
Congruence types

?

Gilles Barthe

1;3

and Herman Geuvers

2;3

1

Centrum voor Wiskunde en Informatica (CWI),

Amsterdam, The Netherlands, gilles@cwi.nl

2

Faculty of Mathematics and Informatics,

Technical University of Eindhoven, The Netherlands, herman@win.tue.nl

3

Faculty of Mathematics and Informatics, University of Nijmegen, The Netherlands

Abstract. We introduce a type-theoretical framework in which canon-

ical term rewriting systems can be represented faithfully both from the

logical and the computational points of view. The framework is based on

congruence types, a new syntax which combines inductive, algebraic and

quotient types. Congruence types improve on existing work to combine

type theories with algebraic rewriting by making explicit the fact that

the term-rewriting systems under consideration are initial models of an

equational theory. As a result, the interaction gustavo:thesisween the type

theory and the algebraic types (rewriting systems) is much more power-

ful than in previous work. Congruence types can be used (i) to introduce

initial models of canonical term-rewriting systems (ii) to obtain a suit-

able computational behavior of a de�nable operation (iii) to provide an

elegant solution to the problem of equational reasoning in type theory.

1 Introduction

The combination of type systems with algebraic rewriting systems has given

rise to algebraic-functional languages, a class of very powerful programming lan-

guages (see for example [4, 9, 12, 22]). Yet these frameworks only allow for a

limited interaction between the algebraic rewriting systems and the type theory.

For example, if Zis de�ned as an algebraic type, one cannot de�ne the abso-

lute value or prove that every integer is either positive or negative. This serious

objection to algebraic-functional languages is in fact due to the absence of in-

duction principles for algebraic types and so one might be tempted to formulate

such principles. However, the task is not so easy if we want to have:

- dependent elimination principles: the naive approach which consists in adding

the elimination principle directly to the algebraic type, as done in Clean

([27]), is limited to non-dependent elimination principles. For example, one

could not prove from such an induction principle on Zthat every integer is

either positive or negative.

?

This work was partially supported by the Esprit project `Types: types for programs

and proofs'.



- con
uence of the reduction relations on legal terms: the computations attached

to induction principles and those attached to algebraic types do not interact

satisfactorily. What is usually required in programming languages is that the

induction principle can only be applied to canonical values (i.e. closed alge-

braic terms in normal form). Without this restriction the reduction relation

fails to be locally con
uent.

To solve these problems, we opt for a two-level approach, in which every alge-

braic type is accompanied by the inductive type of its signature and related to

it by suitable axioms for quotients

4

. For the case of Z, this amounts to hav-

ing an inductive type Z with constructors 0; s and p (the type of terms of the

signature of Z) and an algebraic type Z with constants 0 : Z, s : Z!Z and

p : Z!Z and rewrite rules p(sx)!x and s(px)!x. The interaction between the

types Z and Z is axiomatised by two maps: a `class' map [�] : Z ! Z and a

`representant' map rep : Z ! Z, some reduction rules which specify the com-

putational behavior of these maps (in particular, rep is forced to be the unique

map which assigns to every `class' a representant in normal form and [:] is forced

to be the unique morphism of algebras from Z to Z) and a logical axiom (which

states that there is no confusion, i.e. that the [:] map does identify exactly those

terms which are provably equal for the theory of integers). In this way, one can

transfer both the non-dependent and dependent induction principles (of Z) to

the algebraic type (Z) without a�ecting the con
uence of the system. We claim

that such a formalism, which we call congruence types, is suited for representing

canonical term-rewriting systems in a faithful way (both from the logical and

the computational points of view).

We see three important uses of congruence types.

{ Represent initial models of term-rewriting systems, such asZ. (They cannot

be de�ned as inductive types, because they arise as a quotient of an inductive

type). In this case we are mainly interested in the quotient type (Z) and we

use the inductive type (Z) to reason over the quotient type.

{ Obtain a better computational behavior of a de�nable operation on an in-

ductive type. This is achieved by de�ning an inductive type with `extra' con-

structors and adding rewrite rules to specify the behavior of the extra con-

structor so that it represents the function we have in mind. How this works is

best illustrated by an example. Consider the inductive type of natural num-

bers and the addition function + on it. Then one has + (sx) y �! s(+ x y)

but (in general) not + x (sy) �! s(+ x y). Hence + has an unsatisfac-

tory computational behavior. Now, consider the rewriting system (N;R),

where N is the signature with constant 0, unary function s and binary sym-

bol + and the set of rewrite rules R consists of + x 0 ! x, + 0 x ! x,

+ (+ x y) z ! + x (+ y z), + sx y ! s(+ x y) and + x sy ! s(+ x y).

The congruence type de�ned from this set of rewrite rules gives rise to an

inductive type N with constructors 0, s and + and an algebraic type with

the reduction rules R. In this framework, + has a suitable computational

4

The reader is refered to [6, 13, 20, 21] for a type-theoretic account of quotients.



behavior and N gives indeed a suitable representation of N. Note that in

this case we are again interested in the quotient type N .

{ Use the quotient structure to prove properties of the algebra of terms (the

inductive type). In this case the quotient structure acts as an oracle to de-

rive a statement about the algebra of terms. Consider the congruence type

associated to the theory of groups: the inductive type corresponds to the

set of terms of the theory of groups and the quotient type corresponds to

the free group over in�nitely many elements. To know whether an equation

(s; t) is a theorem of the theory of groups, it is enough to know whether

[s] = [t]. The gain here is that if [s] and [t] have a common reduct, then the

conclusion is immediate. This use of congruence types is very important in

proof-checking and is the basis of lean proof-checking, a two-level approach

to formal mathematics for e�cient equational reasoning introduced in [7]

and further developed in [10].

In this paper we want to emphasize especially the usefulness of congruence types

and therefore we discuss three examples in quite some detail. Furthermore, we

give a de�nition of the general syntax and an overview of the meta-theory of the

system. The paper is organised as follows. In section 2, we discuss related work.

In section 3, the more technical motivations of congruence types are discussed

and we treat the integers as a motivating example of the syntax. In section 4,

the syntax is given in detail (for the calculus of constructions) and we give some

of the meta-theory (without proof). In section 5 we give two further examples

of congruence types and their possible applications to programming and proof-

checking. In the �nal section we suggest some extensions of the framework.

Related work

Congruence types are at the junction of several fundamental concepts and pro-

gramming paradigms. They combine features of inductive ([25, 26, 24]), algebraic

([12, 4, 22]) and quotient types ([6, 13, 21]). Congruence types arise as a special

form of quotient type where the underlying type is inductively de�ned and where

the equivalence relation is given by a canonical term-rewriting system.

Congruence types and inductive types Congruence types are more expressive

than inductive types because they allow to introduce initial models of canonical

term-rewriting systems instead of initial models of signatures. They can be seen

as a variant of the congruence types of Backhouse et al. which allow the intro-

duction of initial models of arbitrary speci�cations ([2, 3]). Their work di�ers

from ours in two respects; �rst, they focus on speci�cations and not on canoni-

cal term-rewriting systems, so there is no question of giving a computationally

faithful representation of the rewrite rules. Second, their formalism requires a

very strong form of equality as it is present for example in ITT.

Congruence types and pattern-matching It is possible to use congruence types to

give a computationally faithful representation of de�nable operators on inductive



types. In e�ect, congruence types share some of the power of pattern-matching

as introduced by Coquand in [14]. See section 4.1.

Congruence types and algebraic rewriting Congruence types are also more ex-

pressive than algebraic rewriting because of the presence of elimination princi-

ples. They are closely related to Jouannaud and Okada's algebraic functional

paradigm ([4, 22]). In algebraic functional languages, (higher-order) constants

are de�ned by rewrite rules, whereas they are de�ned inductively in the frame-

work of congruence types. An advantage of congruence types is that the elim-

ination principles can be used to reason over the data structures, a possibility

which is ruled out in algebraic-functional languages. See section 2.

Applications of congruence types to proof-checking Congruence types provide a

suitable framework to ease the problem of equational reasoning in proof-checking.

As argued in [10], they also lay the foundations for a theoretical study of the

interaction between computer algebra systems and proof-checkers. See section

4.2.

Prerequisites and terminology

The paper assumes some familiarity with pure type systems ([5, 17]), inductive

types (see for example [26]) and �rst-order term-rewriting ([15, 23]). A signature

is a pair � = (F

�

;Ar) where F

�

is a set (the set of function symbols) and

Ar : F

�

! N is the arity map. Term-rewriting systems are de�ned as usual.

By canonical term-rewriting system, we mean con
uent and terminating term-

rewriting system. An algebraic type is a type corresponding to a term-rewriting

system.

2 Motivation

For every term-rewriting system S = (�;R), one can reason on the initial model

T

S

of S by induction on the structure of the terms. This form of reasoning

implicitly uses the universality of T

S

as a quotient of T

�

and the initiality of

T

�

. In type theory (or any formal system), such a reasoning is only possible if

the relationship between T

�

and T

S

is made explicit. Congruence types provide

an axiomatic framework in which the relationship between the initial �-algebra

and the initial S-model is described axiomatically. The idea is to introduce two

types � and S simultaneously; these types should respectively correspond to T

�

and T

S

(so we will confuse � with T

�

and S with T

S

). Every function symbol

f of arity n induces two maps, f and f such that:

- if q

1

:�; : : : ; q

n

:�, then fq

1

� � �q

n

: �,

- if a

1

:S; : : : ; a

n

:S, then fa

1

� � �a

n

: S .

Hence every �-term t induces two terms t and t of respective type � and S.

Equality in S is forced by the rewriting rules of R. Now the crucial step is to



relate S and � by suitable axioms. As T

S

is a quotient of T

�

, we can inspire

ourselves from the standard rules for quotients ([6]). First, there must be a

canonical `class' map [�] from � to S ; it is the unique morphism of �-algebras

and satis�es for every function symbol f of arity n and t

1

; : : : ; t

n

elements of �,

[f (t

1

; : : : ; t

n

)] = f([t

1

]; : : : ; [t

n

])

Type theory is a computational framework, so it is natural to see this equality

as a computation rule (from the left to the right). In a second instance, we must

ensure that the two standard criterions for quotients hold:

- no junk: the map [�] from � to S is surjective;

- no confusion: for every two terms s and t, S ` s

:

= t , [s] = [t], where

the �rst equality S ` �

:

= � is the deductive closure of the rewrite rules.

In the syntax for quotient types, there are two alternatives to ensure the no junk

condition: by the introduction of a map rep from S to � which picks a repre-

sentative for each equivalence class or by adding a logical axiom that enforces

the surjectivity of [�]. We prefer the �rst alternative over the more traditional

second approach, because it can be given a computational meaning; the idea is

that rep should assign to every equivalence class c the unique term t in `normal

form'

5

such that [t] = c. Note that the behavior of rep is completely speci�ed

on closed terms by the above requirement, hence rep is not a choice operator

and does not alter the constructive character of type theory. The behavior of

rep is forced by several rewrite rules. First, one must have the computation rule

[rep x] = x for every x in S . Second, we must impose the further computation

rule

rep(f(t

1

; : : : ; t

n

)) = f (rep t

1

; : : : ; rep t

n

))

provided f(t

1

; : : : ; t

n

) is a closed term in normal form (this corresponds exactly

to our intuition of rep). The restriction to closed terms is necessary to preserve

con
uence.

As for the no confusion rule, it is ensured axiomatically. The rule expresses

the fact that, if two elements of � are in the same class, then they are in the least

equivalence relation that contains the rewrite relation (seen as a relation on �).

This is achieved by adding a constant noconf that takes a proof p of [a] =

S

[b]

and returns a proof noconf p of R

S

a b, where R

S

is the (impredicatively de�ned)

least equivalence relation containing the rewrite relation.

A worked out example: the integers One of the starting points of our in-

vestigation was the representation of the setZof integers in type theory. Despite

being a fairly simple data type, it has no direct representation in type theory; it

can either be de�ned as a \quotient" of N�N, where N is the inductively de�ned

type of natural numbers, or as an inductive type using some encoding ([11]), or

as an algebraic type, i.e. a term-rewriting system (without induction principle).

5

The rewriting relation is de�ned on S so the notion of a term (in �) in `normal form'

is an informal one.



However, none of these solutions captures adequately the structure of Z. If we

see Zas a canonical term-rewriting system, then the �rst two de�nitions are not

computationally faithful. On the other hand, if Zis represented as an algebraic

type, the representation of Zis unsatisfactory from a logical point of view; for

example, one cannot prove that every integer is either positive or negative nor

de�ne the absolute value of an integer.

On the other hand, congruence types provide a suitable representation of

Z. Zcan be de�ned with congruence types by introducing simultaneously an

algebraic type Z corresponding to Zand an inductive type Z corresponding to

the signature of Zand by relating them by suitable rules for quotient types.

In this formalism, the representation of Zis computationally faithful and it is

possible to derive from the induction principle on Z several standard induction

principles on Z. The rules are as follows.

The inductive type Z of ground terms of the theory of integers with con-

structors 0, s and p. Z is given by the standard rules for an inductive type

` Z : � ` 0 : Z

� ` t : Z

� ` st : Z

� ` t : Z

� ` pt : Z

with the elimination rules

� ` C : Z ! � � ` a : Z � ` f

0

: C0

� ` f

s

: �x : Z:Cx! C(sx) � ` f

p

: �x : Z:Cx! C(px)

� ` � [f

0

; f

s

; f

p

] a : C a

� ` C : � � ` a : Z � ` f

0

: C

� ` f

s

: Z ! C ! C � ` f

p

: Z ! C ! C

� ` � [f

0

; f

s

; f

p

] a : C

The term-rewriting system Z is introduced via the rules

` Z : � ` 0 : Z

� ` t : Z

� ` st : Z

� ` t : Z

� ` pt : Z

The axioms for quotients, that relate Z and Z, are represented by the rules

� ` a : Z

� ` [a] : Z

� ` a : Z

� ` rep a : Z

� ` p : [a] =

Z

[b]

� ` noconf p : R

Z

a b.

Here, R

Z

is the least equivalence relation on Z that is closed under the rewrite

rules. More precisely: for a; b:Z ,

R

Z

a b := �S:Z!Z!�:eqrel (S)!(�x:Z:S (p(sx)) x)!(�x:Z:S (s(px)) x)!S a b

where eqrel (S) denotes that S is an equivalence relation. There is a new conver-

sion rule, which extends the reduction-expansion rule to take into account the

new reduction relations

6

.

6

Note that in pure type systems, this rule is equivalent to the standard conversion rule;

the equivalence follows from the subject reduction lemma and the Church-Rosser

property of �-reduction on pseudo-terms ([5]). One consequence of the equivalence



� ` a : A � ` A

0

: �=� A�

����

A

0

or A

0

�

����

A

� ` a : A

0

The computational behavior of the system is speci�ed by �-reduction and three

other reduction relations:

- �-reduction (The computational meaning of the elimination principles over

the inductive type Z.)

� [f

0

; f

s

; f

p

] 0!

�

f

0

� [f

0

; f

s

; f

p

] (sx)!

�

f

s

x (� [f

0

; f

s

; f

p

] x)

� [f

0

; f

s

; f

p

] (px)!

�

f

p

x (� [f

0

; f

s

; f

p

] x)

These reduction rules are the standard ones for inductive types.

- �-reduction (Given by the term-rewriting system de�ning Z.)

s(px)!

�

x p(sx)!

�

x

- �-reduction (The computational meaning of quotients.)

[rep x]!

�

x

[0]!

�

0 [sx]!

�

s[x] [px]!

�

p[x]

rep 0!

�

0 rep (st)!

�

s (rep t) rep (pt)!

�

p (rep t)

where in the last two rules it is respectively assumed that st and pt are closed

algebraic terms (i.e built from 0, s and p) in normal form.

One of the main advantages of our de�nition is that it suppresses the burden

of providing equality proofs when reasoning about integers. Indeed, the equality

between integers is computational and handled by the reduction relations. It

makes them very attractive to use in proof-checking. Furthermore, our de�nition

also captures the logical content of Zas one can prove that all the standard

induction principles for Zhold for Z. The �rst induction principle is proof by

induction, which stipulates that for every predicate P on Z,

if P0 and 8x 2 Z:pos x; Px! P (sx) and 8x 2 Z:neg x; Px! P (px) then 8x 2 Z:Px

where being positive (pos) and being negative (neg) are suitably de�ned predi-

cates. A similar non-dependent elimination principle over � can be de�ned. For

P : �, one can build from

f

0

: P , f

s

: �x : Z:(pos x)! P ! P and f

p

: �x : Z:(neg x)! P ! P a term

F (f

0

; f

s

; f

p

) of type Z ! P .

is that for every two convertible legal types A and B, there exists a conversion path

through legal types; this property is called soundness in [19]. Soundness is a very

desirable property of the system because it ensures that non-typable terms do not

play any role in derivations.

In presence of �-reduction, one cannot rely on subject reduction or con
uence of

the combined reduction relation on the set of pseudo-terms to prove soundness. The

solution is to replace the conversion rule by the reduction-expansion rule (see [4]).



The construction of these terms is rather intricate and involves the de�nition of

a normal form map nf : Z ! Z with suitable properties. The construction will

be reported elsewhere.

The term F behaves as a kind of `primitive recursor for the integers'. Indeed,

one can check that the following equalities hold:

F f

0

f

s

f

p

0 =

����

f

0

F f

0

f

s

f

p

(s t) =

����

f

s

t q (F f

0

f

s

f

p

t)

F f

0

f

s

f

p

(p t) =

����

f

p

t q (F f

0

f

s

f

p

t)

where in the second rule, st is a closed term in normal form and q a proof of

pos t and in the last rule, pt is a closed term in normal form and q a proof

that neg t. In contrast, the dependent elimination principle over � does not have

such a clear computational meaning. It seems to emphasize the necessity to sep-

arate between propositions and objects, as it is done in the present system by

putting the sets on the kind-level. Our view is that only inhabitation is central

to propositions, so that the computational meaning of the elimination principle

over propositions is not crucial. On the contrary, both inhabitation and compu-

tational behavior of the inhabitants are important in the case of objects, so the

computational meaning of the elimination principle over objects must be clear.

Still, one can get an elimination principle for � which is computationally mean-

ingful by strengthening mildly the induction hypotheses. (So, this elimination

principle is logically weaker). Indeed, one can easily construct a term G of type

8P : Z ! �:P0! (8x : Z:Px! P (sx))! (8x : Z:Px! P (px))! 8x : Z:Px

that satis�es reductions that are similar to the ones for F above.

3 The calculus of constructions with congruence types

3.1 Syntax

We start from a (�nite) collection S

1

= (�

1

;R

1

), : : : , S

1

= (�

n

;R

n

) of canon-

ical term-rewriting systems. We let F =

S

i=1;:::;n

F

�

i

and F = ff jf 2 Fg. The

set of pseudo-terms is de�ned by the abstract syntax:

T = V j � j�jTT j�V : T:T j�V : T:T jS

i

j�

i

jFTjFTj[T ]jrep T jnoconf T j�

i

[T] T

The rules for derivation are those of the Calculus of Constructions (see Ap-

pendix) extended by the rules for congruence types. The rules are divided in

four categories.

- formation and introduction rules: these rules introduce the congruence types

and all the constructors. As motivated earlier, congruence types are intro-

duced as kinds.



` S

i

: � ` �

i

: �

� ` a : �

i

� ` [a] : S

i

� ` a : �

i

� ` rep a : S

i

� ` a

1

: S

i

: : : � ` a

m

: S

i

� ` f a

1

: : : a

m

: S

i

� ` a

1

: �

i

: : : � ` a

m

: �

i

� ` f a

1

: : : a

m

: �

i

where it is assumed that f 2 F

i

has arity m;

- elimination rules: these are the standard elimination rules for inductive types;

let �

i

have constructors f

1

; : : : ; f

n

i

of respective arity m

1

; : : : ;m

n

i

.

� ` a : �

i

� ` P : �

i

! �

� ` E

j

: �x

1

: : : x

m

j

:�

i

:Px

1

! � � � ! Px

m

j

! P (f

j

x

1

� � �x

m

j

) [1 � j � n

i

]

�

i

[E

1

; : : : ; E

n

i

]a : Pa

� ` a : �

i

� ` P : �

� ` E

j

: �x

1

: : :x

m

j

:�

i

:P ! � � � ! P ! P [1 � j � n

i

]

�

i

[E

1

; : : : ; E

n

i

] a : P

- logical rule: the no confusion rule is formalised by de�ning the closure of R

i

as a relation on �

i

. The relation is de�ned impredicatively and denoted by

abus de language by R

i

.

� ` p : [a] =

S

i

[b]

� ` noconf p : R

i

a b

- reduction rule: the reduction rule has to be extended so as to take into account

the new reduction relations associated to congruence types.

� ` a : A � ` A

0

: �=� A�

����

A

0

or A

0

�

����

A

� ` a : A

0

The new reduction relations are �-reduction (which speci�es the computational

behavior of the elimination principles), �-reduction (which speci�es the compu-

tational behavior of quotient types) and �-reduction (which embeds the reduction

relation of the term-rewriting systems into the type theory). The rules are:

- �-reduction: if f

j

2 F

i

is of aritym

j

, �

i

[E](f

j

a

1

� � �a

m

j

)!

�

E

j

a

1

� � �a

m

j

(�

i

[E]a

1

) � � � (�

i

[E]a

m

j

),

- �-reduction: for every rewriting rule l ! r, there is a rule l !

�

r,

- �-reduction: the rules are

[rep x]!

�

x

[f t

1

: : : t

m

]!

�

f [t

1

] : : : [t

m

]

rep (f t

1

: : : t

m

)!

�

f (rep t

1

) : : : (rep t

m

)

In the last rule, it is assumed that f t

1

: : : t

m

is a closed algebraic term in

(�-)normal form or that f is a fundamental constructor, i.e. for all �-terms

t

1

; : : : ; t

m

, the normal form of f(t

1

; : : : ; t

m

) is f(t

0

1

; : : : ; t

0

m

) where the t

0

i

's

are the normal forms of the t

i

's. In section 4.1, we will justify this slight

weakening of the proviso.



3.2 Meta-Theory

There are some important properties to be established before we can safely use

the extension of CC with Congruence Types. These are the Church-Rosser prop-

erty for the well-typed terms, subject-reduction (which ensures that reduction

preserves typing), consistency (as a logical system, saying that not all types are

inhabited by a closed term) and decidability of typing (it is decidable if in a

given context � , a pseudo-term M has type A). These properties will of course

depend on the speci�c algebraic rewrite rules that we have added, but remember

that we only consider canonical (i.e. Church-Rosser and strongly normalizing)

term-rewriting systems.

It turns out that all the standard results for the Calculus of Constructions

hold for its extension with congruence types. Note however that proofs are com-

plicated by the fact that ����-reduction is not con
uent on pseudo-terms (see

[12] for a counterexample). A relatively easy fact, but nevertheless a key obser-

vation is the following.

Lemma 1 The ����-reduction is Weak Church-Rosser (WCR) on the set of

pseudoterms. (That is, if M �!

����

M

1

and M �!

����

M

2

, then there is a

term Q such that M

1

�

����

Q M

2

�

����

Q.)

The subject reduction property (SR) can also be proved. Because ����-

reduction is not Church-Rosser on the pseudo-terms, this involves some extra

technicalities that were developped in [4] for the addition of algebraic rewriting

to CC.

Proposition 2 (Subject Reduction) If � ` a : A and a !

����

a

0

, then

� ` a

0

: A.

Termination is a modular property of CC with congruence types, under the

mild restriction that the term-rewriting systems are non-duplicating

7

. We do not

know whether strong normalisation pertains if the restriction to non-duplicating

term-rewriting systems is dropped.

Theorem 3 (Strong Normalization) Let S

1

,: : : , S

n

be canonical, non-duplicating

term-rewriting systems. Then CC extended with the congruence types associated

to S

1

, : : : , S

n

is strongly normalising.

The proof is an adaptation of the semantical proof of strong normalisation

for CC with (�rst-order) inductive types given in [18].

Corollary 4 1. CC with Congruence Types satis�es the Church-Rosser prop-

erty. (If M is well-typed and M �

����

M

1

and M �

����

M

2

, then there is

a term Q such that M

1

�

����

Q M

2

�

����

Q.)

7

A term-rewriting system is non-duplicating if for every rule l ! r and variable

x, occ(x; l) � occ(x; r) where for every term t, occ(x; t) denotes the number of

occurences of x in t.



2. CC with Congruence Types is consistent. (There is no closed term M with

` M : ?.)

3. CC with Congruence Types has decidable typing.

The �rst is due to Newman's Lemma (SN & WCR imply CR). The second

follows by showing that a closed term of type ? (:= ��: � :�) can never be in

normal form in our system. This involves some more technical facts about the

possible structure of inhabitants of types of a speci�c form. (Note that in presence

of congruence types, this reasoning is slightly more complicated then for the

Calculus of Constructions, because of the no confusion rules.) The consistency

can also be proved in a more direct way by extending the proof-irrelevance

model or the realisability model for CC to the case for congruence types. The

third follows because for two well-typed terms it is decidable whether they have

a common reduct.

4 Examples

4.1 The natural numbers with addition

Traditionally, the natural numbers are de�ned as an inductive type N with two

constructors, zero and successor. Then addition, multiplication and other prim-

itive recursive functions can all be de�ned inductively. One of the problems of

this approach is that the computational behavior of these operations can be

quite unsatisfactory. For example, if we de�ne addition inductively on the �rst

component, we have the reduction rule sx + y ! s(x + y) but in general not

x+ sy ! s(x + y) (if x and y are variables, then the reduction does not hold).

Hence + has not the expected computational behavior. This fact was already

pointed out in [14] as a motivating example to introduce pattern-matching in

type theory. Congruence types o�er an alternative approach to de�ne a type of

natural numbers with well-behaved arithmetical operations. Consider the term-

rewriting system N = (N;R

N

) where N is the signature consisting of one con-

stant 0, one unary function symbol s and one binary function symbol + and R

N

is the term-rewriting system given by the reduction rules

+ x 0! x

+ 0 x! x

+ (+ x y) z ! + x (+ y z)

+ sx y ! s(+ x y)

+ x sy ! s(+ x y)

We claim that N gives a suitable representation of N. In particular, one can prove

the standard induction principles for natural numbers. However, the weakening

of the proviso in the rules for �-reduction (rep (ft) �! f(rep t) if f is a fun-

damental constructor) is essential to derive the standard elimination principles

for N . The key fact is that in the present example s and 0 are fundamental



constructors, hence rep (st) �! s(rep t) for an arbitrary term t. Note that, as

N is inductively de�nable, every closed algebraic term reduces to a fundamental

algebraic term, i.e. one built from the fundamental constructors.

Congruence types and pattern-matching It is particularly interesting to compare

our syntax with pattern-matching as introduced in [14]. Both o�er a means to

give a computationally adequate representation of de�nable operations on induc-

tive types. Technically, this is achieved by di�erent means. The most important

di�erences between pattern-matching and congruence types are summarised be-

low.

- Pattern-matching is schematic and can be used repeatedly to de�ne new op-

erators in the same way as the elimination principle. In contrast, congruence

types are speci�c: they only provide a faithful representation of those opera-

tors introduced as constructors. For example, substraction will not have the

expected computational behavior in the above de�nition of N . Moreover,

pattern-matching can be used to de�ne (for example) predicates, which is

not possible with congruence types.

- The structure of rewrite rules allowed is more liberal in the syntax of con-

gruence types than in the syntax of pattern-matching. For example, the rule

+ (+ x y) z ! + x (+ y z) does not satisfy the criterion given in [14].

4.2 The free group over a set of atoms

Oracle types is another syntax for introducing term-rewriting systems in type

theory, obtained from congruence types by forgetting the rep constructor and its

associated reduction rules. In [10, 8], Barthe et al. have proposed oracle types as a

theoretical framework to study the combination of proof-checkers and computer

algebra systems. Indeed, oracle types can be viewed as an interface between a

logical system (type theory with inductive types) and a calculational system

(the computer algebra system, modelled by �-reduction). The two systems are

correlated by the no confusion rule, which can be seen as some kind of soundness

result. In this context, the no confusion rule can be read as follows.

Let (�;R) be a canonical term-rewriting system and let s; t be two

�-terms. Every computation on [s] and [t] (the computer algebra rep-

resentations of s and t) which yields a common reduct can be lifted to

a proof that s and t are in the deductive closure of R (viewed as an

equational theory).

In the remaining of this section, we illustrate how Barthe et al. have used con-

gruence/oracle types to give a partial solution to the problem of equational

reasoning in proof-checking.Consider the term-rewriting system G = (G;R

G

)

where G is the signature of groups extended with in�nitely many constants and

R

G

is the Knuth-Bendix completion of the axioms of the theory of groups. That

is, R

G

consists of the rules



o e x!

�

x

o x e!

�

x

o x (o y z)!

�

o (o x y) z

o (i x) x!

�

e

o x (i x)!

�

e

i e!

�

e

o (o x (i z)) z !

�

x

o (o x z) (i z)!

�

x

i (i x)!

�

x

i (o x y) !

�

o (i y) (i x)

The congruence type generated by G consists of two parts: the free group G over

in�nitely many elements and the inductive set of terms of the theory of groups

(the in�nite collection of constants serves as the set of variables). The interaction

between the two types allows a simple solution to equational problems of the

theory of groups. Assume we can derive

� ` H : � � ` o

H

: H ! H ! H � ` e

H

: H � ` i

H

: H ! H ! H

and we have a proof of the fact that (H; o

H

; e

H

; i

H

) satis�es the axioms of groups

(we work with Leibniz equality). Assume that we want to decide whether a =

H

b.

One possible way to solve the problem is to �nd two inhabitants s; t of G and an

assignment

8

� such that [[s]]

�

� a and [[t]]

�

� b (in fact, there are optimal such

s and t). By the conversion rule, the problem can be reduced to [[s]]

�

=

H

[[t]]

�

.

But, by de�nition of R

G

, this is an immediate consequence of R

G

s t. (Note

that we are implicitely using the soundness theorem for equational logic, which

is an easy consequence of the impredicative de�nition of R

G

.) Now congruence

types o�er a decision procedure for solving R

G

s t, simply by checking whether

[s] = [t] (because of the no confusion rule).

5 Final remarks

We have presented a new syntax of congruence types and shown how the syntax

can be used to give a faithful representation of canonical term-rewriting systems

in type theory. In this paper, we have restricted our attention to unsorted term-

rewriting systems. In the future, it seems natural to extend the framework to

cover other case of term-rewriting systems such as:

- many-sorted term-rewriting systems: the extension would allow to introduce

strongly normalising type theories (with explicit substitutions) as congruence

types;

- higher-order term-rewriting systems: the extension of our framework to higher-

order speci�cations would allow to consider congruence types generated by

�rst-order languages (quanti�cation has to be introduced as a higher-order

constructor).

- non-standard term-rewriting systems: many theories, such as commutative

theories, fall out of the scope of this paper because they do not yield canonical

8

Assignments and their extension to interpretations of terms are de�ned as usual.



term-rewriting systems. It would be interesting to investigate the theory

of congruence types when the term-rewriting systems under consideration

are conditional or priority rewriting systems or are de�ned modulo a set of

equations.

Another important direction for research is the application of congruence and

oracle types in proof-checking. Extending the framework of oracle types to cover

many forms of rewriting would enable the two-level approach of [8, 10] to be

extended to a signi�cant class of problems, including for example a decision

procedure to detect logical equivalence of formulae of propositional logic.

References

1. S. Abramsky, D. Gabbay, and T. Maibaum, editors. Handbook of Logic in Com-

puter Science. Oxford Science Publications, 1992.

2. R. Backhouse, P. Chisholm, and G. Malcolm. Do-it-yourself type theory (part I).

BEATCS: Bulletin of the European Association for Theoretical Computer Science,

34:68{110, 1988.

3. R. Backhouse, P. Chisholm, and G. Malcolm. Do-it-yourself type theory (part II).

BEATCS: Bulletin of the European Association for Theoretical Computer Science,

35:205{244, 1988.

4. F. Barbanera, M. Fernandez, and H. Geuvers. Modularity of strong normalisation

and con
uence in the algebraic �-cube. In Proceedings of LICS'94, pages 406{415.

IEEE Computer Society Press, 1994.

5. H.P. Barendregt. Lambda calculi with types. In Abramsky et al. [1], pages 117{

309. Volume 2.

6. G. Barthe. Extensions of pure type systems. In Dezani-Ciancaglini and Plotkin

[16], pages 16{31.

7. G. Barthe. Formalising algebra in type theory: fundamentals and applications to

group theory. Manuscript. An earlier version appeared as technical report CSI-

R9508, University of Nijmegen, under the title `Formalising mathematics in type

theory: fundamentals and case studies', 1995.

8. G. Barthe and H. Elbers. Towards lean proof checking. Manuscript, 1996.

9. G. Barthe and H. Geuvers. Modular properties of algebraic pure type systems. In

G. Dowek, J. Heering, K. Meinke, and B. M�oller, editors, Proceedings of HOA'95,

Lecture Notes in Computer Science. Springer-Verlag, 1996. To appear.

10. G. Barthe, M. Ruys, and H. Barendregt. A two-level approach towards lean proof-

checking. In S. Berardi and M. Coppo, editors, Proceedings of TYPES'95, Lecture

Notes in Computer Science. Springer-Verlag, 1996. To appear.

11. G. Betarte. A machine-assisted proof that the integers form an integral domain.

Master's thesis, Department of Computer Science, Chalmers University, 1993.

12. V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of

LICS'88, pages 82{90. IEEE Computer Society Press, 1988.

13. R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.

Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki,

and S.F. Smith. Implementing Mathematics with the NuPrl Development System.

Prentice-Hall, inc., Englewood Cli�s, New Jersey, �rst edition, 1986.



14. T. Coquand. Pattern matching in type theory. In B. Nordstr�om, ed-

itor, Informal proceedings of LF'92, pages 66{79, 1992. Available from

http://www.dcs.ed.ac.uk/lfcsinfo/research/types-bra/proc/index.html.

15. N. Dershowitz and J-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-

itor, Formal models and semantics. Handbook of Theoretical Computer Science,

volume B, pages 243{320. Elsevier, 1990.

16. M. Dezani-Ciancaglini and G. Plotkin, editors. Proceedings of TLCA'95, volume

902 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

17. H. Geuvers. Logics and type systems. PhD thesis, University of Nijmegen, 1993.

18. H. Geuvers. A short and 
exible proof of strong normalisation for the calculus

of constructions. In P. Dybjer, B. Nordstr�om, and J. Smith, editors, Proceedings

of TYPES'94, volume 996 of Lecture Notes in Computer Science, pages 14{38.

Springer-Verlag, 1995.

19. H. Geuvers and B. Werner. On the Church-Rosser property for expressive type sys-

tems and its consequence for their metatheoretic study. In Proceedings of LICS'94,

pages 320{329. IEEE Computer Society Press, 1994.

20. M. Hofmann. A simple model for quotient types. In Dezani-Ciancaglini and

Plotkin [16], pages 216{234.

21. B. Jacobs. Categorical logic and type theory. 199-. Book. In preparation.

22. J-P. Jouannaud and M. Okada. Executable higher-order algebraic speci�cation

languages. In Proceedings of LICS'91, pages 350{361. IEEE Computer Society

Press, 1991.

23. J-W. Klop. Term-rewriting systems. In Abramsky et al. [1], pages 1{116. Volume

2.

24. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Num-

ber 11 in International Series of Monographs on Computer Science. Oxford Uni-

versity Press, 1994.

25. B. Nordstr�om, K. Petersson, and J. Smith. Programming in Martin-L�of's Type

Theory. An Introduction. Number 7 in International Series of Monographs on

Computer Science. Oxford University Press, 1990.

26. C. Paulin-Mohring. Inductive de�nitions in the system Coq. Rules and properties.

In M. Bezem and J-F. Groote, editors, Proceedings of TLCA'93, volume 664 of

Lecture Notes in Computer Science, pages 328{345. Springer-Verlag, 1993.

27. M.J. Plasmeijer and M.C.J.D. van Eekelen. Clean 1.0 reference manual. Tech-

nical report, Department of Computer Science, University of Nijmegen, 1996. In

preparation.

The Calculus of Constructions

We now give a precise de�nition of the Calculus of Constructions and at the same

time we �x some terminology. See for example [5, 17] for more information.

In CC there are two speci�c constants, � and 2. The �rst represents the

universe of types (so we shall say that � is a type if � : �) and the second

represents the universe of kinds (so we shall say that A is a kind if A : 2). The

universe � is a speci�c example of a kind, so it will be the case that � : 2. To

present the derivation rules for CC we �rst �x the set of pseudoterms from which

the derivation rules select the (typable) terms.



De�nition 5 The set T of pseudoterms is de�ned by the following abstract syn-

tax

T = V j � j�jTT j�V : T:T j�V : T:T

where V is a countable set of variables. Both � and � bind variables and we have

the usual notions of free variable and bound variable. The substitution of N for

v in M is denoted by M [N=v]. On T we have the usual notion of �-reduction,

denoted by �!

�

. We also adopt from the untyped � calculus the conventions

of denoting the transitive re
exive closure of �!

�

by �

�

and the transitive

symmetric closure of �

�

by =

�

.

The typing of terms is done under the assumption of speci�c types for the free

variables that occur in the term. These are listed in a context , which is a sequence

of declarations v

1

:T

1

; : : : ; v

n

:T

n

, where the v

i

are distinct variables and the T

i

are pseudoterms. Contexts are denoted by the symbol � . For � a context and

v a variable, v is said to be � -fresh if it is not among the variables that are

declared in � .

De�nition 6 The Calculus of Constructions (CC) is the typed �-calculus with

the following deduction rules.

Axiom ` � : �

Start

� ` A : �=2

�; x : A ` x : A

if x 62 �

Weakening

� ` t : A � ` B : �=2

�; x : B ` t : A

if x 62 �

Product

� ` A : s

1

�; x : A ` B : s

2

� ` �x : A:B : s

2

s

1

; s

2

2 f�;2g

Application

� ` t : �x : A:B � ` u : A

� ` tu : B[u=x]

Abstraction

�; x : A ` t : B � ` �x : A:B : �=2

� ` �x : A:t : �x : A:B

Conversion

� ` u : A � ` B : �=2

� ` u : B

if A!

�

B or B !

�

A

The set of terms of CC is de�ned by Term = fA j 9�;B[� ` A : B _� ` B : A]g:

This article was processed using the L

a

T

E

X macro package with LLNCS style


