the set of saturated sets and (SAT)

�

denotes the union of the function

spaces built from SAT, so (SAT)

�

:=

S

fSAT; SAT!SAT; (SAT!SAT)!SAT;

SAT!SAT!SAT; : : :g, where the arrow denotes set-theoretic function space.

This construction will only prove SN for the objects of F!, and it requires

some further tricks to show that this implies SN for all terms of F!. For CC the

situation is more complicated, because constructors and kinds can also contain

objects as subterms. So, even if one would have constructed mappings V, [[�]]

�

and ([�])

�

as above, it is not so easy to see how SN for the objects of CC implies

SN for the full CC.

AP

σt ⋆

:

::

: ⊔⊓

objects types

constructors kinds

Λ
(SAT)*

SAT

V
V

[][]
ξ

[]()ρ

AP

σt ⋆

:

::

: ⊔⊓

objects types

constructors kinds

Λ
(SAT)*

SAT

V
V

[][]
ξ

[]()ρ []()ρ

Λ Λ

[]()ρ

SAT

[][]
ξ SAT

[][]
ξ

The solution that we propose here is to de�ne the mapping ([�])

�

for all terms

of CC. To show that the image of ([�])

�

is a strongly normalizing term, we also

have to extend the mapping [[�]]

�

to kinds. So, the kinds of CC will have two inter-

pretations: �rst as sets under V (? is interpreted as SAT and the other kinds are

interpreted by appropriate elements of fSAT; SAT!SAT; (SAT!SAT)!SAT;

SAT!SAT!SAT; : : :g, where the arrow denotes set-theoretic function space,

second as saturated sets (elements of SAT). This is done to allow an interpre-

tation of constructors as pseudoterms under ([�])

�

, making sure that the con-

structors are strongly normalizing as well. The new situation is visualized in the

second picture.

3.2. The proof

Di�erent from what is usually done, we don't de�ne the saturated sets as sets

of untyped � terms, but as sets of pseudoterms. (So, SAT � }(T) instead of

SAT � }(�).) This slight modi�cation is not really important, but makes the

technical presentation a bit shorter. Let in the following SN � T be the set of

pseudoterms that are Strongly Normalizing under �-reduction. The well-known

notion of `saturated set of terms' is de�ned in a slightly more general way than

is necessary. This is done to make it easier to extend the proof of SN later.

3.1. Definition. The set of base terms B is de�ned by

1. Var � B and d 2 B,

2. ?;2 2 B,

3. If M 2 B and N 2 SN, then MN 2 B,

4. If M;N 2 SN, then �v:M:N 2 B.

3.2. Definition. The key redex of an untyped lambda term is de�ned by

1. If M is a redex, then M is its own key redex,

2. If M has key redex N , then MP has key redex N .

The term that is obtained from M by contracting its key redex is denoted by

red

k

(M).

All base terms are SN. Note that the key redex of M is unique, if it exists.

Furthermore, every key redex is a head redex (but not the other way around).

3.3. Definition. A set of untyped lambda terms X is saturated if

1. X � SN,

2. B � X,

3. If red

k

(M) 2 X and M 2 SN, then M 2 X.

The collection of saturated sets is denoted by SAT.

This de�nition of saturated set is equivalent to saying that X is saturated if

1. X � SN,

2. 8Q 2 SN8v 2 Var[vQ 2 X],

3. 8Q;M;N 2 SN[(�v:M:N)Q 2 X],

4. 8Q;M; P;N 2 SN[M [P=v]Q 2 X =) (�v:N:M)PQ 2 X].

By de�nition, SN is itself saturated and all saturated sets are nonempty.

As we already pointed out, the types of CC will be interpreted as saturated

sets. This requires some closure properties for the set of saturated sets which

will be proved in Lemma 3.5. The set-interpretation of the kinds of CC (by the

map V) can be seen as �rst taking the underlying F!-kind (which is a kind that

consists of just the symbols! and ?), and then taking the set-interpretation of

kinds of F!. Here we de�ne the set-interpretation of CC-kinds immediately.

3.4. Definition. ForA 2 Kind(CC), the set-interpretation of A, V(A), is de�ned

inductively as follows.

V(?) = SAT (= fX jX � � is saturatedg);

V(��:B:C) = ff j f : V(B)!V(C)g; if B is a kind;

V(�x:�:C) = V(C) if � is a type.

The collection of all set-interpretations is denoted by (SAT)

�

, so (SAT)

�

:=

S

fV(A) jA 2 Kind(CC)g.

See the remark after Lemma 2.5, that justi�es the case distinction in this

de�nition.

The types are interpreted as saturated sets and the kinds also have a second

interpretation as saturated sets. We need the following (well-known) closure

properties on SAT.

3.5. Lemma. The set of saturated sets (SAT) is closed under arbitrary intersec-

tions and function spaces. That is,

1. for I a set and X

i

saturated for all i 2 I, \

i2I

X

i

is saturated

2. for X and Y saturated, X!Y := fM 2 � j 8N 2 X[MN 2 Y]g is saturated:

3.6. Definition. For � a context of CC, a constructor valuation of � is a map

� : Var

2

! (SAT)

�

(notation � j=

2

�) such that

�:A 2 � =) �(�) 2 V(A):

3.7. Definition. For � a context of CC and � a constructor valuation of � , the

interpretation function

[[�]]

�

: � -Term(CC) n � -Obj(CC)! (SAT)

�

is de�ned inductively as follows.

[[?]]

�

= [[2]]

�

= SN;

[[�]]

�

= �(�);

[[PQ]]

�

= [[P]]

�

([[Q]]

�

); if Q is a constructor,

[[Pt]]

�

= [[P]]

�

; if t is an object,

[[��:A:Q]]

�

= ��a 2 V(A):[[Q]]

�(�:=a)

; if A is a kind,

[[�x:�:Q]]

�

= [[Q]]

�

; if � is a type,

[[�x:�:T]]

�

= [[�]]

�

![[T]]

�

; if � is a type,

[[��:A:T]]

�

= [[A]]

�

!\

a2V(A)

[[T]]

�(�:=a)

; if A is a kind.

The following Lemma states that the interpretations of the constructors un-

der [[�]]

�

are elements of the right set. As a matter of fact, it also states that

[[�]]

�

of de�nition 3.7, is well-de�ned (e.g. in the case for [[PQ]]

�

). The proof is

by simultaneous induction on the structure of Q, respectively A.

3.8. Lemma (Soundness for [[�]]

�

). For � a context of CC, Q;A 2 Term(CC)

and � j=

2

� ,

� ` Q : A(:2) =) [[Q]]

�

2 V(A);

� ` A : 2 =) [[A]]

�

2 SAT:

It is easy to verify the substitution property for [[�]]

�

. From it one concludes

that [[�]]

�

preserves equality:

3.9. Fact. If � j=

2

� and P is a constructor, t an object and Q a constructor

or a kind in � , then [[Q[P=�]]]

�

= [[Q]]

�(�:=[[P]]

�

)

and [[Q[t=x]]]

�

= [[Q]]

�

. Hence we

have Q =

�

P =) [[Q]]

�

= [[P]]

�

.

3.10. Definition. For � a context of CC and � j=

2

� , an object valuation of �

with respect to � is a map � : Var ! T (notation �; � j= �) such that

v : T 2 � =) �(v) 2 [[T]]

�

:

3.11. Definition. For � a context of CC with �; � j= � , the interpretation

function

([�])

�

: T!T

is de�ned as the extension of � to a substitution (for the free variables), so

([M])

�

:= M [�(v)=v]:

Note that the interpretation of terms (by ([�])

�

) does not depend on the

interpretation of the constructors and kinds (by [[�]]

�

).

3.12. Definition. For � a context and M and T terms of CC, we say that �

satis�es that M is of type T , notation � j=M : T if

8�; �[�; � j= � =) ([M])

�

2 [[T]]

�

]:

3.13. Theorem (Soundness Theorem). For � a context and M and T terms of

CC,

� ` M : T =) � j=M : T:

Proof. By induction on the structure of M we prove that if �; � j= � , then

([M])

�

2 [[T]]

�

. So let � and � be valuations such that �; � j= � . We treat �ve

cases.

{ M � �x:�:Q with � a type and Q a constructor. Then �; x:� ` Q : B

for some B with T =

�

�x:�:B. By IH ([�])

�

2 [[?]]

�

(and hence ([�])

�

2

SN) and also ([Q])

�(x:=p)

2 [[B]]

�

for all p 2 [[�]]

�

. So, �x:([�])

�

:([Q])

�(x:=x)

2

[[�]]

�

![[B]]

�

. Hence we are done, because ([�x:�:Q])

�

= �x:([�])

�

:([Q])

�(x:=x)

2

[[�]]

�

![[B]]

�

= [[T]]

�

.

{ M � ��:B:t, with B a kind and t an object. Then �; �:B ` t : � for some �

with T =

�

��:B:� . By IH we �nd that ([B])

�

2 [[2]]

�

(and hence ([B])

�

2 SN)

and ([t])

�(�:=p)

2 [[�]]

�(�:=f)

for all f 2 V(B) and all p 2 [[B]]

�

. Hence,

([t])

�(�:=p)

2 \

f2V(B)

[[�]]

�(�:=f)

for all p 2 [[B]]

�

. But then ([��:B:t])

�

=

��:([B])

�

:([t])

�(�:=�)

2 [[B]]

�

!\

f2V(B)

[[�]]

�(�:=f)

= [[T]]

�

.

{ M � tq, with t and q objects. Then � ` t : �x:�:� and � ` q : � for some

� and � with �[q=x] =

�

T . By IH ([t])

�

2 [[�]]

�

![[�]]

�

and ([q])

�

2 [[�]]

�

, so

([tq])

�

= ([t])

�

([q])

�

2 [[�]]

�

= [[T]]

�

. (Note that [[�]]

�

= [[�[q=x]]]

�

, due to Fact

3.9.)

{ M � PQ, with P and Q constructors. Then � ` P : ��:A:B and � ` Q : A

for some B with B[Q=�] =

�

T . By IH ([P])

�

2 [[A]]

�

!\

f2V(A)

[[B]]

�(�:=f)

and

([Q])

�

2 [[A]]

�

, so ([PQ])

�

= ([P])

�

([Q])

�

2 \

f2V(A)

[[B]]

�(�:=f)

. Furthermore,

[[Q]]

�

2 V(A), so ([PQ])

�

2 [[B]]

�(�:=[[Q]]

�

)

= [[T]].

{ M � �x:�:B, with � a type and B a kind. Then � ` � : ?, �; x:� ` B : 2

and T � 2. By IH ([�])

�

2 [[?]]

�

and ([B])

�(x:=p)

2 [[2]]

�

for all p 2 [[�]]

�

. Hence

([�])

�

2 SN and ([B])

�(x:=x)

2 SN, so ([�x:�:B])

�

� �x:([�])

�

:([B])

�(x:=x)

2

SN = [[2]]

�

. ut

3.14. Theorem.

8M 2 Term(CC)[SN(M)]:

Proof. Let M be a term of CC. Then either M � 2 or � ` M : T for some

� and T . In the �rst case, M is of course SN. In the second case, � j= M : T

by the previous theorem. We de�ne canonical elements c

A

in the sets V(A) (for

A 2 Kind(CC)) as follows.

c

?

:= SN;

c

��:A:B

:= ��f 2 V(A):c

B

; if A:2

c

�x:�:B

:= c

B

; if �: ? :

For the constructor valuation for � we take � with �(�) = c

A

if �:A 2 � (and

�(�) arbitrary otherwise), and for the object valuation for � with respect to this

� we take � with �(v) = v. Now, �; � j= � and so ([M])

�

2 [[T]]

�

, where ([M])

�

is

just M . Hence M 2 [[T]]

�

� SN, so M is SN. ut

4. Beyond CC

The above proof of SN for CC is very exible and can be extended to many

other cases. The main cause for this exibility is that the proof does not rely on

too much (di�cult) meta theory of CC. For one thing, we don't require the set

of typable terms to be closed under reduction (the so called Subject Reduction

property). The only two properties that are seriously used are the ones mentioned

in Section 2.1, Classi�cation (in a context a term can not be a type and a kind at

the same time) and a strengthened version of Stripping (if � ` �v:T:M : U , then

�

0

; v:T ` M : T

0

with a smaller derivation, where �

0

is a begin-part of � and

�v:T:T

0

is convertible with U via a path through the set of well-typed terms).

For the Calculus of Constructions itself, these properties follow rather easily,

but in general this is not the case. Therefore, in [Geuvers and Werner 1994], the

notion of soundness of a type system is introduced, stating that if two terms

M and N (of the same type in the same context) are convertible, then they

are convertible via a path through the well-typed terms. It is also shown there

that the extension of an arbitrary Pure Type System with �-conversion may

not be sound. The reason for calling this property `soundness' is that it implies

the equivalence of the presentation of CC with a typed conversion rule with the

presentation in De�nition 2.2, in which the conversion is untyped.

If the soundness property is not satis�ed, then the type system does not

conform with our intuition that, if two types are convertible (and hence have

the same inhabitants), then they are convertible as well-typed terms. So, as a

matter of fact, the syntax with untyped conversion rule can only be accepted

after one has shown that the soundness property holds for it.

Now, if we want to look at an extension of CC, we should not take the system

with an untyped conversion rule as basic, because it may be the case that two

types are equal as pseudoterms, while they are not convertible via a path through

the well-typed terms. (And if that happens, the conversion rule can be applied

in a situation where it shouldn't be applied.) Instead, we look at the system

where the conversion rule has been replaced by a `one-step reduction-expansion

rule', as follows.

4.1. Definition. In the following, the conversion rule (conv) will not be the one

in De�nition 2.2, but the following.

(conv)

� ` M : T � ` U : ?=2

� ` M : U

if U �! T or T �! U

Here �! is a one-step-reduction. (In Section 3 this would be �!

�

.)

With this (conv) rule, we obtain the strengthening of Stripping that we are

interested in: e.g. if � ` �v:T:M : U , then �

0

; v:T ` M : T

0

with a smaller

derivation, where �

0

is a begin-part of � and �v:T:T

0

is convertible with U via

a path through the set of well-typed terms.

Another advantage of this slightly di�erent conversion rule is that, in order

to show the soundness of the (conv) rule in the proof of Theorem 3.13, one only

has to show that if Q �! P , then [[Q]]

�

= [[P]]

�

, for Q and P typable.

We treat some examples of extensions of CC and show that they are SN by

adapting the proof of Section 3. The extensions that we treat are the ones with

W -types (for representing types of well-founded trees), �-types and inductive

kinds. Before studying these examples we list some general properties about

saturated sets that will be used. These properties are proved for the saturated

set notion as it has been given in the previous paragraph. For each extension of

CC that is treated herefater, the notion of saturated set is slightly adapted, but

the proofs of these properties will still go through.

4.1. Saturated sets

Saturated sets are sets of pseudoterms that contain all so-called `base terms' and

are closed under expanding a key redex. We de�ne the notion of key reduction

separately.

4.2. Definition. For M and N � terms, we say that M key-reduces to N ,

notation M

k

�! N if N is obtained from M by contracting the key redex in M .

The transitive reexive closure of

k

�! is denoted by

k

�.

An easy fact about key reduction is that if X is a saturated set and N 2 X

with M

k

� N and M 2 SN, then M 2 X.

We have already seen two constructions that can be performed on saturated

sets, namely the function space construction and the intersection. There are

many more of those, some of which will be de�ned and used later. An important

trivial fact about SAT is the following.

4.3. Fact. SAT is a complete lattice. The ordering is the inclusion and suprema

and in�ma are given by union and intersection, respectively.

4.4. Definition. A morphism from SAT to SAT is an expression �(X) built

up from variables ranging over SAT (among which X is one), arrows and inter-

sections. A morphism �(X) is positive if X occurs only to the left of an even

number of arrows. It is negative if X occurs only to the left of an odd number

of arrows.

In De�nition 4.4 we allow arbitrary intersections, so if �

i

(X) is a morphism

for every i 2 I, then �(X) = \

i2I

�

i

(X) is also a morphism. This morphism is

positive (resp. negative) if �

i

(X) is positive (resp. negative) for every i 2 I.

A positive morphism is indeed monotone, as one would expect. This is stated

in the following Lemma, which is proved by induction on the structure of �(X).

4.5. Lemma. If �(X) is a positive morphism, then ��X:�(X) is monotone in-

creasing (Y � Z =) �(Y) � �(Z)) and if �(X) is a negative morphism, then

��X:�(X) is monotone decreasing (Y � Z =) �(Z) � �(Y)).

The following is an immediate consequence of the fact that a positive mor-

phism is a monotone increasing function on the complete lattice of saturated

sets.

4.6. Corollary. If �(X) is a positive morphism on SAT, then there is a small-

est saturated set lfp(�) for which �(lfp(�)) = lfp(�).

4.2. CC with W -types

We now look at the extension of CC with Martin-L�of's W -types, a type con-

structor for representing types of well-founded trees. (See [Martin-L�of 1984] or

[Nordstr�om et al. 1990] for an extensive treatment of W -types and examples.)

We just give the rules for W -types and the proof that the addition of these rules

to CC preserves the SN property.

4.7. Definition. The Calculus of Constructions with W -types, CC

W

, has the

following additional rules.

(W)

� ` � : ? �; x:� ` � : ?

� ` Wx:�:� : ?

(sup)

� ` p : � � ` q : � [p=x]!Wx:�:�

� ` sup(p; q) :Wx:�:�

(wrec)

� ` Q : (Wx:�:�)! ? � ` t : �x:�:�z:�!Wx:�:�:(�y:�:Q(zy))!Q(sup(x; z))

� ` wrec t : �w:(Wx:�:�):Qw

The reduction rule associated with wrec and sup(�;�) is

wrec t(sup(p; q)) �!

w

tpq(�y:� [p=x]:wrec t(qy)):

The conversion rule is adapted to this new reduction.

Now, we extend the untyped � calculus with wrec and sup(�;�) operators

that have the reduction behaviour

wrecP (sup(N;Q)) �!

w

PNQ(�y:wrecP (Qy)):

The de�nition of the set of base terms B is adapted by adding to De�nition

3.1 the clauses

5. If M 2 B and P 2 SN, then wrecPM 2 B,

6. If M;N 2 SN, then Wx:M:N 2 B.

The notion of key redex is extended by adding to De�nition 3.2 the clause

3. If M has key redex N , then wrec PM has key redex N (for any P).

The de�nition of saturated set is the same as in De�nition 3.3, with the

notions of `base term' and `key redex' replaced by the above ones. This new

collection of saturated sets is ambiguously denoted by SAT (but there will be

no confusion).

4.8. Definition. For X;Y 2 SAT, the saturated set W (X;Y) is de�ned by

W (X;Y) := lfp(��W:

fM j 8Z 2 SAT8P 2 X!(Y!W)!(Y!Z)!Z[wrec PM 2 Z]g):

That this least �xed point exists is due to the fact that

��W:fM j 8Z 2 SAT8P 2 X!(Y!W)!(Y!Z)!Z[wrecPM 2 Z]g

is a monotone function on SAT. This can be seen as follows.

Write �(W) for fM j 8Z8P 2 X!(Y!W)!(Y!Z)!Z[wrecPM 2 Z]g

and let W , W

0

2 SAT, with W � W

0

. Let M 2 �(W) Then, for all Z and for

all P 2 X!(Y!W)!(Y!Z)!Z, we have wrecPM 2 Z. Now, W is negative

in X!(Y!W)!(Y!Z)!Z, so

8Z8P 2 X!(Y!W

0

)!(Y!Z)!Z[wrec PM 2 Z] and so M 2 �(W

0

).

The set W (X;Y) can equivalently be de�ned as

\fW jwrec2 \

Z2SAT

(X!(Y!W)!(Y!Z)!Z)!W!Zg. The essential clo-

sure properties for the W -constructor on SAT are the following.

4.9. Lemma. Let X and Y be saturated sets and write W for W (X;Y).

1. If M 2 X and N 2 Y!W , then sup(M;N) 2W .

2. If P 2 X!(Y!W)!(Y!Z)!Z, then wrec P 2W!Z.

Proof. We use the fact that

W = fM j 8Z8P 2 X!(Y!W)!(Y!Z)!Z[wrecPM 2 Z]g):

For the �rst, let Z 2 SAT and P 2 X!(Y!W)!(Y!Z)!Z. Then

wrec P (sup(M;N))

k

�! PMN (�y:wrecP (Ny) 2 Z and wrec P (sup(M;N)) is

SN, so wrecP (sup(M;N)) 2 Z and hence sup(M;N) 2 W . For the second, let

M 2W . Then wrecPM 2 Z by de�nition, so wrecP 2W!Z. ut

The de�nition of set-interpretation of 3.4 does not have to be extended,

because there are no kinds of the form Wx:�:� . The notion of `� j=

2

� ' is

de�ned analoguously to De�nition 3.6.

4.10. Definition. The function [[�]]

�

is de�ned by extending De�nition 3.7 with

the following clause.

[[Wx:�:�]]

�

=W ([[�]]

�

; [[�]]

�

):

We have the following property for the extended [[�]]

�

.

4.11. Fact. Let Q and P be constructors or kinds with � ` Q;P : T and � a

valuation with � j= � , then

Q �!

�w

P =) [[Q]]

�

= [[P]]

�

:

The Soundness Lemma 3.8 is also easily veri�ed:

4.12. Lemma (Soundness for [[�]]

�

). For � a context of CC

W

, Q;A 2 Term(CC

W

)

and � j=

2

� ,

� ` Q : A(:2) =) [[Q]]

�

2 V(A);

� ` Q : 2 =) [[Q]]

�

2 SAT:

Let � be a valuation that assigns terms to the free variables, as in De�nition

3.10. Let also ([�])

�

be the extension of the valuation � to a substitution (([�])

�

:

T!T) as de�ned in De�nition 3.11.

The Strong Normalization follows immediately from the Soundness Theorem

for ([�])

�

. To prove the soundness we only have to verify the extra cases that

arise from the additional derivation rules.

4.13. Theorem (Soundness Theorem). For � a context and M and T terms of

CC

W

,

� ` M : T =) � j=M : T:

Proof. By induction on the derivation; we verify the two relevant cases, using

Lemma 4.9. Let � and � be valuations such that �; � j= � .

{ M � wrec t with � ` t : �x:�:�z:�!Wx:�:�:(�y:�:Q(zy))!Q(sup(x; z)),

� ` Q : (Wx:�:�)!? and T � �w:Wx:�:�:Qw. By IH

([t])

�

2 [[�]]

�

!([[�]]

�

!W ([[�]]

�

; [[�]]

�

))!([[�]]

�

![[Q]]

�

)![[Q]]

�

,

so ([wrec t])

�

= wrec ([t])

�

2 W ([[�]]

�

; [[�]]

�

)![[Q]]

�

(= [[T]]

�

).

{ M � sup(p; q) with � ` p:�, � ` q:� [p=x]!Wx:�:� and T � Wx:�:� . By

IH ([p])

�

2 [[�]]

�

and ([q])

�

2 [[�]]

�

!W ([[�]]

�

; [[�]]

�

). Hence, sup(([p])

�

; ([q])

�

) 2

W ([[�]]

�

; [[�]]

�

)(= [[T]]

�

). ut

The proof of the following corollary is now totally similar to the proof of

Theorem 3.14.

4.14. Corollary.

8M 2 Term(CC

W

)[SN (M)]:

5. CC with �-types, extending the method to inductive kinds

It is well-known that one can not extend CC with arbitrary �-types: ��:A:� : ?

is not allowed if A : 2. (If one allows this, it is possible to type non-normalizing

terms.) In the proof of SN for CC with `safe' �-types that we give here, it can

be seen why the proof-construction does not extend to the `unsafe' �-types.

In order to treat �-types, we have to modify the proof of Section 3. This

modi�cation turns out to be of more general importance, since it also allows

the interpretation of inductive kinds (like a kind of natural numbers that allows

the same exibility as the inductive type of natural numbers in Coq). This

modi�cation will be discussed later.

We now �rst give the rules for �-types.

5.1. Definition. The Calculus of Constructions with �-types, CC

�

, has the

following additional rules. (In these rules s, s

1

and s

2

stand for ? or 2.)

(�

?

)

� ` � : ? �; x:� ` � : ?

� ` �x:�:� : ?

(�

2

)

� ` T : s

1

�; v:T ` U : s

2

� ` �v:T:U : 2

if s

1

� 2 or s

2

� 2;

(proj

1

)

� ` M : �v:T:U

� ` �

1

M : T

(proj

2

)

� ` M : �v:T:U

� ` �

2

M : U [�

1

(M)=v]

(pair)

� ` M : T � ` N : U [M=v] �; v:T ` U : s

� ` hM;N i : �v:T:U

The reduction rules associated with pairing and projection are

�

1

hM;N i �!

�

M; �

2

hM;N i �!

�

N:

The conversion rule is adapted to this new reduction, that is, the side condition

T �! U now stands for �!

��

, the equivalence relation generated from �- and

�- reduction. For convenience we shall speak of CC

�

�

in case we want to restrict

to �-types of the �rst sort, so �v:T:U , where T and U are types. (T : � and

U : �)

5.1. Small �-types

The proof of SN for CC

�

�

is a direct extension of the proof of SN for CC. We

�rst extend the untyped � calculus with pairing and projection operators h�;�i,

�

1

and �

2

that have the required reduction behaviour

�

i

(hM

1

;M

2

i) �!

�

M

i

(i 2 f1; 2g):

5.2. Definition. For CC

�

�

, the set of base terms B is de�ned by adding to

De�nition 3.1 the clauses

5. If M 2 B, then �

1

M 2 B and �

2

M 2 B,

6. If M;N 2 SN, the �v:M:N 2 B.

The notion of key redex is extended by adding to De�nition 3.2 the clause

3. If M has key redex N , then �

i

M has key redex N (for i 2 f1; 2g).

The de�nition of saturated set is the same as in De�nition 3.3, with the no-

tions of `base term' and `key redex' replaced by the above ones. We ambiguously

denote this new collection of saturated sets again by SAT (but there will be no

confusion).

5.3. Definition. For X;Y 2 SAT, the product of X and Y , X � Y is de�ned

by

X � Y := fM j�

1

M 2 X & �

2

M 2 Y g:

That SAT is closed under products and that elements of product sets behave

correctly is stated in the following two lemmas. (The �rst is immediate.)

5.4. Lemma. If X;Y 2 SAT then X � Y 2 SAT.

5.5. Lemma. Let X, Y and X

i

(8i 2 I) be saturated sets.

1. If M 2 X and N 2 Y , then hM;N i 2 X � Y .

2. If M 2 X � Y , then �

1

M 2 X and �

2

M 2 Y .

Proof. The second follows immediately from the de�nition of product. For

the �rst, note that �

1

(hM;N i)

k

�! M 2 X and �

1

(hM;N i) is SN, hence

�

1

(hM;N i) 2 X. Similarly, �

2

(hM;N i)

k

�! N 2 Y , so �

2

(hM;N i) 2 Y . ut

The notion of `� j=

2

� ' is de�ned analoguously to De�nition 3.6.

5.6. Definition. The function [[�]]

�

is de�ned for CC

�

�

by extending De�nition

3.7 with the clause

[[�x:�:�]]

�

= [[�]]

�

� [[�]]

�

:

We have the following property. (Compare with Fact 3.9.)

5.7. Fact. Let Q and P be constructors or kinds with � ` Q;P : T and � a

valuation with � j= � , then

Q �!

��c

P =) [[Q]]

�

= [[P]]

�

:

The Soundness Lemma 3.8 is also easily veri�ed:

5.8. Lemma (Soundness for [[�]]

�

). For � a context of CC

�

�

, Q;A 2 Term(CC

�

�

)

and � j=

2

� ,

� ` Q : A(:2) =) [[Q]]

�

2 V(A);

� ` Q : 2 =) [[Q]]

�

2 SAT:

The interpretation of typable terms as (strongly normalizing) pseudoterms is

again done modulo a valuation � that assigns terms to the free variables. So, let

� be as in De�nition 3.10. The the interpretation ([�])

�

: T!T is (as in De�nition

3.11) de�ned as the extension of � to a substitution.

The Strong Normalization follows immediately from the Soundness Theorem

for ([�])

�

. To prove the soundness we only have to verify the extra cases that

arise from the additional derivation rules. This is straightforward.

5.9. Theorem (Soundness Theorem). For � a context and M and T terms of

CC

�

�

,

� ` M : T =) � j=M : T:

The following is now immediate by taking the right valuations � and �.

5.10. Corollary.

8M 2 Term(CC

�

�

)[SN (M)]:

5.2. Large �-types

We now come to the interpretation of so called `large' �-types (i.e. where the

�-type is actually a kind) as saturated sets. It turns out that if � is a type,

then [[�x:�:B]]

�

can be de�ned as [[�]]

�

� [[B]]

�

. (� does not give a value to object

variables, so the interpretation of B under [[�]]

�

does not depend on elements

from [[�]]

�

.) If A is a kind, then one can not de�ne [[��:A:T]]

�

:= [[A]]

�

� [[T]]

�

,

because now [[T]]

�

depends on the value that � takes for �. One would like to

de�ne a `dependent product of saturated sets' and interpret ��:A:T as such a

dependent product. This turns out to be very complicated and we therefore take

a di�erent approach.

Instead of interpreting kinds as saturated sets under [[�]]

�

, we interpret kinds

as saturated sets parametrized over their set-interpretation. So, if A is a kind,

we de�ne [[A]]

�

as a function from V(A) to SAT. For the interpretation of types

we take (as before) saturated sets. Then the statement of Soundness of the

interpretation will have the following form.

� ` t:� =) 8�; � j= � [([t])

�

2 [[�]]

�

];

� ` P :A =) 8�; � j= � [([P])

�

2 [[A]]

�

([[P]]

�

)];

where � stands for a type and A for a kind.

We now make precise how the de�nitions of V, [[�]]

�

and ([�])

�

have to be

adapted to achieve the above.

5.11. Definition. The extension of the set-interpretation V to the kinds of CC

�

is done by adding the following clauses to De�nition 3.4.

V(��:A:B) := V(A) � V(B); if A;B:2;

V(��:A:�) := V(A); if A:2 and � :?;

V(�x:�:B) := V(B); if B:2 and �: ? :

The notion of � j=

2

� (the constructor valuation � satis�es �) is as before

in De�nition 3.6.

5.12. Definition. The extension of [[�]]

�

(de�nition 3.7) to CC

�

is done by

changing the clauses for ? and �-kinds and by adding clauses for �-types and

its constructors as follows.

[[?]]

�

= ��X 2 SAT:SN;

[[�x:�:B]]

�

= ��b 2 V(B):[[�]]

�

![[B]]

�

(b);

[[��:A:B]]

�

= ��f 2 V(A)!V(B):

\

a2V(A)

[[A]]

�

(a)![[B]]

�(�:=a)

(fa);

[[�x:�:B]]

�

= ��b 2 V(B):[[�]]

�

� [[B]]

�

(b);

[[��:A:B]]

�

= ��p 2 V(A) � V(B):[[A]]

�

(fst (p))� [[B]]

�(�:=fst (p))

(snd (p)):

[[��:A:�]]

�

= ��a 2 V(A):[[A]]

�

(a) � [[�]]

�(�:=a)

;

[[hP;Qi]]

�

= ([[P]]

�

; [[Q]]

�

);

[[hP; qi]]

�

= [[P]]

�

[[hp;Qi]]

�

= [[Q]]

�

;

[[�

1

Q]]

�

= [[Q]]

�

; if Q : ��:A:� with � a type,

[[�

1

Q]]

�

= fst ([[Q]]

�

); if Q : ��:A:B with B a kind,

[[�

2

Q]]

�

= [[Q]]

�

; if Q : �x:�:B with � a type,

[[�

2

Q]]

�

= snd ([[Q]]

�

); if Q : �� : A:B with A a kind.

Here,! denotes set-theoretic function space construction if it is in the subscript

of a \; otherwise it denotes the function space on saturated sets. Furthermore,

(�;�) denotes pairing and fst and snd denote projections in set-theory. Re-

member that � and � stand for types, A and B stand for kinds, p and q stand

for objects and P and Q stand for constructors.

It is now easy to verify the substitution property for [[�]]

�

and to show that

[[�]]

�

preserves reduction (compare with Fact 3.9): [[M [Q=�]]]

�

= [[M]]

�(�:=[[Q]]

�

)

,

[[M [q=x]]]

�

= [[M]]

�

and if M �!

��

N , then [[M]]

�

= [[N]]

�

, provided that M is a

kind or a constructor.

Hence we can prove the following Soundness Lemma (compare with Lemma

3.8 and Lemma 5.8) by simultaneous induction on the derivation.

5.13. Lemma (Soundness Lemma). For � a context of CC

�

, Q;A 2 Term(CC

�

)

and � j=

2

� ,

� ` Q : A(:2) =) [[Q]]

�

2 V(A);

� ` A : 2 =) [[A]]

�

2 V(A)!SAT:

To de�ne the interpretation ([�])

�

, we have to say when a valuation � satis�es

� with respect to � (notation �; � j= � ; see also De�nition 3.10).

5.14. Definition. For �;Var!T, we say that � satis�es � with respect to �

(notation �; � j= �) when

x:� 2 � =) �(x) 2 [[�]]

�

;

�:A 2 � =) �(�) 2 [[A]]

�

(�(�)):

The interpretation of objects, constructors and kinds of CC

�

under ([�])

�

is

done by extending the valyation � to a substitution ([�])

�

: T!T (see De�nition

3.11).

The notion of � j= M : T (� satis�es that M is of type T) now takes the

following form. (Compare with De�nition 3.12.)

5.15. Definition. For � a context and t an object, � a type, P a constructor

and A a kind of CC

�

, we de�ne

� j= t:� i� 8�; �[�; � j= � =) ([t])

�

2 [[�]]

�

];

� j= P :A i� 8�; �[�; � j= � =) ([P])

�

2 [[A]]

�

([[P]]

�

)]:

5.16. Theorem (Soundness Theorem). For � a context and M and T terms of

CC

�

,

� ` M : T =) � j=M : T:

Proof. The proof is by induction on the derivation. We treat a few cases.

{ M � hP; ti with P :A and t:� [P=�]. Then by IH, ([P])

�

2 [[A]]

�

([[P]]

�

) and

([t])

�

2 [[� [P=�]]]

�

(= [[�]]

�(�:=[[P]]

�

)

). Then ([hP; ti])

�

� h([P])

�

; ([t])

�

i 2

[[A]]

�

([[P]]

�

)� [[�]]

�(�:=[[P]]

�

)

= [[��:A:�]]

�

([[P]]

�

) = [[��:A:�]]

�

([[hP; ti]]

�

).

{ M � hP;Qi with P :A and Q:B[P=�]. Then by IH, ([P])

�

2 [[A]]

�

([[P]]

�

)

and ([Q])

�

2 [[B[P=�]]]

�

([[Q]]

�

)(= [[B]]

�(�:=[[P]]

�

)

([[Q]]

�

)). Then, ([hP;Qi])

�

�

h([P])

�

; ([Q])

�

i 2 [[A]]

�

([[P]]

�

)� [[B]]

�(�:=[[P]]

�

)

([[Q]]

�

) = [[��:A:B]]

�

([[hP;Qi]]

�

).

{ M � �

1

P with P :��:A:� . Then by IH, ([P])

�

2 [[��:A:�]]

�

([[P]]

�

), that is

([P])

�

2 [[A]]

�

([[P]]

�

) � [[�]]

�(�:=[[P]]

�

)

. So, ([�

1

P])

�

= �

1

([P])

�

2 [[A]]

�

([[P]]

�

) =

[[A]]

�

([[�

1

P]]

�

).

{ M � �

2

P with P :��:A:B. Then by IH, ([P])

�

2 [[��:A:B]]

�

([[P]]

�

), that is,

([P])

�

2 [[A]]

�

(fst [[P]]

�

)� [[B]]

�(�:=fst [[P]]

�

)

(snd [[P]]

�

). So, ([�

2

P])

�

= �

2

([P])

�

2

[[B]]

�(�:=[[�

1

P]]

�

)

([[�

2

P]]

�

) = [[B[�

1

P=�]]]

�

([[�

2

P]]

�

). ut

The following is now an immediate consequence of the fact that we have for

every context � a constructor valuation � such that � j=

2

� and furthermore,

that for the identity valuation �

0

, we have �

0

; � j= � . (See the proof of 3.14 for

details.)

5.17. Corollary (Strong Normalization for CC

�

).

8M 2 Term(CC

�

)[SN (M)]:

The version of �-types that makes CC inconsistent is the one that lets

��:A:� : ? if A : 2 and � : ?. It is instructive to see why this version of �-

types does not �t into the proof of SN above. Suppose we let ��:A:� : ?, with

A : 2 and � : ?. Then we do not de�ne V(��:A:�), because this is not a kind.

Furthermore, we can de�ne [[��:A:�]]

�

as before. The problem arises when we

try to de�ne [[�

1

t]]

�

for t : ��:A:� : ?, because [[�

1

t]]

�

can not be de�ned in terms

of [[t]]

�

, for the simple reason that [[t]]

�

does not exist. (Note that t is an object

and for objects [[�]]

�

is not de�ned.)

5.3. CC with inductive kinds

The approach to proving strong normalization can be generalised to inductive

kinds. We treat the example for natural numbers. In the following, note that our

`inductive types' are kinds, whereas in a system like Coq, they are types. Having

the natural numbers on the kind-level conforms better with a more traditional

view on logical systems, where the level of `domains' and the level of `formulas'

are separated. We now give the syntactic rules for the kind Nat.

(Nat) ` Nat : 2; (Zero) ` Z : Nat; (Succ) ` S : Nat!Nat;

(Elim)

�; �:Nat ` T : ?=2 � ` M

1

: T [Z=�] � ` M

2

: ��:Nat:T!T [S�=�]

�; �:Nat ` RecM

1

M

2

� : T

with the reduction rules

RecM

1

M

2

Z �!

r

M

1

; RecM

1

M

2

(S�) �!

r

M

2

�(RecM

1

M

2

�)

The system CC extended with this scheme for natural numbers will be de-

noted by CC

N

. The interpretation of CC

N

in the saturated sets framework is as

follows.

5.18. Definition. Adapt the mappings V, [[�]]

�

and ([�])

�

by adding the fol-

lowing clauses. (The interpretation of �-kinds and �-types is as in De�nition

5.6.)

V(Nat) := IN;

[[Z]]

�

:= 0;

[[S]]

�

:= ��n 2 IN:n+ 1;

[[RecP

1

P

2

]]

�

:= the function de�ned by primitive recursion from [[P

1

]]

�

and [[P

2

]]

�

;

[[Nat]]

�

:= lfp(�); where for N 2 IN!SAT;

�(N) = ��n 2 IN:

\

X2IN!SAT

X(0)!(

\

m2IN

N (m)!X(m)!X(m + 1))!X(n));

([Z])

�

:= �xy:x;

([S])

�

:= �zxy:yz((�v:vxy)z);

([RecM

1

M

2

])

�

:= �z:z([M

1

])

�

([M

2

])

�

:

We ambiguously denote [[Nat]]

�

by Nat.

The function �, used in the de�nition of [[Nat]]

�

, is a positive morphism from

IN!SAT to IN!SAT and hence it has a least �xed point (lfp). (Compare with

De�nition 4.4 and Corollary 4.6.) A term RecM

1

M

2

can be a constructor (if

T in the scheme is a kind) or an object (if T in the scheme is a type). In the

second case it only has an interpretation under ([�])

�

, in the �rst case it has two

interpretations. If RecP

1

P

2

: ��:Nat:T , with T a kind, then [[RecP

1

P

2

]]

�

is the

function F : IN! V(T), de�ned by F (0) = [[P

1

]]

�

and F (n+1) = [[P

2

]]

�

(n)(F (n)).

5.19. Lemma (Soundness Lemma). For � a context of CC

N

, P;A 2 Term(CC

N

)

and � j=

2

� ,

� ` P : A(:2) =) [[P]]

�

2 V(A);

� ` A : 2 =) [[A]]

�

2 V(A)!SAT:

Proof. By induction on the derivation. The only interesting case is when the

last rule was (Elim) and P � RecP

1

P

2

. Then, by IH, [[P

1

]]

�

2 V(T) and [[P

2

]]

�

2

IN!V(T)!V(T). So, indeed [[RecP

1

P

2

]]

�

2 IN!V(T) and we are done. ut

The notion of the valuation � satis�es � with respect to � (�; � j= �), is

de�ned as before:

x:� 2 � =) �(x) 2 [[�]]

�

;

�:A 2 � =) �(�) 2 [[A]]

�

(�(�)):

So is the notion of � satis�es M : T (� j= M : T), which is the same as in

De�nition 5.15.

5.20. Theorem (Soundness Theorem). For � a context and M and T terms of

CC

N

,

� ` M : T =) � j= M : T:

Proof. By induction on the derivation.

{ M � Z. Let X 2 IN!SAT. For all M 2 X(0) and

all N 2

T

m2IN

Nat(m)!X(m)!X(m + 1), (�xy:x)MN

k

� M 2 X(0).

(�xy:x)MN is also SN, so (�xy:x)MN 2 X(0) and hence �xy:x 2 Nat(0).

{ M � S. We have to prove that ([S])

�

2

T

p2IN

Nat(p)!Nat(p + 1). Let

p 2 IN and P 2 Nat(p). Let also X 2 IN!SAT, M 2 X(0) and N 2

T

m2IN

Nat(m)!X(m)!X(m+1). ThenNP 2 X(p)!X(p+1) and (�v:vMN)P 2

X(p), soNP ((�v:vMN)P) 2 X(p+1). Hence, (�zxy:yz((�v:vxy)z))PMN 2

X(p + 1), and so �zxy:yz((�v:vxy)z) \

p2IN

Nat(p)!Nat(p + 1).

{ M � RecM

1

M

2

. We have to prove that

([RecM

1

M

2

])

�

�z:z([M

1

])

�

M

2

2

\

n2IN

Nat(n)![[T]]

�(�:=n)

([[RecM

1

M

2

]]

�

(n)):

By IH, ([M

1

])

�

2 [[T [Z=�]]]

�

([[M

1

]]

�

) and

([M

2

])

�

2

\

n2IN

Nat(n)!

\

t2V(T)

[[T]]

�(�:=n)

(t)![[T [S�=�]]]

�(�:=n)

([[M

2

]]

�

(n)(t)):

Let n 2 IN and N 2 Nat(n). Take for X the map

��m 2 IN:[[T]]

�(�:=m)

([[RecM

1

M

2

]]

�

(m)). Then ([M

1

])

�

2 X(0) and

([M

2

])

�

2

\

n2IN

Nat(n)!X(n)!X(n + 1);

by taking t to be [[RecM

1

M

2

]]

�

(n). Hence we �nd that N ([M

1

])

�

([M

2

])

�

2

X(n) = [[T]]

�(�:=n)

([[RecM

1

M

2

]]

�

(n)). So, ([RecM

1

M

2

])

�

= �z:z([M

1

])

�

([M

2

])

�

2

T

n2IN

Nat(n)![[T]]

�(�:=n)

([[RecM

1

M

2

]]

�

(n)). ut

5.21. Corollary (Strong Normalization for CC

N

).

8M 2 Term(CC

N

)[SN (M)]:

The Corollary follows in a standard way from the Theorem (see the proof of

Theorem 3.14) by taking for � the identity valuation �

0

and by observing that,

if M �!

r

N , then ([M])

�

0

reduces to ([N])

�

0

in at least one step. For the latter:

([RecM

1

M

2

(Sx)])

�

� (�z:z([M

1

])

�

([M

2

])

�

)((�zpq:qz((�v:vpq)z))�(x)), which re-

duces to ([M

2

])

�

�(x)((�v:v([M

1

])

�

([M

2

])

�

)�(x)) � ([M

2

(RecM

1

M

2

x)])

�

.

Concluding Remarks

We have given a short and exible proof of Strong Normalization for the Calculus

of Constructions. The exiblity lies in the fact that the framework of saturated

sets allows many basic constructions like function types, product types and W -

types. (One can also include, e.g. positive recursive types, for which details have

been left out because of lack of space.) A question that has not been addressed

here is whether this construction can be extended to higher universes (adding a

sort 2

1

with 2 : 2

1

, etcetera). It seems that, in order to treat this extension, one

�rst has to prove a kind of quasi-normalization theorem (as in [Luo 1990], for

the Extended Calculus of Constructions) to have some restriction on the possible

form of a kind.

We did look into the extension with inductive types: the example of the nat-

ural numbers strongly suggests a general procedure for other inductive types by

(roughly) interpreting an inductive type T as the parametrized saturated set that

corresponds with the elimination scheme of T . Note however, that, di�erent from

a system like Coq, the inductive types are in fact kinds here (or `large types').

Our treatment of inductive types as kinds �ts rather naturally with the approach

that we have chosen for the strong normalization proof, where the interpreta-

tion of a type does not depend on the interpretation of an object. However, it

looks like this approach puts some principle restriction to the extendibility of

our proof to the case where inductive types are small types. Then we can form

a constructor P such that P0 is convertible with ��: ? :� and P1 is convertible

with ��: ? :�!�. Type dependency can not anymore be ignored in this case

(because [[P0]]

�

6= [[P1]]

�

). Furthermore, the interpretation of �x:�:� can not be

[[�]]

�

![[�]]

�

; instead �x:�:� should be interpreted in a parametrized way (as we

did for inductive kinds in the last section) or as a real dependent product of

saturated sets.

Acknowledgements

I would like to thank Gilles Barthe for the suggestion of de�ning the saturated

sets as sets of pseudoterms (instead of untyped � terms). I would like to thank the

anonymous referees for their enlightening remarks and for pointing out several

mistakes in the �rst version of this paper.

References

[Altenkirch 1993a] Th. Altenkirch, Yet another Strong Normalization proof for the

Calculus of Constructions, Laboratory for Foundations of Computer Science,

Manuscript, 11 pp.

[Altenkirch 1993] Th. Altenkirch, Constructions, Inductive types and Strong

Normalization proof, Ph. D. Thesis, University of Edinburgh, UK.

[Barbanera et al. 1995] F. Barbanera, M. Fern�andez, J.H. Geuvers, Modularity of

Strong Normalization in the lambda-algebraic-cube, manuscript.

[Barendregt 1984] H.P. Barendregt, The lambda calculus: its syntax and semantics,

revised edition. Studies in Logic and the Foundations of Mathematics, North

Holland.

[Barendregt 1992] H.P. Barendregt, Typed lambda calculi. In Abramski et al. (eds.),

Handbook of Logic in Computer Science, Oxford Univ. Press.

[Berardi 1988] S. Berardi, Towards a mathematical analysis of the Coquand-Huet

calculus of constructions and the other systems in Barendregt's cube. Dept.

Computer Science, Carnegie-Mellon University and Dipartimento Matematica,

Universita di Torino, Italy.

[Coquand 1985] Th. Coquand, Une th�eorie des constructions, Th�ese de troisi�eme

cycle, Universit�e Paris VII, France.

[Coquand 1990] Th. Coquand, Metamathematical investigations of a calculus of

constructions. In Logic and Computer Science, ed. P.G. Odifreddi, APIC series,

vol. 31, Academic Press, pp 91-122.

[Coquand and Gallier 1990] Th. Coquand and J. Gallier, A proof of Strong

Normalization for the Theory of Constructions using a Kripke-like interpretation,

In the Informal Proceedings of the Workshop on Logical Frameworks, Antibes,

May 1990.

[Coquand and Huet 1988] Th. Coquand and G. Huet, The calculus of constructions,

Information and Computation, 76, pp 95-120.

[Coquand and Mohring 1990] Th. Coquand and Ch. Paulin-Mohring Inductively

de�ned types, In P. Martin-L�of and G. Mints editors. COLOG-88 : International

conference on computer logic, LNCS 417.

[Geuvers and Nederhof 1991] J.H. Geuvers and M.J. Nederhof, A modular proof of

strong normalisation for the calculus of constructions. Journal of Functional

Programming, vol 1 (2), pp 155-189.

[Geuvers 1993] J.H. Geuvers, Logics and Type Systems, Ph. D. thesis, Universiteit

Nijmegen, the Netherlands.

[Geuvers and Werner 1994] H. Geuvers and B. Werner, On the Church-Rosser

property for Expressive Type Systems and its Consequences for their

Metatheoretic Study, in Proceedings of the Ninth Annual Symposium on Logic in

Computer Science, Paris, France, IEEE Computer Society, pp 320{329.

[Gallier 1990] On Girard's \Candidats de Reductibilit�e". In Logic and Computer

Science, ed. P.G. Odifreddi, APIC series, vol. 31, Academic Press, pp 123-204.

[Girard 1972] J.-Y. Girard, Interpr�etation fonctionelle et �elimination des coupures

dans l'arithm�etique d'ordre sup�erieur. Ph.D. thesis, Universit�e Paris VII, France.

[Girard et al. 1989] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Camb.

Tracts in Theoretical Computer Science 7, Cambridge University Press.

[Goguen 1994] H. Goguen, A Typed Operational Semantics for Type Theory, PhD.

thesis, University of Edinburgh, UK, 1994.

[Luo 1990] Z. Luo, An Extended Calculus of Constructions, Ph. D. Thesis,

University of Edinburgh, UK.

[Luo 1989] Z. Luo, ECC: An extended Calculus of Constructions. Proc. of the fourth

ann. symp. on Logic in Comp. Science, Asilomar, Cal. IEEE, pp 386-395.

[Martin-L�of 1984] P. Martin-L�of, Intuitionistic Type Theory, Studies in Proof theory,

Bibliopolis, Napoli.

[Nordstr�om et al. 1990] B. Nordstr�om, K. Petersson, J.M. Smith, Programming in

Martin-L�of's Type Theory. Oxford University Press.

[Ong and Ritter 1994] L. Ong and E. Ritter, A generic Strong Normalization

argument: application to the Calculus of Constructions, University of Cambridge

Computer Laboratory, Manuscript, 19 pp.

[Scedrov 1990] A guide to polymorphic types. In Logic and Computer Science, ed.

P.G. Odifreddi, APIC series, vol. 31, Academic Press, pp 387-420.

[Tait 1965] W.W. Tait, In�nitely long terms of trans�nite type. In Formal Systems

and Recursive Functions, eds. J.N. Crossley and M.A.E. Dummett,

North-Holland.

[Tait 1975] W.W. Tait, A realizability interpretation of the theory of species. In

Proceedings of Logic Colloquium, ed. R. Parikh, LNM 453, pp 240{251.

[Terlouw 1993] J. Terlouw, Strong Normalization in type systems: a model theoretic

approach, In the Dirk van Dalen Festschrift, Eds. H. Barendregt, M. Bezem and

J.W. Klop, Department of Philosophy, Utrecht University, the Netherlands, pp

161-190.

This article was processed using the L

a

T

E

X macro package with LLNCS style

