
A Simple Model Construction for the Calculus

of Constructions

M. Stefanova

1

and H. Geuvers

2?

1

Faculty of Mathematics and Informatics

University of Nijmegen, The Netherlands

e-mail: milena@cs.kun.nl

2

Faculty of Mathematics and Informatics

University of Eindhoven, The Netherlands

e-mail: herman@win.tue.nl

Abstract. We present a model construction for the Calculus of Con-

structions (CC) where all dependencies are carried out in a set-theoretical

setting. The Soundness Theorem is proved and as a consequence of it

Strong Normalization for CC is obtained. Some other applications of our

model constructions are: showing that CC + Classical logic is consistent

(by constructing a model for it) and showing that the Axiom of Choice

is not derivable in CC (by constructing a model in which the type that

represents the Axiom of Choice is empty).

1 Introduction

In the literature there are many investigations on the semantics of polymorphic

�-calculus with dependent types (see for example [12, 11, 10, 1, 5, 13]). Most of

the existing models present a semantics for systems in which the inhabitants of

the impredicative universe (types) are \lifted" to inhabitants of the predicative

universe (kinds) (see [16]). Such systems are convenient to be modeled by locally

Cartesian-closed categories having small Cartesian-closed subcategories. A well-

known instance of these categorical models is the category of !-sets (or D-sets)

and its subcategory of modest sets, which is isomorphic to the category of partial

equivalence relations (PER). Then the types are interpreted as PERs and then

\lifted" through an isomorphism to modest sets and hence to !-sets.

In practical applications, however, one prefers to use a di�erent simple syn-

tactical presentation of type systems - the so-called Pure Type Systems (PTSs).

A semantics of such a system is usually obtained by implicitly or explicitly encod-

ing the system into the system with \lifted" types, so the types are interpreted

in the same way. The resulting semantics, even the one presented by concrete

models (see [12, 13]) is still complicated as it gives an indirect meaning of PTSs.

Moreover, most concrete models of such type systems are extensional in the sense

that the interpretation of a type is a set with an equivalence relation on it with

the equivalence relation on the function space de�ned as the extensional equality

?

Part of this research was performed while the author was working at the University

of Nijmegen, on the ESPRIT BRA project `Types for Proofs and Programs'

of functions. As the syntax is not extensional, these models are less suitable for

showing non-provability of various statements in PTSs.

This paper presents a new class of concrete models for the Calculus of Con-

structions (CC) presented as a PTS. The models are intensional - semantical

objects are equal i� they are equal in the underlying weakly-extensional combi-

natory algebra. (So, two functions of the same type that have the same graph

are not necessarily equal).

Furthermore, a new direct meaning is assigned to the typable expressions

of CC, without \lifting" the interpretations of types to interpretations in the

predicative universe. There are three disjoint collections of semantical objects in

each model: elements (of the underlying combinatory algebra) to interpret objects

(inhabitants of types), poly-functionals to interpret constructors (inhabitants of

kinds) and predicative sets to interpret kinds. A special case of poly-functionals

are speci�c sets, called polysets. Types are interpreted as polysets. This corre-

sponds to the fact that types form a subclass of the collection of constructors.

The poly-functionals are restricted set-theoretical functionals or sets, and the

predicative sets are sets having poly-functionals as their elements. The restric-

tions on poly-functionals are a consequence from the fact that polymorphism is

not set-theoretical in the classical sense (see [14]). However, two poly-functionals

or two predicative sets are equal if they are set-theoretically equal. Two elements

are equal if they are equal via the equality of the underlying weakly-extensional

combinatory algebra.

The three collections of semantical objects are built simultaneously, by induc-

tion on the structure of typable terms. This is in line with the fact that objects

and types cannot be de�ned separately for systems with dependent types. In

such a way a proper direct meaning is obtained for dependent types without

disregarding any dependencies.

Impredicativity is modeled in a proper way as well, by using the notion

of polystructure over the underlying combinatory algebra. Polystructures poses

similar closure properties as PERs, namely closed under products de�ned on

them and intersections, but are simpler - they are just collections of subsets of

the combinatory algebra.

An interesting aspect of the models that we obtain is that it is now relatively

easy to �nd counter-models (for proving properties about the syntax). In a sep-

arate section we give some applications of this. For example we show that the

Axiom of Choice (AC) is not derivable in CC by constructing a model where the

type representing AC is interpreted as the empty set. Furthermore, we show how

the property of strong normalization can be derived directly from a particular

model of CC.

2 Some Basic De�nitions

2.1 Calculus of Constructions

In this section a precise de�nition of the Calculus of Constructions (CC) is

presented. We adopt the same syntax for CC as in [8, 3]. To present the derivation

rules for CC we �rst �x the set of pseudoterms from which the derivation rules

select the (typable) terms.

De�nition 2.1 The set of pseudoterms, T , is de�ned by

T ::= ? j2 jVar

�

jVar

2

j�Var : T :T j �Var : T :T j T T ;

where Var

�

and Var

2

are countable disjoint sets of variables and Var =

Var

�

S

Var

2

.

De�nition 2.2 The Calculus of Constructions is a typed �-calculus with the

following derivation rules:

(axiom) ` � : 2

(Var)

� ` T : s

�; v:T ` v : T

s 2 f�;2g ; v 2 Var

s

n FV (�)

(weak)

� ` T : s � ` M : U

�; v:T ` M : U

s 2 f�;2g ; v 2 Var

s

n FV (�)

(

Q

)

� ` T : s

1

�; v:T ` U : s

2

� ` �v : T:U : s

2

s

1

; s

2

2 f�;2g

(�)

�; v:T ` M : U � ` �v : T:U : s

� ` �v : T:M : �v : T:U

s 2 f�;2g

(app)

� ` M : �v : T:U � ` N : T

� `MN : U [N=v]

(conv)

� ` M : T � ` U : s

T =

�

U

� ` M : U

s 2 f�;2g

For the informal explanation of these rules see, for example, [8, 3]. The set

of terms of CC is de�ned by

Term = fA j 9�;B[� ` A : B _ � ` B : A]g:

It is convenient to divide the typable terms into subsets ([3, 8]) in the following

way:

Kind := fA 2 T j 9� (� ` A : 2) g

Constr := fC 2 T j 9�;A (� ` C : A : 2) g

Type := f� 2 T j 9� (� ` � : �) g

Obj := ft 2 T j 9�; � (� ` t : � : �) g

Here, � ` t : � : � abbreviates � ` t : � ^ � ` � : � and � ` C : A : 2

abbreviates � ` C : A ^ � ` A : 2.

We use x, y and z to denote variables of Var

�

, also called object variables,

and we use �, �, and to denote variables of Var

2

, also called constructor

variables. The small Greek letters will denote types, the letters A;B;C; P;Q -

kinds or constructors and the letters t;m; n - objects.

2.2 Combinatory Algebras

Combinatory algebras are used to model the set of pseudoterms of CC. Below

we list the de�nitions of some notions used in the present paper. Most of the

de�nitions in this section are taken from [2] and [6].

De�nition 2.3 A combinatory algebra (ca) is an applicative structure A =

h A ; : ; k ; s ; =

A

i with distinguished elements k and s satisfying

(k:x):y =

A

x ; ((s:x):y):z =

A

(x:z):(y:z)

The application (:) is usually not written.

De�nition 2.4 The set of terms over A (notation T (A)) is de�ned as follows.

T ::= Var jA j T T

Every ca is combinatory complete, i.e., for every T 2 T (A) with FV(T) � fxg,

there exists an f 2 A such that

f:a =

A

T [a=x] 8a 2 A:

Such an element f will be denoted by �x:T in the sequel. For example, as

explained in [2], one can de�ne � as the standard abstraction �

�

with the help

of the combinators k and s. In the sequel we refer to� as an arbitrary abstraction

operation on A, which exists due to combinatory completeness.

The set � of pure lambda terms is a combinatory algebra, viz.,

� = h � ; : ; �xy:x ; �xyz:xz(yz) ; =

�

i:

One can choose in this case � to be just the abstraction operation � on pure

terms.

There is a natural mapping from � to any other combinatory algebra A. Let

� : Var ! A. The interpretation []

�

of the lambda-terms into A is de�ned as

follows.

[v]

�

= �(v)

[T

1

T

2

]

�

= [T

1

]

�

[T

2

]

�

[�v:T]

�

= �v:[T]

�[v:=v]

:

As was pointed out to us by Th. Altenkirch, it is not true in general that,

if T

1

=

�

T

2

, then [T

1

]

�

=

A

[T

2

]

�

. In [2] it is shown that this holds for a special

case of combinatory algebras - the so called �-models where � is chosen to be

�

�

and in which additional axioms hold (see [2], page 94-95). If one considers

an arbitrary abstraction � (as we do), then it is convenient to take weakly-

extensional combinatory algebras to model �.

Let � be a binary relation on A. For T

1

; T

2

2 � we say that T

1

= T

2

is

true in the ca A w.r.t. � (notation A;�j= T

1

= T

2

), if for every valuation �,

[T

1

]

�

� [T

2

]

�

. The above notion of satisfaction is easily extended to arbitrary

�rst-order equational formulas over �.

De�nition 2.5 The equivalence realtion � is weakly-extensional over =

A

if,

{ =

A

��;

{ if a

1

� a

2

and b

1

� b

2

, then a

1

a

2

� b

1

b

2

;

{ A;�j= 8x(T

1

= T

2

)! �x:T

1

= �x:T

2

:

Now we can prove the following lemma.

Lemma 2.6 Let A be a ca and � a weakly-extensional relation over =

A

. Then,

for all �,

if T

1

; T

2

2 � and T

1

=

�

T

2

; then [T

1

]

�

� [T

2

]

�

:

Examples 2.7 { The relation �= A�A is weakly-extensional over =

A

, be-

cause it relates all elements of A;

{ Let � be the abstraction �

�

de�ned with the help of k and s (see [2], page

90). Any congruence relation which contains =

A

and satis�es the equations

A

�

and Meyer-Scott axiom (see [2], page 94-95) is weakly-extensional over

=

A

;

{ In the combinatory algebra � = h � ; : ; �xy:x ; �xyz:xz(yz) ; =

�

i, the

�-equality is weakly-extensional over itself (if � is taken to be �).

3 The Model Construction

The notion of CC-structure and the interpretations of the typable terms of CC

are explained informally in the next paragraphs. For more details about the

intuition see [15].

The typable terms of CC are mapped into a (set-theoretical) hierarchical

structure (called CC-structure) according to their classi�cation as objects, con-

structors or kinds. The predicative universe of CC is interpreted as a collection

U

2

of sets (predicative structure) and every kind is mapped to a predicative set.

Predicative structures are closed under set-theoretical dependent products. The

impredicative universe � is interpreted as a collection U

�

of subsets of the under-

lying ca. We call this collection polystructure and its elements polysets. U

�

itself

is an element of U

2

and is closed under non-empty intersections and dependent

products (to be de�ned). Constructors are interpreted as elements of

[

X2U

2

X

(

S

U

2

in short). Their interpretations are called poly-functionals. In particular,

types are mapped to polysets.

Due to the various dependencies in CC, kinds have two other interpretations,

as polysets and as elements of the underlying ca, and constructors have a second

interpretation as elements of the ca. Three interpretation functions are de�ned

by simultaneous induction on the structure of typable terms: [[]]

2

to map kinds

to predicative sets, [[]]

�

to map constructors and kinds to polyfunctionals, and

(j j) to map kinds, constructors and objects to elements of the ca. For these

interpretations the following Soundness result is proved:

� ` A : 2) [[A]]

2

�;�

2 U

2

[[A]]

�

�;�

2 U

�

� ` P : A : 2) [[P]]

�

�;�

2 [[A]]

2

�;�

(jP j)

�

2 [[A]]

�

�;�

� ` � : �) [[�]]

�

�;�

2 U

�

� ` t : � : �) (jtj)

�

2 [[�]]

�

�;�

Here, � and � are valuations: � assigns a poly-functional to every constructor

variable and � assigns an element of A to every constructor variable and object

variable.

Now we are ready to give a formal de�nition of a class of mathematical

structures which constitute models of CC. Let A be a ca in the sequel.

De�nition 3.1 The operation of dependent product �

A

on A takes as argu-

ments a subset X of A and a function F : X ! }(A) and is de�ned as:

Q

A

(X;F) := ff 2 A j 8n 2 X(f:n 2 F (n))g

Note that X = ; implies

Q

A

(X;F) = A , and if X 6= ; and F (x) = ; for

some x 2 X then

Q

A

(X;F) = ; . For convenience

Q

A

(X;F) will be denoted

by

Q

A

x 2 X:F (x). Like in CC, if F is a constant function on X, say F (x) = Y ,

then we denote

Q

A

(X;F) as a function space X!Y , which is de�ned as ff 2

A j 8n 2 X(f:n 2 Y)g.

The impredicative universe of CC is interpreted as a polystructure. The im-

predicativity (or polymorphism) is modeled by requiring polystructures to be

closed under arbitrary intersections.

De�nition 3.2 Let A be a ca and ? 2 A. A su�cient subset of A w.r.t. ? is a

set A, such that

1. ; (A � A;

2. If t[a] 2 A for some a 2 A, then �x:t[x] 2 A;

3. If

�!

a 2 A, then ?

�!

a 2 A;

4. If t[a] 2 A ; a 2 A, then (�x:t[x])a 2 A.

Examples 3.3 The set A is a su�cient subset of itself (taking for ? an arbitrary

element of A). Furthermore, SN , the set of �-strongly-normalizing pure �-

terms, is a su�cient subset of � w.r.t. x, for any variable x. To show this, take

the ca h�; �; �xy:x; �xyz:xz(yz);=

�

i and � to be �.

De�nition 3.4 Let A be a ca, ? 2 A and A a su�cient subset of A w.r.t. ?. A

polystructure over A, A and ? is a collection P � }(A), such that the following

conditions hold.

(i) A 2 P;

(ii) P is closed under dependent products, i.e. for every X 2 P and every

function F : X ! P,

Q

A

x 2 X:F (x) 2 P.

(iii) P is closed under non-empty intersections, i.e., if I is a nonempty set and

X

i

2 P for every i 2 I then

T

i2I

X

i

2 P;

(iv) for all X 2 P, if t[a] 2 X for some a 2 A, then (�x:t[x])a 2 X;

(v) for all X 2 P, if a 2 X and b 2 A, then kab 2 X.

The elements of a polystructure are called polysets.

Remark 3.5 If ; 2 P, then A = A due to the requirements that P � }(A)

and that polystructures should be closed under dependent products, since ; !

A = A.

Examples 3.6 Let A be a ca.

1. A saturated set is a set X of strongly normalizing �-terms such that y

�!

P 2 X

for every variable y and

�!

P 2 SN and, if M [Q=y]

�!

P 2 X and Q 2 SN ,

then (�y:M)Q

�!

P 2 X. The set of saturated sets is denoted by SAT . SAT

is a polystructure over the ca h�; �; �xy:x; �xyz:xz(yz);=

�

i, SN and x (for

any variable x).

2. The set f;;Ag is a polystructure over A, A and ?, for any element ? 2 A.

3. The set P := fX � A jX is closed under =

A

g is a polystructure over A, A

and ?, for any element ? 2 A.

We shall often be concerned with `simple' kinds of polystructures, like the

ones in the last two examples, where all the polysets are closed under =

A

and

the su�cient subset is just A itself. We therefore give the following de�nition.

De�nition 3.7 Let A be a ca. A simple polystructure over A is a collection

P � }(A), such that the following conditions hold.

(i) A 2 P;

(ii) P is closed under arbitrary nonempty intersections;

(iii) P is closed under dependent products;

(iv) Every element of P is closed under the equivalence relation =

A

.

If one just works with simple polystructures, the relation =

A

is not really

necessary; instead one could just look at the quotient algebra A= =

A

. (We are

also interested in the polystructure of saturated sets, which is not simple.) Note

that simple polystructures are still intensional: if X and Y are polysets and

f; g 2 X ! Y , then 8x 2 X[fx =

A

gx] does not necessarily imply f =

A

g.

The predicative universe 2 is interpreted as a predicative structure. The nec-

essary properties of predicative structures are derived from the rules of CC. A

predicative structure contains a polystructure as an element and is closed under

a restricted set-theoretical product.

De�nition 3.8 Let A be a ca and � a binary relation on A. The operation

e

� takes as arguments a subset X of A and a function F : X ! SET , and is

de�ned by:

e

�(X;F) := ff 2

�

x 2 X:F (x) j8x

1

; x

2

2 X(x

1

� x

2

=) f(x

1

) = f(x

2

))g

Here,

�

x 2 X:F (x) denotes the set of functions f such that for all x 2 X,

f(x) 2 F (x) (the set-theoretical dependent product).

Note that, if X = ; then

e

�(X;F) = f;g, where ; ambiguously denotes

the empty function. Furthermore, if X 6= ; and F (x) = ; for some x 2 X,

then

e

�(X;F) = ;. (The same holds if F (x

1

)

T

F (x

2

) = ; for some �-related

elements x

1

and x

2

.) For convenience,

e

�(X;F) will be denoted by

e

� x 2 X:F (x).

De�nition 3.9 A predicative structure over a polystructure P and a relation �

(on A) is a collection of sets N such that

(i) P 2 N ;

(ii) N is closed under set-theoretical dependent product, �, i.e. if B 2 N and

F : B !N , then

�

b 2 B:F (b) 2 N

(iii) N is closed under

e

� for �-preserving functions, i.e. ifX � A and F : X !

N such that 8x

1

; x

2

2 X:x

1

� x

2

=) F (x

1

) = F (x

2

), then

e

� x 2 X:F (x) 2 N :

An example of a predicative structure is the collection SET of all sets.

For convenience we introduce some notations. If f(b) 2 F (b) for all b 2 B,

then � b 2 B: f(b) denotes the function b 7�! f(b). If g(b) 2 F (b) and g(b

1

) =

g(b

2

) whenever b

1

� b

2

, then

~

� x 2 B: g(x) denotes the function b 7�! g(b).

Now we are ready to give the de�nition of CC-structures and to de�ne the

interpretations of typable terms into such CC-structures.

De�nition 3.10 A CC-structure is a tuple M = hA;A; ?;�;U

�

;U

2

i , where

1. A is a ca;

2. A is a su�cient subset of A w.r.t. ?;

3. ? is a �xed element of A;

4. � is a weakly-extensional equivalence relation over =

A

(see def.2.5);

3

.

5. U

�

is a polystructure over A, A and ?;

6. U

2

is a predicative structure over U

�

and �;

De�nition 3.11 An atom-valuation of constructor and object variables is any

map � : Var

�

S

Var

2

! A. A constructor-valuation of constructor vari-

ables is a map � : Var

2

!

[

X2N

X.

De�nition 3.12 The atom-interpretations of the typable terms under an atom-

valuation � are de�ned as follows

(j � j)

�

:= ?

(jvj)

�

:= �(v) if v is a variable

(jT

1

T

2

j)

�

:= (jT

1

j)

�

:(jT

2

j)

�

(j�v : T

1

:T

2

j)

�

:= k:(�v:(jT

2

j)

�[v:=v]

):(jT

1

j)

�

(j

Q

v : T

1

:T

2

j)

�

:= ?:(jT

1

j)

�

:(�v:(jT

2

j)

�[v:=v]

)

Remark 3.13 As usual (see [2]), (jT j)

�[v:=v]

denotes the term over A obtained

from T by applying the map (j j)

�

0

to it, where �

0

: Var ! T (A) is de�ned as

�

0

(u) =

�

�(u) if u 6= v;

v if u = v

Fact 3.14 Due to the fact that � simulates the equality on a weakly extensional

combinatory algebra, the following holds:

1. If m

1

;m

2

2 A and m

1

� m

2

, then (jT j)

�[v:=m

1

]

� (jT j)

�[v:=m

2

]

.

2. If T

1

=

�

T

2

, then (jT

1

j)

�

� (jT

2

j)

�

.

3. (jT

1

[T

2

=v]j)

�

= (jT

1

j)

�[v:=(jT

2

j)

�

]

.

De�nition 3.15 Let � be an atom-valuation and � a constructor-valuation. The

U

�

-interpretation of kinds and constructors

[[]]

�

�;�

: f2g [Kind [Constr �!

[

U

2

and the U

2

-interpretation of kinds

[[]]

2

�;�

: f2g [Kind �! U

2

3

Note that we do not require s � k, i.e. A=

�

is not necessarily a (weakly-extensional)

ca.

are de�ned simultaneously by induction on the structure of terms as follows.

[[�]]

2

�;�

:= [[2]]

2

�;�

:= U

�

[[�� : A:B]]

2

�;�

:=

�

a 2 [[A]]

2

�;�

:

e

�m 2 [[A]]

�

�;�

:[[B]]

2

�[�:=a];�[�:=m]

if A;B 2 Kind

[[�x : �:B]]

2

�;�

:=

e

�m 2 [[�]]

�

�;�

:[[B]]

2

�;�[x:=m]

if � 2 Type ; B 2Kind

[[�]]

�

�;�

:= [[2]]

�

�;�

:= A

[[�]]

�

�;�

:= �(�) if � 2 Var

2

[[�� : A:B]]

�

�;�

:=

\

a2[[A]]

2

�;�

Q

A

m 2 [[A]]

�

�;�

:[[B]]

�

�[�:=a];�[�:=m]

if A 2Kind

[[�x : �:B]]

�

�;�

:=

Q

A

m 2 [[�]]

�

�;�

:[[B]]

�

�;�[x:=m]

if � 2 Type

[[PQ]]

�

�;�

:= [[P]]

�

�;�

([[Q]]

�

�;�

)((jQj)

�

) if P;Q 2 Constr

[[Pt]]

�

�;�

:= [[P]]

�

�;�

((jtj)

�

) if P 2 Constr ; t 2 Obj

[[�� : A:P]]

�

�;�

:= � a 2 [[A]]

2

�;�

:

~

� m 2 [[A]]

�

�;�

: [[P]]

�

�[�:=a];�[�:=m]

if A 2Kind ; P 2 Constr

[[�x : �:P]]

�

�;�

:=

~

� m 2 [[�]]

�

�;�

: [[P]]

�

�;�[x:=m]

if � 2 Type ; P 2 Constr

Remark 3.16 The interpretations [[]]

2

�;�

and [[]]

�

�;�

may be unde�ned. For

example, if the �rst argument of the operation

e

� is not a subset of A or the

abstraction

~

� has the wrong arguments. We will show that, for well-typed terms,

the interpretations are well-de�ned indeed.

For these interpretations the substitution property, which is stated in the

next lemma, holds. The relation

�

=

is `Kleene-equality'.

Lemma 3.17 Let t 2 Obj , Q 2 Constr , T 2 Kind

S

Constr and s 2

f�;2g. Then:

[[T [Q=�]]]

s

�;�

�

=

[[T]]

s

�[�:=[[Q]]

�

�;�

];�[�:=(jQj)

�

]

and [[T [t=x]]]

s

�;�

�

=

[[T]]

s

�[x:=(jtj)

�

];�[x:=:]

De�nition 3.18 The constructor valuations � and the atom valuation � satisfy

the context � (notation �; � � �) if

(i) for every constructor variable � and kind A such that (� : A) 2 � ,

�(�) 2 [[A]]

2

�;�

and �(�) 2 [[A]]

�

�;�

:

(ii) for every object variable x and type � , such that (x : �) 2 � ,

�(x) 2 [[�]]

�

�;�

:

De�nition 3.19 We say that the CC-structure M models � ` M : T (notation

� j=

M

M : T) i� for every �; � � � ,

(i) If M 2 Kind , then [[M]]

2

�;�

2 U

2

; [[M]]

�

�;�

2 U

�

; (jM j)

�

2 A;

(ii) If M 2 Constr then [[M]]

�

�;�

2 [[T]]

2

�;�

and (jM j)

�

2 [[T]]

�

�;�

;

(iii) If M 2 Obj then (jM j)

�

2 [[T]]

�

�;�

.

De�nition 3.20 If � ` M

i

: T; i = 1; 2 and M

1

=

�

M

2

,we say that the CC-

structure M models M

1

=

�

M

2

(notation � j=

M

M

1

=

�

M

2

) if for all �; � such

that �; � � � ,

(jM

1

j)

�

� (jM

2

j)

�

;

[[M

1

]]

s

�;�

�

=

[[M

2

]]

s

�;�

;

for applicable s 2 f�;2g.

De�nition 3.21 Let m

1

;m

2

2 A, v 2 Var . We say that m

1

and m

2

are v-

compatible in the CC-structure M with respect to � ` M : T (notation �; v :=

m

1

;m

2

j=

M

M : T) if for all valuations � and �, such that �; �[v := m

i

] � �

(i = 1; 2),

(jM j)

�[v:=m

1

]

� (jM j)

�[v:=m

2

]

;

[[M]]

s

�;�[v:=m

1

]

�

=

[[M]]

s

�;�[v:=m

2

]

;

for applicable s 2 f�;2g.

The next theorem says that every CC-structure is a model of CC, namely it

models every legal judgment of CC.

Theorem 3.22 (Soundness) Let M be a CC-structure and let � be a context

and M and T terms such that � ` M : T . Then the following holds.

(i) � j=

M

M : T ;

(ii) for every m

1

;m

2

2 A, such that m

1

� m

2

, �; v := m

1

;m

2

j=

M

M : T ;

(iii) if M !

�

N , then � j=

M

M =

�

N .

Proof. The proof of (i)-(ii) is by simultaneous induction on derivations. The non-

trivial cases are: the (�)-rule, where property (iii) of polystructures is applied (see

def.3.4); the (

Q

)-rules, where the closure of U

�

under non-empty intersections

and dependent products and the closure of U

2

under set-theoretical products and

under

e

� are used. Furthermore, in the conversion rule the following property is

essential. Two typable terms are �-equal (as pseudoterms) i� they are equal via

a reduction-expansion path through the set of well-typed terms. (This property

follows from Church-Rosser for � and Subject Reduction for �.) In the end, note

that to prove the condition (iii) of the Soundness Theorem, Subject Reduction

for � is necessary. ut

4 Applications

In this section we treat some examples of models of CC that �t in the framework

described above. Our main goal hereby is to prove properties about the syntax

by employing the models. Typical statements that we can prove in this way are

e.g. that the Axiom of Choice is not derivable in CC and that Classical Logic

is a consistent extension of CC. The �rst is proved by constructing a model in

which the type that represents the Axiom of Choice is empty and the second

is proved by constructing a model in which the type representing the double

negation law is inhabited and the interpretation of ? is empty. The examples

that we show are in the same realm (and sometimes the same) as the ones in

[17]. We think (and hope) however that in many cases counterexamples can be

constructed more easily using our model construction.

Before going into details, we �rst compute the interpretations of some logical

formulas to observe that their interpretation in the model expresses - roughly -

what the formula states. For example, it is easy to check that the interpretation of

9x:�:� is not empty i� there exists an element t in [[�]]

�

�;�

such that [[�]]

�

�;�[x:=t]

6= ;.

In this section we restrict ourselves to simple polystructures. (So, A = A,

; 2 P and all polyset are closed under =

A

.)

Lemma 4.1 In CC-structures with simple polystructures the following holds.

1. [[9x:�:�]]

�

�;�

6= ; i� there exists t 2 [[�]]

�

�;�

such that [[�]]

�

�;�[x:=t]

6= ;.

2. If CL is the statement ��: � :::�!� of Classical Logic, then [[CL]]

�

�;�

6= ;

i�

T

X2U

�

((X!;)!;)!X 6= ;.

3. [[t =

�

q]]

�

�;�

6= ; i� (jtj)

�

� (jqj)

�

, where =

�

represents Leibniz equality on �.

4. The statement PI of Proof-Irrelevance is de�ned as ��: � :�x; y:�:x =

�

y.

Then [[PI]]

�

�;�

6= ; i� for all t; q 2 A, t � q.

It is not true that every formula of higher order predicate logic has such a

direct interpretation in the models. As an example we look at the statement of

extensionality for propositions, EXT. It is de�ned as

EXT := ��; �: � :(�$�)!� =

�

�:

Here, =

�

denotes Leibniz equality on the kind �. The interpretation of EXT is

T

X;Y 2U

�

Q

A

m;n 2 A:(X$Y)!

T

Q2U

�

!A!U

�

(A!A)!QXm!QY n :

[[EXT]]

�

�;�

6= ; i�

\

X;Y 2U

�

(X$Y)!

Q

A

m;n 2 A:

\

Q2U

�

!A!U

�

QXm!QY n 6= ;

i� �= A�A and U

�

= f;;Ag:

The fact that U

�

= f;;Ag indeed somehow expresses extensionality of proposi-

tions in the model, but �= A �A does not in any way.

4.1 Classical Logic and Proof-irrelevance

Adding Classical Logic to CC is done by putting x : ��: � :::�!� as a decla-

ration in the context. It is not di�cult to �nd a polystructure in which [[CL]]

�

�;�

is nonempty, while [[?]]

�

�;�

is empty (? = ��: � :�). Consider the polystructure

U

�

:= f;;Ag. In this model, [[CL]]

�

�;�

= A, because ((A!;)!;)!A = A and

((;!;)!;)!; = A.

Lemma 4.2 x : CL is a consistent context of CC.

The statement of Proof-Irrelevance, PI, says that every two elements of a

type are equal. Above we have seen that [[PI]]

�

�;�

6= ; i� 8t; q 2 A[t � q] Now

consider the polystructure U

�

:= f;;Ag where A is a weakly-extensional ca and

� is simply the equality =

A

on A, so it does not identify all elements. We �nd

that [[PI]]

�

�;�

= ;. Hence we can conclude the following.

Lemma 4.3 In CC there is no term M such that ` M : PI. Moreover, there is

no term M such that `M : CL!PI.

The second part of this Lemma can also be reversed. Consider therefore the

polystructure U

�

:= fX � A jX closed under =

A

g and let the equivalence

relation � be the relation that identi�es all elements (�= A�A). (This makes

thatA= � is a degenerate �-algebra, but that is no problem for our construction.)

Now, [[PI]]

�

�;�

6= ;, because � relates all elements. On the other hand, [[CL]]

�

�;�

= ;:

take X and Y such that ; (X;Y (A and X \Y 6= ;; then ((X!;)!;)!X =

A!X and ((Y!;)!;)!Y = A!Y , so [[CL]]

�

�;�

� (A!X) \ (A!Y) = ;. We

have obtained the following result.

Lemma 4.4 In CC there is no term M such that ` M : CL. Moreover, there is

no term M such that `M : PI!CL.

In [4], it is shown that there is a term M such that

x:EXT; �:�; c; c

0

:�; h:c 6=

�

c

0

` M :`every f :�!� has a �xed point':

The statement that `every f :�!� has a �xed point' is written formally as

�f :�!�:9x:�:fx =

�

x. In the models we are looking at here, this is even

stronger: we can show that [[EXT!PI]]

�

�;�

is not empty (and from [[PI]]

�

�;�

6= ; it

easily follows that `every function has a �xed point' is true in the model). We

have seen that [[EXT]]

�

�;�

6= ; i� �= A �A and U

�

= f;;Ag. Furthermore, we

have seen in Lemma 4.1 that [[PI]]

�

�;�

6= ; i� for all t; q 2 A, t � q. So, we can

conclude that, if [[EXT]]

�

�;�

6= ;, then [[PI]]

�

�;�

6= ;. Hence [[EXT!PI]]

�

�;�

6= ;.

The interpretation of `every f :�!� has a �xed point' is (writing Y for [[�]]

�

�;�

)

Q

A

g 2 Y!Y:[[9x:�:fx =

�

x]]

�

�;�[f :=g]

:

If [[PI]]

�

�;�

6= ; in the model, then for all t 2 Y and g 2 Y!Y we have

[[fx =

�

x]]

�

�;�[x;f :=t;g]

, simply because [[y =

�

x]]

�

�;�[x;y:=t;q]

6= ; for all t; q 2 A.

So, from [[PI]]

�

�;�

6= ; we conclude that every f :�!� (for any �) has a �xed

point.

Lemma 4.5 The sets [[PI!`for every type � every f :�!� has a �xed point']]

�

�;�

and [[EXT!PI]]

�

�;�

are not empty in our models.

4.2 Axiom of Choice

We now show that the Axiom of Choice is not inhabited in CC by giving a model

in which the type AC (representing the Axiom of Choice) is empty. De�ne

AC := (�x:�:9y:�:Rxy)!(9f :�!�:�x:�:Rx(fx)):

Here, � and � are two inhabited types and R is a variable of type �!�!�.

(We could have formalized AC in a more general way, by abstracting over �, �

and R, but if AC above is not inhabited, then a more abstract version of the

Axiom of Choice is also not inhabited.) To simplify notation we write AC

1

for

�x:�:9y:�:Rxy and AC

2

for 9f :�!�:�x:�:Rx(fx).

We consider the combinatory algebra A := �=��, consisting of ��-equivalen-

ce classes of �-terms. Take as polystructure U

�

:= f;;Ag and let �� A�A be

equality (of ��-equivalence classes). Now,

[[AC

1

]]

�

�;�

= A i�

Q

A

m 2 [[�]]

�

�;�

:[[9y:�:Rxy]]

�

�;�[x:=m]

= A

i� for all m 2 A; [[9y:�:Rxy]]

�

�;�[x:=m]

= A

i� for all m 2 A there is a t 2 A with �(R)(m; t) = A

(Note that [[�]]

�

�;�

= A, because � is inhabited and furthermore note that, if for

all m 2 A, P (m) = A, then

Q

A

m 2 A:P (m) = A.) We also �nd that

[[AC

2

]]

�

�;�

= A i� for some f 2 A!A; �(R)(m; fm) = A for all m 2 A:

If we de�ne �(R)(m; t) := A i�m 6= t, then 8m 2 A9t 2 A[m 6= t], so [[AC

1

]]

�

�;�

=

A, but not 9f 2 A!A8m 2 A[fm 6= m] (because of the �xed point theorem

for the lambda calculus), so [[AC

2

]]

�

�;�

= ;. We conclude that [[AC]]

�

�;�

= ; in this

model.

Lemma 4.6 There is no closed term of type AC in CC.

One may wonder what happens if one makes the type AC more concrete,

e.g. is AC inhabited for all closed types � and � and all closed predicates R? By

adapting the construction above a little bit it can be shown that this question

has to be answered in the negative.

Consider the model described above (with A = �=��, U

�

= f;;Ag and

� the equality between ��-equivalence classes). Take for both � and � the

type of Church numerals, N , and take for R the predicate �x; y:N:x 6=

N

y.

The interpretation of N is A and, using Lemma 4.1 we see that for m; t 2 A,

[[Rxy]]

�

�;�[x;y:=m;t]

= A i� m 6= t. Similarly as above, we �nd that [[AC

1

]]

�

�;�

6= ;

and [[AC

2

]]

�

�;�

= ;.

Lemma 4.7 There are closed types � and � and a closed predicate R such that

there is no closed term of type AC.

Of course, this still leaves the question open whether the Axiom of Choice

holds as a rule, that is, whether the following holds. If ` M : �x:�:9y:�:Rxy,

is there a closed term N of type 9f :�!�:�x:�:Rx(fx)) ? This question is not

addressed here.

5 Strong Normalization

In this subsection we explain how strong normalization can be proved by using a

speci�c model of CC. The approach used here di�ers from the ones in [10] and [1],

where strong normalization is also derived from particular models. Hyland and

Ong (see [10]) point out that there are some complications resulting from the fact

that hSN ;=

�

i is not a conditional partial combinatory algebra (c-pca). Hence,

instead of considering �-equality they work with so-called `conditionally-weak

equality', which is the equality relation generated from the reduction relation

!

cw

, de�ned by (�) and the rule `if M !

cw

N and C[�] is a term-with-hole

such that no free variable ofM becomes bound in C[M], then C[M]!

cw

C[N]'.

So, !

cw

is not compatible with abstraction; in fact !

cw

is a way of restricting

the reduction `under a �'. This leads to much additional work for studying

properties of cw-equality and the c-pca hSN ;=

cw

i, while the only equality we

are really interested in is the �-equality. Moreover,in [10] models which contain

the empty set as a possible interpretation of a type are excluded.

Altenkirch [1] presents a simpler solution, by taking the intersection of the

collection of partial equivalence relations over the pure �-terms and the collection

of saturated sets (with a modi�ed de�nition of the notion of `saturated set',

slightly di�erent from 3.6) as interpretation of �.

Our approach is based on the fact that the full collection of saturated sets

(see 3.6, or [3]) is a polystructure over the set of pure �-terms �. v

�!

P 2 X; The

following CC-structure is used to prove strong normalization.

M = h�

[

f?g; SN ; ?; =

�

; SAT ; SET i;

where � is the set of untyped �-terms and SN is the set of �-strongly-normaliz-

ing �-terms. In 3.3 it is shown how SN can be seen as a su�cient subset of �.

This CC-structure models CC according to the Soundness Theorem 3.22.

Theorem 5.1 (Strong Normalization for CC). If � ` M : T , then M 2 SN .

Proof. We de�ne a maximum element of [[A]]

2

�;�

for every kind A in the following

way.

max(SAT) = SN

max([[

Q

� : A:B]]

2

�;�

) = � a 2 [[A]]

2

�;�

:

~

� m 2 [[A]]

�

�;�

: max([[B]]

2

�[�:=a];�[�:=m]

)

max([[

Q

x : �:B]]

2

�;�

) =

~

� m 2 [[�]]

�

�;�

: max([[B]]

2

�;�[x:=m]

)

Let �(v) = v for every variable v, and �(�) = max([[A]]

2

�;�

) for every (� : A) 2 � .

(This is possible due to the linearity of the legal contexts). It is immediately

veri�ed that, for all terms N , N 2 SN i� (jN j)

�

2 SN . Furthermore, the so-

chosen valuation � and � obviously satisfy � . From the Soundness Theorem it

follows that (jM j)

�

2 [[T]]

�

�;�

� SN . Hence (jM j)

�

2 SN , and so M 2 SN . ut

For a more detailed presentation of the proof of strong normalization see [15].

6 Related Research

The present paper combines and develops further the ideas in [7] and [15]. This

results in constructing a relatively simple set-theoretical notion of model of CC

being a PTS. It has been shown how syntactical properties of the system can be

studied in a semantical way. Furthermore, such an essential property as SN has

been shown to be in a close relation with the semantics of CC. The resulting

proof of SN is very exible in a sense that it can be adapted in a modular way

to various extensions of CC, such as inductive types and kinds (see [15]). An

interesting question is whether the whole model construction can be extended

in a modular way to give semantics of richer systems than CC.

We compare our notion of model with the following.

- Categorical Models(see for example [11]). We do not use the abstract

machinery of category theory and instead present a simple, intuitively grounded

notion of model for CC being a PTS.

- Standard Realizability Models (see [12, 13]). The di�erences here are

conceptual. As has been mentioned before, realizability models are a conve-

nient tool for describing semantics for impredicative systems in which the type-

dependency rule (�;2) of PTSs is \encoded" by explicit \lifting" of every type to

a special small kind (see [16, 1]. Such models are usually extensional. A seman-

tics of the PTS CC can be obtained from these models via a syntactic mapping

from CC-PTS-style to CC-with-lifting. The model described here is intensional

and presents a direct meaning of the Calculus of Construction as a PTS.

- Abstract non-categorical model-constructions.The only such model-

construction we know is the one described in [1]. It is a non-trivial presentation

of categorical models without using categorical tools. A non-trivial instance of

it is the class of standard realizability models. Note, that this abstract notion of

model is also for a system with \lifted" types.

In fact the principle di�erence between our notion of model and the above

three classes of models is that we give a direct interpretation of the rules of Pure

Type Systems. We present a new class of concrete models, which are intensional.

This makes us believe that these models cannot be viewed as a particular instance

of the abstract scheme, as for example presented in [1]. In fact we have tried to

organize these concrete models in a more general scheme to cover the PERs as

well, but we have so far not succeeded. However one can use PERs instead of

polystructures as interpretations of � and `redo' the rest of the construction.

- Other (partial) models of the PTS CC (see [8, 4]). In the literature

there are models of CC employed for proving strong normalization, in which CC

is interpreted via an explicit or implicit syntactical mapping into Girard's sys-

tem F! (see [9, 8]) . Furthermore, there are models in which type-dependencies

are not fully disregarded as in [4] where dependencies are eliminated only in the

interpretation of kinds. The interpretations in such models are not straightfor-

wardly extendible to richer systems, for example with inductive types, and our

notion of models is more exible in this sense.

Acknowledgments

We would like to thank Thorsten Altenkirch for some illuminating discussions

on the subject of (weakly extensional) combinatory algebras. We are also very

grateful to Henk Barendregt, Erik Barendsen and Stefano Berardi for helpful

discussions on topics related to the subject of this paper. Further, the comments

of the two anonymous referees have been very helpful for us to improve the

contents of this paper. Finally, we want to thank Erik Barendsen for his help

with L

A

T

E

X.

References

1. T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD

thesis, Laboratory for the Foundations of Computer Science, University of Edin-

burgh, 1993.

2. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, Amsterdam, second, revised edition, 1984.

3. H. P. Barendregt. Typed lambda calculi. In Abramski, editor, Handbook of Logic

in Computer Science. Oxford University Press, 1992.

4. S. Berardi. Encoding of data types in pure construction calculus: a semantic jus-

ti�cation. In G. Plotkin and G. Huet, editors, Logical Enviroments, pages 30{60,

Edinburgh, 1992.

5. S. Berardi. An application of per models to program extraction. Mathematical

Structures in Computer Science, 3:309{331, 1993.

6. I. Bethke and J. W Klop. Collapsing partial combinatory algebras. Technical

report, CWI, The Netherlands, 1995.

7. J. H. Geuvers. Semantics for dependent types (the calculus of constructions) by a

`double' model construction. Technical report, Department of Computer Science,

University of Eindhoven, 1995.

8. J. H. Geuvers. A short and exible proof of strong normalization for the calculus

of constructions. In P. Dybjer, B. Nordstr�om, and J. Smith, editors, Types for

Proofs and Programs, Int. Workshop TYPES '94, B�astad, Sweden, LNCS 996,

pages 14{38, Edinburgh, 1995.

9. J.H. Geuvers and M.J. Nederhof. A modular proof of strong normalization for the

calculus of constructions. Journal of Functional Programming, 1(2):155{189, 1991.

10. J .M. E. Hyland and C.-H. L. Ong. Modi�ed realizability and strong normaliza-

tion proofs. In M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and

Applications, 1993.

11. J. M. E. Hyland and M. Pitts. The theory of constructions: Categorical semantics

and topos-theoretic models. In Boulder, editor, AMS notes, 1987.

12. G. Longo and E. Moggi. Constructive natural deduction and its '!-set` interpre-

tation. Mathematical Structures in Computer Science, 1:215{254, 1991.

13. Z. Luo. A higher-order calculus and theory abstraction. IC, 90:107{137, 1991.

14. J. C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. McQueen,

and G. Plotkin, editors, Lecture Notes in Computer Science 173, 1984.

15. M.T. Stefanova. Schematic proof of strong normalization for barendregt's-cube,

1995. Submitted, also available at http://www.cs.kun.nl/�milena.

16. T. Streicher. Semantics of Type Theory. Correctness, Completeness and Indepen-

dence Results. Progress in Theoretical Computer Science. Birkh�auser, Boston,

1991.

17. T. Streicher. Independence of the induction principle and the axiom of choice in

the pure calculus of constructions. TCS, 103(2):395{409, 1992.

This article was processed using the L

A

T

E

X macro package with LLNCS style

