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1 Setoids

A basi ingredient of onstrutive real numbers is the apartness relation #. This is a onstrutive

version of the (lassial) inequality on reals: two real numbers are apart if it an positively be

deided that they are distint from eah other. In onstrutive analysis, the apartness is more basi

then equality. We therefore take the notion of apartness as a basi ingredient of our strutures

Usually this apartness is taken to be tight, saying that the negation of apartness is the equality.

In [3℄ and [4℄ also apartness relations our that are not neessarily tight, but in the formalization

of reals one an restrit to a tight apartness. This also implies that, in the formalization, we ould

have done without an equality alltogether (and replae it with the negation of #). For reasons of

exposition and for relating to a more lassial set-up we hoose to take equality as a primitive.

De�nition 1.1 A binary relation # on a set S is an apartness relation if

1. # is onsistent, i.e. :a # a for all a.

2. # is symmetri, i.e. a # b! b # a for all a; b.

3. # is otransitive, i.e. a # b! 8z[a # z _ z # b℄ for all a; b.

An apartness relation is tight if its negation is the equality, i.e. :(a # b)$ a = b for all a; b.

Fat 1.2 The negation of an apartness relation on S is an equivalene relation on S whih is

stable, i.e. :::(a # b)! :(a # b).

Lemma 1.3 A tight apartness relation respets the equality, i.e.

a # b ^ b = b

0

! a # b

0

for all a; b; b

0

:

Proof If a # b, then a # b

0

_ b # b

0

. The latter is false, beause b = b

0

.

De�nition 1.4 A onstrutive setoid is a triple hS;=;#i, with S a set, = an equivalene relation

on S and # a tight apartness relation on S.

In a struture, we want the operations and relations to respet the equality and the apartness.

For the equality this means that we want to have the replaement property for all prediates:

R(x

1

; : : : ; x

n

) ^ x

1

= y

1

^ : : : ^ x

n

= y

n

! R(y

1

; : : : ; y

n

):

Fat 1.5 The replaement property is losed under _;^;:;!; 9 and 8.
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So, we only have to require that the basi relations satisfy the replaement property and that

all basi operations are well-de�ned with respet to the equality, i.e. for f of arity n we have the

following.

x

1

= y

1

^ : : : ^ x

n

= y

n

! f(x

1

; : : : ; x

n

) = f(y

1

; : : : ; y

n

):

If we have a tight apartness relation, this immediately implies

:(x

1

# y

1

) ^ : : : ^ :(x

n

# y

n

)! :(f(x

1

; : : : ; x

n

) # f(y

1

; : : : ; y

n

));

but one would like to have a more positive formulation saying

f(x

1

; : : : ; x

n

) # f(y

1

; : : : ; y

n

)! (x

1

# y

1

) _ : : : _ (x

n

# y

n

):

This property is alled strong extensionality of f .

De�nition 1.6 Let S be a set with an apartness relation # de�ned on it. For f a n-ary funtion

on S, we say that f is strongly extensional if

8x

1

; : : : ; x

n

; y

1

; : : : ; y

n

[f(~x) # f(~y)! (x

1

# y

1

_ : : : _ x

n

# y

n

)℄:

For R a n-ary relation on S, we say that R is strongly extensional if

8x

1

; : : : ; x

n

; y

1

; : : : ; y

n

[R(~x)! (R(~y) _ x

1

# y

1

_ : : : _ x

n

# y

n

)℄:

Fat 1.7 Strong extensionality of funtions is losed under omposition. Strong extensionality of

relations is losed under _, ^, 9 and the substitution of strongly extensional terms.

Lemma 1.8 Strong extensionality implies well-de�nedness for funtions.

Proof Suppose f(~x) # f(~y) ! (x

1

# y

1

_ : : : _ x

n

# y

n

) for all x

1

; : : : ; x

n

; y

1

; : : : ; y

n

. Suppose

x

1

= y

1

^ : : : ^ x

n

= y

n

and f(~x) # f(~y). Then x

1

# y

1

_ : : : _ x

n

# y

n

by strong extensionality

of f . Contradition, so :(f(~x) # f(~y)), i.e. f(~x) = f(~y).

Remark 1.9 Strong extensionality (for funtions) says that a funtion an only distinguish ele-

ments that an already be distinguished. We will require all basi funtions in onstrutive stru-

tures to be strongly extensional. As a onsequene, all omposed funtions will be strongly exten-

sional.

We do not want all relations to be strongly extensional. For example, equality is not strongly

extensional: if it were, then x = y ! p = q _ x # p _ y # q for all x; y; p; q, whih implies the

deidability of equality (take x for y and p).

Lemma 1.10 If a binary funtion f is strongly extensional in both arguments, i.e.

8x

1

; x

2

; y[f(x

1

; y) # f(x

2

; y)! (x

1

# x

2

)℄;

8x; y

1

; y

2

[f(x; y

1

) # f(x; y

2

)! (y

1

# y

2

)℄;

then it is strongly extensional. Similarly for funtions of higher arity.

Proof Suppose the binary funtion f is strongly extensional in both arguments and suppose

f(x

1

; y

1

) # f(x

2

; y

2

). Then f(x

1

; y

1

) # f(x

1

; y

2

) _ f(x

1

; y

2

) # f(x

2

; y

2

) by otransitivity. Hene

y

1

# y

2

_ x

1

# x

2

.

Lemma 1.11 If f is strongly extensional, then

f(~x) 6= f(~y)! :(x

1

= y

1

^ : : : ^ x

n

= y

n

):

Proof Suppose f(~x) 6= f(~y), i.e. ::(f(~x) 6= f(~y)). Suppose also that x

1

= y

1

^ : : : ^ x

n

= y

n

.

Now, if f(~x) # f(~y), then x

1

# y

1

_ : : : _ x

n

# y

n

, ontraditing x

1

= y

1

^ : : : ^ x

n

= y

n

. So

:(f(~x) # f(~y)), ontraditing f(~x) 6= f(~y). So we onlude that :(x

1

= y

1

^ : : : ^ x

n

= y

n

).
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If a funtion f has an inverse, we want it to respet the apartness. Note that, if f has no

inverse we do not want that in general (e.g. onsider multipliation in Z

4

). That f respets #

omes as a onsequene of strong extensionality and the existene of an inverse.

Lemma 1.12 Suppose that the unary funtion f has an inverse g whih is strongly extensional.

Then f respets the apartness, i.e.

x # y ! f(x) # f(y):

Proof We know that g(x) # g(y) ! x # y and that g(f(x)) = x. Now suppose x # y, i.e.

g(f(x)) # g(f(y)). Then f(x) # f(y) by strong extensionality of g.

Lemma 1.13 If f respets the apartness, then f respets the inequality

Proof Let f respet the apartness(i.e. (x

1

# y

1

_ : : : _ x

n

# y

n

) ! f(~x) # f(~y)). Suppose

x

1

6= y

1

_ : : : _ x

n

6= y

n

and suppose f(~x = f(~y). Now, if x

i

# y

i

for some i, then f(~x # f(~y),

ontradition, so x

i

= y

i

for all i. This is again a ontradition, so f(~x) 6= f(~y).

Lemma 1.14 If a relation R is strongly extensional in eah of its arguments, it is strongly exten-

sional.

Proof We give the proof for a binary relation R. Suppose R is strongly extensional in both

arguments, i.e.

R(x; y) ! R(x; q) _ y # q;

R(x; y) ! R(p; y) _ p # x:

for all x; y; p; q. Now, if R(x; y), then R(x; q) _ y # q. If R(x; q), then R(p; q) _ p # x, so

R(p; q) _ p # x _ y # q.

Lemma 1.15 Apartness is strongly extensional.

Proof Suppose x # y. Then x # p _ y # p by otransitivity and hene x # p _ y # q _ p # q by

again otransitivity.

1.1 On the hoie of the primitives

In view of the fat that we require an apartness relation in a setoid to be tight, we ould have

hosen to de�ne a setoid as a pair hS;#i with # an apartness relation and then de�ne equality by

x = y := :(x # y):

Then the following an be shown.

1. If an operation f is strongly extensional, then it respets =.

2. If a relation R is strongly extensional, then it satis�es the replaement property.

3. Hene all relations satisfy the replaement property.

So, we ould have done without an equality alltogether. However, we have not hosen this

option, beause equality is a natural primitive. Furthermore one may at some point enounter

strutures in whih apartness is not tight.
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1.2 Subsetoids and Quotient Setoids

De�nition 1.16 Given a onstrutive setoid hS;=;#i and a prediate P on S, we de�ne the

subsetoid of the x 2 S that satisfy P as the setoid hfx 2 S j P (x)g;=

0

;#

0

i, where =

0

and #

0

are

the equality and apartness inherited from S, i.e. for q; t 2 fx 2 S j P (x)g,

t =

0

q () t = q;

t #

0

q () t # q;

We denote this subsetoid just by fx 2 S j P (x)g.

For this de�nition to be orret, it has to be shown that =

0

is indeed an equivalene relation

and that #

0

is a tight apartness relation (w.r.t. =) on fx 2 S j P (x)g. This is trivially the ase.

As the equivalene and apartness are diretly inherited from S, we never write them expliitly,

but use the ones from S.

De�nition 1.17 Given a onstrutive setoid hS;=;#i and a strongly extensional apartness re-

lation Q on S, we de�ne the o-quotient setoid S=R as the setoid hS;R;Ri, where R is the

omplement of R, i.e. R(x; y) i� :R(x; y).

For this de�nition to be orret, it has to be shown that R is an equivalene relation and that R

is a tight apartness relation (w.r.t. R) on fx 2 S j P (x)g. This follows trivially from the de�nition

of R and the fat that R is an apartness.

If we do not require R to be strongly extensional, S=R as de�ned above is still a onstrutive

setoid. However, we only want to onsider the situation where the new apartness R is a subset

of the old one, i.e. R(x; y) ! x # y. This is a onsequene of strong extensionality of R: take x

for p and for q in R(x; y) ! (R(p; q) _ x # p _ y # q). As a onsequene we then �nd that = is

a subset of R, so the new equality is a re�nement of the old one. So, the de�nition of o-quotient

setoid subsumes the ordinary de�nition of quotient set.

For a strongly extensional funtion f on a setoid hS;=;#i we �nd that, if f is strongly ex-

tensional w.r.t. R, with R a strongly extensional apartness relation on S, then f is also strongly

extensional on the o-quotient setoid.

The real numbers form a primary example of a o-quotient setoid. They an be seen as the

setoid (N!Q)=R, where N!Q is the set of in�nite sequenes of rational numbers and R is the

apartness relation between suh sequenes: for r and s two sequenes, R(r; s) i� 9k;N 2 N8m >

N(jr

m

� s

m

j >

1

k

).

2 Construtive Commutative Algebra

We de�ne the notions of ommutative monoid, group, ring, integral domain and �eld in a on-

strutive way. In doing so, we follow [3℄ and [6℄, by requiring the basi operations to be strongly

extensional. In the end this hoie does not e�et our work, beause in a real number struture,

it an be proved from the axioms that all basi operations and relations are strongly extensional.

Convention 2.1 Without stating it expliitly, we require all operations on setoids to respet the

equality. We also require all basi operations and relations on setoids to be strongly extensional

(De�nition 1.6).

2.1 Groups: One assoiative operation

De�nition 2.2 (Construtive Semi-Group) A onstrutive semi-group is a tuple hS;+;=;#i

with hS;=;#i a onstrutive setoid, + a binary operation on S suh that

1. + is assoiative: 8x; y; z[(x+ y) + z = x+ (y + z)℄.
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De�nition 2.3 (Construtive Monoid) A onstrutive monoid is a tuple hS; 0;+;=;#i with

hS;+;=;#i a onstrutive semi-group and 0 an element of S suh that

1. 0 is the identity w.r.t. +: 8x[x+ 0 = x℄.

De�nition 2.4 (Construtive Group) A onstrutive group is a tuple hS; 0;+;�;=;#i with

hS; 0;+;=;#i a onstrutive monoid, � a unary operation on S suh that

1. �x is the inverse of x: 8x[x+ (�x) = 0℄.

In pratie we write \x� y" for \x+ (�y)".

Lemma 2.5 (Inverses are unique) The inverse of + is unique, i.e. for all x; y,

x+ y = 0! y = �x:

As a onsequene we �nd immediately that for all x; y,

�(�x) = x;

�(x+ y) = (�y) + (�x):

Lemma 2.6 (Canellation) For all x; y; z,

x+ y = x+ z ! x = y:

2.1.1 Apartness in Groups

Lemma 2.7 For all x; y,

x+ y # 0! x # 0 _ y # 0:

Proof By strong extensionality of +, x+ y # 0+ 0 implies x # 0 _ y # 0.

Lemma 2.8 The operations of a group respet #, i.e. for all x; y; z,

x # y $ x+ z # y + z;

x # y $ x� y # 0;

x # 0 $ �x # 0:

Proof For diretion !, (x + z)� z = x # y = (y + z)� z (using that # respets =, 1.3), so by

strong extensionality of +, x+ z # y + z. The onverse uses the forward diretion with �z. The

seond part follows from the �rst part noting that 0 = y � y.

Remark 2.9 As has already been pointed out, we always require funtions to respet the equality

and to be strongly extensional. In general, you'd want a funtion to respet the inequality or the

apartness only if it has an inverse. See Lemma 1.12.

2.2 Rings: Two assoiative operations

De�nition 2.10 (Construtive Ring) A non-trivial onstrutive ring is a tuple

hS; 0; 1;+;�; �;=;#i with hS; 0;+;�;=;#i a onstrutive group and hS; 1; �;=;#i a on-

strutive monoid suh that

1. Non-triviality: 1 # 0.

2. + distributes over �: 8x; y; z[x � (y + z) = (x � y) + (x � z)℄.

Notation 2.11 When dealing with rings we replae the operation � by juxtaposition, writing xy

for x � y.
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Lemma 2.12 For all x; y:

x0 = 0;

x(�y) = �(xy):

Proof The �rst by anellation: x0 = x(0 + 0) = x0 + x0. The seond (using the �rst) by

uniqueness of inverses 2.5.

Lemma 2.13 For all x; y,

xy # 0 ! x # 0 ^ y # 0:

Proof Suppose xy # 0. As � is strongly extensional, we know xy # x0! y # 0 and xy # 0y !

x # 0.

De�nition 2.14 (Construtive Field) A onstrutive �eld is a tuple hS; 0; 1;+;�; �;

�1

;=;#i

suh that hS; 0; 1;+;�; �;=;#i is a onstrutive ring and

�1

is an operation on the subsetoid

fx 2 S j x # 0g, suh that

1. x

�1

is inverse of x with respet to �: 8x[x # 0! xx

�1

= 1℄.

We have not introdues Integral Domains as a seperate algebrai notion, but onstrutive �elds

are indeed onstrutive integral domains, as they satisfy the following property.

Lemma 2.15 (Integral Domain Property) In a onstrutive �eld we have

8x; y[x # 0 ^ y # 0! xy # 0℄;

that is, a onstrutive �eld is a onstrutive integral domain.

Proof Suppose x # 0; y # 0. Then (xy)y

�1

= x # 0 = 0y

�1

, so xy # 0, by strong extensionality

of �. .

Lemma 2.16 If hS; 0; 1;+;�; �;

�1

;=;#i is a onstrutive �eld, then hfx 2 S jx # 0g; 1; �;=;#i

forms a onstrutive monoid.

Lemma 2.17 In a onstrutive �eld, � respets #, i.e.

8x; y; z[x # y ^ z # 0! xz # yz℄:

Proof Suppose x # y and z # 0. By lemma 2.8, we have that x � y # 0. Hene xz � yz =

(x� y)z # 0, and zx # zy using lemma 2.8 again.

Lemma 2.18 The following hold in a onstrutive �eld.

x 6= 0 ^ y 6= 0 ! xy 6= 0;

x 6= y ^ z 6= 0 ! xz 6= yz;

x 6= 0 ^ xy = 0 ! y = 0:

Proof For the �rst, suppose ::(x # 0) and ::(y # 0) and suppose :(xy # 0). If x 6 0, then if

y # 0 we would have xy # 0, ontradition, so :(y # 0. But this is a ontradition, so :(x # 0).

Contradition, so ::(xy # 0).

For the seond, suppose x 6= y and z 6= 0. Then x � y 6= 0 (using Lemma 1.11). Now,

z(x� y) 6= 0 using the �rst and hene zx 6= zy using distributivity and again Lemma 1.11.

For the third, suppose x 6= 0 and xy = 0. If y 6= 0, then xy 6= 0 by the �rst. Contradition, so

:(y 6= 0), whih implies y = 0.
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Remark 2.19 It is in general not the ase that in a onstrutive integral domain,

xy = 0! x = 0 _ y = 0:

This is just beause the _ has a strong interpretation. A weak ounterexample is given by de�ning

the real numbers x and y respetively by the following Cauhy sequenes of rationals (x

i

)

i2N

,

resp. (y

i

)

i2N

. (In this de�nition we use k

99

as abbreviation of `the number k where we have just

ompleted a sequene of 99 9s in the deimal series of �. Similarly i < k

99

if up to i we have not

yet enountered suh a sequene of 99 9s.)

x

i

:= 2

�i

if i < k

99

;

x

i

:= 2

i

if i � k

99

and k

99

is even;

x

i

:= 0 if i � k

99

and k

99

is odd;

y

i

:= 2

�i

if i < k

9

9;

y

i

:= 2

i

if i � k

99

and k

99

is odd;

y

i

:= 0 if i � k

99

and k

99

is even:

Now, xy = 0, but to say that x = 0 implies that we know that k

99

exists and that it is odd.

Similarly for y = 0.

Lemma 2.20 In a onstrutive �eld we have the following

x

2

= a

2

! :(x # a ^ x # �a);

2 # 0 ^ a # 0 ^ x

2

= a

2

! x = a _ x = �a:

Proof If x

2

= a

2

, then

(x� a)(x+ a) = 0: (�)

Now, if x # a ^ x # �a, then x� a # 0 ^ x+ a # 0, hene (x� a)(x + a) # 0, ontradition.

If also a # 0, then a # �a (a # 0! 2a # 0! a # �a). Hene x # a _ x # �a by otransitivity

of #. Now, if x # a, then x� a # 0 hene x+ a = 0 by (*) and Lemma 2.18, and hene x = �a.

Similarly, if x # �a, then x = a.

Remark 2.21 In the previous Lemma we use the premise 2 # 0 to onlude a 6 �a from a 6 0.

Note that if 2 = 0, the result (a # 0 ^ x

2

= a

2

! x = a _ x = �a) is also true. We would like to

prove 2 # 0 _ 2 = 0, so we an drop the assumption 2 # 0 in the Lemma. We onjeture this to

hold (the harahteristi of a �eld is disreet, also onstrutively (?)). Note that for the present

development this doesn't really matter, as we will only be dealing with �elds of harahteristi 0

(hene 2 # 0): the reals and the omplex numbers.

Lemma 2.22 If hS; 0; 1;+;�; �;

�1

;=;#i is a onstrutive �eld, then

hfx 2 S jx # 0g; 1; �;

�1

;=;#i is a onstrutive group.

De�nition 2.23 (Construtive Ordered Field) A onstrutive ordered �eld is a tuple

hS; 0; 1;+;�; �;

�1

;=; <;#i suh that hS; 0; 1;+;�; �;

�1

;=;#i is a onstrutive �eld and < is

a binary relation on S suh that

1. < is transitive, irreexive, anti-symmetri,

2. + respets <, i.e. 8x; y[x < y ! 8z[x+ z < y + z℄℄,

3. � respets 0 <, i.e. 8x; y[0 < x ^ 0 < y ! 0 < xy℄,

4. 8x; y[x # y $ (x < y _ y < x)℄,
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2.2.1 Properties of the ordering in a �eld

Lemma 2.24 (< is otransitive) The relation < is otransitive:

8x; y[x < y ! 8z[x < z _ z < y℄℄:

Proof Suppose x < y, then x # y, so for all z: x # z_z # y. Hene x < z_z < x_z < y_y < z.

As z < x! z < y and y < z ! x < z, we onlude that x < z _ z < y.

Lemma 2.25 (� respets <)

a < b;  > 0! a < b:

Proof Using Axioms 3, 4 and distributivity.

Lemma 2.26

a > b$ �a < �b:

Proof Using Axiom 3.

Corollary 2.27

0 < 1:

Proof 0 < 1 _ 1 < 0. If 1 < 0, then �1 > 0 (by 2.26), so 1 = (�1)(�1) > 0.

Lemma 2.28

a > 0$ a

�1

> 0:

Proof If a > 0, then a # 0, so a

�1

# 0, i.e. a

�1

> 0 _ a

�1

< 0. Now, if a

�1

< 0, then �a

�1

> 0

(Lemma 2.26), so �1 > 0 (Lemma 2.25), ontradition. Hene a

�1

> 0.

Lemma 2.29

a > b > 0 $ b

�1

> a

�1

> 0

0 > a > b $ 0 > b

�1

> a

�1

:

Proof The �rst using Lemma 2.25 and Lemma 2.28. The seond using Lemma 2.26 and the �rst.

De�nition 2.30 We de�ne the relation � by

x � y := :(y < x):

Lemma 2.31

x � y ! x+ z � y + z;

x � y ^ z > 0 ! xz � yz:

Proof If x + z > y + z, then x > y by Axiom 3. If xz > yz and z > 0, then x > y by Lemma

2.25, using Lemma 2.28.

Lemma 2.32 x � y $ 8z[y > z ! x > z℄.

Proof From right to left: Suppose x < y, then x <

x+y

2

< y, ontradition.

From left to right: Let z 2 R be suh that y > z. Then y > x _ x > z. As y � x, we onlude

that x > z.

Lemma 2.33

x � y ^ y � x ! x = y;

x > y _ y = x ! x � y
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Proof Both trivial.

Lemma 2.34

x < y ^ y � z ! x < z;

x � y ^ y < z ! x < z;

x � y ^ y � z ! x � z:

Proof For the �rst, if x < y, then x < z _ z < y. As y � z we onlude that x < z. The seond

is similar. For the third, suppose x > z. The x > z using the seond, ontradition.

Lemma 2.35 x

2

� 0.

Proof Suppose x

2

< 0. Then x

2

# 0, so x # 0 (using 2.13), so x > 0 or x < 0. In the �rst ase

x

2

> 0. In the seond ase �x > 0, so (�x)

2

= x

2

> 0. Contradition in both ases, so :(x

2

< 0).

3 The Reals

We give a onstrutive axiomatization of the reals R. The intention is that the axioms an be

instantiated by any spei� onstrution of R. In our axiomatization, the reals form a onstrutive

ordered �eld, for whih Cauhy-ompleteness and the axiom of Arhimedes hold.

De�nition 3.1 A struture for real numbers is a onstrutive abelian ordered �eld

hR; 0; 1;+; �;�;

�1

;=; <;#i that

1. is Cauhy-omplete:

8x

1

; x

2

; : : : (8� > 09N 2 N8m > N(�� < x

m

� x

N

< �))! 9x[x = lim

n!1

x

n

℄:

2. satis�es the Axiom of Arhimedes:

8x9n 2 N[x < n℄:

Remark 3.2 (to the De�nition) In the de�nition we atually use N to denote both N itself (in

1) as the image of N in R (in 2) via the funtion f that maps 0 2 N to 0 2 R and S(x) 2 N to

f(x) +1. So, in 1, we quantify over the set of funtions from N to R. In 2, the axiom really reads

8x9n 2 N[x < f(n)℄, with f the injetion of N into R.

3.1 Properties of the real numbers

Lemma 3.3 There are no non-standard real numbers, i.e.

8n 2 N[�

1

n

< x <

1

n

℄! x = 0;

for all x.

Proof Suppose x # 0 towards a ontradition. (Then :(x # 0) and hene x = 0.) Then x

�1

exists and by the Axiom of Arhimedes we �nd a n 2 N suh that

1

x

< n. But then either

1

n

< x

or x <

�1

n

(distinguishing ases aording to x > 0 or x < 0 and using Lemma 2.29.

De�nition 3.4 A sequene of reals x

1

; x

2

; : : : is alled a Cauhy sequene if

8� > 09N 2 N8m > N(�� < x

m

� x

N

< �):

9



Lemma 3.5 A sequene of reals x

1

; x

2

; : : : is a Cauhy-sequene i�

8k 2 N9N 2 N8m > N(�

1

k

< x

m

� x

N

<

1

k

):

Proof The impliation from left to right is immediate, as

1

k

> 0. The reverse impliation uses

the axiom of Arhimedes. Assume 8k 2 N9N 2 N8m > N(�

1

k

< x

m

� x

N

<

1

k

). Let � > 0.

Then �

�1

2 R, so there is a k 2 N suh that �

�1

< k and hene � >

1

k

. Now we �nd N by our

assumption.

Lemma 3.6 Given x; y 2 R and � > 0, there exists x

0

2 R suh that

�� < x� x

0

< � ^ x

0

# y:

Proof y < x+

�

2

_y > x�

�

2

. In the �rst ase take x

0

:= x+

�

2

, in the seond ase take x

0

:= x�

�

2

.

We now de�ne the maximum of two real numbers. This is not straightfoward, beause we have

no trihotomy. (Classially, the maximum an be de�ned in an ordered �eld, but onstrutively

that is in general not the ase: one needs the Cauhy property.) In a situation where the reals

are onstruted out of the rationals, say, x = (x

i

)

i2N

, one an use the maximum of two rationals

(max(x

i

; y

i

)) to de�ne a Cauhy sequene of the maximum of x and y, namely (max(x

i

; y

i

)

i2N

.

Here we an not do that. Instead when de�ning the maximum of x and y we �rst have to de�ne

an auxiliary sequene of reals (y

i

)

i2N

that has y as a limit and suh that x # y

i

for all i.

De�nition 3.7 We onstrut a sequene (y

i

)

i2N

suh that

8i 2 N[�

1

i

< y � y

i

<

1

i

^ y

i

# x℄:

This is is possible, due to Lemma 3.6. Note that (y

i

)

i2N

is a Cauhy sequene and y = lim

i!1

y

i

.

Now de�ne the sequene (s

i

)

i2N

by

s

i

:=

�

x if x > y

i

;

y

i

if x < y

i

;

Now (s

i

)

i2N

is a Cauhy sequene and we de�ne

max(x; y) := lim

i!1

s

i

:

Lemma 3.8 8x; y 2 R[:(max(x; y) > x ^max(x; y) > y)℄.

Proof From the De�nition of max.

Lemma 3.9 max is ommutative, i.e. 8x; y 2 R[max(x; y) = max(y; x)℄.

Lemma 3.10 max gives an upperbound, i.e. 8x; y 2 R[max(x; y) � x ^max(x; y) � y℄.

Lemma 3.11 max give a least upperbound, i.e. 8x; y; z 2 R[z � x ^ z � y ! z � max(x; y)℄.

Proof Suppose z < max(x; y). Then z < y _ y < max(x; y) and z < x _ x < max(x; y). If

y < max(x; y), then x < max(x; y) ontradits Lemma 3.8, so z < y _ z < x, ontraditing

z � x ^ z � y. So z � max(x; y).

Lemma 3.12 8x; y 2 R[x � y $ max(x; y) = y℄.

Proof For !: max(x; y) � y by Lemma 3.10 and max(x; y) � y by Lemma 3.11.

For  : suppose x > y. Then x � y and hene max(x; y) = x by the previous. Hene x = y,

ontradition. So x � y.
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De�nition 3.13 For x 2 R, we de�ne

jxj := max(x;�x):

Lemma 3.14 8x 2 R[x � 0! jxj = x℄:

Proof If x � 0, then �x � 0, hene �x � x. So max(x;�x) = x by Lemma 3.12.

Lemma 3.15 8x; y; r 2 R[jx � yj � r $ x� r � y � x+ r℄.

Proof Immediate using the intermediate equivalent statement x� y � r ^ �x+ y � r.

Lemma 3.16 8x; y 2 R[jx + yj � jxj+ jyj℄.

Proof max(x;�x)+max(y;�y) � x+y and max(x;�x)+max(y;�y) � �x�y. Hene jxj+ jyj =

max(x;�x) + max(y;�y) � max(x+ y;�x� y) = jx+ yj.

Lemma 3.17 8x; y; z; r; q 2 R[jx � yj � r ^ jy � zj � q ! jx� zj � r + q.

Proof jx� zj = jx� y + y � zj � jx� yj+ jy � zj � r + q.

Lemma 3.18 If x

0

; x

1

; : : : and y

0

; y

1

; : : : are Cauhy sequenes with limits (respetively) x and y,

then

lim

n!1

x

n

+ lim

n!1

y

n

= lim

n!1

(x

n

+ y

n

);

( lim

n!1

x

n

)( lim

n!1

y

n

) = lim

n!1

(x

n

y

n

);

j lim

n!1

x

n

j = lim

n!1

jx

n

j;

� lim

n!1

x

n

= lim

n!1

(�x

n

);

( lim

n!1

x

n

)

�1

= lim

n!1

(x

n

)

�1

;

where the latter is only de�ned if 8i 2 N[x

i

# 0℄. Furthermore, if x

i

� y

i

for all i, then x � y.

In the following, for n 2 N, y

n

denotes the n-times multipliation of y.

De�nition 3.19 For x � 0 and n 2 N

+

, we de�ne

n

p

x. First we notie that (x+ 1)

n

> x (proof

by indution on n). De�ne the sequenes (p

i

)

i2N

and (q

i

)

i2N

as follows.

p

0

:= 0;

q

0

:= x+ 1;

p

i+1

:=

�

p

i

if (

2p

i

+q

i

3

)

n

< x;

2p

i

+q

i

3

if (

p

i

+2q

i

3

)

n

> x

q

i+1

:=

�

q

i

if (

p

i

+2q

i

3

)

n

> x;

p

i

+2q

i

3

if (

2p

i

+q

i

3

)

n

< x

Then we have the following.

1. 8i 2 N[p

i

< x < q

i

℄,

2. 8i 2 N[q

i+1

� p

i+1

=

2

3

(q

i

� p

i

)℄.

So, (q

i

)

i2N

is a Cauhy sequene and we de�ne

n

p

x := lim

i!1

q

i

:

Lemma 3.20 8x 2 R8n 2 N

+

[x � 0!

n

p

x � 0℄:
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Lemma 3.21 8x; y 2 R8n 2 N

+

[x; y � 0!

n

p

x

n

p

y =

n

p

xy℄:

Lemma 3.22

8x8n 2 N

+

[x � 0! (

n

p

x)

n

= x℄:

Lemma 3.23 If x � 0, then there is a unique y � 0 suh that y

2

= x.

Proof Suppose we have y and z (y; z � 0) suh that y

2

= x = z

2

and suppose y # z. Using

Lemma ?? we onlude that y = z _ y = �z, hene y = �z. Also y # 0 _ z # 0, so (y > 0 ^ z <

0) _ (y < 0 ^ z > 0). Contradition. So y = z.

4 Polynomials

4.1 De�nition and general properties

De�nition 4.1 For R a ring, we de�ne the set of polynomials over R, R[X ℄, as the �nite lists

of elements of R. We de�ne the operations +, � and � on R[X ℄. Let f = hf

0

; : : : ; f

n

i and

g = hg

0

; : : : ; g

m

i be two polynomials Then f+g and f�g are polynomials of length maxfm+1; n+1g

and f � g is a polynomial of length m+ n+ 1 de�ned as follows.

(f + g)

i

:= f

i

+ g

i

for i � maxfm;ng;

(f � g)

i

:= f

i

� g

i

for i � maxfm;ng;

(f � g)

i

:= �

i

j=0

f

j

� g(i� j) for i � m+ n;

where it is understood that we take f

j

(resp. g

j

) to be 0 if j > n (resp. j > m). The zero and unit

are de�ned by

0 := h i; (the empty sequene);

1 := h1i:

The apartness relation on R[X ℄ is de�ned by

f # g := 9i(f

i

# g

i

):

Note that we use the terminology length of a polynomial when talking about the length of the

list of oeÆients. The length of a polynomial may not be the same as its degree (de�ned preisely

in 4.2)may be 0.

It is easy to see that

f = g $ 8i(f

i

= g

i

):

De�nition 4.2 Let f(X) = f

n

X

n

+ f

n�1

X

n�1

+ : : :+ f

1

X + f

0

be a polynomial.

1. f(X) has degree k, notation deg(f) = k, if k � n, f

k

# 0 and i = 0 for all i with k < i � n,

2. f(X) has degree at most k, notation deg(f) � k, if k � n, and i = 0 for all i with k < i � n,

3. f(X) has degree at least k, notation deg(f) � k, if k � n, f

k

# 0.

So, not all polynomials have a degree: `degree' is not a funtion on polynomials but a relation

between polynomials and natural numbers. However, it is always the ase that the degree of f(X) =

f

n

X

n

+ f

n�1

X

n�1

+ : : :+ f

1

X + f

0

is at most n, and if we know that f

k

# 0, it is at least k.

De�nition 4.3 A polynomial f(X) = f

n

X

n

+ f

n�1

X

n�1

+ : : :+ f

1

X + f

0

is alled regular if for

its leading oeÆient one has f

n

# 0. (That is: the polynomial has a degree, whih is the same as

its length, n.)
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Lemma 4.4 For R a ring, R[X ℄ is a ring.

In the following, unless stated otherwise, R is a ring.

Notation 4.5 A polynomial f = hf

0

; : : : ; f

n

i will often be denoted by f(X) = f

n

X

n

+f

n�1

X

n�1

+

: : :+ f

0

or by f(X) = �

n

j=0

f

j

X

j

.

The multipliation operation � will usually be omitted.

De�nition 4.6 For every polynomial f(X) = f

n

X

n

+ f

n�1

X

n�1

+ : : : + f

0

over R we de�ne a

funtion f : R! R in the anonial way:

f(a) := f

n

a

n

+ f

n�1

a

n�1

+ : : :+ f

0

:

In the following, we will often just write f for this funtion f .

The following two Lemmas already hold for integral domains (rings with the additional property

x # 0 ^ y # 0! xy # 0, see Lemma 2.15), but we have not introdued that notion here.

Lemma 4.7 Let F be a �eld and let f = f

n

X

n

+ : : :+f

0

and g = g

m

X

m

+ : : :+g

0

be polynomials

over F . Write h

m+n

X

m+n

+ : : :+ h

0

for fg. Then

f

i

g

j

# 0! 9k[i+ j � k � n+m ^ h

k

# 0℄:

Proof See [6℄, p. 417.

Theorem 4.8 If F is a �eld, then F [X ℄ satis�es the integral domain property, i.e. for all f; g 2

F [X ℄, if f # 0 and g # 0, then fg # 0.

Proof Suppose f = f

n

X

n

+: : :+f

0

# 0 and g = g

m

X

m

+: : :+g

0

# 0 and let h

m+n

X

m+n

+: : :+h

0

be fg. Then f

i

g

j

# 0 for some i; j, but then h

k

# 0 for some k.

4.2 Fatorization and zeros

Let R be a onstrutive ring.

Lemma 4.9 Let f = f

n

X

n

+ : : : + f

0

and g = g

m

X

m

+ : : : + g

0

be polynomials over R. Then

there exist k 2 N; q; r 2 R[X ℄ suh that

(g

m

)

k

f(X) = q(X)g(X) + r(X)

and r(X) has length less then m or 0.

Proof See [6℄, p. 418.

Theorem 4.10 Let f(X) 2 R[X ℄ and a 2 R. Then

9!q(X) 2 R[X ℄(f(X) = (X � a)q(X) + f(a)):

Proof By Lemma 4.9, f(X) = q(X)(X � a)+ , for some polynomial q(X) and  2 R. By taking

the value of the funtion f in a, we �nd that  = f(a). Furthermore, q(X) = q

n�1

X

n�1

+ : : :+ q

0

and we an determine the oeÆients of q(X) uniquely from the equation f(X) = q(X)(X � a) +

f(a).

Corollary 4.11 For f(X) 2 R[X ℄ and a 2 R,

(X � a)jf(X)$ f(a) = 0:

Moreover, if f(X) has length n and f has n+ 1 zeros, then f = 0.
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We now prove that if the polynomial f has degree at least k (n � k > 0) and we are given

n + 1 distint elements (a

i

)

1�i�n+1

, then f(a

i

) # 0 for one of the i. This will be used to prove

the Intermediate Value Theorem for polynomials.

Lemma 4.12 Let f(X); g(X) 2 R[X ℄, both of length n. Let (a

i

)

0�i�n�1

be distint elements of

R (I.e. a

i

# a

j

if i 6= j.). If f(a

i

) = g(a

i

) for all i (0 � i � n� 1), then f = g.

Proof The polynomial h := f � g has length n and has n zeros, so h = 0 by Corollary 4.11.

Hene, f = g.

Let F be a onstrutive �eld.

Lemma 4.13 Let f(X) 2 R[X ℄ of length n and let (a

i

)

1�i�n

be distint elements of R. Then

f(X) = f(a

1

)

(X � a

2

)(X � a

3

) � � � (X � a

n

)

(a

1

� a

2

)(a

1

� a

3

) � � � (a

1

� a

n

)

+

f(a

2

)

(X � a

1

)(X � a

3

) � � � (X � a

n

)

(a

2

� a

1

)(a

2

� a

3

) � � � (a

2

� a

n

)

+

� � �

f(a

n

)

(X � a

1

)(X � a

2

) � � � (X � a

n�1

)

(a

n

� a

1

)(a

n

� a

2

) � � � (a

n

� a

n�1

)

:

Proof The right hand side of the equation is a polynomial h(X) of length n (note that all the

frations are de�ned, beause all a

i

are distint). Furthermore f and h agree on all a

i

, hene

f = h by Lemma 4.12.

Lemma 4.14 Let f(X) 2 R[X ℄ of degree at least k (n � k > 0) and let (a

i

)

1�i�n+1

be distint

elements of R. Then

f(a

i

) # 0

for some i.

Proof Write f(X) = f

n

X

n

+ : : :+ f

0

. By Lemma 4.13 we �nd that for the oeÆient f

k

we have

f

k

= �

1�i�n+1

f(a

i

)h

i

k

;

where h

i

k

is the k-th oeÆient of the i-th polynomial as above:

(X � a

1

) � � � (X � a

i�1

)(X � a

i+1

) � � � (X � a

n

)

(a

i

� a

1

) � � � (a

i

� a

i�1

)(a

i

� a

i+1

) � � � (a

i

� a

n+1

)

As f

k

# 0, we �nd that f(a

i

) # 0 for at least one i.

4.3 Operations on polynomials

We need some formal operations on polynomials. Let F be an ordered �eld (to make sure that

always n! # 0; as ordered �eld are in�nite this is the ase).

De�nition 4.15 For f(X) = a

n

X

n

+ a

n�1

X

n�1

+ : : : + a

1

X + a

0

a polynomial, we de�ne the

derivative of f , f

0

as follows.

f

0

(X) := na

n

X

n�1

+ (n� 1)a

n�1

X

n�2

+ : : :+ a

1

:

Taking k-times the deriavtive of f is denoted as f

(k)

.
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De�nition 4.16 Let f(x) = a

n

x

n

+ a

n�1

x

n�1

+ : : : + a

0

be a polynomial over R and  2 R.

De�ne the polynomials f~ and f



as follows.

f~(X) = a

0

X

n

+ : : :+ a

n�1

X + a

n

;

f



(X) =

f

(n)

()

n!

X

n

+

f

(n�1)

()

(n� 1)!

X

n�1

+ : : :+

f

0

()

1!

X + f()

Lemma 4.17 Let f(X) = a

n

X

n

+ a

n�1

X

n�1

+ : : :+ a

0

be a polynomial over R and  2 R. For

the funtion f assoiated to this polynomial (4.6) we have

f~(x) = x

n

f(x

�1

); if x # 0;

f~(0) = a

n

;

f



(x) = f(x+ ):

Proof We informally write f where we refer to the funtion f etetera.

x

n

f(

1

x

) = x

n

(a

n

x

�n

+ : : :+ a

0

)

= a

n

+ a

n�1

+ : : :+ a

0

x

n

= f~(x):

Clearly f



(x) is a polynomial of maximal degree n. Hene,

f



(x) = b

n

x

n

+ : : :+ b

0

:

It follows that

f() = f



(0) = b

0

; hene b

0

= f();

f

0

() = f

0



(0) = b

1

; hene b

1

= f

0

()

f

(2)

() = f

(2)



(0) = 2!b

2

; hene b

2

=

f

(2)

()

2!

: : :

f

(n)

() = f

(n)



(0) = n!b

n

; hene b

n

=

f

(n)

()

n!

:

5 Real valued funtions

In the proof of the Fundamental Theorem of Algebra, we use a strong version of the Intermediate

Value Theorem (with a strong onlusion and a strong premise). This is Theorem 6.1.5 of [5℄.

De�nition 5.1 Intervals (losed and open) in R.

De�nition 5.2 Continuity of funtions f : R

n

! R (n 2 N).

Lemma 5.3 The identity and a onstant funtion are ontinuous. Continuity is preserved under

+, �, omposition and maximum (of �nitely many funtions).

Corollary 5.4 If f(X) is a polynomial over R, then the assoiated funtion f is ontinuous.

Theorem 5.5 (Intermediate Value Theorem) Let a; b 2 R, a < b, and let f be ontinuous

on [a; b℄ with f(a) < 0 < f(b). Moreover assume that

8x; y 2 [a; b℄(x < y ! 9z 2 [x; y℄(f(z) # 0)):

Then 9z 2 [a; b℄(f(z) = 0).
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Proof See [5℄, p. 294.

Corollary 5.6 (Intermediate Value Theorem for regular polynomials) Let f be a regular

polynomial over R and let a; b 2 R suh that a < b.

If f(a) < 0 and f(b) > 0 then 9z 2 [a; b℄(f(z) = 0):

Proof The premise in Theorem 5.5 is satis�ed: if n is the degree of f , we hoose n + 1 distint

points in the interval [x; y℄; due to Lemma 4.14 the value of f is apart from 0 for one of these

points.

Proposition 5.7 (Roots of polynomials over R of odd degree) Every polynomial of odd

degree over R has a root.

Proof Let f be a polynomial of odd degree. We only have to show that for x suÆiently small,

f(x) < 0 and for x suÆiently large, f(x) > 0. Then Corollary 5.6 does the job. .

Lemma 5.8 (Intermediate Value Theorem for strily monotoni funtions) If

f : R!R is stritly monotoni and ontinuous on some interval I, and a; b 2 I with

a < b, f(a) < 0, f(b) > 0, then there is a  2 (a; b) with f() = 0.

Proof We show that the premise of Theorem 5.5 is satis�ed. Let x; y 2 [a; b℄ with x < y. Take

z

1

; z

2

2 [x; y℄ suh that z

1

< z

2

. Then f(z

1

) < f(z

2

) due to the strit monotoniity of f . Hene

f(z

1

) < 0 _ f(z

2

) > 0.

De�nition 5.9 Let n 2 N, n � 1, a

1

; : : : ; a

n

2 fx 2 Rjx � 0g with a

n

= 1. De�ne m : [0;1) !

[0;1) as follows.

m(s) := maxfa

i

s

i

j 1 � i � ng:

Lemma 5.10 The funtion m is stritly monotoni on (0;1).

Proof We prove that for every x; y 2 (0;1), if x < y then

m(y)

m(x)

�

y

x

. (Then

m(y)

m(x)

> 1 and hene

m(y) > m(x).) Let x; y 2 (0;1), x < y, and suppose

m(y)

m(x)

<

y

x

. Then

x

y

m(y) < m(x). We

onlude that 8j 2 f1; : : : ; ng(

x

y

a

j

y

j

< m(x)) and hene

8j 2 f1; : : : ; ng(a

j

x

j

6= m(x)):

(If a

j

x

j

= m(x), then

x

y

a

j

y

j

< a

j

x

j

and y

j�1

< x

j�1

, ontradition.) Also

8j 2 f1; : : : ; ng(a

j

x

j

� m(x)):

From these two, we onlude that

8j 2 f1; : : : ; ng(::(a

j

x

j

< m(x))):

From Lemma 3.8 we onlude that

:8j 2 f1; : : : ; ng(a

j

x

j

< m(x)):

From these two statements we derive a ontradition. (Here we use that the universal quanti�er

ranges over a �nite set.) Viz. Suppose a

1

x < m(x); a

2

x

2

< m(x); : : : ; a

n

x

n

< m(x). Then ? using

the seond. Hene :(a

1

x < m(x)), whih ontradits the �rst, hene :(a

2

x

2

< m(x)), whih

ontradits the �rst, etetera until we derive :(a

n

x

n

< m(x)) and a ontradition.
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6 Complex numbers

De�nition 6.1 A struture for the omplex numbers onsists of

C = R � R;

where R is a struture for the real numbers. On a struture of the omplex numbers one de�nes

(r; s) +

C

(r

0

; s

0

) = (r + r

0

; s+ s

0

);

(r; s) �

C

(r

0

; s

0

) = (r � r

0

� s � s

0

; r � s

0

+ r

0

� s);

0

C

= (0; 0);

1

C

= (1; 0);

i = (0; 1);

(r; s) =

C

(r

0

; s

0

) = r = r

0

^ s = s

0

;

(r; s) #

C

(r

0

; s

0

) = r # r

0

_ s # s

0

:

Here +; �; 0; 1;=;# denote the usual operations and relations on the struture for the reals.

Notation 6.2 As a orollary of the de�nition, an element z = (r; s) 2 C will also be denoted by

r + is.

Proposition 6.3 1. With the de�nitions

�

C

(r; s) = (�r;�s);

(r; s)

�1

= (

r

r

2

+ s

2

;

�s

r

2

+ s

2

):

a struture for the reals beomes a onstrutive �eld.

2. Moreover i

2

= �1.

Let in the following C be a struture for the omplex numbers.

De�nition 6.4 For z = (r; s) 2 C de�ne

jzj =

p

(r

2

+ s

2

);

z = (r;�s):

Lemma 6.5 For z 2 C one has

z # 0$ jzj # 0;

where the seond # and 0 are taken from the struture of reals.

Proposition 6.6 For z

1

; z

2

2 C one has

z

1

�

C

z

2

= z

1

�

C

z

2

:

jz

1

�

C

z

2

j = jz

1

j � jz

2

j:

jz

1

+

C

z

2

j � jz

1

j+ jz

2

j:

Lemma 6.7 For z

1

; z

2

2 C one has

z

1

z

2

< 0! jz

1

+ z

2

j = jz

1

j � jz

2

j;

where the statement

z

1

z

2

< 0 denotes that the omplex number

z

1

z

2

is of the form (r; 0) with r < 0..

Proof ja+ bj = ja(1 +

b

a

)j = jajj1 +

b

a

j = jaj(1�

b

a

) = jaj � jbj.

Lemma 6.8 For z 2 C one has

z � z = jzj

2

:
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6.1 Roots of omplex numbers

We show that for  2 C ,  # 0 and n 2 N

+

,

n

p

 exists in C . To prove this we rely just on the

following two fats: 1. Every positive number in R has a square root, 2. Every polynomial of odd

degree over R has a root in R. The proof avoids the use of polar oordinates, exponentials and

artan. We have learned this proof from [2℄; thanks to R. Kortram who made us aware of this

proof.

Let in the following C be a struture for the omplex numbers.

Lemma 6.9 For eah  = a+ ib 2 C with  # 0, there exists a solution to z

2

= . In partiular,

a solution is given by:

z =

s

p

a

2

+ b

2

+ a

2

+ i

s

p

a

2

+ b

2

� a

2

for b � 0

z =

s

p

a

2

+ b

2

+ a

2

� i

s

p

a

2

+ b

2

� a

2

for b � 0

Proof The seond statement, inluding the fat that all square roots that our take positive

numbers, is a straightforward omputation (using that

p

b

2

= b when b � 0, and that

p

b

2

= �b

when b � 0.) For the �rst statement, beause  # 0, we have either a # 0 or b # 0. The seond

ase we expliitly solved, and the �rst ase redues to the seond by multiplying  by i.

Lemma 6.10 Let z;  2 C ,  # 0, n 2 N. Then

z

n

=  _ z

n

= �;

if the onjuntion of the following two equations holds.

(jzj

2

)

n

= jj

2

; (1)

z

n

�� �z

n

 = 0: (2)

(If n > 0, the �rst determines a irle in the omplex plane, while the seond determines a number

of lines through the origin.)

Proof Given these two equations, z

n

� = �z

n

, and so

(z

n

)

2

� = z

n

z

n

� = z

n

�z

n

 = (jzj

2

)

n

 = jj

2

 = 

2

�:

Beause  # 0 we an divide by � and hene (z

n

)

2

= 

2

. Again beause  # 0 from this it follows

that z

n

=  _ z

n

= �.

Lemma 6.11 For a; b 2 R, b # 0, n 2 N,

(r + i)

n

(a� ib)� (r � i)

n

(a+ ib)

2i

is a polynomial in r of degree n with real oeÆients.

Proof This is equal to Im (r + i)

n

(a � ib), so it will be real. Now (r + i)

n

(a � ib) learly has

degree n, and beause its head oeÆient is a � ib and b # 0, its imaginary part will have head

oeÆient �b, and so it also will have degree n.

Proposition 6.12 For  = a + ib 2 C ,  # 0, and n 2 N, n odd, there exists a z 2 C suh that

z

n

= .
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Proof We �rst treat the ase that b # 0. Then by Lemma 6.11, f(r) �

�

(r + i)

n

(a � ib) � (r �

i)

n

(a+ ib)

�

=2i is a polynomial of odd degree with real oeÆients. Hene it has a root in R. We

now solve the following two equations in x and y.

r = x=y;

(x

2

+ y

2

)

n

= a

2

+ b

2

:

From the fat that r is a root of f , by multiplying with 2iy

n

we �nd that (x+ iy)

n

(a� ib)� (x�

iy)

n

(a+ ib) = 0, and from Lemma 6.10 then (x+ iy)

n

= a+ ib_ (x+ iy)

n

= �a� ib. In the �rst

ase z = x+ iy, and in the seond ase z = �x� iy will be a solution to z

n

= .

The ase that a # 0 redues to the other one by multiplying  by i.

Theorem 6.13 For  2 C ,  # 0 and n 2 N

+

there exists an z 2 C suh that z

n

= .

Proof This ombines the ability to take square and odd roots. Write n as the produt of a power

of 2 and an odd fator and iterate taking roots. (Note that this uses strong extensionality of

taking powers: we need that the result of taking a root is again # 0.)

7 Proof of the Fundamental Theorem of Algebra

Proposition 7.1 (Kneser Lemma) For every n 2 N, n � 2 there exists a q 2 R; 0 < q < 1

suh that for every polynomial over C with leading oeÆient 1

f(x) = x

n

+ b

n�1

x

n�1

+ : : :+ b

1

x+ b

0

one has

8 > jb

0

j9z 2 C [jzj < 

1=n

^ jf(z)j < q℄:

Before proving the Kneser Lemma, we state the so alled `Main Lemma' that gives the main

ingredients for proving the Kneser Lemma. The advantage of the Main Lemma is that it is just

about real numbers; the omplex numbers only ome in with the Kneser Lemma. There is a `Key

Lemma' that proves the Main Lemma. We state the Key Lemma �rst.

Lemma 7.2 (Key Lemma) For every n � 2, � > 0 and a

0

; : : : ; a

n

� 0 with a

n

= 1, a

0

> �,

there exists

1. t > 0

2. k

0

� k

1

;� k

2

� : : :,

suh that

a

k

0

t

k

0

= a

0

+ �

and moreover for every j, if we let k = k

j

and r = 3

�j

t:

a

k

r

k

> a

i

r

i

� � for all i 2 f1; : : : ; ng

From the Key Lemma we obtain the Main Lemma

Lemma 7.3 (Main Lemma) For every n � 2, � > 0 and a

0

; : : : ; a

n

� 0 with a

n

= 1, a

0

> �,

there exists

1. k 2 f1; : : : ; ng,

2. r > 0
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suh that

r

n

< a

0

; (3)

a

k

r

k

< a

0

; (4)

3

�2n

2

a

0

� 2� < a

k

r

k

; (5)

n

X

i=1

i6=k

a

i

r

i

< (1� 3

�n

)a

k

r

k

+ 3

n

�: (6)

The Main Lemma is the ruial property about reals to prove the Kneser Lemma.

Proof of the Key Lemma, 7.2 We prove the Key Lemma in a sequene of smaller Lemmata,

some spei�ally related to FTA, some of a more general nature.

Lemma 7.4 For n > 0, a

1

; : : : ; a

n

2 R and � > 0 there always is a k 2 f1; : : : ; ng suh that for

all i 2 f1; : : : ; ng:

a

k

> a

i

� �

Proof Indution with respet to n.

Lemma 7.5 For eah sequene k

0

� k

1

� k

2

� : : : 2 f1; : : : ; ng there is a j 2 N with j < 2n suh

that k

j�1

= k

j

= k

j+1

.

Proof Indution with respet to n.

Lemma 7.6 Let n > 0 and � > 0. Then for every a

0

; : : : ; a

n

� 0 with a

0

> � and a

n

= 1, there

exist t > 0 and k 2 f1; : : : ; ng suh that:

a

k

t

k

= a

0

� �

and suh that for all i 2 f1; : : : ; ng:

a

i

t

i

< a

0

Proof Start with k = n and t =

n

p

a

0

� �. Then onsider in turn for i the values n � 1 down to

1. At eah i either a

i

t

i

< a

0

or a

i

t

i

> a

0

� � (for the value of t that is urrent at that time.) In

the �rst ase do nothing, but in the seond ase set k to i and t to

i

p

(a

0

� �)=a

i

(in whih ase t

will derease.) This will give at the end a suitable k and t.

Proof [of the Key Lemma, 7.2℄ Let n � 2, � > 0 and a

0

; : : : ; a

n

� 0 with a

n

= 1, a

0

> 0 be given.

Choose t and k

0

aording to Lemma 7.6.

To get k

j+1

from k

j

, let k = k

j

, r = 3

j

t and apply lemma 7.4 with �=2 to the sequene

a

1

(r=3); a

2

(r=3)

2

; : : : ; a

k

(r=3)

k

to get k

0

= k

j+1

. Then for i � k the inequality for k

j+1

diretly follows, while for i > k we have:

a

k

(r=3)

k

= 3

�k

a

k

r

k

> 3

�k

�

a

i

r

i

� �

�

= 3

�k

a

i

r

i

� 3

�k

� > a

i

(r=3)

i

� �=2

and so:

a

k

0

(r=3)

k

0

> a

k

(r=3)

k

� �=2 > a

i

(r=3)

i

� �
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Proof of the Main Lemma, 7.3 We also prove the Main Lemma in a sequene of smaller

Lemmata.

Lemma 7.7 For every n � 2, � > 0 and a

0

; : : : ; a

n

� 0 with a

n

= 1, a

0

> �, if there exist

1. t > 0

2. k

0

� k

1

;� k

2

� : : :,

suh that

a

k

0

t

k

0

= a

0

+ �

and moreover for every j, if we let k = k

j

and r = 3

�j

t:

a

k

r

k

> a

i

r

i

� � for all i 2 f1; : : : ; ng

then we have for all j, writing again k = k

j

and r = 3

�j

t,

r

n

< a

0

a

k

r

k

< a

0

3

�jn

a

0

� 2� < a

k

r

k

Proof We have r � t and so for all i we have a

i

r

i

� a

i

t

i

< a

k

0

t

k

0

+ � = a

0

. Of this statement

r

n

< a

0

and a

k

r

k

< a

0

are speial ases. Finally, from a

k

0

r

k

0

= 3

�jk

0

a

k

0

t

k

0

� 3

�jn

a

k

0

t

k

0

=

3

�jn

(a

0

� �) > 3

�jn

a

0

� � it follows that a

k

r

k

> a

k

0

r

k

0

� � > 3

�jn

a

0

� 2�.

Lemma 7.8 For every n � 2, � > 0 and a

0

; : : : ; a

n

� 0 with a

n

= 1, a

0

> �, if there exist

1. t > 0

2. k

0

� k

1

;� k

2

� : : :,

suh that for every j, if we let k = k

j

and r = 3

�j

t:

a

k

r

k

> a

i

r

i

� � for all i 2 f1; : : : ; ng

then there is a j

0

< 2n suh that, writing k = k

j

0

and r = 3

�j

0

t,

a

k

(r=3)

k

> a

i

(r=3)

i

� � for all i 2 f1; : : : ; ng

a

k

(3r)

k

> a

i

(3r)

i

� � for all i 2 f1; : : : ; ng

Proof From Lemma 7.5 it follows that there is a j

0

< 2n suh that k

j

0

�1

= k

j

0

= k

j

0

+1

. Writing

k for k

j

0

, it immediately follows from k

j

0

�1

= k

j

0

and the properties of the k-sequene that

a

k

(3r)

k

> a

i

(3r)

i

� �. Similarly, it follows from k

j

0

= k

j

0

+1

and the properties of the k-sequene

that a

k

(r=3)

k

> a

i

(r=3)

i

� �.

Lemma 7.9 For every � > 0, a

1

; : : : ; a

n

� 0, k 2 f1; : : : ; ng and r > 0 suh that for all i 2

f1; : : : ; ng:

a

k

(r=3)

k

> a

i

(r=3)

i

� �

holds:

k�1

X

i=1

a

i

r

i

<

1

2

(1� 3

�n

)a

k

r

k

+

1

2

3

n

�
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Proof From the assumption it follows that

a

i

r

i

= 3

i

a

i

(r=3)

i

< 3

i

(a

k

(r=3)

k

+ �)

< 3

i�k

a

k

r

k

+ 3

i

�

and therefore

k�1

X

i=1

a

i

r

i

<

k�1

X

i=1

�

3

i�k

a

k

r

k

+ 3

i

�

�

=

�

k�1

X

i=1

3

i�k

�

a

k

r

k

+

�

k�1

X

i=1

3

i

�

�

=

1

2

(1� 3

1�k

)a

k

r

k

+

1

2

(3

k

� 3

1

)�

<

1

2

(1� 3

�n

)a

k

r

k

+

1

2

3

n

�

Lemma 7.10 For every � > 0, a

1

; : : : ; a

n

� 0, k 2 f1; : : : ; ng and r > 0 suh that for all

i 2 f1; : : : ; ng:

a

k

(3r)

k

> a

i

(3r)

i

� �

holds:

n

X

i=k+1

a

i

r

i

<

1

2

(1� 3

�n

)a

k

r

k

+

1

2

3

n

�

Proof From the assumption it follows that

a

i

r

i

= 3

�i

a

i

(3r)

i

< 3

�i

(a

k

(3r)

k

+ �)

< 3

k�i

a

k

r

k

+ 3

�i

�

and therefore

n

X

i=k+1

a

i

r

i

<

n

X

i=k+1

�

3

k�i

a

k

r

k

+ 3

�i

�

�

=

�

n

X

i=k+1

3

k�i

�

a

k

r

k

+

�

n

X

i=k+1

3

�i

�

�

=

3

2

(3

�1

� 3

k�n�1

)a

k

r

k

+

3

2

(3

�k�1

� 3

�n�1

)�

=

1

2

(1� 3

k�n

)a

k

r

k

+

1

2

(3

�k

� 3

�n

)�

<

1

2

(1� 3

�n

)a

k

r

k

+

1

2

3

n

�

Lemma 7.11 For every � > 0, a

1

; : : : ; a

n

� 0, k 2 f1; : : : ; ng and r > 0 suh that for all

i 2 f1; : : : ; ng:

a

k

(r=3)

k

> a

i

(r=3)

i

� �

a

k

(3r)

k

> a

i

(3r)

i

� �

holds:

n

X

i=1

i6=k

a

i

r

i

< (1� 3

�n

)a

k

r

k

+ 3

n

�
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Proof This follows immediately from Lemmata 7.9, 7.10.

Proof [of the Main Lemma, 7.3℄ Take t and k

0

; k

1

; : : : aording to the Key Lemma 7.2. Aording

to Lemma 7.8 there is a j

0

< 2n suh that for k = k

j

0

and r = 3

�j

0

t the premises of Lemma 7.11

hold. Hene inequality (6) of the Main Lemma holds:

n

X

i=1

i6=k

a

i

r

i

< (1� 3

�n

)a

k

r

k

+ 3

n

�

Then inequalities (3), (4) and (5) are given by lemma 7.7 (the inequality 3

�2n

2

a

0

< 3

�j

0

n

a

0

holds

beause j

0

< 2n).

Proof of the Kneser Lemma, Proposition 7.1 We prove the Kneser Lemma in a sequene

of steps. Let n � 2. We will show that

q := 1�

1

3

2n

2

+n

is a good hoie for q. Let

f(x) = x

n

+ b

n�1

x

n�1

+ : : :+ b

1

x+ b

0

be a polynomial over C and let  2 R

+

be suh that  > jb

0

j. We want to apply the Main Lemma

taking a

i

:= jb

i

j. However, we don't know if jb

0

j # 0. Hene we will approximate b

0

by a b

0

0

# 0

suh that jb

0

� b

0

0

j is suÆiently small and jb

0

0

j < . Then we will de�ne the real numbers

a

0

; : : : ; a

n

by a

0

:= jb

0

0

j, a

i

:= jb

i

j for 1 � i < n and a

n

:= 1. Now, for a spei� hoie of z (with

jzj

n

< a

0

) the Main Lemma will give an approximation of jf(z)j in terms of a

0

and hene in terms

of . In partiular, it will be shown that jf(z)j < q, with q as above.

Lemma 7.12 Let a

0

; : : : ; a

n

� 0 and b

0

; : : : ; b

n

2 C with a

i

= jb

i

j for i = 1; : : : ; n. Furthermore,

let k 2 f1; : : : ; ng and z 2 C with r = jzj. Then:

�

�

n

X

i=0

b

i

z

i

�

�

<

�

�

b

0

+ b

k

z

k

�

�

+

n

X

i=1

i6=k

a

i

r

i

Proof Repeated appliation of the triangle inquality for the omplex numbers.

The Main Lemma will take are that the seond term on the right hand side of the onlusion

of Lemma 7.12 is suÆiently small. To assure that the �rst term is also small enough, a spei�

value of z an be hosen in suh a way that b

0

and b

k

z

k

anel eahother out.

Lemma 7.13 Given a

0

; a

k

> 0, b

0

; b

0

0

; b

k

2 C , k 2 f1; : : : ; ng, r > 0 and � > 0 suh that:

jb

0

0

j = a

0

jb

k

j = a

k

jb

0

� b

0

0

j < �

a

k

r

k

< a

0

then there exists a z 2 C suh that jzj = r and:

�

�

b

0

+ b

k

z

k

�

�

< a

0

� a

k

r

k

+ �
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Proof Take

z = r

k

s

�

a

k

a

0

b

0

0

b

k

Then we have:

�

�

�

�

a

k

a

0

b

0

0

b

k

�

�

�

=

a

k

jb

0

0

j

a

0

jb

k

j

=

a

k

a

0

a

0

a

k

= 1

so

�

�

�

�

�

k

s

�

a

k

a

0

b

0

0

b

k

�

�

�

�

�

= 1

and so jzj = r.

Beause a

k

r

k

< a

0

we get

�

�

a

0

� a

k

r

k

�

�

= a

0

� a

k

r

k

and therefore

jb

0

0

+ b

k

z

k

j =

�

�

�

b

0

0

+ b

k

r

k

�

�

a

k

a

0

b

0

0

b

k

�

�

�

�

=

�

�

b

0

0

a

0

(a

0

� a

k

r

k

)

�

�

=

jb

0

0

j

a

0

ja

0

� a

k

r

k

j

= a

0

� a

k

r

k

From this it follows that

�

�

b

0

+ b

k

z

k

�

�

�

�

�

b

0

+ b

k

z

k

�

�

+ jb

0

� b

0

0

j < a

0

� a

k

r

k

+ �.

Lemma 7.14 For � > 0 and z 2 C there is a z

0

2 C with z

0

# 0 and jz

0

� zj < �.

Proof Beause z + �=2 # z � �=2, either z + �=2 # 0 or z � �=2 # 0. For both hoies

jz

0

� zj = �=2 < �.

Lemma 7.15 Let be given b

0

2 C and  2 R with jb

0

j < . Then there are b

0

0

2 C , a

0

and � > 0

suh that:

jb

0

� b

0

0

j < � (7)

jb

0

0

j = a

0

(8)

a

0

> 0 (9)

a

0

+ 3� <  (10)

and an � > 0 suh that:

2(3

n

+ 1)� < � (11)

2� < 3

�2n

2

a

0

(12)

� < a

0

(13)

Proof Take

� =

1

4

(� jb

0

j)

so jb

0

j =  � 4�. Then hoose an arbitrary b

0

0

# 0 with jb

0

0

� b

0

j < � and take a

0

= jb

0

0

j. To see

that (10) is satis�ed, alulate:

a

0

= jb

0

0

j � jb

0

0

� b

0

j+ jb

0

j < � + � 4� = � 3�

The existene of a suitable � then follows easily: take � > 0 smaller then min(

�

2(3

n

+1)

;

a

0

2 3

2n

2

).
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Lemma 7.16 For:

q = 1� 3

�2n

2

�n

we have that q >

1

2

and beause of that inequalities (10) and (11) imply:

qa

0

+ 3

n

�+ �+ � < q

Proof We get

a

0

+ 2 � 3

n

�+ 2�+ 2� = a

0

+ 2(3

n

+ 1)�+ 2� < a

0

+ � + 2� < 

Using that 1 < 2q, this gives

qa

0

+ 3

n

�+ �+ � < qa

0

+ 2q3

n

�+ 2q�+ 2q� = q(a

0

+ 2 � 3

n

�+ 2�+ 2�) < q

Proof [of the Kneser Lemma, Proposition 7.1℄ Take b

0

0

, a

0

, � and � as in lemma 7.15. Take

a

i

= jb

i

j for i 2 f1; : : : ; ng. Take r and k as in lemma 7.3. Finally take z as in lemma 7.13.

Then plugging all onditions and results of lemmas 7.3, 7.12, 7.13, 7.15 and 7.16 together we

get

r

n

< a

0

< � 3� < 

so

jzj = r < 

1=n

and

�

�

n

X

i=0

b

i

z

i

�

�

<

�

�

b

0

+ b

k

z

k

�

�

+

n

X

i=1

i6=k

a

i

r

i

<

�

a

0

� a

k

r

k

+ �

�

+

�

(1� 3

�n

)a

k

r

k

+ 3

n

�

�

= a

0

� 3

�n

a

k

r

k

+ 3

n

�+ �

< a

0

� 3

�n

(3

�2n

2

a

0

� 2�) + 3

n

�+ �

= (1� 3

�2n

2

�n

)a

0

+ 3

n

�+ 3

�n

2�+ �

< (1� 3

�2n

2

�n

)a

0

+ 3

n

�+ �+ �

= qa

0

+ 3

n

�+ �+ �

< q

Fundamental Theorem for regular polynomials

Proposition 7.17 Let f(x) = x

n

+a

n�1

x

n�1

+ : : :+a

1

x+a

0

, with a

i

2 C . Then for some z 2 C

one has f(z) = 0.

Proof Let  2 R

+

with  > ja

0

j. We will onstrut a Cauhy sequene z

i

2 C suh that for all m

1. jf(z

m

)j < q

m



2. jz

m+1

� z

m

j � (q

m

)

1=n

for some q 2 (0; 1). Then z = lim

i!1

z

i

exists and by ontinuity of f one has

jf(z)j = lim

i!1

jf(z

i

)j � lim

i!1

q

i

 = 0;

so f(z) = 0.
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Now, if 1 and 2 are satis�ed, then indeed the z

i

form a Cauhy seqene:

jz

m+k

� z

m

j � jz

m+k

� z

m+k�1

j+ : : :+ jz

m+1

� z

m

j

� (q

m+k�1

n

+ q

m+k�2

n

+ : : :+ q

m

n

)

1=n

=

q

m

n

� q

m+k

n

1� q

1=n



1=n

= q

m

n

1� q

k

n

1� q

1=n



1=n

� q

m

n



1=n

1� q

1=n

:

By hoosing m suÆiently large (n is �xed), this last expression an be made arbitrarily small.

The onstrution of z

i

is as follows. Take z

0

= 0. Then indeed jf(z

0

)j = jf(0)j < q

0

. Now

suppose z

m

is de�ned satisfying 1. Apply the Kneser Lemma to f

z

m

where

f

z

m

(x) = f(x+ z

m

)

and taking q

m

 for . (Note that f

z

m

has the same degree as f .) We obtain a z suh that

jzj < (q

m

)

1=n

^ jf

z

m

(z)j < q

m+1

:

Now take z

m+1

= z + z

m

. Then we have that 1 is valid: jf(z

m+1

)j = jf(z + z

m

)j = jf

z

m

(z)j <

q

m+1

:

Moreover, we also have 2: jz

m+1

� z

m

j = jzj < (q

m

)

1=n

.

Corollary 7.18 1. Every regular polynomial f(x) = a

n

x

n

+ a

n�1

x

n�1

+ : : :+ a

1

x+ a

0

over C

has a root.

2. Moreover, suh f an be fatorized as follows

f(x) = a

n

(x � �

1

) : : : (x� �

n

):

Proof 1. Divide f by a

n

to obtain a polynomial g with leading oeÆient 1, satisfying a

n

g(x) =

f(x). Then any root of g is a root of f .

2. If �

1

is a root of f , then

f(x) = (x� �

1

)f

n�1

(x);

by the Remainder Theorem (4.11) with f

n�1

being equal to a

n

x

n�1

+ : : :, hene also regular.

By (i) f

n�1

has a root �

2

and hene

f

n�1

(x) = (x� �

2

)f

n�2

(x):

Continuing this way one obtains

f(x) = (x� �

1

) : : : (x� �

n

)a

n

:

Proposition 7.19 Let f(x) = a

n

x

n

+ a

n�1

x

n�1

+ : : : + a

1

x + a

0

, with a

i

2 C . Suppose that

a

k

# 0, for some 0 < k � n. Then f an be fatorized as follows in linear fators.

f(x) = (�

1

x� Æ

1

) : : : (�

n

x� Æ

n

):

Proof Let f be given. Take a  2 C as in Lemma 4.14 suh that f() # 0 and let g = (f



)

~

. Note

that by Lemma 4.17 we have

g(y) = y

n

f(+

1

y

); for y # 0:
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satisfying

g(y) = f()y

n

+

f

0

()

1!

y

n�1

+ : : :+

f

(n)

()

n!

:

It follows that g is regular, with leading oeÆient f(), and hene by the orollary g is a produt

g(y) = f()(y � �

1

) : : : (y � �

n

): (1)

Now, for x # ,

f(x) = g(

1

x � 

)(x � )

n

= f()(

1

x � 

� �

1

) : : : (

1

x� 

� �

n

)(x � )

n

= f()(1� �

1

(x� )) : : : (1� �

n

(x � ))

= f()(1 + � �

1

x) : : : (1 + � �

n

x):

So, we are done by taking �

i

:= �f()�

i

and Æ

i

:= �f()(1 + ).

Theorem 7.20 Let f(x) = a

n

x

n

+ a

n�1

x

n�1

+ : : :+ a

1

x+ a

0

, with a

i

2 C . Suppose that a

k

# 0,

for some 0 < k � n. Then f an be fatorized as follows in linear fators.

f(x) = (x � �

1

) : : : (x� �

k

)(�

k+1

x� Æ

k+1

) : : : (�

n

x� Æ

n

):

So, in partiular, f has k zeros.

Proof From Proposition 7.19 we onlude that

f(x) = (�

1

x� Æ

1

) : : : (�

n

x� Æ

n

);

for some �

i

and Æ

i

in C . We prove by indution on n that at least k of the �

i

an be hosen apart

from 0; hene, by dividing out these fators, we obtain the �

i

, �

i

and Æ

i

of the statement.

n = 1 Then f(x) = a

1

x+ a

0

and a

1

# 0, so we are done.

n+ 1 Now f(x) = (�

1

x� Æ

1

) : : : (�

n+1

x� Æ

n+1

). Writing h(x) = (�

2

x� Æ

2

) : : : (�

n+1

x� Æ

n+1

), we

�nd that h is a polynomial of length n, say h(x) = h

n

x

n

+ : : :+ h

0

. We �nd that

a

k

= �

1

h

k�1

� Æ

1

h

k

:

As a

k

# 0, we onlude that �

1

h

k�1

# 0 or Æ

1

h

k

# 0. In the �rst ase, �

1

# 0 and from the

indution hypothesis we derive that k � 1 from the �

2

; : : : ; �

n

are # 0, so we are done. In

the seond ase, we onlude from the indution hypothesis that k from the �

2

; : : : ; �

n

are

# 0, so we are done.
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