
Extending models of second order predicate logic

to models of second order dependent type theory

Herman Geuvers

?

Faculty of Mathematics and Informatics

Technological University of Eindhoven, The Netherlands

Abstract. We describe a method for constructing a model of second

order dependent type theory out of a model of classical second order

predicate logic. Apart from the construction being of interest by itself,

this also suggests a way of proving the completeness of the formulas-

as-types embedding from second order predicate logic to second order

dependent type theory. Under this embedding, formulas are interpreted

as types, and derivability (of a formaula) in the logic should correspond

to inhabitation (i.e. the associated type being nonempty) in the type

system. This correspondence works in one way (called soundness): if a

formula is derivable, then the associated type is inhabited (there is a

term of that type). It's an open problem whether the correspondence

works in the other direction (called completeness): if the type associated

with formula ' is inhabited, then ' is derivable.

The completeness is proved if any model M of second order logic can

faithfully be extended to a model S(M) of second order dependent type

theory. That is, for all formulas ',M j= ' if and only if ' is inhabited in

S(M). In this paper we show that such a faithfull extension is possible if

M is a full model of classical second order predicate logic. This implies

that a second order formula that is derivable in classical �P2 is true

in all full models (but it may not be derivable in classical second order

logic, due to the existence of non-full models of classical second order

logic). We give one small application of the method to an axiomatization

of �nite structures.

1 Introduction

We describe a method for constructing a model of second order dependent type

theory (�P2) out of a model of classical second order predicate logic (CPRED2).

We show that for full models of CPRED2, this construction is faithful to the

formulas-as-types embedding of CPRED2 into �P2 in the following sense. Con-

sider the CPRED2-modelM over signature �, whereM is full, i.e. the domains

in the structure in which the predicates are interpreted are allways the full pow-

erset (for example, a quanti�cation over unary predicates over D ranges over

the full powerset }(D).) We show how to extend this model to the �P2-model

?

email: herman@win.tue.nl



S(M) such that for each second order sentence ' in the language of �,

(1) M j= ' i� j= [[']]

S(M)

6= ;:

Here, ' denotes the interpretation of ' as a type in �P2 and [[']]

S(M)

denotes

the interpretation of ' in S(M). An additional property of the model S(M)

is that it models �

�

, the context that interprets the signature � in �P2, and

�

CL

, the context that makes the logic of �P2 classical. (So, �

CL

is just z :

��: ? :(::�)!�.)

As a consequence of the above property, we �nd that, for ' a sentence of

CPRED2 over the language of �,

(2) if 6`

CPRED2

' and there is a full countermodel,

then :9M [�

CL

�

�

`

�P2

M : '].

Viz. suppose that M is a CPRED2-countermodel to `

CPRED2

' and suppose

that �

CL

�

�

`

�P2

M : ' for someM . ExtendingM to the �P2-model S(M), we

�nd that [[']]

S(M)

= ; (due to property (1)). On the other hand, [[']]

S(M)

6= ;,

because the interpretation of M is an element of [[']]

S(M)

(due to the soundness

of the �P2-model). From this contradiction we conclude that there is noM such

that �

CL

�

�

`

�P2

M : '.

Property (2) above suggests a way of proving the completeness of the formulas-

as-types embedding from PRED2 (constructive second order predicate logic) to

�P2 by semantical methods. It is relatively easy to see (and well-known) that

this embedding is sound: for ' a sentence of PRED2 over the language of �, if

`

PRED2

', then �

�

`

�P2

M : ' for some term M . (This M can be constructed

canonically out of the derivation in PRED2.) The reverse, completeness, is still

an open problem. It states that, if �

�

`

�P2

M : ' for some term M , then

`

PRED2

'. The reason why this completeness result is not immediate is that in

�P2, formulas (of the logic) and domains (of the logic) are not only treated in a

similar way (as `types' of `proofterms', respectively `elements'), but they also live

in the same universe, which means that constructions valid for formulas can also

be applied to domains (and vice versa). For the Calculus of Constructions, that

`corresponds to' constructive higher order order predicate logic (in the same way

that �P2 corresponds to PRED2), it is known that the formulas-as-types embed-

ding is not conservative. (See e.g. [Berardi 1990] or [Geuvers 1995].) However, for

�P , that `corresponds to' constructive minimal �rst order order predicate logic,

the formulas-as-types embedding is conservative. (See e.g. [Geuvers 1993].)

That (2) above does not prove completeness is due to the fact that CPRED2

(in general) also has non-full models. So, it occurs for speci�c ' that 6`

CPRED2

',

but M j= ' for all full models. The result in this paper only states, that if

�

CL

�

�

`

�P2

M : ', then ' is true in all full models, which does not imply that

`

CPRED2

'.



2 Second order dependent type theory

The system of second order dependent type theory, �P2, was �rst introduced in

[Longo and Moggi 1988]. It can be seen as a subsystem of the Calculus of Con-

structions ([Coquand and Huet 1988], [Coquand 1990]), where the operations of

forming type constructors are restricted to second order ones. (So, one can quan-

tify over type constructors of kind �!?, but one can not form type constructors

of kind (�!?)!?.) It can also be seen as an extension of the �rst order system

�P , where quanti�cation over type constructors has been added. For an extensive

discussion on these systems and their relations, we refer to [Barendregt 1992] or

[Geuvers 1993]. Here we just de�ne the system �P2 and give some initial moti-

vation for it.

De�nition1. The type system �P2 is de�ned as follows. The set of pseudoterms,T,

is de�ned by

T ::= ? j2 jVar j (�Var:T:T) j (�Var:T:T) jTT;

where Var is a countable set of variables. On T we have the usual notion of

�-reduction, �!

�

. We adopt from the untyped lambda calculus the conventions

of denoting the transitive reexive closure of �!

�

by �!�!

�

and the transitive

symmetric closure of �!�!

�

by =

�

.

The typing of terms is done under the assumption of speci�c types for the

free variables that occur in the term. This is done in a context, a �nite sequence

of declarations � = v

1

:T

1

; : : : ; v

n

:T

n

(the v are variables and the T are pseu-

doterms). Typing judgements are written as � ` M : T , with � a context and

M and T pseudoterms.

The deduction rules for �P2 are as follows. (v ranges over Var, s, s

1

and s

2

range over f?;2g and M;N; T and U range over T.)

(axiom) ` ? : 2 (var)

� ` T : ?=2

�; v:T ` v : T

(weak)

� ` T : ?=2 � `M : U

�; v:T `M : U

(�)

� ` T : s

1

�; v:T ` U : s

2

� ` �v:T:U : s

2

if (s

1

; s

2

) 6= (2;2)

(�)

�; v:T ` M : U � ` �v:T:U : s

� ` �v:T:M : �v:T:U

(app)

� ` M : �v:T:U � ` N : T

� ` MN : U [N=v]

(conv

�

)

� ` M : T � ` U : s

� ` M : U

if T =

�

U

The equality in the conversion rule (conv

�

) is the �-equality on the set of pseu-

doterms T. In the rules (var) and (weak) it is always assumed that the newly

declared variable is fresh, that is, it has not yet been declared in � . For conve-

nience, we split up the set Var into a set Var

?

, the object variables, and Var

2

,

the constructor variables. Object variables will be denoted by x; y; z; : : : and con-

structor variables by �; �; : : :. In the rules (var) and (weak), we take the variable

v out of Var

?

if s = ? and out of Var

2

if s = 2.



We call a pseudoterm M well-typed if there is a context � and another

pseudoterm N such that either � ` M : N or � ` N : M is derivable. The

well-typed terms can be split into the following disjoint subsets: f2g, the set

of kinds (terms of type 2; including ?), the set of constructors (terms of type

a `kind'; including the types, terms of type ?) and the objects (terms of type a

`type').

Convention We denote kinds by A;B;C; : : :, types by �; �; : : :, constructors by

P;Q; : : : and objects by t; q; : : :.

If v is not free in U , we denote { as usual { �x:T:U by T!U . Furthermore, we

let brackets associate to the right, so T!T!T denotes T!(T!T ).

Formulas-as-types embedding from PRED2 to �P2 There is a formulas-as-types

embedding from constructive second order predicate logic into �P2. We do not

describe it in detail, as it is well-known. If we want to de�ne the formulas-as-

types embedding from classical second order predicate logic into �P2, we just

add �

CL

(= z : ��: ? :(::�)!�) as an initial part of each context of �P2. We

remark that, if � is a signature of second order predicate logic (determining the

second order language L

�

), then there is a (canonical) �P2-context �

�

, that

contains declarations for dealing with the symbols of �. For example, a binary

relation symbol P in � yields a declaration P : �

D

!�

D

!? and a binary function

symbol f in � yields a declaration f : �

D

!�

D

!�

D

in �

�

. The declaration �

D

: ?

is the declaration for the type of the elements of the domain of the logic. A (well-

known) example of a formula that is provable in PRED2 is

8X

(2)

(8x; y(X(x; y) � X(y; x) � ?)) � (8x(X(x; x) � ?));

denoting the fact that every asymmetric relation is antireexive. Its interpreta-

tion in �P2 is the type

��:�

D

!�

D

! ? :(�x; y:�

D

:�xy!�yx!?)!(�x:�

D

:�xx!?);

typable in the context � = �

D

:?. The formulas-as-types embedding fromPRED2

into CPRED2 will be denoted by �, so if ' is a second order formula, then '

is the associated type in �P2. It is a well-known fact that the formulas-as-types

embedding is sound:

Fact 2.

� `

PRED2

' ) �

�

; �

�

; �

'

`

�P2

M : ' for some M;

for ' a formula and � a set of formulas of PRED2 over the language of �.

Here, the context �

�

contains declarations of exactly those variables that are

needed to make sure that �

�

; �

�

`  : ? for every  2 � plus a declaration z :  

for every  2 � (to turn  into an `assumption'). The context �

'

contains only

declarations of those variables to make sure that �

�

; �

�

; �

'

` ' : ?.

It is a well-known fact that the term M can be constructed canonically out

of the derivation of � ` ' in PRED2. As an example we remark that

�

D

:? ` ��:�

D

!�

D

! ? :�h:(�x; y:�

D

:�xy!�yx!?):�x:�

D

:�q:�xx:hxxqq :

��:�

D

!�

D

! ? :(�x; y:�

D

:�xy!�yx!?)!(�x:�

D

:�xx!?):



3 Second order predicate logic

Consider a (one-sorted) second order signature

� = (P

1

; : : : ;P

k

; f

1

; : : : ; f

l

);

where P

1

; : : : ;P

k

is the set of relation symbols (all with �xed arity) and f

1

; : : : ; f

l

is the set of function symbols (all with �xed arity; these include the constants).

The terms and the formulas of the second order language over � are given by

composing the symbols of � with other terms, starting from in�nitely many �rst

order variables x

1

; x

2

; : : : and in�nitelymany second order variablesX

(n)

1

; X

(n)

2

; : : :

of all arities n. One can either choose to have just the primitive connectives �

and 8 (�rst and second order) and de�ne the other connectives in terms of these,

or to have also the other connectives (_;^;:;? and �rst and higher order 9) as

primitives. For reasons of simplicity, we choose for the �rst option, but for the

rest of our exposition it does not really matter. The derivation rules for second

order predicate logic are the usual natural deduction style ones. We distinguish

between classical second order predicate logic, CPRED2, which has the `dou-

ble negation' rule and constructive second order predicate logic, PRED2, which

doesn't.

A second order structure for the above signature � is a tuple

M = (D; fD

n

g

n2IN

; R

1

; : : : ; R

k

; g

1

; : : : ; g

l

);

where D is a set, fD

n

g

n2IN

+ is a family of sets such that D

n

2 }(D

n

) for every

n, R

1

; : : : ; R

k

are sets (with R

i

2 D

n

if the arity of R

i

is n) and g

1

; : : : ; g

l

are

functions (with g

i

2 D

n

! D if the arity of g

i

is n).

ForM a second order structure for �, validity of a formula ' inM is de�ned

in the usual Tarskian way by induction on the structure of ', using valuations

b

1

and b

2

, assigning values to second order, respectively �rst order variables,

and an interpretation function I assigning a function (of M) to each function

symbol f (respecting the arities) and assigning a set (of M) to each relation

symbol P (respecting the arities). The fact that ' is valid in the model hM; Ii

under valuations b

1

; b

2

is denoted by

M; I; b

1

; b

2

j= ':

Two examples of cases in the inductive de�nition of M; I; b

1

; b

2

j= ' are

M; I; b

1

; b

2

j= 8X

(n)

: if M; I; b

1

(X

(n)

:= P ); b

2

j=  for all P 2 D

n

;

M; I; b

1

; b

2

j= 9x: if M; I; b

1

; b

2

(x := d) j=  for some d 2 D:

Here, b

2

(x := d) denotes the function that assigns b

2

(y) to y if y 6= x and d to

x. Similarly for b

2

(X

(n)

:= P ). As usual,

M; I j= '

(' is valid inM under the interpretation I) denotes the fact thatM; I; b

1

; b

2

j= '

for all valuations b

1

and b

2

.



Not all second order structures for � can be called `models', because the

interpretation is not always sound (there are no conditions on the sets D

n

, so

they may be too small to interpret all de�nable sets). There are two ways to

proceed, both can be found in the literature (see e.g. [van Dalen 1994]). One

way is to restrict to so called full structures.

De�nition3. A structure M is full if D

n

= }(D

n

) for each n. A model hM; Ii

is called full if the structure M is full. The class of full models has its associated

satisfaction relation (j=

f

), de�ned as follows. For � a set of formulas and ' a

formula,

� j=

f

';

(� f-satis�es ') if for all full structures M and interpretation functions I, if

M; I j=  (8 2 �), then M; I j= '.

There is a soundness result, saying

� ` ') � j=

f

':

The reverse implication (completeness) does not hold (see e.g. [van Dalen 1994]):

� j=

f

' 6) � ` ':

Because of the incompleteness of the class of full models, a second approach is

usually taken, which is to restrict the class of second order structures to those

in which the comprehension schema is valid.

De�nition4. A second order structure M with interpretation function I is

called a second order model if the comprehension schema is valid in hM; Ii.

That is, for all formulas ' with free variables contained in fx

1

; : : : ; x

n

g,

M; I j= 9X

(n)

8x

1

; : : : ; x

n

['$ X

(n)

(x

1

; : : : ; x

n

)];

where X

(n)

may not occur in '. The satisfaction relation (j=), associated with

the class of second order models is then de�ned as follows. For� a set of formulas

and ' a formula,

� j= ';

(� satis�es ') if for all second order models hM; Ii, if M; I j=  (8 2 �),

then M; I j= '.

Now there is a soundness and completeness result saying

� ` ', � j= ';

for � a set of formulas and ' a formula. The completeness can be proved by

faithfully translating second order predicate logic into �rst order predicate logic

and using completeness for the �rst order predicate logic. (For details see again

[van Dalen 1994].)



4 Model construction for �P2

To be able to extend a second order model to a model of �P2, we �rst discuss

a model notion for �P2. This notion is not a general (categorical) one, but a

description of a class of models. It is an adaptation of models for the Calculus

of Constructions as described in [Stefanova and Geuvers 1996]. As a matter of

fact, we simplify the construction in [Stefanova and Geuvers 1996] quite a bit,

because the `countermodels' that we are interested in are of a relatively simple

kind.

To extend second order models to �P2-models, there are two basic problems.

The �rst is that in �P2, there is no distinction between `sets' and `formulas',

as they both live in the universe ?. This implies that the domain from the logic

(containing the �rst order elements) and the formulas from the logic have to

be interpreted in the same way in the �P2-model. A second problem is that

in �P2, functions `compute', whereas in the logic functions are interpreted in a

set-theoretic way (as graphs). We shall see later how to solve these problems.

Our models of �P2 are built from weakly extensional combinatory alge-

bras (weca for short). A combinatory algebra (ca for short) is a tuple A =

hA; �;k; s;=

A

i, with A a set, � a binary function from A �A to A (usually de-

noted by in�x notation), k; s 2 A and =

A

an equivalence relation onA, such that

=

A

is compatible with � and moreover (k�a)�b=

A

a and ((s�a)�b)�c=

A

(a�c)�(b�c).

For A a combinatory algebra, the set of terms over A, T (A), is de�ned by let-

ting T (A) contain in�nitely many variables v

1

; v

2

; : : : and distinct elements c

a

for every a 2 A, and letting T (A) be closed under application (the operation �).

Given a term t and a valuation �, mapping variables to elements of A, the inter-

pretation of t in A under �, notation [[t]]

A

�

is de�ned in the usual way ([[c

a

]]

A

�

= a,

[[MN ]]

A

�

= [[M ]]

A

�

� [[N ]]

A

�

, etcetera). An important property of cas is that they are

combinatory complete, i.e. if t[v] 2 T (A) is a term with free variable v, then there

is an element in A, usually denoted by �

�

v:t[v], such that 8x(�

�

v:t[v]) � x = t[x]

in A. (More technically, this means that A; � j= (�

�

v:t[v]) � x = t[x] for all �.)

A ca is weakly extensional if A j= 8v(t = t

0

) ! (�

�

v:t) = (�

�

v:t

0

). This implies

that, if [[t

1

]]

A

�(x:=a)

= [[t

2

]]

A

�(x:=a)

for all a 2 A, then [[�

�

x:t

1

]]

A

�

= [[�

�

x:t

2

]]

A

�

. The

need for weakly extensional cas comes from the fact that we need

M =

�

N ) ([M ])

�

= ([N ])

�

for all �;

where ([�])

�

interprets pseudoterms as elements of A, using a valuation � for

the free variables. Of course, ([�])

�

is close to [[�]]

A

�

, except for the fact that

now we also have to interpret abstraction: under ([�])

�

, � is interpreted as �

�

.

Now, in general M =

�

N 6) ([M ])

�

= ([N ])

�

for cas (e.g. take combinatory logic

and M � x, N � Ix). However, for wecas this implication holds. A standard

example of a weca is �=�� (the classes of open �-terms modulo ��-equality)

with the usual (class)equality. Here is why �=�� is a weca: let t

1

; t

2

2 � (for

simplicity we reason with representants of classes)

for all q 2 �[t

1

[q=x] = t

2

[q=x]]) t

1

= t

2



) (�

�

x:t

1

)x = (�

�

x:t

2

)x

�

) �x:(�

�

x:t

1

)x = �x:(�

�

x:t

2

)x

�

) �

�

x:t

1

= �

�

x:t

2

;

where the second implication is by (�

�

x:t)q = t[q=x] and the third and fourth

are by the indicated rules.

The types of �P2 will be interpreted as subsets of A==

A

, so a type is in-

terpreted as a set of equivalence classes (modulo =

A

). It is well-known that

application generalizes from an operation on A to an operation on A==

A

(de-

�ne [M ] � [N ] as [M �N ]. Due to the fact that we are in a weakly extensional ca,

also abstraction generalizes from an operation on A to an operation on A==

A

by de�ning �

�

x:[M ] as [�

�

x:M ].

De�nition5. A polyset structure over the combinatory algebra A is a collection

P � }(A==

A

) such that

1. A==

A

2 P,

2. P is closed under arbitrary intersection

T

,

3. P is closed under dependent products, i.e. if X 2 P and F : X ! P, then

�

t2X

F (t) 2 P, where �

t2X

F (t) is de�ned as

fa 2 A==

A

j 8t 2 X:a � t 2 F (t)g:

The elements of a polyset structure are called polysets. In case the function F is

the constant function with value Y , we write X

t

! Y in stead of �

t2X

Y .

The dependent product of a polyset structure will be used to interpret types

of the form �x:�:� , where both � and � are types. The intersection will be used

to interpret types of the form ��:A:�, where � is a type and A is a kind. To

interpret kinds we need a predicate structure.

De�nition6. For P a polystructure, a predicative structure over P is a collec-

tion of sets N such that

1. P 2 N ,

2. N is closed under set-theoretical dependent products, i.e. if X 2 P and F :

X !N , then

Q

t2X

F (t) 2 N , where

Q

t2X

F (t) is de�ned as

ff j 8a 2 X(f(a) 2 F (a))g:

In case F is a constant function with value A, we write X

k

! A in stead of

Q

t2X

A.

If A is a combinatory algebra, P a polystructure over A and N a predicative

structure over P, then we call the tuple hA;P;Ni a �P2-structure.



A predicative structure over a polyset structure P is intended to give a do-

main of interpretation for the kinds. For example, if the type � is interpreted as

the polyset X, then the kind �!�!? is interpreted as

Q

t2X

Q

q2X

P, for which

we usually write X

k

! X

k

! P.

We now de�ne three interpretation functions, one for kinds, V(�), that maps

kinds to elements of N , one for constructors (and types), [[�]], that maps con-

structors to elements of

S

N (and types to elements of P, which is a subset

of

S

N ) and one for objects, ([�]), that maps objects to elements of the com-

binatory algebra A. All these interpretations are parametrised by valuations,

assigning values to the free variables (declared in the context).

Let in the following S = hA;P;Ni be a �P2-structure: A = hA; �;k; s;=

A

i

is a combinatory algebra, P is a polyset structure over A and N is a predicative

structure over the polyset structure P.

De�nition7. A constructor variable valuation is a map � from Var

2

to

S

N .

An object variable valuation is a map � from Var

?

to A==

A

.

De�nition8. For � an object variable valuation, we de�ne the map ([�])

S

�

from

the set of objects to A as follows. (We usually leave the structure S implicit.)

([x])

�

:= �(x);

([tq])

�

:= ([t])

�

� ([q])

�

; if q is an object;

([tQ])

�

:= ([t])

�

; if Q is a constructor;

([�x:�:t])

�

:= �

�

v:([t])

�(x:=v)

; if � is a type;

([��:A:t])

�

:= ([t])

�

; if A is a kind:

De�nition9. For � an object variable valuation and � a constructor variable

valuation, we de�ne the maps V(�)

S

��

and [[�]]

S

��

respectively from kinds to N

and from constructors to

S

N as follows. (We usually leave the structure S

implicit.)

V(?)

��

:= P;

V(�x:�:B)

��

:=

Y

t2[[�]]

��

V(B)

��(x:=t)

;

[[�]]

��

:= �(�);

[[��:A:� ]]

��

:=

\

a2V(A)

��

[[� ]]

�(�:=a)�

; if A is a kind;

[[�x:�:� ]]

��

:= �

t2[[�]]

��

[[� ]]

��(x:=t)

; if � is a type;

[[Pt]]

��

:= [[P ]]

��

(([t])

�

);

[[�x:�:P ]]

��

:= �t 2 [[�]]

��

:[[P ]]

��(x:=t)

:

There is a soundness result saying that if the valuations � and � full�ll the

context � , then if � ` P : A (A a kind), then [[A]]

��

2 V(A)

��

and if � ` t : �

(� a type), then ([t])

�

2 [[�]]

��

.



De�nition10. For � a �P2-context, � an object variable valuation and � a

constructor variable valuation, we say that �; � full�lls � , notation �; � j= � , if

for all x 2 Var

?

and � 2 Var

2

,

x : � 2 � ) �(x) 2 [[�]]

��

;

� : A 2 � ) �(�) 2 V(A)

��

:

De�nition11. The notion of truth in a �P2-structure, notation j=

S

and of

truth, notation j= are de�ned as follows. For � a context, t an object, � a type,

P a constructor and A a kind of �P2,

� j=

S

t : � if 8�; �[�; � j= � ) ([t])

�

2 [[�]]

��

];

� j=

S

P : A if 8�; �[�; � j= � ) [[P ]]

��

2 V(A)

��

]:

Quantifying over the class of all �P2-structures, we obtain

� j= t : � if � j=

S

t : � for all �P2-structures S;

� j= P : A if � j=

S

P : A for all �P2-structures S;

Theorem12 Soundness. For � a context, M an object or a constructor and

and T a type or a kind of �P2,

� ` M : T ) � j=M : T:

Proof. By induction on the derivation of � ` M : T in �P2. ut

5 From a CPRED2-model to a �P2-model

Now, we show how to construct a �P2-structure S(M) out of the second order

model M such that, if M is a full model, then validity is preserved. We know

what validity of a formula ' means in a second order (`logical') model: whether

the interpretation of ' is true in the model or not. In a type theoretical model,

we call a type valid if its interpretation is nonempty. This conforms with the

`formulas-as-types' embedding from PRED2 to �P2, where a formula is inter-

preted as the type of its proofs. (Hence, a formula is provable i� its associated

type is nonempty.)

De�nition13. For S a �P2-structure, � a context, � a type in � and �; �

valuations such that �; � j= � , we say that � is valid in S under �; �, notation

S; �; � j=

�P2

�, if

[[�]]

S

��

6= ;:



So, what we are looking for is a method for constructing out of the full

second order model M a �P2-structure S(M) such that for all formulas ' in

the language of � and for all valuations �; � such that �; � j= �

�

,

S(M); �; � j=

�P2

' i� M; b

�

; b

�

j= ';

where b

�

and b

�

are valuations de�ned in some canonical way from � and � (to

be made precise later).

To motivate the construction, we perform it step by step, giving hints on why

speci�c choices are made. So, let in the following � be a �xed signature and let

M = (D; fD

n

g

n2IN

; R

1

; : : : ; R

k

; g

1

; : : : ; g

l

) be a full second order model for this

signature.

The combinatory algebra should contain elements that correspond to the ele-

ments of D and elements to interpret the function symbols of the signature �.

As a basis for the combinatory algebra we take the untyped lambda calculus.

De�nition14. We de�ne the set �

+

as follows.

1. � � �

+

,

2. if d 2 D, then c

d

2 �

+

,

3. f 2 �

+

for each function symbol f in the signature �.

On �

+

we have the usual notion of ��-reduction. We add a reduction relation

�!

R

:

fc

d

1

� � �c

d

n

�!

R

c

d

; if g(d

1

; : : : ; d

n

) = d in M;

c

d

P

1

� � �P

n

�!

R

c

d

; for d 2 D;P

1

; : : : ; P

n

2 �

+

;

where g is the interpretation of f in the modelM. We shall often be a bit informal

and just write d for the element c

d

2 �

+

.

We de�ne the tuple A(M) as h�

+

; app;K; S;=

��R

i. Here, app denotes the (not

written) application in �-calculus, K is �xy:x and S is �xyz:xz(yz).

The reduction rule for c

d

may look arbitrary, but is esential for the interpre-

tation of types later. Types are interpreted as sets of ��R-equivalence classes

and the domain type �

D

is interpreted as the set C, of equivalence classes [c

d

]

(d 2 D). Then the R is essential for making sure that if C is a subset of both X

and Y , then C � X!Y .

Lemma15. A(M) as de�ned above is a combinatory algebra.

Proof. By a standard result from Mitschke (see [Barendregt 1984], p. 401) it

follows that ��R-reduction is Church-Rosser. Hence K 6= S. The other require-

ments for a ca are satis�ed immediately. ut



The polyset structure should be de�ned in such a way that we can prove

S(M); �; � j=

�P2

' i� M; b

�

; b

�

j= '. This property is proved by proving the

following results by simultaneous induction on the structure of '.

[[']]

��

6= ; )M; b

�

; b

�

j= ';

[[']]

��

= ; )M; b

�

; b

�

6j= ':

We take a closer look at the case for ' = 8X

(1)

: in the second implication, so

we try to prove [[8X

(1)

: ]]

��

= ; )M; b

�

; b

�

6j= 8X

(1)

: . We have

[[']]

��

= ; i�

\

Q2[[D]]

��

k

!P

[[ ]]

�(X:=Q)�

= ;;

M; b

�

; b

�

6j= 8X

(1)

: i� for all P 2 D

1

;M; b

�

(X := P ); b

�

6j=  :

We have as induction hypothesis that for all �; �, if [[ ]]

��

= ;, thenM; b

�

; b

�

6j=  .

So, we want to reason as follows

\

Q2[[D]]

��

k

!P

[[ ]]

�(X:=Q)�

= ;

(1)

) [[ ]]

�(X:=Q)�

= ; for some Q 2 [[D]]

��

k

! P

(IH)

) M; b

�(X:=Q)

; b

�

6j=  for some Q 2 [[D]]

��

k

! P

(2)

) M; b

�

(X := P ); b

�

6j=  for some P 2 D

1

) M; b

�

; b

�

6j= 8X

(1)

: :

However, the implications (1) and (2) are problematic. For (2), we have to make

sure that every constructor variable valuation � can be adapted to a valuation b

�

of second order variables. For this we need the model to be full. (Because [[D]]

��

k

!

P is the full function space from [[D]]

��

to P, D

1

will have to be the full powerset

}(D

1

).) For (1), we have to make sure that, if

T

Q2[[D]]

��

k

!P

[[ ]]

�(X:=Q)�

= ;, then

[[ ]]

�(X:=Q)�

= ; for some Q 2 [[D]]

��

k

! P. This is of course not the case for

all models: we have to choose P in such a way that this property holds. Similar

requirements pop up in the cases ' = 8x: (the set �

t2[[D]]

��

[[ ]]

��(x:=t)

can be

empty without any of the [[ ]]

��(x:=t)

being empty) and ' =  � � (the set

[[ ]]

��

t

! [[�]]

��

can be empty without [[ ]]

��

6= ; and [[�]]

��

= ;). We have the

following requirements for the polystructure P.

\

i2I

X

i

= ; i� 9i 2 I:X

i

= ;;

�

m2X

Y

m

= ; i� 9m 2 X:Y

m

= ;;

X

t

! Y = ; i� X 6= ;&Y = ;:

So, in a sense, P must be `classical'. Note however that it should on the other

hand not be too classical: the straightforward choice P = f;; �

+

g does not work,

because then [[D]]

��

= �

+

, which contains too many elements.



De�nition16. De�ne the set C � �

+

=��R by C := f[d] j d 2 Dg, the set of

��R-equivalence classes of elements of D. De�ne the polyset structure P(M)

over �

+

as follows.

M(P) = fX jC � X � �

+

=��Rg [ f;g:

So, X 2 P(M) if X is empty or X is a set of ��R-equivalence classes that

contains C. In the following, we often abbreviate P(M) to P. Note that C is

the smallest nonempty polyset.

We have the following property, whose proof is straightforward.

Lemma17. The set P(M) de�ned above is a polyset structure and it satis�es

the properties

\

i2I

X

i

= ; i� 9i 2 I:X

i

= ;;

�

m2X

Y

m

= ; i� 9m 2 X:Y

m

= ;;

X

t

! Y = ; i� X 6= ;&Y = ;:

(If X

i

2 P for all i 2 I, X;Y 2 P and Y

m

2 P for every m 2 X.)

The predicative structure N (M) over P(M) and A(M) is taken to be full hier-

archy of dependent-set-theoretical function spaces over P. That is, the smallest

set N such that P 2 N and if X 2 P and F a set-theoretic function from X to

N , then

Q

t2X

F (t) 2 N .

The valuations � and � are �xed on the �

�

(the part of the context that repre-

sents the signature).

De�nition18. De�ne the valuations � and � (such that �; � j= �

�

) as follows.

�(�

D

) := C;

�(P

(n)

) := the map in �(�

D

)

k

! � � �

k

! �(�

D

)

k

! P(M) with

�(P

(n)

)([d

1

]) � � � ([d

n

]) = C if (d

1

: : : ; d

n

) 2 I(P

(n)

);

= ; if (d

1

: : : ; d

n

) =2 I(P

(n)

);

�(f) := f:

It is not hard to verify that �; � j= �

�

.

The valuations � and � are �xed for the variables declared in �

�

. For the

variables declared in �

�

; �

'

, the valuations � and � range over a whole set

of possible ones. For each �; � that full�lls �

�

; �

'

, we have to de�ne logical

valuations b

�

and b

�

from � and �.

De�nition19. Let � and � be valuations such that �; � j= �

�

; �

�

�

'

. De�ne b

�

and b

�

as follows.



1. For X

(n)

: �

D

!� � �!�

D

!? in �

�

�

'

, de�ne

b

�

(X

(n)

) := f(d

1

; : : : ; d

n

) j �(X

(n)

)([d

1

]) � � � ([d

n

]) 6= ;g:

2. For x : �

D

in �

�

�

'

(so �(x) 2 C), de�ne

b

�

(x) = d if �(x) = [d]:

3. For v : T in �

�

and x :  in �

�

�

'

, nothing has to be de�ned.

Proposition20. Let M be a full second order model over the signature � and

let S(M) be the associated �P2-structure. Then for all formulas ' in the lan-

guage of � and valuations � and � such that �; � j= �

�

; �

'

,

[[']]

��

6= ; )M; b

�

; b

�

j= ';

[[']]

��

= ; )M; b

�

; b

�

6j= ':

Proof. By induction on the structure of '. ut

Corollary 21. For M a full second order model over the signature �, S(M)

the associated �P2-structure, ' a formula in the language of � and � and �

valuations such that �; � j= �

�

; �

'

,

S(M); �; � j=

�P2

' i� M; b

�

; b

�

j= ':

Corollary 22. If � 6` ' in CPRED2 and the countermodel is full, then

:9t[�

�

; �

�;'

` t : ']:

Proof. Let M be a CPRED2-countermodel to � `

CPRED2

'. Suppose that

�

�

; �

�;'

`

�P2

M : '. We �nd that [[']]

S(M)

= ; by the Theorem, but also

that ([M ]) 2 [[']] by soundness. We conclude that there is no M such that

�

�

`

�P2

M : '. ut

So, what has been proven in this paper about the formulas-as-types embed-

ding from second order predicate logic to �P2 is the following.

Theorem23. For � a second order structure, � a �nite set of formulas over

� and ' a formula over �,

9M [�

�

; �

CL

; �

�

`

�P2

M : '] i� � `

f

';

i.e. ' is inhabited i� ' is true in all full models of �.



6 A small application of the method

We apply our method to show that for second order signatures that describe

�nite structures of �xed cardinality, the conservativity holds. More precisely: let

� be a signature containing n constants c

1

; : : : ; c

n

and let �

n

and �

n

be the

following formulas.

�

n

:= 8x[x = c

1

_ � � � _ x = c

n

];

�

n

:= c

1

6= c

2

^ c

1

6= c

3

^ � � � ^ c

n�1

6= c

n

:

If � is a consistent �nite set of formulas (in the language �) containing �

n

and

�

n

, then, for all second order sentences ' (in the language �),

� `

CPRED2

' i� 9t[�

�

; �

CL

; �

�

`

�P2

t : '] (1)

This fact comes as a corollary of Theorem 23, using the fact that all models

of � are full (every subset of the structure can be described by a predicate in

the language �).

We motivate that the use of Theorem 23 is essential, and that the result

in (1) itself is not at all straightforward, by looking at the situation for � =

f�

2

; �

2

g. So, let in the following � be the set f�

2

; �

2

g. First note that equality

is interpreted in �P2 as Leibniz equality, denoted by =

L

: for x; y : �

D

, x =

L

y

denotes ��:�

D

! ? :Px!Py. This equality satis�es all the nice properties that

one would expect from an equality. Now, we have the following.

Observation24. 1. Every second order model of � is �nite,

2. Every �P2-model of � is essentially in�nite.

The �rst is immediate: the �rst order domain consists of interpretations for

the constants c

1

and c

2

only, hence all the predicate-domains are �nite as well.

For the second we have to be a bit more precise in what we mean with essentially:

we mean to say that there are types in �P2 that can only be interpreted as

in�nite sets. One such type is nat, the type of Curch numerals de�ned by

nat := ��: ? :�!(�!�)!�:

The natural numbers can be represented as closed terms (the Church numerals)

of type nat by de�ning form 2 IN the termm as ��:?:�x:�:�f :�!�:f

m

(x). Now,

from z : �

2

, it follows that the type k 6= m is inhabited for every k;m 2 IN with

k 6= m. This can be observed by noticing that for k > 0, k�

D

c

1

(�x:�

D

:c

2

) =

�

c

2

and 0�

D

c

1

(�x:�

D

:c

2

) =

�

c

1

, so k 6= 0 is inhabited for k > 0. Furthermore, the

predecessor function is de�nable on Church numerals, so, if k + 1 = m + 1 is

inhabited, then k = m is inhabited. Hence we can conclude that, if k 6= m, then

k 6= m is inhabited.

All this implies that all Church numerals k have a di�erent interpretation in

any (sound) �P2-model of the context �. So, every �P2-model of� is essentially

in�nite. The fact that the interpretation of� in �P2 is nevertheless conservative,

means that one can not really use this in�niteness to prove new results.



References

[Barendregt 1984] H.P. Barendregt, The lambda calculus: its syntax and semantics,

revised edition. Studies in Logic and the Foundations of Mathematics, North

Holland.

[Barendregt 1992] H.P. Barendregt, Typed lambda calculi. In Handbook of Logic in

Computer Science, eds. Abramski et al., Oxford Univ. Press.

[Berardi 1990] S. Berardi, Type dependence and constructive mathematics, Ph.D.

Thesis, Universita di Torino, Italy.

[Berardi 1993] S. Berardi, Encoding of data types in Pure Construction Calculus: a

semantic justi�cation, in Logical Environments, eds. G. Huet and G. Plotkin,

Cambridge University Press, pp 30{60.

[Coquand 1990] Th. Coquand, Metamathematical investigations of a calculus of

constructions. In Logic and Computer Science, ed. P.G. Odifreddi, APIC series,

vol. 31, Academic Press, pp 91-122.

[Coquand and Huet 1988] Th. Coquand and G. Huet, The calculus of constructions,

Information and Computation, 76, pp 95-120.

[van Dalen 1994] D. van Dalen, Logic and Structure, third edition. Springer Verlag.

[Geuvers 1993] J.H. Geuvers, Logics and Type systems, Ph.D. Thesis, University of

Nijmegen, Netherlands.

[Geuvers 1995] J.H. Geuvers, The Calculus of Constructions and Higher Order Logic,

in The Curry-Howard isomorphism, ed. Ph. de Groote, Volume 8 of the "Cahiers

du Centre de logique" (Universit�e catholique de Louvain), Academia,

Louvain-la-Neuve (Belgium), pp. 139-191.

[Stefanova and Geuvers 1996] M. Stefanova and J.H. Geuvers, A simple semantics for

the Calculus of Constructions, to appear in the Proceedings of the ESPRIT-BRA

`Types' meeting, Turin, Italy, 1995.

[Girard et al. 1989] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Camb.

Tracts in Theoretical Computer Science 7, Cambridge University Press.

[Harper et al. 1987] R. Harper, F. Honsell and G. Plotkin, A framework for de�ning

logics. Proceedings Second Symposium on Logic in Computer Science, (Ithaca,

N.Y.), IEEE, Washington DC, pp 194-204.

[Howard 1980] W.A. Howard, The formulas-as-types notion of construction. In To

H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, eds.

J.P. Seldin, J.R. Hindley, AcademicPress, New York, pp 479-490.

[Longo and Moggi 1988] G. Longo and E. Moggi, Constructive Natural Deduction

and its \Modest" Interpretation. Report CMU-CS-88-131.

[Nederpelt et al. 1994] R.P. Nederpelt, J.H. Geuvers and R.C. de Vrijer (editors),

Selected Papers on Automath, Volume 133 in Studies in Logic and the

Foundations of Mathematics, North-Holland, Amsterdam, 1994, pp 1024.

[Streicher 1991] T. Streicher, Independence of the induction principle and the axiom

of choice in the pure calculus of constructions, TCS 103(2), pp 395 - 409.

This article was processed using the L

A

T

E

X macro package with LLNCS style


