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1. Proof heking

Proof heking onsists of the automated veri�ation of mathematial theories by

�rst fully formalizing the underlying primitive notions, the de�nitions, the axioms

and the proofs. Then the de�nitions are heked for their well-formedness and the

proofs for their orretness, all this within a given logi. In this way mathematis

is represented on a omputer and also a high degree of reliability is obtained.

After a ertain logi is hosen (e.g. lassial logi or intuitionisti logi; �rst-,

seond- or higher-order logi) there are still several ways in whih a theory an

be developed. The Cantor-Hilbert-Bourbaki style is to use set-theory, say Zermelo-

Fraenkel set-theory with the axiom of hoie formalized in �rst-order lassial logi

(ZFC)

1

. Indeed, the great attration of set-theory is the fat that in priniple it

an be used to formalize most mathematial notions. But set-theory has as essential

problem that it annot apture omputations very well. Computations are needed

for appliations of theories and|as we will see later|also for providing proofs. In

both ases we want, say for a funtion f : IN!IN, that for numbers n;m2IN suh

that f(n) = m, we an �nd a formal proof of f(n) = m, where the underlinings

stand for representations in the theory. Although this is theoretially possible for

set-theory, in pratie this may not be feasible. This is beause a omputation has

to be oded in set-theory as a sequene of sets being a formal desription of a

omputation path (onseutive states) aording to some omputational model.

Type theory presents a powerful formal system that aptures both the notion of

omputation (via the inlusion of funtional programs written in typed �-alulus)

and of proof (via the so alled `propositions-as-types embedding', where types are

viewed as propositions and terms as proofs). As a matter of fat there are various

type theories, apturing various notions of omputation (e.g. primitive reursion,

reursion over higher types) and various logial systems (e.g. �rst order, higher

order). In this artile we will not attempt to desribe all the di�erent possible

hoies of type theories. Instead we want to disuss the main underlying ideas, with

a speial fous on the use of type theory as the formalism for the desription of

theories inluding proofs.

One a theory is formalized, its orretness an be veri�ed by a small program, the

proof heker. But in order to make the formalization proess feasible, an interative

proof-development system is needed. This is a proof environment that stands next

to the proof-heker and helps the human to develop the proofs. The ombination

of a proof-development system and a proof heker is alled a proof-assistant. Suh

a ombination is di�erent form a `theorem prover'. This is a omputer system that

allows the user to hek the validity of mathematial theorems by generating them

automatially. Of ourse, for proof-assistants the end goal is also to prove theorems.

But this is not done by implementing a number of smart algorithms (like resolution

or binary deision diagrams), but by letting the user generate a proof, interatively

with the system. So, the user of proof-assistants is very muh in ontrol: by means

1

Or perhaps some stronger versions with large ardinals, e.g. for the formalization of ategory

theory
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of `tatis' (that are input to the system) a so-alled `proof-term' is reated that

losely orresponds to a standard mathematial proof (in natural dedution style).

For mahine assisted theorem proving (via automated theorem proving or via

interative proof generation or a ombination of the two) the main goal is to in-

rease the reliability of mathematial results

2

. Roughly there are two reasons why

mathematial results may be diÆult to verify. The �rst is omplexity: the problem

is very big, the number of ases to be distinguished being very large, etetera. This

is a situation that one often enounters in omputer siene, where, e.g. in a pro-

tool one has to go through all possible states of a system. The seond problem is

depth: the problem is very deep, very ompliated. This is a situation that is more

often enountered in pure mathematis, e.g. Fermat's last theorem is an example.

In ase of omplexity, we may expet help from an automated reasoning tool, e.g.

to go through a huge number of ases that eah by themselves is easily veri�ed. In

ase of depth, an automated reasoning tool will be of little use, but we may expet

some help from a proof assistant that does the bookkeeping and prevents us from

overseeing details. In the latter ase, we might also want to use the proof assistant

as a tool for exploring new �elds. At this moment however, there is not yet a user-

friendly system that provides mahine assistane for doing mathematial researh.

But the potential is there.

Proof assistants based on type theory present a general spei�ation language to

de�ne mathematial notions and formulas. Moreover, it allows to onstrut algo-

rithms and proofs as �rst lass itizens. The advantages are that a user an de�ne

his or her own strutures in a very exible way, inluding the (exeutable) funtions

that are part of these strutures. Furthermore|and this is what distinguishes the

type theoreti approah to theorem proving from most of the other ones|presented

in this style, theorem proving onsists of the (interative) onstrution of a proof-

term, whih an be easily heked independently. These issues will be disussed in

more detail below. Again we want to point out that type theory presently does not

provide a fast tool for automated theorem proving: there is (in general) not muh

automation and the fat that expliit proof-terms are onstruted slows down the

implementation. Also as a researh tool proof-assistants are not yet mature. How-

ever, they provide a very high reliability, both beause of the expliit proof-terms

and their well-understood meta-theory. Another good point is their expressive ex-

ibility. For further reading on these issues, beyond the sope of this Chapter, we

advise [Luo 1994℄ or [Nordstr�om, Petersson and Smith 1990℄.

Another possible (future) appliation of mahine assisted theorem proving is the

�eld of omputer mathematis. Right now, omputers are used in various parts of

mathematis, notably for omputer algebra and numerial methods. Eah of suh

appliations requires the formalization of a spei� part of mathematis, overing

the domain of the appliation. To have various systems interat with eah other and

with the user would require a formalization of substantial parts of mathematis.

2

There are systems, like JAPE [1997℄, Mathpert [1997℄ and Hyperproof, see [Barwise and

Ethemendy 1995℄, that have mainly an eduational goal and are not geared towards proving

large mathematial theorems. However these systems are omparable sine they want to prevent

their users from erroneous reasoning.
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For example the language OpenMath [1998℄ is aiming at providing an intermediate

level between suh mathematial omputer appliations. Reahing even further is

the idea, laid down the QED-manifesto (see [Bundy 1994℄), of reating an ele-

troni library of ompletely formalized and heked mathematial results, that one

an refer to, browse through, use and extend. For this it is neessary that the proof-

assistants beome muh more user-friendly. This would �rst of all require a very

general and exible mathematial vernaular by means of whih ordinary mathe-

matiians an do the work of formalizing and interat with the library. We believe

that type theory an provide suh a language. As it stands, only the Mizar projet

(see [Mizar 1989℄) has reated and maintains a large olletion of mathematial

results. There is, however, no obvious way of transferring a result from the Mizar

theorem prover to another proof-assistant and also it is hard to �nd results in the

Mizar library.

2. Type-theoreti notions for proof heking

The type systems that are used as a foundational theory are inuened by several

people. We mention them here and name their important ontribution. Brouwer

and Heyting for intuitionisti logi; Russell for the notion of type and for the use

of higher order quanti�ation to de�ne logial operations; Gentzen and Prawitz

for natural dedution; Churh and Curry for typed lambda terms; Howard for the

propositions-as-types interpretation; de Bruijn for introduing dependent types and

for type onversion for Æ- and �-redution; Sott for indutive types; Martin-L�of

for the use of indutive types to de�ne the logial operations, thereby ompleting

the propositions-as-types interpretation, and for type onversion for iota-redution;

Girard for higher order type systems and their normalization; Coquand and Huet

for building a type system that inorporates all the previous notions.

Besides this we mention the following people. MCarthy [1962℄ for his idea of

proof heking, inluding symboli omputing. He did not, however, onsider repre-

senting proofs in natural dedution form, nor did he have the use of higher types for

making appropriate abstrations. De Bruijn for his vigorous plea for proof heking

and revitalizing type systems for this purpose. Martin-L�of for his emphasis on reli-

ability (by requiring a lear phenomenologial semantis) and onsequent proposal

to restrit to prediative type systems.

2.1. Proof heking mathematial statements

Mathematis is usually presented in an informal but preise way. One speaks about

`informal rigor'. A typial result in mathematis is presented in the following form.

In situation � we have A.

Proof. p:

Informal mathematis
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Here � is an informally desribed set of assumptions and A is an informally given

statement. Also the proof p is presented informally. In logi the statements �; A be-

ome formal objets and so does the notion of provability. Proofs still are presented

in an informal way, but theoretially they an be formalized as a derivation-tree

(following some preisely given set of rules).

� `

L

A

Proof. p:

Mathematis formalized in logi

It turns out that there are several natural ways to translate propositions as types

(for the moment one may think of these as `sets') and proofs as terms inhabiting

(`elements of') these types. The intuitive di�erene between sets and types is that

an objet an be in several di�erent sets, but only in one type. Moreover, a type is a

rather `simple' kind of set: whether a term is of a ertain type is usually deidable,

due to the fat that `being of a type' is a syntati riterion. In the ontext of type

theory, membership of a term a to the type A is denoted by a:A rather than a2A.

Writing the translation of proposition A as [A℄ and of a proof p as [p℄ one has

` A using proof p , ` [p℄ : [A℄;

and hene

A is provable , [A℄ is inhabited:

Therefore the formalization of mathematis in type theory beomes the following

(we do not write the [ ℄ but identify a proposition or proof with its translation).

� `

T

p : A

Mathematis formalized in type theory

Now all of �; A and p are formalized linguisti objets. The statement � `

T

p : A

is equivalent to

Type

�

(p) = A

Proof heking

Here, Type (�) is a funtion that �nds for p a type in the given ontext �. The

deidability of type-heking follows from:

� Type

�

(p) generates a type of p in ontext � or returns `false' (if p has no suh

type).

� The equality = is deidable.

The story is a little bit more ompliated. First there are several possible logis

(e.g. �rst or seond order logi; intuitionisti or lassial logi). This will give rise

to several type theories. Seondly the equality = in the last statement depends on

the type theory: it is a onversion relation generated from a spei� set of elementary

redutions.

In the pratie of an interative proof assistant based on type theory, the proof-

terms are generated interatively between the user and the proof development sys-

tem. The user types in so alled tatis, guiding the proof development system to
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onstrut a proof-term. At the end, this term is type heked and the type is om-

pared with the original goal. In onnetion to proof heking, deidability problems

that we an distinguish.

� `

T

M : A? TCP, Type Cheking Problem;

� `

T

M : ? TSP, Type Synthesis Problem;

� `

T

? : A TIP, Type Inhabitation Problem.

If we think of A as a formula andM as its proof, then the TCP asks to verify whether

an alleged proof M indeed proves A. TSP asks to verify whether the alleged proof M

is a proof at all. TIP asks to verify whether A is provable. It will be lear that TIP

is undeidable for any type theory that is of interest for formalizing mathematis

(i.e. for any T in whih enough �rst order prediate logi an be done). Whether

TCP and TSP are deidable depends in general on the rules of the type theory

and espeially on how muh type-information is added in the term M . In all of the

systems that we disuss, both TCP and TSP are deidable. Deidability of TCP

and TSP onforms with the intuition that, even though we may not be able to �nd

a proof of a given formula ourselves, we an reognize a proof if presented to us.

Software (like our proof development system) is a priori not reliable, so why

would one believe a system that says it has veri�ed a proof? This is a good question.

The pioneer of omputer veri�ed proofs, N.G. de Bruijn, has given a satisfatory

answer. We should take are that the verifying program (the type heker) is a

very small program; then this program an be veri�ed by hand, giving the highest

possible reliability to the proof heker. This is the so alled de Bruijn riterion.

A proof assistant satis�es the de Bruijn riterion if it generates `proof-

objets' (of some form) that an be heked by an `easy' algorithm.

In the late sixties de Bruijn made an impressive start with the tehnology of proof

heking. He designed formal systems for the eÆient representation of proofs al-

lowing a verifying algorithm that an be oded in 200 lines of imperative ode.

These systems were given the olletive name Automath, see [Nederpelt, Geuvers

and de Vrijer 1994℄ for an up to date survey. As to the point of reliability, de

Bruijn has remarked that one annot obtain absolute ertainty. There always an

be some kind of eletroni failure that makes a proof-assistant aept a wrong proof

(atually this is very unlikely; there is a bigger hane that a orret proof is not

aepted). But formalized proofs provide results with the highest possible reliability.

The reliability of mahine heked proofs an be summarized as follows.

Proof-objets may be large, possibly several Mb; but they are self-evident.

This means that a small program an verify them; the program just follows

whether loally the orret steps are being made.

We an summarize the type theoreti approah to interative theorem proving as

follows.
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provability of formula A = `inhabitation' of the type A

proof heking = type heking

interative theorem proving = interative onstrution of a term of

a given type.

So the deidability of type heking is at the ore of the type-theoreti approah to

theorem proving.

2.2. Propositions as types

It is possible to represent proofs in a di�erent and more eÆient way as formal

terms. The intuition behind this is inspired by intuitionisti (onstrutive) logi.

In this philosophy a proof of an impliation A � B is a method that transforms a

proof of A into a proof of B. A proof of A & B is a pair hp; qi suh that p is a proof

of A and q one of B. A proof of A _ B is a pair hb; pi, where b is either 0 or 1 and

if b = 0, then p is a proof of A; if b = 1 then p is a proof of B. There is no proof of

?, the false proposition. A proof of 8x2X:Ax is a method p that transforms every

element a2A into a proof of Aa. Finally a proof of 9x2X:Ax is a pair ha; pi suh

that a2A and p is a proof of Aa. Here, �;&;_;?;8 and 9 are the usual logial

onnetives and quanti�ers. Negation is de�ned as :A = A � ?.

The propositions as types interpretation intuitively an be de�ned as follows. A

sentene A is interpreted as [A℄, de�ned as the olletion of proofs of A. Then,

aording to the intuitionisti interpretation of the logial onnetives one has

[A � B℄ = [A℄! [B℄

[A & B℄ = [A℄� [B℄

[A _ B℄ = [A℄ [ [B℄

[?℄ = ;

[8x2X:Ax℄ = �x:X:[Ax℄

[9x2X:Ax℄ = �x:X:[Ax℄

The operations !;� and [ are respetively the formation of funtions spaes,

Cartesian produts and disjoint unions. Intuitively this means the following.

P ! Q = ff j 8p:P:f(p) : Qg;

P �Q = fhp; qi j p:P and q:Qg;

P [Q = fh0; pi j p:Pg [ fh1; qi j q:Qg:
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Furthermore, ; is the empty type. Finally, the (Cartesian) produt and sum of a

family fPxg

x:A

of types are intuitively de�ned as

�x:A:Px = ff :(A! [

x:A

Px) j 8x:A (fx : Px)g

�x:A:Px = f(x; p) j x:A and p:(Px)g:

Now, a statement A is provable if [A℄ is inhabited, i.e. if there is a p suh that p : A

holds in type theory.

2.3. Examples of proofs as terms

To get an idea of what proof-objets really look like and how type heking works,

we look at an example: we onstrut a proof-objet and type-hek it. This example

should be understandable without any further knowledge of the typing rules: some

basi `programmers' intuition of types should suÆe.

The �rst non-trivial example in prediate logi is the proposition that a binary

antisymmetri relation is irreexive.

Let X be a set and let R be a binary relation on X . Suppose

8x; y2X:Rxy � :Ryx:

Then 8x2X::Rxx.

We want to formalize this. In the type theory we have two universes , Set and

Prop. The idea is that a termX of type Set, notationX :Set, is a type that represents

a domain of the logi. (In logi one also speaks of sorts or just sets.) A term A:Prop,

is a type that represents a proposition of the logi, the idea being that A is identi�ed

with the type of its proofs. So A is provable if we an �nd a term p : A.

Based on this idea, a prediate on X(: Set) is represented by a term P : X!Prop.

This an be understood as follows.

t(:X) satis�es the prediate P i� the type Pt is inhabited,

i.e. there is a proof-term of type Pt. So the olletion of prediates over X is

represented as X!Prop and similarly, the olletion of binary relations over X is

represented as X!(X!Prop).

One of the basi operations of mathematis (even though it is not formally treated

in ordinary logi!) is de�ning. This is formally aptured in type theory via a kind

of `let' onstrution. Let us give some de�nitions.

Rel := �X :Set:X!(X!Prop);

AntiSym := �X :Set:�R:(RelX):8x; y:X:(Rxy) � ((Ryx) � ?);

Irre := �X :Set:�R:(RelX):8x:X:(Rxx) � ?:

These de�nitions are formal onstrutions in type theory with a omputational be-

havior, so-alled Æ-redution, by whih de�nitions are unfolded. Rel takes a domain
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X and returns the domain of binary relations on X :

(RelX) !

Æ

(�X :Set:X!(X!Prop))X

!

�

X!(X!Prop):

So by one de�nition unfolding and one �-step we �nd that (RelX) =

X!(X!Prop). Similarly, for X : Set and Q : X!(X!Prop),

(AntiSymXQ) = 8x; y:X:(Qxy) � ((Qyx) � ?);

(IrreXQ) = 8x:X:(Qxx) � ?:

The type of AntiSym is �X :Set:(X!(X!Prop))!Prop, the type of operators that,

given a set X and a binary relation over this X , return a proposition. Here we

enounter a dependent type, i.e. a type of funtions f where the range-set depends

on the input value. See the previous Setion for a set-theoreti understanding.

The formula 8x; y:X:(Qxy) � ((Qyx) � ?) is translated as the dependent funtion

type

�x; y:X:(Qxy)!((Qyx)!?):

(For now, we take? to be some �xed losed term of type Prop.) Given the (informal)

explanation of the �-type given before, we observe the following two rules for term-

onstrution related to the dependent funtions type.

� If F : �x:A:B and N : A, then FN : B[N=x℄, (B with N substituted for x).

� If M : B under the assumption x : A (where x may possibly our in M or B),

then �x:A:M : �x:A:B

Let's now try to prove that anti-symmetry implies irreexivity for binary relations

R. So, we try to �nd a proof-term of type

�X :Set:�R:(RelX)(AntiSymXR)!(IrreXR):

We laim that the term

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq

is a term of this type. We have enountered a TCP; the veri�ation of our laim is

performed by the type-heking algorithm. Most type-heking algorithms work as

follows:

1. First solve the TSP

(ompute a type C of the term

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq),

2. Then ompare the omputed type with the given type

(hek if C =

�Æ

�X :Set:�R:(RelX)(AntiSymXR)!(IrreXR)).

So a TCP is solved by solving a TSP and heking an equality. Note that this

method is only omplete if types are unique up to equality: if M has type A and

type B, then A =

�Æ

B. For the algorithm to terminate we must assure that TSP

and equality heking are deidable.

For our example we solve the TSP step by step; there are two main steps
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1. For a �-abstration �x:X:M , we �rst ompute the type of M , under the extra

ondition that x has type X . Say we �nd B as type for M . Then �x:X:M

reeives the type �x:X:B.

2. For an appliation FN , we �rst ompute the type of N . Say we �nd A as type

for N . Then we ompute the type of F , say C. Now we hek whether C redues

to a term of the form �x:D:B. If so, we hek if D =

�Æ

C. If this is the ase,

FN reeives the type B[N=x℄.

If a hek fails, we return `false', meaning that the term has no type.

For our example term �X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq,

we ompute the type

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):C;

with C the type of hxxqq under the onditions X :Set, R:(RelX), h:(AntiSymXR),

x:X and q:(Rxx). Now, h : (AntiSymXR), whih should be applied to x, of type

X . We redue (AntiSymXR) until we obtain �x; y:X:(Rxy)!((Ryx)!?). So, hx

reeives the type �y:X:(Rxy)!((Ryx)!?). The term hx has a �-type with the

right domain (X), so it an be applied to x, obtaining

hxx : (Rxx)!((Rxx)!?):

This again an be applied to q (twie), obtaining hxxqq : ?, so TSP �nds as type

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):?:

We easily verify that this type is �Æ-onvertible with the desired type and onlude

that indeed

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq :

�X :Set:�R:(RelX):(AntiSymXR)!(IrreXR):

By onvention, 8 and � will often be used as synonymous, and similarly � and !.

>From this example, one an get a rough idea of how type synthesis works:

the struture of the term ditates the form of the type that is synthesized. For

the type synthesis algorithm to terminate we need the onvertibility =

�Æ

to be

deidable. This is usually established by proving that �Æ-redution is Normalizing

(every term M �Æ-redues to a normal form) and Conuent (if M �Æ-redues to

both P

1

and P

2

, then there is a Q suh that both P

1

and P

2

�Æ-redue to Q).

Then the question \M=

�Æ

N?" an be deided by reduing both M and N to

normal form and omparing these terms lexially. It should be pointed out here

that omparing normal forms is often a very ineÆient proedure for heking

onvertibility. (See [Coquand 1991℄ for a di�erent approah to heking onversion

in a dependent type theory.) Therefore, the onvertibility heking algorithm will

redue only if neessary. (There is always a `worst ase' where we really have to go all

the way to the normal forms.) In partiular, this means that de�nitions are unfolded

as little as possible: although the real omplexity of =

�Æ

is in the �-redutions,
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the de�nitions `hide' most of the �-redexes. This an be seen from the fat that

proof-terms are almost always in �-normal form (but ertainly not in Æ-normal

form). See [COQ 1999℄ and [van Benthem Jutting, MKinna and Pollak 1994℄

for more information on type-heking and heking onvertibility in dependent

type theories. In Setion 3.2 we disuss in detail a type-heking algorithm for one

spei� type system.

2.4. Intermezzo: Logial frameworks

What has been desribed in the previous two Setions is sometimes alled the di-

ret enoding of logi in type theory. The logial onstrutions (onnetives) eah

have a ounterpart in the type theory, impliation, for example, is mirrored by the

arrow type in type theory. Moreover, the elimination and introdution rules for a

onnetive also have their ounterpart in type theory (�-abstration mirrors impli-

ation introdution and appliation mirrors impliation elimination). In the rest of

this paper we restrit ourselves to this diret enoding. There is, however, a se-

ond way of interpreting logi in type theory, whih is alled the logial frameworks

enoding or also the shallow enoding. As the name already indiates, the type

theory is then used as a logial framework, a meta system for enoding a spei�

logi one wants to work with. The enoding of a logi L is done by hoosing an

appropriate ontext �

L

, in whih the language of L (inluding the onnetives)

and the proof rules are delared. This ontext is usually alled a signature. In the

diret enoding, a ontext is used for delaring variables (e.g. delaring that the

variable x is of domain A) or for making assumptions (by delaring z : ', for '

a proposition, we assume '). In logial frameworks, the ontext is used also to

`delare' the logi itself. One of the reasons that (even rather simple) type systems

provide a very powerful logial framework is that type theory is very aurate in

dealing with variables (binding, substitution, �-onversion). Hene, when enoding

a logi, all issues dealing with variables an be left to the type theory: the logial

framework is used as the underlying alulus for substitution and binding. How

this works preisely is illustrated by three small examples. For further details on

logial frameworks we refer to [Pfenning 2001℄ (Chapter 17 of this Handbook) or to

[Harper, Honsell and Plotkin 1993, Pfenning 1991, de Bruijn 1980℄. It should also

be remarked here that, even though we do not treat the tehnial details of logial

frameworks based on type theory and the enoding of logis in them, muh of our

disussions also apply to these type systems, notably the issue of type heking. We

now reapitulate the main di�erenes between the two enodings.

Diret enoding Shallow enoding

One type system � One logi One type system � Many logis

Logial rules � type theoreti rules Logial rules � Context delarations

The enoding of logis in a logial framework based on type theory will be shown

by giving three examples
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1. The f�g-fragment of minimal propositional logi,

2. The f�;8g-fragment of minimal prediate logi,

3. The untyped �-alulus.

Minimal propositional logi

The formulas are built up from atomi ones using impliation (�) as only logial

operator. In order to translate propositions as types, one postulates the `signature':

prop : type (2.1)

imp : prop!prop!prop (2.2)

Now de�ne the enoding of propositions [�℄ as follows.

[A � B℄ = imp[A℄[B℄:

Then one has for example [A � A℄ = imp[A℄[A℄ and [A � A � B℄ =

imp[A℄(imp[A℄[B℄). The type prop an be seen as the type of `names' of propositions:

a term of type prop is not a proposition itself, beause it an not be inhabited (i.e.

proved), as it is not a type. In order to state that e.g. [A � A℄ is valid, one intodues

the following map:

T : prop!type: (2.3)

The intended meaning of Tp is `the olletion (type) of proofs of p', so T maps a

`name' of a proposition to the type of its proofs. Therefore it is natural to interpret

`p is valid' by `Tp is inhabited'. In order to show now that tautologies like A � A

are valid in this sense (after translation), one postulates

imp intr : �p; q : prop:(Tp!Tq)!T(imp p q); (2.4)

imp el : �p; q : prop:T(imp p q)!Tp!Tq: (2.5)

Then indeed the translation of e.g. A � A, whih is imp[A℄[A℄, beomes valid:

imp intr[A℄[A℄(�x:T[A℄:x) : T(imp[A℄[A℄);

sine learly (�x:T[A℄:x) : (T[A℄!T[A℄). Similarly one an onstrut proofs for

other tautologies (e.g. (A � A � B) � A � B. In fat one an show by an easy

indution on derivations in the logi L that

`

PROP

A ) �

PROP

; a

1

:prop; : : : ; a

n

:prop ` p : T[A℄; for some p:

Here fa

;

: : : ; a

n

g is the set of basi proposition symbols in A and �

PROP

is the

signature of our minimal propositional logi PROP, i.e. the set of delarations (1-5).

Property (6) is alled adequay or soundness of the enoding. The onverse of it,

faithfulness (or ompleteness), is also valid, but more involved to prove.
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Minimal prediate logi

We onsider the f�;8g-fragment of (one-sorted) prediate logi. Suppose we have

a logial signature with one onstant, one unary funtion and one binary relation.

This amounts to the following (�rst part of the) type theoreti signature.

prop : type; (2.6)

A : type; (2.7)

 : A; (2.8)

f : A!A; (2.9)

R : A!A!prop; (2.10)

imp : prop!prop!prop; (2.11)

imp intr : �p; q : prop:(Tp!Tq)!T(imp p q); (2.12)

imp el : �p; q : prop:T(imp p q)!Tp!Tq: (2.13)

This overs the language and the impliational part (opied from the logi PROP).

Now one has to enode 8, whih is done by observing that 8 takes a funtion from

A to prop, 8 : (A!prop)!prop. The introdution and elimination rules for 8 are

then remarkably straightforward.

forall : (A!prop)!prop; (2.14)

forall intr : �P :A!prop:(�x:A:T(Px))!T(forallP ); (2.15)

forall elim : �P :A!prop:T(forallP )!�x:A:T(Px): (2.16)

Now we translate universal quanti�ation as follows.

[8x:A:Px℄ = forall(�x:A:[Px℄):

The proof of an impliation like

8z:A(8x; y:A:Rxy) � Rzz

is now mirrored by the proof-term

forall intr[ ℄(�z:A:imp intr[ ℄[ ℄(�h:T([8x; y:A:Rxy℄):forall elim[ ℄(forall elim[ ℄hz)));

where we have replaed { for readability { the instantiations of the �-type by [ ℄.

This term is of type

forall(�z:A:imp(forall(�x:A:(forall(�y:A:Rxy))))(Rzz)):

Again one an prove adequay

`

PRED

' ) �

PRED

; x

1

:A; : : : ; x

n

:A ` p : T ['℄; for some p;

where fx

1

; : : : ; x

n

g is the set of free variables in ' and �

PRED

is the signature

onsisting of the delarations (6{16). Faithfulness an be proved as well.
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Untyped �-alulus

Perhaps more unexpeted is that untyped �-alulus an be modeled in a rather

simple type theory (the same as for PRED and PROP). The needed signature

�

lambda

now is

D : type; (2.17)

app : D!(D!D); (2.18)

abs : (D!D)!D: (2.19)

Now every variable x in the �-alulus is represented by the variable x : D in the

type system. The translation of untyped �-terms is de�ned as follows.

[x℄ = x;

[PQ℄ = app [P ℄ [Q℄;

[�x:P ℄ = abs (�x:D:[P ℄):

We now have to express that e.g. (�x:x)y = y, and then we have to prove that this

equality is valid. As to the statement of equalities, one delares a term

eq:D!D!type: (2.20)

The �-alulus equation P = Q is now translated as the type eq [P ℄ [Q℄. The

validity of this equation is by de�nition equivalent to the inhabitation of this type.

In order to ensure this we need the following axioms.

re : �x:D:eq x x; (2.21)

sym : �x; y:D:eq x y!eq y x; (2.22)

trans : �x; y; z:D:eq x y!eq y z!eq x z; (2.23)

mon : �x; x

0

; z; z

0

:D:eqxx

0

!eqzz

0

!eq(app z x)(app z

0

x

0

); (2.24)

xi : �F;G:D!D:(�x:D:eq(Fx)(Gx))!eq(abs F )(abs G); (2.25)

beta : �F :D!D:�x:D:eq(app(abs F )x)(Fx): (2.26)

Now one an proof the adequay

P =

�

Q ) �

lambda

; x

1

:D; : : : ; x

n

:D ` p : eq [P ℄ [Q℄; for some p:

Here, x

1

; : : : ; x

n

is the list of free variables in PQ and �

lambda

is the signature for

untyped �-alulus, onsisting of delarations (17{26). Again the opposite implia-

tion, faithfulness, also holds.

The three examples show that using type theories as logial framework is exible,

but somewhat tiresome. Everything has to be spelled out. Of ourse, in a onrete

implementation this an be overome by having some of the arguments inferred

automatially. Note that for eah formalization the faithfulness has to be proved

separately.
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2.5. Funtions: algorithms versus graphs

In type theory there is a type of funtions A!B, forA and B types. Whih funtions

there are depends on the derivation rules that tell us how to onstrut funtions.

Usually (ertainly for the systems in this paper) we see three ways of onstruting

funtions.

� Axiomatially delare f : A!B for a new symbol f .

� Given that M : B in a ontext ontaining x : A (and no other dependenies on

x in the ontext), we onstrut, using the �-rule,

�x:A:M : A!B:

� Via primitive reursion: given b : B and f : nat!B!B we an onstrut

Re b f : nat!B:

These funtions also ompute: there are redution rules assoiated to them, the �

and � rules:

(�x:A:M)N !

�

M [N=x℄;

Re b f 0 ! � b;

Re b f (S

+

x) ! � f x (Re b f x):

So, terms of type A!B denote algorithms, whose operational semantis is given by

the redution rules. In this view we an see a delaration f : A!B as an `unknown'

algorithm.

At the same time the set-theoreti onept of a funtion as a graph is also present

in type theory. If R : A!B!Prop (R is a binary relation over A and B) and we

have a proof-term of type 8x:A:9!y:B:Rxy, then we an of ourse view this R as

a funtion (graph) in the set-theoreti way. Note, however, that we have no way

of really talking about the `R-image' of a given a : A, beause we an't give it

a name (like f(a)). In terms of formal logi, the only way to use it is under an

9-elimination, where we have given the y a name { loally { and we know it to be

unique. So the set-theoreti onept of `funtion' doesn't give us an algorithm that

omputes. To remedy this situation one an add a onstant { Churh [1940℄ uses

the � for this { that extrats a `witness' from a prediate. In Churh's higher order

logi, if P is a prediate over A (i.e. P : A!Prop in type-theoretial terms), then

�P : A and there is an axiom saying 8P :A!Prop(9!x:A:Px) ! P (�P ). So, if there

is a unique element for whih P holds, then �P denotes this element, otherwise �P is

an arbitrary unspei�ed element. Obviously, the latter aspet of the � is not so nie,

espeially in a system with indutive types like nat, where we now will enounter

losed terms of type nat (e.g. �(� 0)) that are not in onstrutor form, i.e. equal to

S

n

0 for some n2IN.

In onstrutive systems, there is a di�erent way to obtain a `witness' from a proof

of an existential statement: if 8x:A9y:B:Rxy holds onstrutively, then there is a
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funtion (algorithm) that omputes the y from the x. (This ould almost be taken

as a de�nition of what it means for a logi to be onstrutive.)

If p is a losed proof-term of type 8x:A9y:B:Rxy, then p ontains a term

f :A!B and a proof-term of type 8x:A:Rx(fx).

Note that this is a meta-theoreti property of onstrutive systems: there is not

(neessarily) a funtion inside the system that extrats the f :A!B from the proof-

term p. In some systems, most notably the onstrutive type theories of Martin-L�of

([Martin-L�of 1984℄, [Nordstr�om et al. 1990℄), this property has been internalised

by interpreting an existential fomula 9y:B:' as a �-type �y:B:', onsisting of

pairs hb; qi with b : B and q : '[b=x℄. So, the only way to onstrut a term of

the �-type �y:B:' is by giving a b : B for whih '[b=x℄ holds. From a term t :

�y:B:', one an extrat the two omponents by projetions: �

1

t : B and �

2

t :

'[�

1

t=x℄. These are the �-introdution and the �-elimination rules, respetively.

This implies that from a proof-term p : 8x:A9y:B:Rxy, we an immediately extrat

the funtion f : A!B de�ned by �x:A:�

1

(px) and we an prove for this f that

8x:A:Rx(fx) holds. (The proof-term is �x:A:�

2

(px).) The extrated funtion also

has a proper omputational behavior: a losed proof-term p : 8x:A9y:B:Rxy has

the form �x:A:ht; qi; the funtion extrated from this p is (indeed) �x:A:t.

The internalisation of the (onstrutive) existene property via a �-type may

seem a neat way to solve the problem of `funtional-relations-not-being-funtions'.

However, every advantage has its disadvantage, in this ase that we loose the imme-

diate onnetion between type theory and logi. The reason is that with the �-type

we an onstrut objets that depend on proofs, a feature alien to ordinary logi.

The simplest example is where we have a proof p of �x:nat:A, from whih we get

the objet �

1

p : nat. Ordinary logi is built up in stages, where

� in the �rst stage one de�nes what the domains and the terms of the domains

are;

� in the seond stage one de�nes the formulas (or one singles out the formulas

from the olletion of terms);

� in the third stage one de�nes what a proof is.

This built-up makes it impossible for objets to depend on proofs, for the simple

reason that the objets were already there before we even thought about proofs.

Note that Churh' approah, using the � operator, onforms with the oneption

of ordinary logi that we have just skethed: the objet �P does not depend on

the proof of 9!y:A:Px, but only on the objet P . Choosing a type theory in whih

objets do not depend on proofs has some lear advantages if we want to explain

and understand the system in terms of ordinary logi. We ome bak to this later in

2.9. Here we just remark that if a type theory is to be used as a basis for a theorem

prover, a lear onnetion to some well-known standard logi is desirable.

We onlude that, if we look at funtions in type theory, there is a lear dis-

tintion between algorithms (f : A!B) and graphs (R : A!B!Prop suh that

8x:A:9!y(Rxy) holds). Even if we allow to extrat from a proof of 8x:A:9!y(Rxy) an

f : A!B, there is still a lear distintion: the proof is not the same as the funtion.
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2.6. Subjet Redution

The property of Subjet Redution (SR) an be seen as the `sine qua non' of type

theory. It states that the set of typed terms of a given type A is losed under

redution. More formally: if M : A and M !! N , then N : A. For A representing a

data type, we an understand this as saying that A is losed under evaluation. The

rules for evaluation are �, Æ and � that we have already enountered. We illustrate

the use of redution by an example.

Suppose we have as de�nition plus := �x; y:nat:Re x(�z:nat:S

+

)y: Then the

`value' of the expression plus 1 0 is omputed by �rst unfolding the plus (one Æ-

redution step), then performing two �-steps and then one �-step, to obtain 1. The

Subjet Redution property says that all expressions in this omputation are of

type nat.

In a proof-term, redution aptures the well-known proof-theoretial notion of

ut-elimination. A ut in a proof is a situation where an introdution rule (I) for

a onnetive is immediately followed by an elimination rule (E) for that onne-

tive. It is then possible to make a `shortut', eliminating the onseutive applia-

tion of the (I) rule and the (E) rule. (Note that this may not always make the

proof literally shorter.) Suppose we have the proof-term �h:A!A!B:�z:A:hzz :

(A!A!B)!(A!B), orresponding to the standard natural dedution proof of

this fat, ending with an introdution rule. Now, if we also have a proof q : A!A!B

we an eliminate the impliation obtaining (�h:A!A!B:�z:A:hzz)q : A!B. If we

do one �-step we eliminate the ut obtaining the proof-term �z:A:qzz : A!B. So,

for proof-terms,

the Subjet Redution property states that ut-elimination is orret in

the sense that if p is a proof of A and we obtain p

0

by eliminating some

uts from p, then also p

0

is a proof of A.

In pratie, we seldom wish to perform �-redution on proof-terms: one we have

proved a result (i.e. we have onstruted a term p : A), we are mainly interested in

its statement (the type A) and the fat that there is some proof (inhabitant) of it.

The proof is only inspeted if we want to study its struture (e.g. to try to reuse it

for proving similar statements). The atual situation is that one we have proved

a lemma, say we have onstruted �h:A!A!B:�z:A:hzz : (A!A!B)!(A!B)

as above, we will save this lemma under a name, say lemma

1

, and we will only

refer to this `name' lemma

1

. In type theory, what happens is that we introdue a

de�nition lemma

1

:= �h:A!A!B:�z:A:hzz and we use lemma

1

as a onstant of

type (A!A!B)!(A!B). It is a de�ned onstant, but in implementations it will

be opaque, meaning that it will never be unfolded by Æ.

2.7. Conversion and Computation

We have already enountered three notions of omputation: �-, �- and Æ-redution.

For most type theories these redution relations together are onuent and normal-
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izing, yielding a deidable onversion relation =

��Æ

on the set of well-typed terms.

This deidability also makes the type heking algorithm work, see Setion 2.1. We

will look more losely at the use of onversion.

Suppose again we have the de�nition of plus as given above and we want to

prove 2 > 0 from p : 8x; y; z:nat:(x > (plusyz)) ! (x > z) and q : 2 > 1. Now

p 2 1 0 : (2 > (plus 1 0)) ! (2 > 0) and we want to apply this proof to q to obtain

the proof-term p 2 1 0 q : (2 > 0). The appliation an only work if we �rst redue

the type (2 > (plus 1 0)) ! (2 > 0) to (2 > 1) ! (2 > 0), whih is done by one

Æ-redution (unfolding the de�nition of plus), two �-steps and a �-step. We an

depit this in a dedution as follows.

p : 8x; y; z:nat:(x > (plusyz))! (x > z)

===============================

p 2 1 0 : (2 > (plus 1 0))! (2 > 0)

(onv)

p 2 1 0 : (2 > 1)! (2 > 0) q : (2 > 1)

p 2 1 0 q : (2 > 0)

Here we see an appliation of the onversion rule:

(onv)

M : '  : Prop

M :  

if ' =

��Æ

 

In the example above, M is p 2 1 0, ' is (2 > (plus 1 0)) ! (2 > 0) and  is

(2 > 1) ! (2 > 0). The proof-term M is left unhanged under the transition

from ' to  . This poses no problem for the type heking algorithm, beause the

onversion =

��Æ

is deidable. (So, if we are given a term M and we want to hek

whether M is of type  we only have to hek whether M has a type and if so,

verify whether it's onvertible with  .) In ase the equality in the side-ondition

to the onversion rule is not deidable (whih is the situation in the type theory

of Nuprl, [Constable et al. 1986℄), the onversion from type ' to  would have to

leave a `trae' in the term M in order to make type heking deidable. (The trae

ould be the redution sequene from ' to  .) One ould also leave a trae of the

onversion in order to help the type heking algorithm, but this is usually not

done: it makes proof-terms unneessarily ompliated. Moreover we want to follow

the so-alled Poinar�e priniple, whih an be stated intuitively as follows.

There is a distintion between omputations and proofs and omputations

do not require a proof.

This implies, for example, that the equality of plus 1 0 and 1 does not require a

proof: plus 1 0 and 1 are omputationally equal, so plus 1 0 = 1 follows trivially

(from the reexivity of =). The power of the Poinar�e priniple depends on the

expressivity of the type theory in terms of algorithms that an be written. Imagine

the situation where we have a lass of formulas that an be enoded syntatially in

our type system. That is, we have a (indutive) type `Class-of-Form' together with

a `deoding funtion' De : Class-of-Form!Prop suh that every formula T : Prop
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in our lass has a syntati representation t : Class-of-Form with De t =

��Æ

T .

Suppose that we an write a deision algorithm in our type system, i.e. we have

a term Chek : Class-of-Form!Prop suh that if Chek t =

��Æ

>, then t enodes a

provable formula from our lass. (> is the proposition with one unique proof, true.)

In more preise type-theoreti terms: suppose we have a proof-term ok with

ok : 8t:Class-of-Form:(Chek t)! (De t):

Then, to prove that a formula T : Prop from our lass is provable, we only have to

�nd its enoding t : Class-of-Form and then

ok t true : T:

if T is indeed provable (inhabited), whih an be veri�ed by the type heker. In this

example, the main task of the type heker is to exeute the algorithm Chek. This

use of the Poinar�e priniple shows how automated theorem proving an be done

(safely) inside type theory. This tehnique is usually alled reetion (reeting

(part of) the language in itself). The origins date bak to Howe [1988℄. It has

been used suesfully in the Coq system to write a tati for deiding equality in

ring-strutures. See also [Barthe, Ruys and Barendregt 1996℄ { where it is alled

the `two-level approah' { and [Oostdijk and Geuvers 2001℄. To get really fast

automated theorem proving, it is advisable to use a speial purpose automated

theorem prover, whih has the extra adavantage that one doesn't have to program

(and prove orret!) the deision proedures oneself. If one uses reetion (and the

Poinar�e priniple) one obtains a medium fast desision proedure but very reliable

proof-terms, whih an be heked independently.

2.8. Equality

Note that we have not inluded �-redution in the onversion rule, but just �, Æ

and �. This may seem remarkable, beause for the untyped �-alulus, many nie

results of �-redution (like onuene) extend to ��. This is however not the ase

for typed �-alulus. The snag lies in the fat that our typed terms have a type

attahed to the bound variable in the �-abstration (�x:A:M). This information

is ruial for the type heking algorithm (without it, type heking in dependent

type theory is undeidable [Dowek 1993℄), but it ompliates the ombination of �

and �. For example onsider �x:A:(�y:B:y)x,

�x:A:(�y:B:y)x !

�

�x:A:x

�x:A:(�y:B:y)x !

�

�y:B:y

The terms on the right hand side have a ommon redut only if A and B do.

This ompliation of � was already known to the Automath ommunity [Nederpelt

1973℄; Conuene and Normalization for types systems from the Automath family

was proved by Daalen [1980℄. For a study and proof of the general situation see
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[Geuvers 1992℄, [Geuvers 1993℄. For a study of type theory with �-terms without

types attahed to the bound variables, see [Barthe and S�rensen 2000℄, where it is

shown that the type heking (notably its undeidability) is not ompletely hopeless.

In [Magnusson 1994℄, an implementation of a proof assistant based on suh a type

theory (without types attahed to the bound variables) is desribed.

There are several other ways of extending the equality in the onversion rule.

A prominent example is the extensional equality on funtions. In mathematis, if

f; g : A!B, the f and g would be onsidered to be equal if they have the same

graph, i.e. f = g i� 8x:A(f x = g x). If we want to view the funtions not so muh

as algorithms, but more abstratly as graphs, the inlusion of extensional equality

in the onvertibility (as side ondition in the onversion rule) would be very natural.

If we want to do this, it is required that we introdue an equality judgment of the

form

� `M = N : A:

Before disussing extensionality further, we �rst fous on the di�erent notions of

equality.

Equality as a judgment or as a type

As rules for deriving an equality judgment we would have �, Æ and � plus the normal

rules for making it an equivalene relation (reexivity, symmetry, transitivity) plus

rules for making the equality ompatible with the term-onstrutions. For example,

we would have

(�)

� ` �x:A:M : �x:C:B � ` N : C

� ` (�x:A:M)N =M [N=x℄ : B[N=x℄

(Æ)

�

1

;  :=M : A;�

2

`  : B

� `  =M : B

(re)

� `M : B

� `M =M : B

(trans)

� `M = N : B � ` N = P : B

� `M = P : B

(app-omp)

� `M = N : �x:A:B � ` P = Q : A

� `MP = NQ : B[P=x℄

(abs-omp)

�; x:A `M = N : B � ` A = C : D

� ` �x:A:M = �x:D:N : �x:A:B

The onversion rule then takes the following form

(onv)

� `M : A � ` A = B

� `M : B
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The addition of extensionality would amount to the rule

(ext)

� `M;N : A!B � ` p : �x:A:(Mx = Nx)

� `M = N : A!B

In the (ext) rule, the equality in the premise (=

B

)is an equality that an be proved;

we ould all it a logial equality, but in type-theory it is usually alled book equality,

as it is thought of as the user-de�ned equality in `the book'. (In Automath systems,

the notion `book' has a very preise formal meaning; it orresponds roughly to

the user-de�ned ontext that represents some spei� theory.) The equality in the

onlusion of the (ext) rule is the `internal equality' of the type system, usually

alled the de�nitional equality. This de�nitional equality an be represented by

a judgment itself (as above), but often it is represented as a `onvertibility side

ondition', like in 2.7. In the latter ase, the onvertibility A =

�Æ�

B is understood

as an equality on a set of `pseudo terms', inluding the well-typed ones. Let us

summarize the di�erent equalities.

1. De�nitional equality. The `underlying equality' of the type system. Captures �,

Æ and, if present, also �. Can be judgemental (i.e. built into the formal system)

or a onvertibility side ondition.

2. Book equality. The `equality provable' inside the type system. If M =

A

N is

a book equality, then it is a type (M =

A

N : Prop for M;N : A) and we an

try to �nd a proof-term inhabiting it (p : M =

A

N). Suh an equality an be

de�ned by the user.

Book equality omes in various avours, depending not only on the user's hoie,

but also on the type theory, beause most type theories (and ertainly their im-

plementations) have a `built-in' or `preferred' equality. We give a short overview of

some options. First of all, we want the following from a book-equality.

� The equality should be an equivalene relation on the arrier type: for A : Set,

=

A

: A!(A!Prop) should be an equivalene relation.

� Substitution property. We want to replae `equal terms in a proposition'. In

type theoretial terminology, we want the following rule to be derivable (for

some term onstrution S( ; )).

� ` N : A(t) � ` e : t =

A

q

� ` S(N; e) : A(q)

To ahieve this we distinguish the following three treatments of equality.

1. Leibniz equality, de�ned in higher order logi. We want to say (following Leib-

niz) that t =

A

q if for all prediates P over A, P holds for t i� P holds for q.

In type theory:

t =

A

q := �P :A!Prop(P t)!(P q):

Note that this equality looks asymmetri; however, it an be shown that =

A

is

symmetri.
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2. Indutively de�ned equality. Equality =

A

: A!(A!Prop) is the `smallest' re-

exive relation on A, i.e. the `smallest' relation R on A for whih 8x:(R x x)

holds. In type theoreti syntax this would look like

Indutive Eq

A

: A!A!Prop :=

Re : �x:A:(Eq x x):

This spei� form of de�nition, to be treated in more detail in Setion 3.8, says

that Re is the only onstrutor for the indutively de�ned relation Eq. This is

made preise by an indution priniple that omes along with this de�nition.

3. Speial type with speial rules, roughly reeting the indutivity of =

A

, as in 2.

In Martin-L�of's type theory (see [Martin-L�of 1984℄, [Nordstr�om et al. 1990℄),

equality is taken as a basi type onstrutor:

� ` A : Set

�; x; y:A ` (Id

A

x y) : Set

� `M : A

� ` (Re

A

M) : (Id

A

MM)

We don't give the full elimination (indution) priniple, but only one of its

instanes:

� ` P : A!Set � ` q : (Pa) � ` e : (Id

A

ab)

� ` (idre qe) : (Pb)

Note that in the third approah, the identity type (Id

A

ab) is of type Set, and not of

type Prop. This is not a peuliar aspet of Martin-L�of's approah to equality, but

a onsequene of his approah to logi in general: there is no distintion between

sets and propositions; both `live' in the universe Set (and hene there is no universe

Prop).

There are some lear di�erenes, e.g. Leibniz equality requires imprediativity to

be de�nable, while the indutively de�ned equality requires indutive types. How-

ever, eah of these approahes to equality yields an equivalene relation for whih

the substitution property holds. Let us disuss one example where the di�erent

equalities diverge. Suppose we have de�ned (indutively) a map Fin : nat!Set suh

that (Finn) represents the n-element type. Then one would like (Finn) and (Finm)

to be isomorphi if n and m are equal. So we want (at least) the following to be

derivable (for some some term onstrution E( ; )).

� ` t : (Finn) � ` e : n =

nat

m

� ` E(t; e) : (Finm)

For Leibniz equality ((1) above), we an not onstrut suh a term E(t; e), beause

it allows elimination `over Prop' only. For the indutive equality, it depends on the

elimination rules that are allowed in the type system (e.g. the type system of COQ

[1999℄ does not allow it). For Martin-L�of's type theory, the above rule is obviously

derivable, beause Prop and Set are the same universe, and one an eliminate over

it.
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Extensionality versus intensionality

The de�nitional equality an be intensional or extensional. In the �rst ase, we

do not have a derivation rule (ext), and hene equality of funtions is equality of

algorithms. In the seond ase, we have a derivation rule (ext), and hene equality

of funtions is equality of graphs.

It follows from our disussion of TCP and TIP in 2.2 that the addition of the

rule (ext) renders TCP undeidable. Viz. suppose H : (A!B)!Prop and we know

x : (H f); then x : (H g) i� there is a term of type �x:A:f x = g x. So for this

TCP to be solvable, we need to solve a TIP.

The �rst type systems by Martin-L�of (see [Martin-L�of 1984℄) were extensional.

Later he rejeted extensionality, beause of the implied undeidability of type hek-

ing. The interative theorem prover Nuprl of Constable et al. [1986℄ is based on

extensional type theory. It is lear that from a more lassial view on mathematis

(identifying funtions with graphs in set-theoreti way), extensionality is very de-

sirable. Reently, work has been done (mainly by Hofmann [1994℄) showing how to

enode (or explain) extensional equality in an intensional type theory. The idea is

to translate an extensional type to a pair onsisting of an intensional type and an

equivalene relation on it. Here, the equivalene realtion is a user-de�ned (book)

equality, built up aording to the type onstrutions from basi equalities, whih

are the indutively de�ned one for indutive types and an axiomatially delared

one for basi variable types.

Setoids

A pair [A;=℄ with A : Set, = : A!(A!Prop) suh that = is an equivalene rela-

tion on A is alled a setoid. In the translation of extensional types to setoids (in

intensional type theory) one has to also translate ompound types, like A!B and

�x:A:B, this amounts to de�ning the funtion spae and the dependent funtion

spae between setoids. To give the idea we treat the funtion spae here. Given two

setoids [A;=

A

℄ and [B;=

B

℄, we de�ne the funtion spae setoid [A

s

!B;=

A

s

!B

℄ by

A

s

!B := �f :A!B:(�x; y:A:(x =

A

y)!((f x) =

B

(f y)));

f =

A

s

!B

g := �x:A:(�

1

f x) =

B

(�

1

g x):

Note that, f =

A

s

!B

g is equivalent to �x; y:A:(x =

A

y)!(�

1

f x) =

B

(�

1

g x),

beause we require f and g to preserve =

A

. Given A with equality =

A

and B with

equality =

B

, this is the `anonial equality' on A!B. Note that the arrier set A

s

!B

is not just A!B, but the `subset' of those f : A!B that respet the equalities R

A

and =

B

. Suh an f is also alled a setoid funtion from [A;=

A

℄ to [B;=

B

℄. In type

theory, suh a subset (of setoid funtions) is represented by a �-type, onsisting of

pairs hf; p; i with (in this ase) f : A!B, p : �x; y:A:(x =

A

y)!((f x) =

B

(f y)).

The equivalene relation =

A

s

!B

ignores the proof-terms, so hf; pi =

A

s

!B

hf; qi holds

for all elements of the arrier set A

s

!B.

The anonial equality on A!B is the extensional equality of funtions. There-

fore, the interpretation of extensional type theory in intensional type theory is
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sound. (Of ourse, the other type onstrutions still have to be veri�ed; see

[Hofmann 1994℄ for details.) It has been observed that setoids present a general

and pratial way of dealing with extensional equality and with mathematial on-

strutions in general. If, in mathematis one speaks informally of a `set', we enode

this in type theory by a `setoid'. To show the exibility we show how a quotient

and a subset an be represented using setoids.

Given a setoid [A;=

A

℄ and an equivalene relation Q over this setoid, we de�ne

the quotient-setoid [A;=

A

℄=Q. Note that the fat that Q is an equivalene relation

over the setoid [A;=

A

℄ means that

� Q : A!(A!Prop) is an equivalene relation,

� =

A

� Q, i.e. 8x; y:A:(x =

A

y)!(Q x y).

We de�ne the quotient setoid [A;=

A

℄=Q simply as [A;Q℄. It is an easy exerise

to show how a setoid funtion f from [A;=

A

℄ to [B;=

B

℄ that respets Q (i.e.

8x; y:A:(Q x y)!((f x) =

B

(f y))) indues a setoid funtion from [A;=

A

℄=Q to

[B;=

B

℄.

Given a setoid [A;=

A

℄ and a prediate P on A, we de�ne the sub-setoid [A;=

A

℄jP

as the pair [�x:A:(P x);=

A

jP ℄, where =

A

jP is =

A

restrited to P , i.e. for q; r :

�x:A:(P x),

q (=

A

jP ) r := (�

1

q) =

A

(�

1

r):

In de�ning a subsetoid, we do not require the prediate P to respet the equality

=

A

. (That is, we do not require 8x; y:A(x = y ^ Px)!Py to hold.) So, in taking a

subsetoid we may remove elements from the =-equivalene lasses. This is natural,

beause we are not interested in the elements of A, but in the =-equivalene lasses.

Consider the following example where this appears rather naturally. Let A := int�

nat be the type of pairs of an integer and a natural number. To represent the

rationals we de�ne, for hx; pi; hy; qi:A,

hx; pi =

A

hy; qi := x(q + 1) = y(p+ 1):

Now onsider the prediate P on A de�ned by

P hx; pi := gd(x; p+ 1) = 1:

The subsetoid [A;=

A

℄jP is isomorphi to [A;=

A

℄ itself, but all equivalene lasses

have been redued to a one element set.

Subtypes and oerions

When using setoids to formalize the notion of set, one enounters a typing problem.

Suppose we have the setoid [A;=

A

℄. Now, A : Set, but the setoid [A;=

A

℄ is not of

type Set, but of type �A:Set:A!(A!Prop) Hene we an not delare a variable

x : [A;=

A

℄ (beause we an only delare a variable x : B if B : Set or B : Prop).

Similarly, if a : A, then a is not of type [A;=

A

℄.

As a matter of fat, a setoid onsists of a triple

[A;=

A

; eq rel proof℄ : �A:Set:�R:A!(A!Prop):(Is eq rel AR);
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where eq rel proof is a proof of (Is eq rel AR), stating that =

A

is an equivalene

relation over A. If we formalize the type of equivalene relations over a �xed A as

Eq Rel

A

:= �R:A!(A!Prop):(Is eq rel AR);

then, if R : Eq Rel

A

and a; a

0

: A, one would like to write Raa

0

, but this is not a

proposition. (The R is really a pair onsisting of a binary relation and a proof.)

If we look at the formalization of subsets as subsetoids, we enounter a similar

problem. If [A;=

A

℄jP is a subsetoid of [A;=

A

℄, then an `element' of this subsetoid

is given by a pair ha; pi, where a : A and p : Pa, but this is not an `element' of

[A;=

A

℄. Indeed, if F : A!B and x : [A;=

A

℄jP , we an not write Fx, as x itself is

not of type A.

The problem lies in the fat that our terms are very expliit, whereas we would

like to be more impliit. This situation is also enountered in mathematis, where

one de�nes, for example a `group' as a tuple A = hA; Æ; inv; ei, where A is a set,

Æ a binary operation, inv a unary operation and e an element of A, satisfying the

group axioms. Then one speaks of `elements of the group A', where one really

means `elements of the (arrier) set A'. So, one (deliberately) mixes up the group

A and its arrier set A. This is not sloppiness, but onveniene: some of the details

are deliberately omitted, knowing that one an �ll them in if neessary. This is

sometimes alled `informal rigor'.

As was �rst noted by Azel, one would like to have a similar mehanism in type

theory, for being able to use informal rigor. A way to do this is by reating a level

on top of the type theory, where one an use more informal language, whih is

then translated to the formal level. This requires that the informal expressions are

expanded in suh a way that they beome well-formed in the underlying formal

type theory. It turns out that in this expansion, the type synthesis algorithm is

very useful, as it generates the missing information. This an be made formally

preise by introduing the notion of oerion.

Some of the problemati examples that we gave above an be seen as instanes

of the sub-typing problem. In type theory as we have disussed until now, there

is no notion of subtype: we an not say that A � B, with as intended meaning

that if a : A then also a : B. It turns out that if one adds suh a sub-typing

relation, the deidability of type heking beomes rather problemati. Moreover,

there are various ways in whih the sub-typing relation an be lifted along the type

onstrutions (like � and !). On the other hand, some of the problems disussed

above an be solved using sub-typing:

If �A:Set:A!(A!Prop) � Set; then x : [A;=

A

℄ an be delared;

If Eq Rel

A

� A!(A!Prop); then R : Eq Rel

A

; a; a

0

: A ` Raa

0

: Prop;

If [A;=

A

℄jP � [A;=

A

℄; then F : A!B; a : [A;=

A

℄jP ` Fa : B:

Note, however that this does not solve all problems: if a : A, we an not write

a : [A;=

A

℄ (the � needs to be reversed). Furthermore, the meaning of [A;=

A

℄jP �

[A;=

A

℄ is not so lear, as both are not themselves types.
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A related but di�erent solution an be found by making the inlusions A � B

expliit by a oerion map. Then we have e.g.

�

1

: �A:Set:A!(A!Prop) � Set;

�

1

: Eq Rel

A

� A!(A!Prop):

We have no map from [A;=

A

℄jP to [A;=

A

℄, as these are not types. The maps here

are just de�nable terms and we an replae the � by an !. But then we are bak

to the original formulations where we have to give all terms expliitly everywhere.

The idea is to delare the oerions as speial maps, to be used by the type heker

to type expressions. So the user does not have to insert these maps, but the type

heker will do so to ompute a type. Essentially, there are three ways in whih a

type heking algorithm an use a oerion map.

 : A � Set

(or  : A � Prop)

)

the delaration x : A is expanded to x : (A):

G : D

 : D � A!B

a : A

9

>

=

>

;

Ga is expanded to Ga of type B:

F : A!B

 : D � A

a : D

9

>

=

>

;

F a is expanded to F ( a) of type B:

It should also be possible to use multiple oerion maps: if there are oerions



1

: A � B and 

2

: B � C, then there is a oerion �x:A:

2

(

1

x) : A � C. So

the oerions are really just de�nable �-terms that an be omposed. Of ourse,

there should be only one oerion between two types A and B and there should be

no oerion from a type A to itself. This has to be heked by the system at the

moment a oerion is delared: it should go through the `oerion graph' to verify

that it is still a tree. For more on oerions see [Barthe 1996℄ or [Luo 1999℄. Another

approah to subtypes is to treat them as real subsets: if M : A and A is a subtype

of B, then M : B (without oerion). We will not disuss this possibility here; for

a possible set of typing rules for subtypes we refer to [Zwanenburg 1999℄.

2.9. Connetion between logi and type theory

When doing formal proofs with the help of some omputer system, one may wonder

what one is really proving. Or, to put it di�erently,

what is the semantis of the formal objets that the system (and the user)

is dealing with?
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The systems that we are onerned with here are based on type theory, whih moves

the semantis-question from the level of the omputer system to the level of the

formal system:

what do the expressions of the type theory mean?

Note that this only gives a satisfatory answer in ase the omputer system is a

faithful implementation of the type theory. The atual situation is as follows: the

interative proof development system (where the proof-terms are reated) is not

fully explained in terms of the type theory; however, the proof heker (whih is

exeuted after the proof-term has been ompleted) is ompletely faithful to the type

theory.

So, we will on�ne ourselves to the question what the expressions of the type

theory mean. This question an be dealt with in di�erent ways. First we an look

at some (preferred) model, M, of a piee of mathematis and ask what the type

theoretial expressions mean in M. Seond, we an look at some logi L and ask

what the meaning of the type theoretial expressions in L is. This results in the

following questions.

� What is the interpretation of the expressions in the model M and is there a

soundness and/or ompleteness result? For A : Prop,

M j= A i� 9p(` p : A)?

� What is the interpretation of the expressions in the logi L and, for A : Prop,

is A provable in L i� A is inhabited?

`

L

A i� 9p(` p : A)?

As type theory is generi, we are mainly interested in the seond question. The on-

netion with logi is even more relevant as type theory seeks to represent proofs as

terms; these proof-terms then better have some relation to a proof in logi. Follow-

ing the Curry-Howard-de Bruijn propositions-as-types-embedding, formulas of logi

are interpreted as types, and at the same time, (natural dedution) derivations are

interpreted as proof-terms. So, the answer to the question whether proof-terms in

type theory represent proofs is aÆrmative: proof-terms represents natural dedu-

tion proofs. Of ourse, the situation is more ompliated: there are a lot of logis

and a lot of type theories. But if we hoose, given our logi in natural dedution

style L, an appropriate type theory S(L), we have the following

Soundness of the propositions-as-types embedding:

`

�

L

' ) � `

S(L)

[[�℄℄ : ';

where � denotes the dedution of ' in L and [[�℄℄ its enoding as a term in S(L). �

is a ontext in whih the relevant variables are delared. In Setion 3.2, we desribe

the propositions-as-types embedding in more detail for higher order prediate logi

and its orresponding type system.
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The other way around, we may wonder whether, if ' is inhabited in S(L), then

' is derivable in L (where ' : Prop).

Completeness of the propositions-as-types embedding:

� `

S(L)

M : '

?

) `

L

';

where � is again a ontext in whih the relevant variables are delared. If we take

into aount that a term M : ' is intended to represent a natural dedution proof,

we may strengthen our ompleteness by requiring an embedding [ ℄ from proof-terms

to dedutions.

Strong Completeness of the propositions-as-types embedding:

� `

S(L)

M : '

?

) `

[M ℄

L

':

Completeness is not in all ases so easy. Consider for example the Martin-L�of's

type theories, where there is no distintion between `sets' and 'propositions' { both

are of type Set. We have already disussed this situation in Setion 2.5, where we

pointed out that in ordinary logi there is a sharp distintion between Prop and

Set from the very start. It is just the way logi is de�ned, in stages, where one

�rst de�nes the terms (inluding the domains), then the formulas and then the

derivations. That means that for Martin-L�of's type theories, it is not so easy to

de�ne a mapping bak to the logi (in this ase �rst order intuitionisti logi). For

example, look at the ontext

A:Set; a:A;P :A!Set; h:(Pa); Q:(Pa)!Set; f :(P a)!A:

If we try to interpret this in �rst order intuitionisti logi, we an view A as a

domain, a as an element of A, P as a prediate on A and h as the assumption that

(P a) holds (h is an assumed proof of (P a)). But then Q an only be understood

as a prediate on the set of proofs of (P a)

3

, and f as a map from the proofs of

(P a) to the domain A. It will be lear that there are many types X :Set in the type

theory that have no interpretation, neither as a `domain' nor as a `proposition',

in �rst order intuitionisti logi. As a onsequene, Strong Completeness fails for

Martin-L�of's type theory. It has been shown { but the proof is really intriate, see

[Swaen 1989℄ { that ompleteness (the weaker variant) holds. However, if we extend

these type theories to higher order, we obtain either an inonsistent system (if we

interpret the higher order 9 as a �-type, see [Coquand 1986℄), or (if we interpret the

higher order 9 imprediatively) a system for whih ompleteness fails with respet

to onstrutive higher order prediate logi; see [Berardi 1990℄, [Geuvers 1993℄.

Summarizing, we observe the following possible points of view: (1) �rst order

prediate logi is inomplete, as it does not allow objets to depend on proofs,

whereas both are just `onstrutions'; (2) the idea of unifying the Prop and the Set

universe into one (Set) is wrong, as it reates objets depending on proofs, a feature

alien to ordinary logi. We tend to have the seond view, although the situation is

3

A { proof-theoretially { interesting prediate on proofs may be `to be ut-free'. However, a

prediate an not distinguish between �-equal terms, so this prediate an not be expressed.
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not so easy, as an be seen from the two examples below, where we apply the idea

of letting objets depend on proofs.

With respet to the interpretation of the onstrutive existential quanti�er, there

are also two possible positions: (I) interpret 9 by the �-type, whih does not

work well for higher order logi, (but higher-order logi is often onsidered as non-

onstrutive { beause imprediative { anyway); (II) interpret it in a di�erent way

(e.g. using a higher order enoding or an indutive enoding) that avoids the pro-

jetions of proofs to objets. Obviously, position (I) on the existential quanti�er

interpretation goes well with position (1) on the Prop-Set-issue above. Similarly

(II) goes well with (2) above.

Conluding this disussion on the preise hoie of the type theoretial rules

to interpret the logi, we note the following. The build up of logi in stages, as

desribed before, is very muh related to a Platonist view of the world, where

the objets are just there and logi is a means of deriving true properties

about these objets.

So an objet is not a�eted by our reasoning about it. In the onstrutive view,

both objets and proofs are onstrutions and the only objets that exist

are the ones that an be onstruted.

Then a formula is identi�ed with the set of its proofs and there is a priori no

problem with onstruting an element of one set (say the set nat) out of another

set (say a formula A). So, if we take the onstrutive view as a starting point, the

dependeny of objets on proofs is no problem. Note that this still leaves a hoie

of really identifying the universe of sets and propositions (then A : Set for sets A

and A : Set for formulas A) or keeping the distintion (then A : Set for sets A and

A : Prop for formulas A). In this artile we start from type systems where objets

do not depend on proofs.

If one hooses a type theory that remains quite losely to the original onstrutive

logi (in natural dedution style), it is not so diÆult (although laborious) to prove

Strong Completeness of the propositions-as-types embedding. See [Geuvers 1993℄

for some detailed proofs and examples.

Examples of objets depending on proofs

In the disussion above, we promoted the idea of not letting objets depend on

proofs. Although this solves some of the ompleteness questions in a relatively easy

way, this position is not so simple to be maintained. If one really starts formalizing

mathematis in type systems, objets depending on proofs our quite naturally.

Consider a A : Set that we want to show to be a �eld. That means that we have

to de�ne all kinds of objets (0, 1) and funtions (mult; : : :) on A and to prove that

together they satisfy the �eld-axioms. Now what should the type of the reiproal

be, given that the reiproal of 0 is not de�ned? An option is to let reip : A!A

with the property that 8x:A:x 6= 0! multx(reip x) = 1. However, this is not very
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nie: reip0 should be unde�ned (whereas now it is an `unspei�ed' element of A).

In type theory there is a di�erent solution to this: onstrut

reip : (�x:A:x 6= 0)! A:

Then reip is only de�ned on the subset of elements that are non-zero: it reeives

a pair ha; pi with a : A and p : a 6= 0 and returns reipha; pi : A. But how should

one understand the dependeny of this objet (of type A) on the proof p in terms

of ordinary mathematis?

A possible solution is provided by the setoids approah (see also the previous

Setion). We take as the arrier of a �eld a setoid [A;=

A

℄, so A : Set and =

A

is an

equivalene relation on A. The operations on the �eld are now taken to be setoid

funtions, so e.g. mult has to preserve the equality: if a =

A

a

0

and b =

A

b

0

, then

(multab) =

A

(multa

0

b

0

). Similarly, all the properties of �elds are now denoted using

the setoid equality =

A

instead of the general equality =. For the reiproal, this

amounts to

reip : [A;=

A

℄j(�x:A:x 6=

A

0)! [A;=

A

℄;

a setoid funtion from the subsetoid of non-zeros to [A;=

A

℄ itself. In this ase, reip

still takes a pair of an objet and a proof ha; pi, with a : A and p : a 6=

A

0, and

returns reipha; pi : A. The di�erene however is that reip now is a setoid funtion,

whih implies the following.

If a; a

0

: A with a =

A

a

0

; p : a 6=

A

0; q : a

0

6=

A

0; then reipha; pi =

A

reipha

0

; qi:

So, the value of reipha; pi does not depend on the atual p; the only thing to

asertain is that suh a term exists (i.e. that a 6=

A

0 is true).

We onjeture that if the objets that depend on proofs only our in the on-

text of setoids, as above, we an make sense of these objets in terms of standard

mathematis. The general priniple that for an objet t(p) : A, where p : ' denotes

a sub-term of t,

t(p) = t(q) for all p; q : '

is alled the priniple of Proof Irrelevane. It states that the atual proof p of '

is irrelevant for the value of t(p). The setoid equality disussed before obeys this

priniple, due to the way the setoid equality is promoted to subsetoids.

Another example of objets depending on proofs ours for example in the de�-

nition of the absolute value in an ordered �eld. Suppose

p : �x:F:(x � 0 _ x � 0):

Then de�ne the absolute value funtion abs as follows.

abs := �x:F: ase (p x) of

(inl ) ) x

(inr ) ) �x

This funtion distinguishes ases aording to the value of px. If it is of the form

inl r (with r : x � 0), we take x; if it is of the form inr r (with r : x � 0), we take
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�x. Now, for a : F , the term (abs a) ontains a proof-term p. We want to prove

that the values of abs do not depend on the atual value of p. In the ontext of

setoids, this means that if we have two de�nitions of the absolute value funtion,

abs

p

and abs

q

, one de�ned using the proof p : �x:F:x � 0 _ x � 0 and one using

the proof q of the same type, we have to prove

�x; x

0

:F:(x =

F

x

0

)! (abs

p

x) =

F

(abs

q

x

0

):

Note that it may be the ase that for some x, the value of p x is inl , while the

value of q x is inr . Then abs

p

x has value x and abs

q

x has value �x. One then has

to prove that in this overlapping ase x =

F

�x, whih holds, as it only ours if

x =

F

0.

3. Type systems for proof heking

As we see it, there is not one `right' type system. The widely used theorem provers

that are based on type theory all have indutive types. But then still there are

other important parameters: the hoie of allowed quanti�ation and the hoie

of redution relations to be used in the type onversion rule. We have already

mentioned the possibility of allowing imprediative quanti�ation or not. Also, we

mentioned the �, Æ, � and � rules as possible redution rules. A very powerful

extension of the redution relation is obtained by adding a �xed-point-operator

Y :�A:Set:(A!A)!A satisfying

Yf!

Y

f(Yf):

With this addition the redution of the type system does not satisfy strong nor-

malization and proof-objets are potential ones. It has been shown in [Geuvers,

Poll and Zwanenburg 1999℄ that under mild onditions the Y-rules are onservative

over the ones without a Y . A similar extension of type theory with �xed points is

disussed in [Audebaud 1991℄, where the �xed points are used to de�ne reursive

data types.

It is outside the sope of this artile to disuss the tehnial details of various

di�erent type systems. However, we do want to give some of the underlying theory,

to show the sound theoretial base of type theoretial theorem provers and to make

onrete some of the issues that were disussed in the previous Setions. Therefore

we start o� by onsidering one spei� type system in detail. We de�ne a type

theory for higher order prediate logi, �HOL and show how mathematial notions

an be interpreted in it. To make the latter preise, we �rst look into higher order

prediate logi itself. Then we study the formal interpretation from higher order

prediate logi into �HOL, both as a motivation for the de�nition of �HOL and as

an illustration of how preisely mathematis is dealt with in type theory. Then we

de�ne a more general lass of type systems. We disuss the essential properties and

how type systems are used to reate an interative theorem prover. For �HOL itself

we give|in detail|the type heking algorithm, whih is at the ore of every type

theoretial theorem prover.
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By examples,we give some possible extensions of �HOL with other type onstru-

tions, like indutive types. The type systems that we disuss here all adhere to the

priniple that objets do not depend on proofs and that there is a distintion be-

tween sets and formulas. This is mainly done to keep the `logial' explanation lear;

see also the disussion in Setion 2.9. We also give no formal treatment of de�ni-

tions here (the Æ-rule for unfolding de�nitions et., see Setion 2.8). De�nitions are

very prominent in a theorem prover and we believe that (hene) de�nitions are an

important formal notion, but we want to restrit to the main issues here. See [Severi

and Poll 1994℄ for the extension of type systems with a formal notion of de�nition.

3.1. Higher order prediate logi

If we want to do proof heking, we �rst have to make a hoie for a logi. There

are various possibilities: �rst order, seond order, higher order. It is also possible to

hoose between either lassial or intuitionisti logi, or between natural dedution

and sequent alulus.

For heking formal proofs in a system based on type theory, it turns out that a

alulus of intuitionisti natural dedution is the most adequate. Although it is not

diÆult to add lassial reasoning, type theory is more tailored towards onstrutive

reasoning. Furthermore, typed �-terms are a faithful term representation of natural

dedutions. (In sequent alulus there is muh more `bureauray'.) The hoie

between �rst order, seond order or higher order an be made by adapting the rules

of the type system; we will ome to that later. So, to set our logial system we

hoose onstrutive higher order prediate logi in natural dedution style.

3.1. Definition. The language of HOL is de�ned as follows.

1. The set of domains , D is de�ned by

D ::= B j
 jD!D;

where B represents a basi domain (we assume that there are ountably many

basi domains) and 
 represents the domain of propositions.

2. For every �2D, the set of terms of type �, Term

�

is indutively de�ned as

follows. (As usual we write t : � to denote that t is a term of type �.)

(a) the onstants 

�

1

; 

�

2

; : : : are in Term

�

,

(b) the variables x

�

1

; x

�

2

; : : : are in Term

�

,

() if ' : 
 and x

�

is a variable, then (8x

�

:') : 
,

(d) if ' : 
 and  : 
, then (' )  ) : 
,

(e) if M : �!� and N : �, then (MN) : � ,

(f) if M : � and x

�

is a variable, then (�x

�

:M) : �!� .

3. The set of terms of HOL, Term, is de�ned by Term := [

�2D

Term

�

.

4. The set of formulas of HOL, form , is de�ned by form := Term




.
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We adapt the well-known notions of free and bound variable, substitution, �-

redution and �-onversion to the terms of this system.

There are no `produt' domains (D � D) in our logi. We present funtions of

higher arity by Currying: a binary funtion on D is represented as a term in the

domain D!(D!D). A prediate is represented as a funtion to 
, following the

idea (probably due to Churh; it appears in [Churh 1940℄) that a prediate an

be seen as a funtion that takes a value as input and returns a formula. So, a

binary relation over D is represented as a term in the domain D!(D!
). (If

R : D!(D!
) and t; q : D, then ((Rt)q) : 
.) The logial onnetives are just

impliation and universal quanti�ation. Due to the fat that we have higher order

universal quanti�ation, we an express all other quanti�ers using just ) and 8.

See 3.6 for more details.

3.2. Note. We �x the following notational onventions.

� Outside brakets are omitted.

� In the domains we omit the brakets by letting them assoiate to the right, so

D!D!
 denotes D!(D!
).

� In terms we omit brakets by assoiating them to the left, so Rtq denotes (Rt)q.

Note that in ordinary mathematis, this is usually written as R(t; q).

� If we write Rab, we always mean ((R a) b), so R applied to a, and then this

applied to b. If we want to introdue a name (as an abbreviation), we will use

the sans serif font, e.g. in writing trans as an abbreviation of the transitivity

property.

3.3. Example. Before giving the logial rules of HOL, we treat some examples of

terms and formulas that an be written down in this language. Let the following be

given: domains IN and A, the relation-onstant>: IN!IN!
, the relation-variables

R;Q : A!A!
 and the funtion-onstants 0 : IN and S : IN!IN.

1. The prediate `being larger than 0' is expressed by the term �x

IN

:x > 0 : IN!
.

2. Indution over IN an be expressed by the (seond order) formula ind de�ned

as

8P

IN!


:(P0) ) (8x

IN

:(Px ) P (Sx))) ) 8x

IN

:Px:

3. The formula trans(R), de�ned as 8x

A

y

A

z

A

(Rxy ) Ryz ) Rxz) denotes

the fat that R is transitive. So, trans : (A!A!
)!
. Note that we write

8x

A

y

A

z

A

as a shorthand for 8x

A

:8y

A

:8z

A

.

4. The term �: (A!A!
)!(A!A!
)!
 is de�ned by

R � Q := 8x

A

y

A

:(Rxy ) Qxy):

(We informally use the in�x notation R � Q to denote �RQ.)

5. The term �x

A

y

A

:(8Q

A!A!


:(trans(Q) ) (R � Q) ) Qxy)) is of type

A!A!
. It denotes the transitive losure of R. We use �x

A

y

A

as a shorthand

for �x

A

:�y

A

.

The derivation rules of HOL are given in a natural dedution style.
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(axiom)

� ` '

if '2�

() -introdution)

� [ ' `  

� ` ' )  

() -elimination)

� ` ' � ` ' )  

� `  

(8-introdution)

� ` '

� ` 8x

�

:'

if x

�

=2 FV(�)

(8-elimination)

� ` 8x

�

:'

� ` '[t=x

�

℄

if t : �

(onversion)

� ` '

� `  

if ' =

�

 

Figure 1: Dedution rules of HOL

3.4. Definition. The notion of provability , � ` ', for � a �nite set of formulas

(terms of type form) and ' a formula, is de�ned indutively by the rules in Fig. 1

3.5. Remark. The rule (onversion) is an operationalization of the Poinar�e prin-

iple disussed in Setion 2.8. The rule says that we don't want to distinguish

between �-equal propositions.

3.6. Example. A well-known fat about this logi is that the onnetives &;_;?;:

and 9 are de�nable in terms of ) and 8. (This is due to [Russell 1903℄.) For

';  : 
, de�ne

'& := 8x




:(' )  ) x) ) x;

' _  := 8x




:(' ) x) ) ( ) x) ) x;

? := 8x




:x;

:' := ' ) ?;

9x

�

:' := 8z




:(8x

�

:(' ) z)) ) z:

It's not diÆult to hek that the intuitionisti elimination and introdution rules

for these onnetives are sound.
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Equality between terms of a �xed type � is de�nable by saying that two terms

are equal if they share the same properties. This equality is usually alled Leibniz

equality and is de�ned by

t =

A

t

0

:= 8P

A!


:(Pt ) Pt

0

); for t; t

0

: A:

It is not diÆult to see that this equality is reexive and transitive. It is also

symmetri: LetQ be a prediate variable overA (soQ : A!
). Take �y

A

:Qy ) Qt

for P . The dedution is as follows. (At the left we apply the (8-elim) rule followed

by the (onv) rule.)

� ` 8P

A!


(Pt ) Pt

0

)

� ` (Qt ) Qt) ) (Qt

0

) Qt)

�; Qt ` Qt

� ` Qt ) Qt

� ` Qt

0

) Qt

� ` 8Q

A!


:(Qt

0

) Qt)

Imprediativity In the de�nition of the onnetives (Example 3.6) and in the de�-

nition of equality, one makes use of imprediativity, that is

the possibility of onstruting a term of a ertain domain by abstrating

over that same domain or over a domain of the same `order'.

E.g. in Example 3.6 one onstruts the proposition '& by abstrating (using

the universal quanti�er) over the olletion of all propositions. Similarly in the

de�nition of Leibniz equality one de�nes a binary relation on A by abstrating over

the olletion of all prediates on A. Both are domains of seond order. (The basi

domains are of �rst order.) The fat that this logi is higher order allows us to make

these imprediative onstrutions.

The notion of order was �rst introdued by Russell (see [Whitehead and Russell

1910, 1927℄) in his rami�ed type theory, to prevent the paradoxes arising from a

naive oneption of the notion of set. Later it was noted by Ramsey [1925℄ that

the simple types suÆe to avoid the syntati paradoxes. The semanti paradoxes

an be avoided by making a lear distintion between syntax (formal system) and

semantis (models). In [Whitehead and Russell 1910, 1927℄ this distintion was not

made and the rami�ation was used to prevent the semantial paradoxes.

Imprediativity is often seen as `non-onstrutive': an imprediative de�nition

an not really be understood as a onstrution, but only as a desription of an

objet whose existene we assume on other grounds. For example, the de�nition of

Leibniz equality desribes a binary relation by quantifying over the olletion of all

prediates. This is not a onstrution, as that would require that the olletion of all

prediates had already been onstruted, before we onstrut this binary relation.

Therefore, imprediativity is seen as alien to onstrutive logi. We will still all our

logi onstrutive, as it laks the double negation law (and hene it is not lassial).

Moreover, the logi enjoys the disjuntion property (if ` '_ , then ` ' or `  ) and
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the existene property (if ` 9x:A:', then ` '[a=x℄ for some a : A) that we know

from onstrutive logis. If we harahterize a logi as onstrutive if it satis�es

the disjuntion and the existene property, then our higher order prediate logi is

onstrutive.

3.2. Higher order typed �-alulus

In type theory, one interprets formulas and proofs via the well-known `propositions-

as-types' and `proofs-as-terms' embedding, originally due to Curry, Howard and de

Bruijn. (See [Howard 1980, de Bruijn 1970℄.) Under this interpretation, a formula is

viewed as the type of its proofs. It turns out that one an de�ne a typed �-alulus

�HOL that represents HOL in a very preise way. What very preise means will

not be de�ned here, but see e.g. [Barendregt 1992℄ or [Geuvers 1993℄. Here, we just

de�ne the system �HOL, using the intuitions of HOL. In order to get a better

understanding we note a few things.

1. The language of HOL as presented in 3.1 is a typed language already. This

language will be a part of �HOL

2. In �HOL, formulas like ' )  and 8x

A

:' will beome types. However, these

`propositional' types are not the same as the `set' types like e.g. IN. Hene

there will be two `universes': Prop, ontaining the `propositional' types, and

Type, ontaining the `set' types. Prop itself is a `set' type.

3. The dedutions are represented as typed �-terms. The disharging of hypotheses

is done by �-abstration. The modus ponens rule is interpreted via appliation.

The derivable judgments of �HOL are of the form

� `M : A;

where � is a ontext and M and A are terms. A ontext is of the form

x

1

:A

1

; : : : ; x

n

:A

n

, where x

1

; : : : ; x

n

are variables and A

1

; : : : ; A

n

are terms. The

variables that our in M and A are given a type in a ontext. If, in the judgment

� ` M : A, the term A is a `propositional type' (i.e. � ` A : Prop), we view M as

a proof of A. If the term A is a `set type' (i.e. � ` A : Type), we view M as an

element of the set A.

3.7. Definition. The typed �-alulus �HOL, representing higher order prediate

logi, is de�ned as follows. The set of pseudo terms T is de�ned by

T ::= Prop jType jType

0

j V j (�V :T :T ) j (�V :T :T ) j T T :

Here, V is a set of variables. The set of sorts, S is fProp;Type;Type

0

g .

The typing rules, that selet the well-typed terms from the pseudo terms, are

given in Figure 2. Here, s ranges over the set of sorts S.

In the rules (var) and (weak) it is always assumed that the newly delared variable

is fresh, that is, it has not yet been delared in �. The equality in the onversion

rule (onv) is the �-equality on the set of pseudo terms T .
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(axiom) ` Prop : Type ` Type : Type

0

(var)

� ` A : s

�; x:A ` x : A

(weak)

� ` A : s � `M : C

�; x:A `M : C

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

2

if (s

1

; s

2

)2 f (Type;Type);

(Prop;Prop);

(Type;Prop) g

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(onv)

� `M : A � ` B : s

� `M : B

if A =

�

B

Figure 2: Typing rules for �HOL

We see that there is no distintion between types and terms in the sense that the

types are formed �rst and then the terms are formed using the types. A pseudo term

A is well-typed if there is a ontext � and a pseudo term B suh that � ` A : B

or � ` B : A is derivable. The set of well-typed terms of �HOL is denoted by

Term(�HOL). A ontext � is well-formed if it appears in some derivable statement,

i.e. if there are some M and A suh that � `M : A is derivable.

The only type-forming operator in this language is the �, whih omes in three

avors, depending on the type of the domain (the A in �x:A:B) and the type of the

range (the B in �x:A:B). Intuitively, a �-type should be read as a set of funtions.

If we depit the ourrenes of x in B expliitly by writing B(x), the intuition is:

�x:A:B(x) �

Y

a2A

B(a) = ff j 8a2A[f a2B(a)℄g:

So, �x:A:B is the dependent funtion type of funtions taking a term of type A

as input and delivering a term of type B in whih x is replaed by the input. We
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therefore immediately reover the ordinary funtion type as a speial instane.

3.8. Remark. In ase x =2 FV(B), we write A!B for �x:A:B. We all this a

non-dependent funtion type.

As examples we list all instanes of the �-type that an be enountered in �HOL.

3.9. Example.

1. Using the ombination (Type,Type), we an form the funtion type A!B for

A;B:Type. This also omprises the types of unary prediates and binary rela-

tions: A!Prop and A!A!Prop. Furthermore, it also extends to higher order

prediate types like (A!A!Prop)!Prop.

If � ` A : Type and �; x:A ` B : Type, then x =2 FV(B) in �HOL, so all types

formed by (Type,Type) are non-dependent funtion types.

2. Using (Prop,Prop), we an form the propositional type '! for ';  :Prop. This

is to be read as an impliational formula.

If � ` ' : Prop and �; x:' `  : Prop, then x =2 FV( ) in �HOL, so all types

formed by (Prop,Prop) are non-dependent types.

3. Using (Type,Prop), we an form the dependent propositional type �x:A:'

for A:Type, ':Prop. This is to be read as a universally quanti�ed for-

mula. This quanti�ation an also range over higher order domains, like in

�P :A!A!Prop:'.

If � ` A : Type and �; x:A ` ' : Prop, then it an happen that x2FV(') in

�HOL.

We do not de�ne formal interpretations from HOL to �HOL and bak. See e.g.

[Barendregt 1992℄ for details. Instead, we motivate the interpretation by some (sug-

gestive) examples. Then we disuss the main assets of the interpretation and moti-

vate its ompleteness.

For a good reading of the examples below, we reall the notational onventions

introdued in 3.2: Rab denotes ((R a) b), so R applied to a and that together

applied to b. Moreover, appliation binds strong, soRab!Rb denotes (Rab)!(Rb)

and �x:Rab:M denotes �x:(Rab):M . As usual, arrow assoiate to the right, so

A!A!Prop denotes A!(A!Prop).

3.10. Example.

1. IN:Type; 0:IN; >:IN!IN!Prop ` �x:IN:x>0 : IN!Prop. Here we see the use of

�-abstration to de�ne prediates.

2. IN:Type; 0:IN; S:IN!IN ` �P :IN!Prop:(P0)!

(�x:IN:(Px!P (Sx)))!�x:IN:Px : Prop:

This is the formula for indution written down in �HOL as a term of type Prop.

3. A:Type; R:A!A!Prop ` �x; y; z:A:Rxy!Ryz!Rxz : Prop. (Transitivity of

R)

4. A:Type ` �R;Q:A!A!Prop:�x; y:A:Rxy!Qxy :

(A!A!Prop)!(A!A!Prop)!Prop. (Inlusion of relations)
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5. A:Type ` �x; y:A:�P :A!Prop:(Px!Py) : A!A!Prop.

This is `Leibniz equality' and is usually denoted by =

A

, mentioning the domain

type expliitly.

6. A:Type; x; y:A ` �r:(x =

A

y):�P :A!Prop:r(�z:A:Pz!Px)(�q:Px:q) :

(x =

A

y)!(y =

A

x). The proof of the fat that Leibniz equality is symmetri.

Just as in HOL, it is possible to de�ne the ordinary onnetives &, _, ?, : and

9 in �HOL. For ';  :Prop, de�ne

'& := ��:Prop:('! !�)!�;

' _  := ��:Prop:('!�)!( !�)!�;

? := ��:Prop:�;

:' := '!?;

9x:A:' := ��:Prop:(�x:A:('!�))!�:

To form these propositions (terms of type Prop), the rules (Prop,Prop) (for all the

arrows) and (Type,Prop) (for all the �-types) are used.

The logial rules for these onnetives an be derived. For example, for '& ,

we have terms �

1

: ('& )!' and �

2

: ('& )! (the projetions) and a term

h�;�i : '! !('& ) (the pairing onstrutor). One an easily verify that if we

take

�

1

:= �p:('& ):p'(�x:':�y: :x);

�

2

:= �p:('& ):p (�x:':�y: :y);

h�;�i := �x:':�y: :��:Prop:�h:('! !�):hxy;

then these terms are of the right type. Hene the introdution and elimination rules

for the onnetive & are de�nable. They also have the orret redution behavior,

orresponding to ut-elimination in the logi:

�

1

ht

1

; t

2

i !!

�

t

1

;

�

2

ht

1

; t

2

i !!

�

t

2

:

Similarly for the other onnetives, the introdution and elimination rules an be

de�ned.

Note that on the Type level, it is not possible to de�ne data types, like the produt

type. A produt type is equivalent to the onjuntion (&), but the onstrution

above for & an only be done at the Prop level.

Propositions-as-types for higher order prediate logi

The propositions-as-types interpretation from higher order prediate logi HOL

into �HOL maps a formula to a type and a proof (a derivation in natural dedution)
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of a formula ' to a term (i.e. a typed �-term) of the type assoiated with ':

�

 

7! [[�℄℄ : [( )℄

where [(�)℄ denotes the interpretation of formulas as types and [[�℄℄ denotes the in-

terpretation of derivations as �-terms. In a derivation, we use expressions from

the logial language (e.g. to instantiate the 8), whih may ontain free variables,

onstants and domains (e.g. in f(�x:A:)). In type theory, in order to make sure

that all terms are well-typed, the basi items (like variables and domains) have

to be delared expliitly in the ontext. Also, a derivation will in general ontain

non-disharged assumptions ('

1

; : : : ; '

n

) that will appear as variable delarations

(z

1

: '

1

; : : : ; z

n

: '

n

) in the type theoreti ontext. So the general piture is this.

'

1

: : : '

n

�

 

7! �

�

; z

1

: '

1

; : : : ; z

n

: '

n

` [[�℄℄ : [( )℄;

where �

�

is the ontext that delares all domains, onstants and free variables that

our in �.

As an example we treat the derivation of irreexivity from anti-symmetry for a

relation R. The derivation is as follows. (� denotes 8x

A

y

A

Rxy ) Ryx ) ?, �

0

denotes �; Rxx.)

�

0

` 8x

A

y

A

:Rxy ) Ryx ) ?

�

0

` 8y

A

:Rxy ) Ryx ) ?

�

0

` Rxx ) Rxx ) ? �

0

` Rxx

�

0

` Rxx ) ? �

0

` Rxx

�

0

` ?

� ` Rxx ) ?

� ` 8x

A

:Rxx ) ?

This derivation is mapped to the typed �-term �x:A:�q:(Rxx):zxxqq. This term is

well-typed in the ontext A : Type; R : A!A!Prop; z : �x; y:A:(Rxy!Ryx!?),

yielding the following judgment, derivable in �HOL if we take for � the ontext � =

fA:Type; R:A!A!Prop; z:�x; y:A:(Rxy!Ryx!?)g.

� ` �x:A�q:(Rxx):zxxqq : (�x:A:Rxx!?):

The ontext �

�

here onsists of A : Type; R : (A!A!Prop).
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Now one may wonder if the type system �HOL is really faithful to higher order

prediate logi HOL. Put di�erently, one an ask the question of ompleteness:

given a proposition of HOL suh that �

'

` M : [(')℄ in �HOL, is ' derivable in

HOL? It turns out that this is the ase. Even though the number of rules of

�HOL is limited (where one rule serves several di�erent purposes, e.g. the (�)-rule

allows to form both funtions, proofs of an impliation and proofs of a universal

quanti�ation) and there seems to be hardly any distintion in treatment between

the propositions (terms of type Prop) and the sets (terms of type Type), we an

ompletely disambiguate the syntax. This is stated by the following Lemma.

3.11. Lemma (Disambiguation Lemma). Given a judgment � ` M : A in �HOL,

there is a �HOL-ontext �

D

;�

L

;�

P

suh that

1. �

D

;�

L

;�

P

is a permutation of �,

2. �

D

;�

L

;�

P

`M : A

3. �

D

onsists only of delarations A : Type,

4. �

L

onsists only of delarations x : A with �

D

` A : Type,

5. �

P

onsists only of delarations z : ' with �

D

;�

L

` ' : Prop.

Moreover the following are the ase.

� If � ` A : Type, then �

D

` A : Type and A � B

1

!� � �!B

n

(n � 1) and

�

D

` B

i

: Type for all i.

� If � `M : A where � ` A : Type, then �

D

;�

L

`M : A.

� If � ` �x:A:B : Prop where � ` A : Prop, then x =2 FV(B) (and so �x:A:B �

A!B, representing a real impliation).

The Disambiguation Lemma really states that �HOL represents HOL very

losely. Note that it says|among other things|that proof-terms (terms M with

M : ' for some ' : Prop) do not our in objet-terms (terms t : A with for some

A : Type). Using the Lemma, one an de�ne a mapping bak from �HOL to HOL

that onstruts a derivation out of a proof-term. Let a  with � `  : Prop be

given.

� `M :  7!

'

1

: : : '

n

[M ℄

 

Here the '

1

: : : '

n

are omputed from �, using Lemma 3.11, in suh a way that

�

P

= z

1

: '

1

; : : : ; z

n

: '

n

.

The mapping bak from �HOL to HOL proofs the ompleteness of the

propositions-as-types interpretation: if � ` M : ', then ' is derivable in HOL

from the assumptions listed in �

P

.

Type Cheking

An important property of a type system is omputability of types, i.e. given �

and M ompute an A for whih � ` M : A holds, and if there is no suh A,
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return `false'. This is usually alled the type synthesis problem, TSP or the type

inferene problem. In this Setion, a type synthesis algorithm for the system �HOL

is given, whih is quite reminisent for type synthesis algorithms in general. Before

disussing the details we briey reapitulate some generalities on type synthesis

and type heking. See also Setions 2.2, 2.3.

A problem related to type synthesis is deidability of typing, i.e. given �, M and

A, deide whether � `M : A holds. This is usually alled the type heking problem,

TCP. Both problems are very muh related, beause in the proess of type heking,

one has to solve type synthesis problems as well: for example when heking whether

MN : C, one has to infer a type for N , say A, and a type for M , say D, and then

to hek whether for some B, D =

�

�x:A:B with B[N=x℄ =

�

C. It should be

lear from this ase that type synthesis and type heking are losely entwined.

(See Setion 2.3 for an extended example.) The ruial algorithm to onstrut is an

algorithm Type (�), that takes a ontext � and a term M suh that

Type

�

(M) =

�

A , � `M : A:

Hene, one will need an algorithm for �-equality heking to deide typing.

There are two important properties that solve the deidability of �-equality hek-

ing: Conuene for �-redution and Strong Normalization for �-redution. (This is

a well-known fat from rewriting: if a rewriting relation is onuent and strongly

normalizing, then the indued equality relation is deidable: to determineM =

�

N ,

one redues M and N to normal form and ompares these normal forms.)

3.12. Proposition (Conuene). On the set of pseudo terms T , �-redution is

onuent i.e. for all M;N

1

; N

2

2T , if M !!

�

N

1

and M !!

�

N

2

, then there exists

a P2T suh that N

1

!!

�

P and N

2

!!

�

P .

Conuene for � an be proved by following the well-known proofs for onu-

ene for the untyped �-alulus. Another important property of �HOL is Subjet

Redution.

3.13. Proposition (Subjet Redution). The set of well-typed terms of a given

type is losed under redution. That is, for � a ontext and M;N , A in T , if

� `M : A and M !!

�

N , then � ` N : A.

See Setion 2.6 for a disussion on Subjet Redution and Setion 3.3 for a

list of properties for �HOL (among whih Subjet Redution). The following is a

onsequene of onuene on T and Subjet Redution.

3.14. Corollary (Conuene on well-typed terms). On the set of well-typed terms

of �HOL, �-redution is onuent. That is, for M well-typed, if M !!

�

N

1

and

M !!

�

N

2

, then there exists a well-typed term P suh that N

1

!!

�

P and N

2

!!

�

P .

Moreover, N

1

and N

2

are well-typed.
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3.15. Proposition (Strong Normalization). For any termM well-typed in �HOL,

there are no in�nite �-redution paths starting from M . (Put di�erently: all redu-

tions starting from a well-typed term terminate.)

The proof of this Proposition is rather involved. See [Barendregt 1992℄ for refer-

enes to proofs.

The type synthesis algorithm Type (�) attempts to apply the typing rules in the

reverse diretion. For example, omputing Type

�

(�x:A:M) is done by omputing

Type

�;x:A

(M), and if this yields B, omputing Type

�

(�x:A:B). If this returns a

s2fProp;Typeg, then we return �x:A:B as result of Type

�

(�x:A:M). So, we read

the (�)-rule in the reverse diretion.

There is a potential problem in this way of onstruting the Type (�) algorithm

by reversing the rules: a onlusion � ` �x:A:M : C need not have been obtained

from the (�)-rule. (It ould also be a onlusion of the (weak)-rule or the (onv)-

rule. This situation is usually referred to as the `non-syntax-diretedness' of the

derivation rules. A set of derivation rules is alled syntax-direted if, given a ontext

� and a term M , at most one rule an have as onlusion � ` M : C (for some

C). See [Pollak 1995℄ and [van Benthem Jutting et al. 1994℄ for more on syntax-

direted sets of rules for type systems and their advantages. We will treat the

(potential) problem of non-syntax-diretedness later when we disuss the soundness

and ompleteness of the Type (�) algorithm.

Another part of the algorithm that needs some speial attention is the variable

ase. The result of Type

�

(x) should be A if x:A ours in � and `false' otherwise.

But, if � is not a well-formed ontext, we want to return `false' as well! So we have to

hek the well-formedness of �. A type synthesis algorithm onsists of two mutually

dependent reursive funtions: Type (�), the real type synthesis algorithm, and the

ontext heking algorithm Ok(�). The latter takes as input a ontext and returns

`true' if and only if the ontext is well-formed (and `false' otherwise).

3.16. Definition. We de�ne the algorithms Ok(�), taking a ontext and returning

`true' or `false', and Type (�), taking a ontext and a term and returning a term

or `false', as follows. Here x denotes a variable.

Ok(<>) = `true' (the empty ontext);

Ok(�; x:A) = Type

�

(A)2fProp;Type;Type

0

g;

Type

�

(x) = if Ok(�) and x:A2�then A else `false';

Type

�

(Prop) = if Ok(�)then Type else `false';

Type

�

(Type) = if Ok(�)then Type

0

else `false';

Type

�

(Type

0

) = `false';

Type

�

(MN) = if Type

�

(M) = C and Type

�

(N) = D

then if C !!

�

�x:A:B and A =

�

D

then B[N=x℄ else `false'

else `false';
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Type

�

(�x:A:M) = if Type

�;x:A

(M) = B

then if Type

�

(�x:A:B)2fProp;Type;Type

0

g

then �x:A:B else `false'

else `false';

Type

�

(�x:A:B) = if Type

�

(A) = s

1

and Type

�;x:A

(B) = s

2

and s

1

; s

2

2fProp;Type;Type

0

g

then if (s

1

; s

2

)2f (Type;Type); (Prop;Prop);

(Type;Prop) g

then s

2

else `false'

else `false';

The intuition behind the type synthesis algorithm being lear, we want to prove

that it is sound and omplete. This means proving the following.

3.17. Definition. The type synthesis algorithm Type (�) is sound if for all � and

M ,

Type

�

(M) = A ) � `M : A:

The type synthesis algorithm Type (�) is omplete if for all �, M and A,

� `M : A ) Type

�

(M) =

�

A:

Note that ompleteness of Type (�) implies that if Type

�

(M) = `false', then

M is not typable in �. The de�nition of ompleteness only makes sense if we have

uniqueness of types:

If � `M : A and � `M : B; then A =

�

B:

This property holds for �HOL. Without uniqueness of types, we would have to let

Type (�) generate a set of possible types, for otherwise it ould happen that a valid

type A for M in � is not omputed (up to =

�

) by Type

�

(M).

Besides soundness and ompleteness, we want to know that Type (�) terminates

on all inputs, i.e. it should be a total funtion. (A sound and omplete algorithm

may still not terminate on some non-typable term.) We will deal with soundness,

termination and ompleteness now.

3.18. Proposition (Soundness of Type (�)). The type synthesis algorithm and

the ontext heking algorithm, Type (�) and Ok(�), are sound, i.e. if Type

�

(M) =

A, then � `M : A and if Ok(�) = `true', then � is well-formed.

The proof of soundness of Type (�) and Ok(�) is simultaneously, by indution on

the number of evaluation-steps required for the algorithm to terminate. (Soundness

states a property only for those inputs for whih the algorithm terminates.) The
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only interesting ase is Type

�

(MN), where one has to use the Subjet Redution

property and Conuene.

The termination of Type (�) and Ok(�) should also be proved simultaneously, by

devising a measure that dereases with every reursive all. We de�ne the measure

m for a ontext � or a pair of a ontext � and a term M as follows.

m(�) := #fsymbols in �g;

m(�;M) := #fsymbols in �;Mg:

Now, m dereases for every reursive all of Type (�) or Ok(�), exept for the ase

of Type

�

(�x:A:M), where m(�;�x:A:B) may be larger than m(�; �x:A:M) (if B

is longer thenM). So, the only problem with termination is in the side-ondition of

the (�)-rule, where we have to verify whether �x:A:B is a well-typed type. This is

a situation enountered very generally in type synthesis algorithms for dependent

type theory. See [Pollak 1995℄ and [Severi 1998℄ for some general solutions to this

problem and a disussion. In the ase of �HOL, there is a rather easy way out: we

an replae the side-ondition � ` �x:A:B : s in the (�)-rule by an equivalent but

simpler one.

3.19. Lemma. Let �; x:A be a ontext and B be a term. Suppose �; x:A ` M : B

for some M . Then the following holds.

� ` �x:A:B : s , if B � C

0

!� � �!C

n

for some n2IN with

(C

n

� Prop _ (C

n

� z for some zwith (z:Type)2�))

then � ` A : Type

else if B 6� Type;Type

0

then � ` A : Prop

When applying the type synthesis algorithm to a �-abstration, we will replae

the part ` if Type

�

(�x:A:B)2fProp;Type;Type

0

g' by the equivalent ondition given

in the Lemma.

3.20. Definition. The new type synthesis algorithm Type (�) and the ontext

heking algorithm Ok(�) are de�ned by replaing in the ase Type

�

(�x:A:B) the

part

if Type

�

(�x:A:B)2fProp;Type;Type

0

g by

if B � C

0

!� � �!C

n

for some n2INwith

(C

n

� Prop _ (C

n

� z for some zwith z:Type2�))

then Type

�

(A) = Type

else if B 6� Type;Type

0

then Type

�

(A) = Prop

Note that the algorithm only veri�es this ondition when the premise in the

Lemma is satis�ed. The new ondition may look rather ompliated, but it is de-

idable and now all the reursive alls are done to inputs with a smallest measure.

We remark that, this slight variation of the type synthesis algorithm is still sound.
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To establish termination, we have to verify that all side onditions are deidable.

Here the only work is in the appliation ase: in omputing Type

�

(MN), we have

to hek a �-equality and we have to hek whether a term redues to a �-type.

In general, heking �-equality on pseudo terms is not deidable beause we have

the full expressive power of the untyped �-alulus. However, due to the soundness

of the algorithm (Proposition 3.18), we know that the intermediate results in the

omputation of Type

�

(MN), C and D, are typable terms. Now, �-equality is de-

idable for typable terms, due to Strong Normalization and Conuene. Hene all

side onditions are deidable. To make the algorithm fully deterministi we searh

the �x:A:B (in C !!

�

�x:A:B) by omputing the weak-head-normal-form (whih

exists, due to Strong Normalization).

3.21. Proposition. The algorithms Type (�) and Ok(�) terminate on all inputs.

Now we ome to the ompleteness of the algorithms. Usually this is proved by

de�ning a di�erent set of derivation rules (1) that is equivalent to the original one

(i.e. they have the same set of derivable statements � ` M : A), (2) for whih the

ompleteness of the algorithm are easy to prove. In order to ahieve (2), we de�ne

a derivation system that is lose to the type synthesis algorithm.

3.22. Definition. The modi�ed derivation rules of �HOL are to derive two forms

of judgment: � `

t

M : A and � `

t

ok. They are given by the original rules of

�HOL, exept that

� The rules (ax), (weak), (var) and (onv) are removed,

� The following rules are added.

(empty) hi `

t

ok

(proj)

� `

t

ok

� `

t

x : A

if (x:A)2�

(sort)

� `

t

ok

� `

t

Prop : Type

� `

t

ok

� `

t

Type : Type

0

(ontext)

� `

t

A : s

�; x:A `

t

ok

� The (app) rule is replaed by

(app)

� `

t

M : C � `

t

N : D

� `

t

MN : B[N=x℄

if C !!

�

�x:A:B and D =

�

A

We state the following properties for the modi�ed derivation rules.
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3.23. Proposition. 1. Soundness of the modi�ed rules

� `

t

M : A) � `M : A

2. Completeness of the modi�ed rules

� `M : A) 9A

0

[A

0

=

�

A & � `M : A

0

℄

3. Completeness of the modi�ed rules w.r.t Type (�) and Ok(�)

� `

t

M : A ) Type

�

(M) =

�

A;

� `

t

ok ) Ok(�) = `true':

All ases in the proof of this Proposition are by an easy indution.

3.3. Pure Type Systems

The system �HOL is just an instane of a general lass of typed � aluli, the so-

alled `Pure Type Systems' or PTSs. These were �rst introdued by Berardi [1988℄

and Terlouw [1989℄, under di�erent names and with slightly di�erent de�nitions,

as a generalization of the so alled �-ube, see [Barendregt 1992℄. The reason for

de�ning the lass of PTSs is that many known systems are (or better: an be seen

as) PTSs. This makes it fruitful to study the general properties of PTSs in order

to obtain many spei� results for spei� systems as immediate instanes. In what

follows we will mention a number of these properties. Another advantage is that

the PTSs an be used as a framework for omparing type systems and for de�ning

translations between them.

Pure Type Systems are an immediate generalization of �HOL if we just note the

following parameters in the de�nition of �HOL.

� The set of `sorts' S an be varied. (In �HOL: Prop;Type;Type

0

.)

� The relation between the sorts an be varied. (In �HOL: f Type : Type

0

;Prop :

Typeg.)

� The ombinations of sorts for whih we allow the onstrution of �-types an

be varied. (In �HOL: (Type;Type); (Prop;Prop); (Type;Prop).)

3.24. Definition. For S a set (the set of sorts), A � S � S (the set of ax-

ioms)and R � S � S � S (the set of rules), the Pure Type System �(S;A;R)

is the typed �-alulus with the dedution rules given in Figure 3. If s

2

� s

3

in

a triple (s

1

; s

2

; s

3

)2R, we write (s

1

; s

2

)2R. In the derivation rules, the expressions

are taken from the set of pseudo terms T de�ned by

T ::= S j V j (�V :T :T ) j (�V :T :T ) j T T :

The pseudo term A is well-typed if there is a ontext � and a pseudo term B suh

that � ` A : B or � ` B : A is derivable. The set of well-typed terms of �(S;A;R)

is denoted by Term(�(S;A;R)).
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(sort) ` s

1

: s

2

if (s

1

; s

2

)2A

(var)

� ` A : s

�; x:A ` x : A

if x =2 �

(weak)

� ` A : s � `M : C

�; x:A `M : C

if x =2 �

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

3

if (s

1

; s

2

; s

3

)2R

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(onv)

� `M : A � ` B : s

� `M : B

A =

�

B

Figure 3: Typing rules for PTS

It is instrutive to de�ne some PTSs to see how exible the notion is. In the

following, we desribe a PTS by just listing the sort, the axioms and the rules in a

box. For �HOL this amounts to the following.

�HOL

S Prop;Type;Type

0

A Prop : Type;Type : Type

0

R (Prop;Prop); (Type;Type); (Type;Prop)

To de�ne �rst order prediate logi as a PTS, we have to make a syntatial

distintion between `�rst order domains' (over whih one an quantify) and `higher

order domains' (over whih quanti�ation is not allowed). Therefore, a sort Set is

introdued, the sort of �rst order domains, and assoiated with that a sort Type

s

,

the type of Set. The Pure Type System �PRED, representing �rst order prediate
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logi, is de�ned as follows.

�PRED

S Set;Type

s

;Prop;Type

A Set : Type

s

;Prop : Type

R (Set; Set); (Set;Type); (Prop;Prop); (Set;Prop)

We briey explain the rules. The rule (Prop;Prop) is the usual for forming the

impliation. With (Set;Type) one an form A!Prop : Type and A!A!Prop : Type,

the domains of unary prediates and binary relations. The rule (Set;Prop) allows

the quanti�ation over Set-types: one an form �x:A:' (A : Set and ' : Prop,

whih is to be read as a universal quanti�ation). Using (Set; Set) one an de�ne

funtion types like the type of binary funtions: A!A!A, but also (A!A)!A,

whih is usually referred to as a `higher order funtion type'. So note that �PRED

is �rst order only in the logial sense, i.e. quanti�ation over prediate domains

(like A!A!Prop) is not allowed.

The system �PRED, as desribed above, aptures quite a lot of �rst order pred-

iate logi. As a matter of fat it preisely aptures minimal �rst order prediate

logi with higher order funtions. The minimality means that there are only two

onnetives: impliation and �rst order universal quanti�ation. As we are in a �rst

order framework, the other onnetives an not be de�ned. This makes the express-

ibility rather low, as one an not write down negative formulas. On the other hand,

we do have higher order funtion types. It is possible to de�ne a PTS that ap-

tures minimal �rst order prediate logi exatly (i.e. �PRED without higher order

funtions). See [Barendregt 1992℄ for details.

To regain all onnetives, �PRED an be extended to the seond order or higher

order prediate logi (where all onnetives are de�nable). We only treat the exten-

sion to higher order prediate logi (�PRED!) here and ompare it with �HOL.

�PRED!

S Set;Type

s

;Prop;Type

A Set : Type

s

;Prop : Type

R (Set; Set); (Set;Type); (Type;Type); (Prop;Prop);

(Set;Prop); (Type;Prop)

The rule (Type, Prop) allows quanti�ation over domains of type Type, whih are

A!Prop, A!A!Prop etetera. The addition of (Type, Type) implies that now also

(A!Prop)!Prop : Type and ((A!Prop)!Prop)!Prop : Type. Quanti�ation is

over Type, whih overs all higher order domains.

Other well-known typed �-aluli that an be desribed as a PTS are simple typed

�-alulus, polymorphi typed �-alulus (also known as system F, [Girard 1972℄,

[Girard, Lafont and Taylor 1989℄), higher order typed �-alulus (also known as

F!, [Girard 1972℄). All these systems an be seen as subsystems of the Calulus of

Construtions, [Coquand 1985℄, [Coquand and Huet 1988℄. We de�ne the Calulus
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of Construtions (CC) as the following PTS.

CC

S �;2

A � : 2

R (�; �); (�;2); (2; �); (2;2)

The aforementioned subsystems an be obtained from this spei�ation by restrit-

ing the set of rules R. This deomposition of the Calulus of Construtions is

also known as the ube of typed �-aluli, see [Barendregt 1992℄ for further details.

In view of higher order prediate logi, one an understand CC as the system ob-

tained by smashing the sorts Prop and Set into one, �. Hene, higher order prediate

logi an be done inside the Calulus of Construtions. We desribe the map from

�PRED! to CC later in this Setion in detail.

3.4. Properties of Pure Type Systems

As has already been mentioned, an important motivation for the de�nition of the

general framework of Pure Type Systems is the fat that many important properties

an be proved for all PTSs at one. Here, we list the most important properties

and disuss them briey. Proofs an be found in [Geuvers and Nederhof 1991℄ and

[Barendregt 1992℄. In the following, unless expliitly stated otherwise, ` refers to

derivability in an arbitrary PTS. As in �HOL, we de�ne a ontext � to be well-

formed if � `M : A for some M and A.

Two basi properties are Thinning, saying that typing judgments remain valid in

an extended ontext, and Substitution, saying that typing judgments remain valid

if we substitute well-typed terms.

3.25. Proposition (Thinning). For � a ontext, �

0

a well-formed ontext and M

and A in T , if � `M : A and � � �

0

, then �

0

`M : A. Here, � � �

0

denotes that

all delarations that our in �, also our in �

0

.

3.26. Proposition (Substitution). For �

1

; x:B;�

2

a ontext, and M , N and A in

T , if �

1

; x:B;�

2

` M : A and �

1

` N : B, then �

1

;�

2

[N=x℄ ` M [N=x℄ : A[N=x℄.

Here, M [N=x℄ denotes the substitution of N for x in M , whih is straightforwardly

extended to ontexts by substituting in all types in the delarations.

Two other properties we want to mention here are Strengthening, saying that

variables that do not appear in the terms an be omitted from the ontext, and

Subjet Redution, saying that typing is losed under redution.

3.27. Proposition (Strengthening). For �

1

; x:B;�

2

a ontext, and M;A in T ,

�

1

; x:B;�

2

`M : A & x =2 FV(�

2

;M;A) ) �

1

;�

2

`M : A:
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This property, though intuitively very plausible, is diÆult to prove and requires a

deep analysis of the typing judgment (see [van Benthem Jutting 1993℄). (Note that

Strengthening is not an immediate onsequene of Substitution, beause types may

not be inhabited, i.e. there may not be an N suh that �

1

` N : B.)

3.28. Proposition (Subjet Redution). For � a ontext and M;N and A in T ,

if � `M : A and M !!

�

N , then � ` N : A.

There are also many (interesting) properties that hold for spei� PTSs or spei�

lasses of PTSs. We mention some of these properties, but �rst we introdue a new

notion.

3.29. Definition. A PTS �(S;A;R) is funtional, also alled singly sorted, if the

relations A and R are funtions, i.e. if the following two properties hold

8s

1

; s

2

; s

0

2

2S(s

1

; s

2

); (s

1

; s

0

2

)2A ) s

2

= s

0

2

;

8s

1

; s

2

; s

3

; s

0

3

2S(s

1

; s

2

; s

3

); (s

1

; s

2

; s

0

3

)2R ) s

3

= s

0

3

All the PTSs that we have enountered so far are funtional. In general it is hard

to �nd a `natural' PTS that is not funtional. Funtional PTSs share the following

nie property.

3.30. Proposition (Uniqueness of Types). This property holds for funtional

PTSs only. For � a ontext, M , A and B in T , if � `M : A and � `M : B, then

A =

�

B.

One an sometimes relate results of two di�erent systems by de�ning an embed-

ding between them. There is one very simple lass of embeddings between PTSs.

3.31. Definition. For T = �(S;A;R) and T

0

= �(S

0

;A

0

;R

0

) PTSs, a PTS-

morphism from T to T

0

is a mapping f : S ! S

0

that preserves the axioms and rules.

That is, for all s

1

; s

2

2S, if (s

1

; s

2

)2A then (f(s

1

); f(s

2

))2A

0

and if (s

1

; s

2

; s

3

)2R

then (f(s

1

); f(s

2

); f(s

3

))2R

0

.

A PTS-morphism f from �(S;A;R) to �(S

0

;A

0

;R

0

) extends immediately to a

mapping f on pseudo terms and ontexts. Moreover, this mapping preserves re-

dution in a faithful way: M !

�

N i� f(M) !

�

f(N). We have the following

property.

3.32. Proposition. For T and T

0

PTSs and f a PTS-morphism from T to T

0

, if

� `M : A in T , then f(�) ` f(M) : f(A) in T

0

.

Not all PTSs are Strongly Normalizing. We have the following well-known theo-

rem.

3.33. Theorem. The Calulus of Construtions, CC, is Strongly Normalizing.
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The proof is rather involved and an be found in [Geuvers and Nederhof 1991, Co-

quand and Gallier 1990, Berardi 1990℄. More general approahes to proving strong

normalization for type systems with dependent types an be found in [Mellies and

Werner 1998, Geuvers 1995℄.

As a onsequene we �nd that many other PTSs are Strongly Normalizing as

well. This omprises all the sub-systems of CC and also all systems T for whih

there is a PTS-morphism from T to CC. (Note that a PTS-morphism preserves

in�nite redution paths.)

3.34. Corollary. The following PTSs are all Strongly Normalizing. All subsys-

tems of CC; �PRED; �PRED!.

A well-known example of a PTS that is not Strongly Normalizing is ��. This

generalizes the Calulus of Construtions to the extent where � and 2 are uni�ed,

or put di�erently, the sort of types, �, is itself a type.

��

S �

A � : �

R (�; �)

This PTS is also inonsistent in the sense that all types are inhabited (whih means,

if we view|following the propositions-as-types embedding|the type system as a

logi, that all propositions are provable). The original proof of inonsisteny of ��

is in [Girard 1972℄; a very lear exposition an be found in [Coquand 1986℄, while

[Hurkens 1995℄ has improved and shortened the inonsisteny proof onsiderably.

From the inonsisteny it easily follows that the system is not normalizing. The

PTS �� is also the terminal objet in the ategory of PTSs with PTS-morphisms

as arrows.

As a matter of fat, we now have two formalizations of higher order prediate

logi as a PTS: �HOL and �PRED!. We employ the notion of PTS-morphism to see

that they are equivalent. >From �PRED! to �HOL, onsider the PTS-morphism f

given by

f(Prop) = Prop;

f(Set) = Type;

f(Type) = Type;

f(Type

s

) = Type

0

:

One veri�es immediately that f preserves A and R, hene we have

� `

�PRED!

M : A) f(�) `

�HOL

f(M) : f(A):

The inverse of f an almost be desribed as a PTS-morphism, but not quite. De�ne

the PTS-morphism g from �PRED! to �HOL as follows.

g(Prop) = Prop;
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g(Type) = Set;

g(Type

0

) = Type

s

(In �HOL the sort Type

0

an not appear in a ontext nor in a term on the left side

of the `:'.) We extend g to derivable judgments of �HOL in the following way.

g(� `M : A) = g(�) ` g(M) : g(A); if A 6= Type;

g(� `M : Type) = g(�) ` g(M) : Set; if M � � � �!�; (� a variable);

g(� `M : Type) = g(�) ` g(M) : Type; if M � � � �!Prop:

By easy indution one proves that g preserves derivations. Furthermore, f(g(� `

M : A)) = � ` M : A and g(f(� ` M : A)) = � ` M : A. Hene, �PRED! and

�HOL are equivalent systems. This equivalene implies that the system �HOL is

Strongly Normalizing as well.

3.5. Extensions of Pure Type Systems

Several features are not present in PTSs. For example, it is possible to de�ne data

types (in a polymorphi sort, e.g. Prop in �HOL or � in CC), but one does not

get indution over these data types for free. (It is possible to de�ne funtions by

reursion, but indution has to be assumed as an axiom.) Therefore, `indutive

types' an extra feature. The way we present them below, they were �rst de�ned in

[Coquand and Paulin-Mohring 1990℄. (See also [Paulin-Mohring 1994℄.) Indutive

types are present in all widely used type-theoreti theorem provers, like [COQ 1999,

LEGO 1998, Agda 2000℄.

Another feature that we will disuss is the notion of produt and (strong) �-type.

A �-type is a `dependent produt type' and therefore a generalisation of produt

type in the same way that a �-type is a generalisation of arrow type: �x:A:B

represents the type of pairs (a; b) with a : A and b : B[a=x℄. (If x =2 FV(B), we

just end up with A � B.) Besides a pairing onstrution to reate elements of a

�-type, we have projetions to take a pair apart: if t : �x:A:B, then �

1

t : A and

�

2

t : B[�

1

t=x℄. �-types are very natural for doing abstration over theories, as was

�rst explained in [Luo 1989℄. Produts an be de�ned inside the system if one has

polymorphism, but �-types annot.

3.6. Produts and Sums

We have already seen how to de�ne onjuntion and disjuntion in �HOL. These

are very lose to produt-types and sum-types. In Figure 4 the desired rules for a

produt-type are given. In presene of polymorphism, these onstrutions are all

de�nable. For example in �HOL we have produts in the sort Prop. Let A

1

; A

2

: Prop

and de�ne

A

1

�A

2

:= ��:Prop:(A

1

!A

2

!�)!�;
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(produts)

� ` A

1

: s � ` A

2

: s

� ` A

1

�A

2

: s

(projetion)

� ` p : A

1

�A

2

� ` �

i

p : A

i

(pairing)

� ` t

1

: A

1

� ` t

2

: A

2

� ` ht

1

; t

2

i : A

1

�A

2

omputation rule: �

i

ht

1

; t

2

i ! t

i

Figure 4: Rules for produt types

�

1

:= �p:(A

1

�A

2

):pA

1

(�x:A

1

:�y:A

2

:x);

�

2

:= �p:(A

1

�A

2

):pA

2

(�x:A

1

:�y:A

2

:y);

h�;�i := �x:A

1

:�y:A

2

:��:Prop:�h:(A

1

!A

2

!�):hxy;

For sum-types one would like to have the rules of Figure 5. This an also be

(sums)

� ` A

1

: s � ` A

2

: s

� ` A

1

+A

2

: s

(injetion)

� ` p : A

i

� ` in

i

p : A

1

+A

2

(ase)

� ` f

1

: A

1

!C � ` f

2

: A

2

!C

� ` ase(f

1

; f

2

) : (A

1

+A

2

)!C

omputation rule: ase(f

1

; f

2

)(in

i

p)! f

i

p

Figure 5: Rules for sum types

de�ned in a polymorphi sort (inspired by the _-onstrution). Let in �HOL, A

1

; A

2

and C be of type Prop, f

1

: A

1

!C and f

2

: A

2

!C.

A

1

+A

2

:= ��:Prop:(A

1

!�)!(A

2

!�)!�;

in

1

:= �p:A

1

:��:Prop:�h

1

:(A

1

!�):�h

2

:(A

2

!�):h

1

p;

in

2

:= �p:A

2

:��:Prop:�h

1

:(A

1

!�):�h

2

:(A

2

!�):h

2

p;
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ase(f

1

; f

2

) := �x:(A

1

+A

2

):xCf

1

f

2

:

3.7. �-types

In mathematis one wants to be able to reason about abstrat notions, like the

theory of groups. Therefore, in the formalization of mathematis in type theory, we

have to be able to form something like the `type of groups'. As an example, let us

see what a group looks like in �HOL. Given A : Type, a group over A is a tuple

onsisting of the terms

Æ : A!A!A

e : A

inv : A!A

(the group-struture) suh that the following types are inhabited (we use in�x-

notation for readability).

�x; y; z:A:(x Æ y) Æ z = x Æ (y Æ z);

�x:A:e Æ x = x;

�x:A:(inv x) Æ x = e:

For the type of the group-struture we an use the produt: the type of group-

strutures over A, Group-Str(A), is (A!A!A)� (A� (A!A)). If t : Group-Str(A),

then �

1

t : A!A!A, �

1

(�

2

t) : A, etetera. However, this does not yet apture the

axioms of group-theory. For this we an use the �-type: the type of groups over A,

Group(A), is de�ned by

Group(A) := � Æ :A!A!A:�e:A:�inv:A!A: (�x; y; z:A:(x Æ y) Æ z = x Æ (y Æ z))^

(�x:A:e Æ x = x)^

(�x:A:(inv x) Æ x = e).

Now, if t : Group(A), we an extrat the elements of the group struture

by projetions as before: �

1

t : A!A!A, �

1

(�

2

t) : A, etetera. One an

also extrat proof-terms for the group-axioms by projetion: �

1

(�

2

(�

2

(�

2

t))) :

�x; y; z:A:�

1

t(�

1

txy)z = �

1

tx(�

1

tyz), representing the assoiativity of the oper-

ation �

1

t.

Similarly, if f : A!A!A, a : A and h : A!A with p

1

; p

2

; p

3

and p

4

proof-terms

of the assoiated group-axioms, then

hf; ha; hh; hp

1

; hp

2

; hp

3

; p

4

iiiiii : Group(A):

The preise rules of the �-types in �HOL are as in Figure 6.

These rules allow the formation of the `dependent tuples' we need for formalizing

notions like Group and Ring. An even more general approah towards the theory
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(�)

� ` A : Type �; x:A ` ' : Prop

� ` �x:A:' : Type

(h�;�i)

� ` a : A � ` p : '[a=x℄ � ` �x:A:' : Type

� ` ha; pi : �x:A:'

(�

1

)

� ` t : �x:A:'

� ` �

1

t : A

(�

2

)

� ` t : �x:A:'

� ` �

2

t : '[�

1

t=x℄

omputation rules: �

1

ha; pi ! a

�

2

ha; pi ! p

Figure 6: Rules for �-types

of groups would be to also abstrat over the arrier type, obtaining

Group := �A:Type:� Æ :A!A!A:�e:A:�inv:A!A:

(�x; y; z:A:(x Æ y) Æ z = x Æ (y Æ z))^

(�x:A:e Æ x = x)^

(�x:A:(inv x) Æ x = e):

This an be done by an easy extension of the rules, allowing to form �x:A:B also

for A : Type

0

:

(�

0

)

� ` A : Type

0

�; x:A ` B : Type

� ` �x:A:B : Type

However, if we want the system to remain onsistent, it is not possible to allow

�x:Type:B : Type. We must put �x:Type:B : Type

0

. This implies that Group : Type

0

,

whih may not be desirable.

We may observe that the �-type behaves very muh like an existential quanti�er.

Apart from the fat that �x:A:' is not a proposition, but a type, we see that a

(proof)term of type �x:A:' is onstruted from a term a of type A for whih '[a=x℄

holds. The other way around, from a (proof)term t of type �x:A:' one an onstrut

the witness �

1

t and the proof that for this witness ' holds. This very losely reets

the onstrutive interpretation of the existential quanti�er (`if 9x:A:' is derivable,

then there exists a term a for whih '[a=x℄ is derivable'). The use of �-types for

the existential quanti�er requires that �x:A:' : Prop (not of type Type) in �HOL.
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In order to ahieve this we ould modify the �-rule as follows.

(�)

� ` A : Type �; x:A ` ' : Prop

� ` �x:A:' : Prop

However, the addition of this rule to �HOL makes the system inonsistent. In the

ase of �PRED!, it is possible to add a �-type that represents the existential quan-

ti�er, while remaining onsistent, but only for A : Set. On the other hand, one may

wonder whether a �-type is the orret formalization of the onstrutive existential

quanti�er, beause it reates set-terms that depend on proof-terms. For example,

if we put z : �x:A:' in the ontext where �x:A:' is a proposition (�x:A:' : Prop),

then �

1

z : A (A : Set). So we have an element-expression (�

1

z) that depends on a

proof (z), a feature alien to ordinary prediate logi, where the expression-language

is built up independently of the proofs.

3.8. Indutive Types

A basi notion in logi and set theory is indution: when a set is de�ned indutively,

we understand it as being `built up from the bottom' by a set of basi onstrutors.

Elements of suh a set an be deomposed in `smaller elements' in a well-founded

manner. This gives us the priniples of `proof by indution' and `funtion de�nition

by reursion'.

If we want to add indutive types to our type theory, we have to add a de�nition

mehanism that allows us to introdue a new indutive type, by giving the name and

the onstrutors of the indutive type. The theory should automatially generate

a sheme for proof-by-indution and a sheme for primitive reursion. It turns out

that this an be done very generally in type theory, inluding very many instanes of

indution. Here we shall use a variant of the indutive types that are present in the

system COQ [1999℄ and that were �rst de�ned in Coquand and Paulin-Mohring

[1990℄. Another approah to indutive types is to enode them as `well-ordering

types', also alled W -types. The W -type an be used to enode arbitrary indutive

types, but only if we are in extensional type theory. As we are in an intensional

framework, we do not pursue that thread; see e.g. [Goguen and Luo 1993℄ for details.

We illustrate the rules for indutive types in �HOL by �rst treating the (very

basi) example of natural numbers nat. We would like the user to be able to write

something like

Indutive nat : Type :=

0 : nat

j S : nat!nat:
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to obtain the following rules.

(elim

1

)

� ` A : Type � ` f

1

: A � ` f

2

: nat!A!A

� ` Re

nat

f

1

f

2

: nat!A

(elim

2

)

� ` P : nat!Prop � ` f

1

: P0 � ` f

2

: �x:nat:Px!P (Sx)

� ` Re

nat

f

1

f

2

: �x:nat:Px

The rule (elim

1

) allows the de�nition of funtions by primitive reursion. The rule

(elim

2

) allows proofs by indution. To make sure that the funtions de�ned by

(elim

1

) ompute Re

nat

has the following redution rule.

Re

nat

f

1

f

2

0 !

�

f

1

Re

nat

f

1

f

2

(St) !

�

f

2

t(Re

nat

f

1

f

2

t)

It is understood that the additional �-redution is also inluded in the onversion-

rule (onv), where we now have `A =

��

B' as a side-ondition. The subsript in

Re

nat

will be omitted, when lear from the ontext.

An example of the use of (elim

1

) is in the de�nition of the `double' funtion d,

whih is de�ned by

d := Re

nat

0(�x:nat:�y:nat:S(S(y))):

Now, d0 !!

��

0 and d(Sx) !!

��

S(S(dx)). The prediate of `being even', even(�),

an also be de�ned by using (elim

1

):

even(�) := Re

nat

(>)(�x:nat:��:Prop::�):

We obtain indeed that

even(0) !!

��

>;

even(Sx) !!

��

:even(x)

An example of the use of (elim

2

) is the proof of �x:nat:even(dx). Say that true is

some anonial inhabitant of type >. Using even(d(Sx)) =

��

::even(dx) we �nd

that �x:nat:�h:even(dx):�z::even(dx):zh is of type �x:nat:even(dx)!even(d(Sx)).

So we onlude that

` Re

nat

true(�x:nat:�h:even(dx):�z::even(dx):zh) : �x:nat:even(dx):

Another well-known example is the type of lists over a domain D. It is de�ned

as follows.

Indutive List : Type :=

Nil : List

j Cons : D!List!List
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with the following rules.

(elim

1

)

� ` A : Type � ` f

1

: A � ` f

2

: D!List!A!A

� ` Re

List

f

1

f

2

: List!A

(elim

2

)

� ` P : List!Prop � ` f

1

: PNil � ` f

2

: �d:D:�x:List:Px!P (Cons dx)

� ` Re

List

f

1

f

2

: �x:List:Px

The rule (elim

1

) allows the de�nition of funtions by primitive reursion, while the

rule (elim

2

) allows proofs by indution. To make sure that the funtions ompute

in the orret way, Re

List

has the following redution rule.

Re

List

f

1

f

2

Nil !

�

f

1

Re

List

f

1

f

2

(Cons dt) !

�

f

2

dt(Re

List

f

1

f

2

t)

An example of the use of Re

List

is in the de�nition of the `map' funtion that takes

a funtion f : D!D and returns the funtion (of type List!List) that applies f to

all elements of the list. De�ne

map := �f :D!D:�l:List:Re

List

Nil(�d:D:�k:List:�h:List:Cons (fd)h)

: (D!D)!List!List:

Then map f(Cons dt) =

��

Cons (fd)map ft:

Of ourse, there is a more general pattern behind these two examples. The ex-

tension of �HOL with indutive types is de�ned by adding the following sheme.

Indutive � : Type :=

onstr

1

: �

1

1

(�)!� � ��

1

m

1

(�)!�

.

.

.

j onstr

n

: �

n

1

(�)!� � ��

n

m

n

(�)!�

where the �

i

j

(�) are all `type shemes with a stritly positive ourrene of �', i.e.

eah �

i

j

(�) is of the form A

1

!� � �A

n

!X with no ourrene of � in the A

k

and

either X � � or � not in X . This delaration of � introdues � as a de�ned type

and it generates the onstrutors onstr

1

; : : : ; onstr

n

plus the assoiated elimination

rules and the redution rules. For a general piture on indutive types we refer to

[Paulin-Mohring 1994℄.

To illustrate the generality of indutive types, we give an example of an indutive

type that is more ompliated than nat and List. We want to de�ne the type Tree

of ountably branhing trees with labels in D. (So a term of type Tree represents a

tree where the nodes and leaves are labelled with a term of type D and where at

every node there are ountably many subtrees.) The de�nition of Tree is as follows.

Indutive Tree : Type :=

Leaf : D!Tree

j Join : D!(nat!Tree)!Tree
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Here, Leaf reates a tree onsisting of just a leaf, labelled by a term of type D.

The onstrutor Join takes a label (of type D) and an in�nite (ountable) list of

trees to reate a new tree. The (elim

1

) rule is as follows.

(elim

1

)

� ` A : Type � ` f

1

: D!A � ` f

2

: D!(nat!Tree)!(nat!A)!A

� ` Re

Tree

f

1

f

2

: Tree!A

Re

Tree

has the following redution rule.

Re

Tree

f

1

f

2

(Leafd) !

�

f

1

d

Re

Tree

f

1

f

2

(Join d t) !

�

f

2

dt(�x:nat:Re

Tree

f

1

f

2

(tx))

It is an interesting exerise to de�ne all kinds of standard funtions on Tree, like

the funtion that takes the nth subtree (if it exists and take Leafa otherwise) or

the funtion that deides whether a tree is in�nite (or just a single leaf).

For Tree, we have the following (elim

2

) rule.

(elim

2

)

� ` P : Tree!Prop � ` f

1

: �d:D:P (Leafd)

� ` f

2

: �d:D:�t:nat!Tree:(�n:nat:P (tn))!P (Join d t)

� ` Re

Tree

f

1

f

2

: �x:Tree:Px

Another interesting example of indutive types are indutively de�ned propo-

sitions. An example is the onjuntion, whih has one onstrutor (the pairing).

Given ' and  of type Prop, it an be de�ned as follows.

Indutive ' ^  : Prop :=

Pair : '! !(' ^  )

As we do not have the (Prop;Type) rule in �HOL, we an only onsider the seond

elimination rule, whih will only appear in the ase where P is a onstant of type

Prop. (So P : Prop instead of P : '^ !Prop.) The elimination rule (elim

2

) rule is

then as follows.

(elim

2

)

� ` P : Prop � ` f

1

: '! !P

� ` Re

^

f

1

: (' ^  )!P

By taking ' (respetively  ) for P and �x:':�y: :x (respetively �x:':�y: :y)

for f

1

, one easily reovers the well-known projetion from ' ^  to ' (respetively

 ). The logial operators _ and 9 an similarly be de�ned indutively.

More general indutive de�nitions

Above we have restrited ourselves to a spei� lass of indutive types. This lass

is very general, overing all the so alled `algebrai types', but it still an be ex-

tended. There are three main extensions that we disuss briey by some motivating

examples. They are

1. Parametri Indutive Types
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2. Indutive Types with Dependent Construtors

3. Indutive Prediates

Many of these extensions our together in more interesting examples.

Probably the most well-known situation of a `parametri type' is the type of `lists

over a type D'. Here the type D is just a parameter: primitive reursive operations

on lists do not depend on the spei� hoie for D. A possible way for de�ning the

type of parametri lists would be the following.

Indutive List : Type!Type :=

Nil : �D:Type:(ListD)

j Cons : �D:Type:D!(ListD)!(ListD):

Whih would generate the following elimination rules and redution rule.

(elim

1

)

� ` D : Type � ` A : Type � ` f

1

: A � ` f

2

: D!(ListD)!A!A

� ` Re

List

f

1

f

2

: (ListD)!A

(elim

2

)

� ` D : Type

� ` P : (ListD)!Prop

� ` f

1

: P (NilD)

� ` f

2

: �d:D:�x:(ListD):Px!P (Cons Ddx)

� ` Re

List

f

1

f

2

: �x:(ListD):Px

Re

List

f

1

f

2

(NilD) !

�

f

1

Re

List

f

1

f

2

(Cons Ddt) !

�

f

2

dt(Re

List

f

1

f

2

t)

To be able to write down the type of the onstrutors Nil and Cons, we need the

rule (Type

0

;Type) in �HOL, whih makes the system inonsistent. Therefore, this

extension works muh better in a system like �PRED!, where we an onsistently

allow quanti�ation over Set. We will not be onerned with these preise details

here however.

In the example of parametri lists we have already seen onstrutors that have

a dependent type. It turns out that this situation ours more often. With respet

to the general sheme, the extension to inlude dependent typed onstrutors is a

straightforward one: all de�nitions arry through immediately. We treat an interest-

ing example of an indutive type (the �-type), whih is de�ned using a onstrutor

that has a dependent type. Let B : Type and Q : A!Prop and suppose we have

added the rule (Prop;Type) to our system.

Indutive � : Type :=

In : �z:B:(Qz)!�:
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(elim

1

)

� ` A : Type � ` f

1

: �z:B:(Qz)!A

� ` Re

�

f

1

: �!A

(elim

2

)

� ` P : �!Prop � ` f

1

: �z:B:�y:(Qz):P (Inzy)

� ` Re

�

f

1

: �x:�:(Px)

The �-redution rule is

Re

�

f

1

(Inbq) !

�

f

1

bq

Now, taking in (elim

1

) B for A and �z:B:�y:(Qz):z for f

1

, we �nd that

Re (�z:B:�y:(Qz):z)(Inbq)!! b:

Hene, we de�ne �

1

:= Re (�z:B:�y:(Qz):z). Now, taking �x:�:Q(�

1

x) for

P in (elim

2

) and �z:B:�y:(Qz):y for f

1

, we �nd that Re (�z:B:�y:(Qz):y) :

�z:�:Q(�

1

z). Furthermore, Re (�z:B:�y:(Qz):y)(Inbq) !! q. Hene, we de�ne

�

2

:= Re (�z:B:�y:(Qz):y) and we remark that � together with In (as pairing

onstrutor) and �

1

and �

2

(as projetions) represents the �-type.

An example of an indutively de�ned prediate is the equality, whih an be

de�ned as follows.

Indutive Eq : D!D!Prop :=

Re : �x:D:(Eqxx):

Just like in the example for the onjuntion, we only have the seond elimination

rule for the non-dependent ase (i.e. P only depends on x; y:D but not on a proof

of Eqxy). So we have

(elim

2

)

� ` P : D!D!Prop � ` f

1

: �x:D:(Pxx)

� ` Re

Eq

f

1

: �x; y:D:(Eqxy)!(Pxy)

The �-redution rule is

Re

Eq

xxf

1

(Rex) !

�

f

1

x

4. Proof-development in type systems

In this setion we will show how a onrete proof-assistant works. First we show

in what way the human has to interat with the system. Then a small proof-

development is partially shown (most proof-objets are omitted). Finally it is shown

how omputations an be aptured in formalized theories.
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4.1. Tatis

In Setion 2.1 and Setion 4.3 examples will be given of an easy, and a more involved

theorem with full proofs. Even before these examples are given, the reader will

probably realize that onstruting fully formalized proofs (the proof-objets) is rel-

atively involved. Therefore tools have been developed|so-alled proof-assistants|

that make this task more easy. A proof assistant onsists of a proof heker and an

interative proof-development system. We have depited the situation graphially

in Figure 7. In the proof-development system one hooses a ontext and formu-

proof-development system

proof-
checker

proof-
object

certified
statement

tactics

current context
current goal

�����

�����

�����

�����

�����

proof assistant

Figure 7: A proof-assistant and its omponents

lates a statement to be proved relative to that ontext. This statement is alled the

goal. Rather than onstruting the required proof-objet diretly, one uses so-alled

tatis that give a hint to the mahine as to what the proof-objet looks like. For

example, if one wants to prove

8x:A:(Px ) Qx)

in ontext A : Set; P;Q : A!Prop, then there is a tati (`Intros') that hanges

the ontext by piking a fresh (`arbitrary') x:A and assumes Px, the goal now be-

oming Qx. To be more preise, we give some extrats of Coq sessions. In Coq,

the �-abstration and the �-abstration are represented by brakets: (x:A)B de-

notes �x:A:B and [x:A℄M denotes �x:A:M . Furthermore, -> and abstration bind

stronger than appliation, so we have to put brakets around appliations, writing

(x:A)(P x)->(Q x) for �x:A:Px!Qx. In the following, Unnamed thm < and

Coq < are the Coq prompts at whih the user is expeted to type some ommand:

at Coq <, the system is in `delaration mode', where the user an extend the on-

text with new delarations or de�nitions; at Unnamed thm <, the system is in `proof

mode', where the user an type in tatis to solve the goal(s).
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Coq < Variable A:Set; Variable P,Q:A->Prop.

A is assumed

P is assumed

Q is assumed

Coq < Goal (x:A)(P x) -> (Q x).

1 subgoal

============================

(x:A)(P x)->(Q x)

Unnamed_thm < Intros.

1 subgoal

x : A

H : (P x)

============================

(Q x)

The H: (P x) means that we assume that H is a proof of (P x) (in order to

onstrut a proof q of (Q x), thereby providing a proof of (P x) -> (Q x), namely

[H:(P x)℄q, and hene of (x:A)(P x) -> (Q x), namely [x:A℄[H:(P x)℄q.

Another tati is `Apply'. If the urrent ontext ontains a:A and p: (x:A)(P x)

-> (Q x) and the urrent goal is (Q a), then the ommand Apply p will hange

the urrent goal into (P a). This is done by mathing the type of p with the urrent

goal where the universal variables (here just x) are the ones to be instantiated. So,

the system mathes (Q x) with (Q a), �nding the instantiation of a for x. The

proof-term that the system onstruts is in this ase p a ?, with ? the yet to be

onstruted proof of (P a).

Coq < Variable a:A; Variable p : (x:A) (P x) -> (Q x).

a is assumed

p is assumed

Coq < Goal (Q a).

1 subgoal

============================

(Q a)

Unnamed_thm < Apply p.

1 subgoal

============================

(P a)
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Another essential tati is onerned with indutive types. For example the type

of natural numbers is de�ned by

Indutive nat := O :nat | S: nat -> nat.

This type omes together with an indution priniple

nat_ind

: (P:(nat->Prop))(P O)->((n:nat)(P n)->(P (S n)))->(n:nat)(P n)

The way this an be used is as follows. If the (urrent) goal is (Q n) in on-

text ontaining n : nat, then the tati Elim n will produe the new goals (Q O)

and (n : nat)(Q n)-> (Q (n+1)). Indeed, if p is a proof of (Q O) and q of

(n:nat)(Q n)->(Q(n+1)), then (nat ind Q p q n) will be a proof of (Q n).

Also this type nat omes with a reursor nat re satisfying

(nat re a b O) = a;

(nat re a b (S n)) = (b n (nat re a b n)):

Indeed, going from left to right, these are �-redutions that fall under the Poinar�e

priniple.

As logial operators are de�ned indutively, we basially have all tools to develop

mathematial proofs. The interative session ontinues until all goals are solved.

Then the system is satis�ed and the proved result an be stored under a name that

is hosen by the user.

Subtree proved!

Unnamed_thm < Save fst_lemma.

<tatis>

fst_lemma is defined

In the plae of <tatis>, the system repeats the series of tatis that was typed

in by the user to solve the goal. The system adds a de�nition fst lemma := ...

to the ontext, where ... is the proof term (a typed �-term) that was interatively

onstruted. Then later the user an use the lemma by referring to fst lemma, for

example in the Apply tati: Apply fst lemma.

The set of tatis and its implementation together with the user interfae will

yield a large proof-development system. For example, several tehniques of auto-

mated dedution may be inorporated as tatis. But even if the resulting proof-

development system as subunit in general will be large, the reliability of the proof-

assistant as suh is still high, provided that the proof heker is small, i.e. satis�es

the de Bruijn riterion.

4.2. Examples of Proof Development

Given a mathematial statement within a ertain ontext, a proof development

onsists of a formalization of the ontext � and statement A and a onstrution of
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a proof-objet for it, i.e. a term p suh that

� ` p : A:

A substantial part of a proof development onsists of a theory development, a name

oined by Peter Azel. This onsists of a list of primitive and de�ned notions and

axioms and provable theorems ulminating in the goalA to be proved. In this setion

we will present suh a theory development in the system Coq for the statement that

every natural number greater than one has a prime divisor.

4

Two aspets of the development are of interest. Whereas the logial operators!

and 8 are primitive notions of type theory (when translated as �), the operators

onjuntion ^, disjuntion _, false FF, negation ~ and existene 9 are also de�nable

using indutive types, see [Martin-L�of 1984℄. For example

Indutive or [A:Prop; B:Prop℄ : Prop :=

or_introl : A->(or A B)

| or_intror : B->(or A B)

Here, the abstration [A:Prop; B:Prop℄ says that A and B are parameters of the

de�nition. Some pretty printing, a syntati de�nition an be added, allowing to

write A \/ B for (or A B). The indutive de�nition implies that A \/ B omes

together with maps

or_introl : (A,B:Prop)A->A\/B

or_intror : (A,B:Prop)B->A\/B

We also need a map orresponding to the elimination priniple for disjuntion (for

example to prove that A\/B -> B\/A):

or_ind : (A,B,P:Prop)(A->P)->(B->P)->A\/B->P

It is also possible to de�ne the operations ^, _, FF, ~ and 9 without indutive

types, using higher order quanti�ation, as in [Russell 1903℄. For example disjun-

tion beomes

A _ B � �C:Prop:(A!C)!(B!C)!A _B!C:

In this way the elimination priniple is the term

�f :(A!C)�g:(B!C)�h:(A _ B):hCfg:

The logial de�nitions de�ned this way turn out to be equivalent with the indu-

tively de�ned ones. Following Martin-L�of we use the indutive de�nitions, beause

this way one an avoid imprediative notions like higher order quanti�ation.

4

From this statement Eulid's theorem that there are in�nitely many primes is not far removed:

onsider a prime fator of n! + 1 and show that it is neessarily > n. Thus one obtains 8n9p >

n:prime p. A slightly di�erent formalization is possible in type theory, where one an prove the

statement 8n:IN8p

1

; : : : ; p

n

:IN[prime p

1

^ : : :^prime p

n

) 9x:IN[prime x^x 6= p

1

^ : : :^x 6= p

n

℄℄.

Note that it is impossible to even state this as a theorem in Peano Arithmeti, beause of the use

of n as a parameter denoting the length of the sequene ~p and the number of disjuntions x 6= p

i

.

In type theory it an be stated beause of the rules for indutive types. In arithmeti one would

have to go to seond order logi to state (and prove) this theorem
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Another point of interest is that indutive types are freely generated by their

onstrutors. This has for example as onsequene that for the type of natural

numbers one an prove

(n : nat) ~( (S n) = O )

(n,m : nat) (S n) = (S m) -> n = m

Thus we see that within type theory with indutive types, Heyting arithmeti

an be formalized, without assuming additional axioms or rules. To quote Randy

Pollak: \Type theory with indutive types is intuitionisti: mathematial priniples

are wired in."

Now we will present a theory development in Coq (version 6.3), for the statement

that every natural number has a prime divisor. The mathematis behind this is very

elementary. Logi is introdued.

5

After the introdution of the natural numbers,

plus and times are de�ned reursively. Then division and primality are de�ned. In

order to prove our result the usual ordering < is de�ned (�rst �) and ourse of

value indution

6

is used. Text written between (* ... *) serves as a omment. In

the following, the proofs are omitted but the de�nitions are given expliitly.

(**************** A simple proof-development ****************)

(**** Propositional onnetives defined indutively. ****)

Indutive and [A:Prop; B:Prop℄ : Prop

:= onj : A->B->(and A B).

Indutive TT : Prop

:= trivial : TT.

Indutive FF : Prop

:=.

Definition not : Prop->Prop

:= [A:Prop℄A->FF.

Definition iff := [A,B:Prop℄(and (A->B)(B->A)).

(* For pretty printing syntati definitions (not shown) are

introdued that allow to use the following notations

~A for (not A)

A/\B for (and A B)

A\/B for (or A B)

A<->B for (iff A B) *)

(* Introdution and elimination rules. *)

5

In fat lassial logi. An intuitionisti proof is muh better, as it provides an algorithm to

�nd the prime divisor. But this requires more work.

6

If for every n2IN one has (8m < n:Pm)!Pn, then 8n2IN:Pn.
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Lemma and_in : (a,b:Prop)a->b->(and a b).

Lemma and_ell : (a,b:Prop)(and a b)->a.

Lemma and_elr : (a,b:Prop)(and a b)->b.

Lemma false_el : (a:Prop) FF->a.

Lemma or_inl : (a,b:Prop)a->(or a b).

Lemma or_inr : (a,b:Prop)b->(or a b).

Lemma or_el : (a,b,:Prop)(a->)->(b->)->(or a b)->.

(* Lemmas ombining onnetives. *)

Lemma non_or : (a,b:Prop)~(or a b)->~a/\~b.

(* We show the proof-objet (generated by the tatis):

non_or =

[a,b:Prop; p:(not (or a b))℄

(and_in (not a) (not b) [q:a℄(p (or_inl a b q))

[q:b℄(p (or_inr a b q)))

: (a,b:Prop)(not (or a b))->(and (not a) (not b)) *)

(* Some lemmas omitted *)

(******************* Prediate logi. *******************)

Indutive ex [A : Set; P : A->Prop℄ : Prop

:= ex_intro : (x:A)(P x)->(ex A P).

(* A syntati definition (not shown) is given that allows one

to write the usual

(EX x:A|(P x)) for ex A [x:A℄(P x) *)

Setion Pred.

Variables A : Set; P : A->Prop; Q : A ->Prop.

Lemma all_el : (x:A)((y:A)(P y))->(P x).

Lemma ex_in : (x:A)(P x)->(EX y:A|(P y)).

Lemma non_ex : (~(EX x:A|(P x)))->(x:A)~(P x).

Lemma all_not : ((x:A)~(P x))->~(EX x:A|(P x)).

Lemma all_and : ((x:A)(P x)/\(Q x))->((x:A)(P x))/\((x:A)(Q x)).

Lemma ex_or : (EX x:A|(P x)\/(Q x))

->(EX x:A|(P x))\/(EX x:A|(Q x)).

End Pred.

(* Classial logi. *)
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Axiom DN : (a:Prop)(~~a->a).

Lemma dn_ : (a:Prop)~~a<->a.

Lemma (* Exluded middle: tertium non datur. *)

tnd : (a:Prop)(a\/~a).

(* Some lemmas omitted *)

Setion Pred_las.

Variable A:Set; P:A->Prop.

Lemma non_all : (~(x:A)(P x))->(EX x:A|~(P x)).

Lemma ex_ : (EX x:A|(P x))<->~(x:A)~(P x).

(* This lemma has the following proof-objet. [Note the presene of DN℄

ex_ =

(onj (EX x:A | (P x))->~((x:A)~(P x))

~((x:A)~(P x))->(EX x:A | (P x))

[H:(EX x:A | (P x)); H0:((x:A)(P x)->FF)℄

(ex_ind A [x:A℄(P x) FF [x:A; H1:(P x)℄(H0 x H1) H)

[H:(~((x:A)~(P x)))℄

(DN (EX x:A | (P x))

[H0:((EX x:A | (P x))->FF)℄

(H [x:A; H1:(P x)℄(H0 (ex_intro A [x0:A℄(P x0) x H1)))))

: (EX x:A | (P x))<->~((x:A)~(P x)) *)

End Pred_las.

(******************* Arithmeti ************************)

Indutive eq [A:Set;x:A℄ : A->Prop

:= refl_equal : (eq A x x).

(* A syntati definition (not shown) is introdued in order to use

the abbreviation

x = y for (eq A x y).

In this syntati definition, the type A an be used as an

`impliit argument'. It is reonstruted by the type heking

algorithm from the type of x *)

Lemma sym_eq : (A:Set)(x,y:A)(x = y)->(y = x).

Lemma leib : (A:Set)(P:A->Prop)(x,y:A)(x = y)->(P x)->(P y).

Lemma eq_ind_r : (A:Set; x:A; P:(A->Prop))(P x)->(y:A)(y=x)->(P y).

Lemma f_equal : (A,B:Set; f:(A->B); x,y:A)(x=y) -> ((f x)=(f y)).

Indutive nat : Set := O : nat | S : nat->nat.
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Definition one : nat := (S O).

Definition two : nat := (S one).

Definition Is_su := [n:nat℄

Cases n of

O => FF

| (S p) => TT

end.

Lemma no_onf : (n:nat)~(O= (S n)).

Indutive leseq [n:nat℄ : nat->Prop :=

leseq_n : (leseq n n)

| leseq_su : (m:nat)(leseq n m)->(leseq n (S m)).

Definition lthan := [n,m:nat℄(leseq (S n) m).

Lemma leseq_trans : (x,y,z:nat)(leseq x y)->(leseq y z)->(leseq x z).

Lemma lthan_leseq : (n,m:nat)((lthan n m)->(leseq n m)).

Lemma non_lt0 : (n:nat)~(lthan n O).

Lemma su_leseq : (n,m:nat)(leseq (S n)(S m))->(leseq n m).

Lemma lt01 : (x:nat)(x=O\/x=one\/(lthan one x)).

Lemma n0n1lt : (n:nat)(~(n=O)->~(n=one)->(lthan one n)).

Definition before [n:nat; P:nat->Prop℄ := ((k:nat)(lthan k n)->(P k)).

Lemma (* Course of value indution *)

v_ind : (P:nat->Prop)((n:nat)((before n P) -> (P n))-> (n:nat)(P n)).

Fixpoint plus [n:nat℄ : nat -> nat := [m:nat℄

Cases n of

O => m

| (S p) => (S (plus p m))

end.

Lemma plus_altsu : (n,m:nat)(plus n (S m))=(S(plus n m)).

Lemma plus_altzero : (n:nat) (plus n O)=n.

Lemma plus_ass : (n,m,k: nat)(n,m,k: nat)

(plus n (plus m k))=(plus(plus n m)k).

Lemma plus_om : (n,m:nat)(plus n m)=(plus m n).

Fixpoint times [n:nat℄ : nat -> nat := [m:nat℄

Cases n of

O => O

| (S p) => (plus (times p m) m)

end.
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Lemma distr : (n,m,k: nat)(n,m,k: nat)

(times (plus n m) k)=(plus(times n k)(times m k)).

Lemma timesaltzero : (n:nat)(times n O)=O.

Lemma timesaltsu : (n,m:nat)(times n (S m))=(plus(times n m) n).

Lemma times_ass : (n,m,k:nat)(times n(times m k))=(times(times n m)k).

Definition div : (nat->nat->Prop)

:= [d,n:nat℄(EX x:nat|(times x d)=n).

Definition propdiv : (nat->nat->Prop)

:= [d,n:nat℄((lthan one d)/\(lthan d n)/\(div d n)).

Definition prime : nat -> Prop

:= [n:nat℄((lthan one n)/\~(EX d:nat|(propdiv d n))).

Definition primediv : nat->nat->Prop

:= [p,n:nat℄(prime p)/\(div p n).

(* Some lemmas omitted *)

(* has prime divisor *)

Definition HPD : nat->Prop := [n:nat℄(EX p:nat|(primediv p n)).

Theorem numbers_gt1_have_primediv : (n:nat)(lthan one n)->(HPD n).

(***************************************************************)

As stated before, from here one an prove Eulid's theorem that there are in�nitely

many primes. In order to do this one needs to know that if d divides both a and

a+b, then it divides b (introdue ut-o� subtration for this and prove some lemmas

about it).

4.3. Autarki Computations

We have so far desribed how to formalize de�nitions, statements and proofs. An-

other important aspet of mathematis is omputing. (In order to deide whether

statements are true or simply beause a numerial value is of interest). The follow-

ing examples are taken from [Barendregt 1997℄. These are examples of statements

for whih omputations are needed.

(1) [

p

45℄ = 6; where [r℄ is the integer part of a real

(2) Prime(61)

(3) (x+ 1)(x+ 1) = x

2

+ 2x+ 1

In priniple omputations an be done within an axiomati framework, in partiular

within prediate logi with equality. But then proofs of these statements beome

rather long. E.g.

(x+ 1)

2

= (x+ 1) � (x+ 1)
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= (x+ 1) � x+ (x+ 1) � 1

= x � x+ 1 � x+ x � 1 + 1 � 1

= x

2

+ x+ x+ 1

= x

2

+ 2 � x+ 1:

This is not even the whole story. Eah use of `=' has to be justi�ed by applying an

axiom, substitutions and the fat that + preserves equality

7

.

A way to handle (1) is to use the Poinar�e priniple extended with the redu-

tion relation !!

�

for primitive reursion on the natural numbers. Operations like

f(n) = [

p

n ℄ are primitive reursive and hene are �-de�nable (using !!

��

) by

Re

nat

introdued in Setion 3.8. Then, writing 0 = O; 1 = S O; : : : , it follows

from the Poinar�e priniple that the same is true for

F 45 = 6 ;

sine 6 = 6 is formally derivable and we have F 45 !!

��

6 . Usually, a proof

obligation arises that F is adequately onstruted. For example, in this ase it ould

be

8n (F n)

2

� n < ((F n) + 1)

2

:

Suh a proof obligation needs to be formally proved, but only one; after that

redutions like

F n !!

��

f(n)

an be used freely many times.

In a similar way, a statement like (2) an be formulated and proved by onstrut-

ing a �-de�ning term K

Prime

for the harateristi funtion of the prediate Prime.

This term should satisfy the following statement

8n [(Primen $ K

Prime

n = 1 ) &

(K

Prime

n = 0 _ K

Prime

n = 1 )℄:

whih is the proof obligation.

Statement (3) orresponds to a symboli omputation. This omputation takes

plae on the syntati level of formal terms. There is a funtion g ating on syntati

expressions satisfying

g((x+ 1)(x+ 1) ) = x

2

+ 2x+ 1;

that we want to �-de�ne. While x + 1 : Nat (in ontext x:Nat), one has `x +

1' : term(Nat). Here term(Nat) is an indutively de�ned type onsisting of the

terms over the struture hNat ;+;�; 0; 1i. Using a redution relation for primitive

reursion over this data type, one an represent g, say by G, so that

G `(x+ 1)(x+ 1) '!!

��

`x

2

+ 2x+ 1':

7

This is why some mathematiians may be turned o� by logi. But these steps have to be done.

Usually they are done within a fration of a seond and unonsiously by a mathematiian.
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Now in order to �nish the proof of (3), one needs to onstrut a self-interpreter E ,

suh that for all expressions p : Nat one has

E `p' !!

��

p

and prove the proof obligation for G whih is

8t:term(Nat) E(Gt) = E t:

It follows that

E(G `(x+ 1)(x+ 1) ') = E `(x+ 1)(x+ 1) ':

Now, sine

E(G `(x + 1)(x+ 1) ') !!

��

E `x

2

+ 2x+ 1'

!!

��

x

2

+ 2x+ 1

E `(x+ 1)(x+ 1) ' !!

��

(x + 1)(x+ 1);

we have by the Poinar�e priniple

(x + 1)(x+ 1) = x

2

+ 2x+ 1:

Bureaurati details how to treat free variables under E are omitted.

The use of indutive types like Nat and term(Nat) and the orresponding re-

dution relations for primitive redution was suggested by Sott [1970℄ and the

extension of the Poinar�e priniple for the orresponding redution relations of

primitive reursion by Martin-L�of [1984℄. Sine suh redutions are not too hard to

program, the resulting proof heking still satis�es the de Bruijn riterion.

The general approah is as follows. In omputer algebra systems algorithms are

implemented by speial purpose term rewriting. For example for polynomial ex-

pressions p one has for (formal) di�erentiation and simpli�ation the following.

p !

diff

: : : !

diff

p

diff-nf

= p

1

;

p !

simpl

: : : !

simpl

p

simpl-nf

= p

2

:

In this way the funtions f

diff

(p) = p

1

and f

simpl

(p) = p

2

are omputed. In type

theory with indutive types and �-redution these omputations an be aptured

as follows.

F

diff

p !!

�Æ�

p

1

;

F

simpl

p !!

�Æ�

p

2

:

This is like replaing speial purpose omputers by the universal Turing-von Neu-

mann omputer with software.

In [Oostdijk and Geuvers 2001℄ a program is presented that, for every primitive

reursive prediate P , onstruts the lambda term K

P

de�ning its harateristi
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funtion and the proof of the adequay of K

P

. That is, one proves 8n:Nat:P (n)$

K

P

(n) = 1 (generially for all primitive reursive prediates P ). In this way, proving

P (n) an be replaed by omputing K

P

(n). The resulting omputations for P =

Prime are not eÆient, beause a straightforward (non-optimized) translation of

primitive reursion is given and the numerals (represented numbers) used are in a

unary (rather than n-ary) representation; but the method is promising. In [Caprotti

and Oostdijk 2001℄, a more eÆient ad ho de�nition of the harateristi funtion

of Prime is given, using Poklington's riterion, based on Fermat's small theorem

about primality. Also the required proof obligation is given. In this way it an be

proved, formally in Coq, that a number like 1223334444555554444333221 is prime

(but also bigger numbers, some of 44 digits!) So the statements in the beginning of

this subsetion an be obtained by omputations.

Another use of reetion is to show that a funtion like

f(x) = e

3x

2

+

p

1 + sin

2

x+ � � �

is ontinuous. Rather than proving this by hand one an introdue a formal language

L, suh that a desription of f is among them, and show that every expression e : L

denotes a ontinuous funtion.

5. Proof assistants

Proof assistants are interative programs running on a omputer that help the

user to obtain veri�ed statements (within a given mathematial ontext). This

veri�ation an be generated in two ways: automatially by a theorem prover, or

provided by the user with a proof that is heked by the mahine.

It is lear that proof heking is not automated dedution. The problem of deid-

ing whether a putative proof is indeed a proof is deidable; on the other hand the

problem whether a putative theorem is indeed a theorem is undeidable. Having

said this, it is nevertheless good to remark that there is a spetrum ranging from

on the one hand pure proof-hekers to on the other hand pure automated theorem

provers. A pure proof-heker, to whih one has to present an entire fully formalized

proof, is impratial, beause it is diÆult to provide these proof-objets. On the

other hand a pure automated theorem prover (that �nds a proof if a statement

A is provable and tells us that there is none otherwise) is impossible for theorems

in theories as simple as prediate logi. Automated dedution is in general only

possible as a partial algorithm (providing a proof if there is one, running forever

otherwise).

For some speial theories, like elementary geometry (whih is deidable), a total

algorithm may be possible (in the ase of geometry there is the exellent theorem

prover of Wu [1994℄). In most ases an automated theorem prover requires that the

user gives hints. Although this hapter is not about automated theorem provers, we

would like to mention Otter [1998℄ for lassial prediate logi, the system of Bibel

and Shmitt [1998℄ for lassial prediate logi with equality, Boyer and Moore's



1224 Henk Barendregt and Herman Geuvers

[1997℄ theorem prover Nqthm, based upon primitive reursive arithmeti, and Wu's

[1994℄ geometry theorem prover that was already mentioned.

At the other end of the spetrum a user-friendly proof-heker usually has some

form of automated dedution in order to make it more easy for the user to provide

proof-objets. Proof-assistants onsists of a proof-development system together with

a proof-heker.

5.1. Comparing proof-assistants

We will disuss several proof-assistants. All systems exept Agda work with proof

sripts that are a list of tatis needed to make the proof-assistant to verify the

validity of the statement. The proof-assistants fall into two lasses: those with proof-

objets and those without proof-objets.

In the ase of a proof-assistant with proof-objets the sript generates and stores a

term that is (isomorphi to) a proof that an be heked by a simple proof heker.

This makes these systems highly reliable. In priniple someone, who is doubtful

whether a ertain statement is valid, an download a proof-objet via the internet

and loally verify it using his or her own trusted proof heker of relatively small

size.

Proof-assistants that have no proof-objets ome in two lasses. The �rst one

onsists of systems that in priniple an translate the proof-sript into a proof-

objet that an be veri�ed by a small heker. In this ase the proof-sript an be

onsidered as a non-standard proof-objet. In order to make this translation these

systems just need some system spei� preproessor after whih a trustworthy hek

an be performed. The seond lass onsists of proof-assistants for whih there is

not (yet) a way to provide a proof-objet with high reliability. So for the orretness

of theorems aepted by assistants in this lass one has to trust these systems. The

advantage of these kind of systems usually is their larger automated dedution

failities and (therefore) their larger user-friendliness.

We will disuss the following proof-assistants.

system proof-objets

Coq, Lego, Agda yes

Nuprl, HOL, Isabelle non-standard

Mizar, PVS, ACL2 no

Coq, Lego and Agda

Of these three systems Coq is the most developed one. The systems Coq and Lego

are based on versions of the alulus of onstrutions extended with indutive types.

For the logial power of this formal system, see [Azel 1999℄ and the referenes

ontained therein. An important di�erene between the proof-assistants is in their
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omputational power. Both systems admit the Poinar�e priniple for �Æ�-onversion.

This means that there are dedution steps like the following ones.

Reexive(R)

Æ

8x:Rxx

A(Ix)

�Æ

A(x)

and

A(fa(4))

�Æ

A(24)

;

[Here one assumes to have de�ned Reexive(R) � 8x:Rxx, I � �x:x and fa as the

funtion representing the fatorial.℄ One of the di�erenes between Coq and Lego

is that in Lego one an introdue other notions of redution for whih the Poinar�e

priniple is assumed to hold (inluding non-terminating ones).

Both Coq and Lego reate proof-objets from the proof-sripts and store them.

These proof-objets are isomorphi to natural dedution proofs. The two systems

allow imprediative arguments as used in atual mathematis, but argued to be po-

tentially unreliable by Poinar�e and Martin-L�of. The system Agda is similar to Coq

and Lego, exept that it is based on Martin-L�of type-theory in whih imprediative

quanti�ations are not allowed. The Poinar�e priniple an be assumed by the user

for any notion of redution that is proved to be strongly normalizing. Agda is not

so muh `tatis based' as Coq and Lego. In Agda one edits a proof term by `�lling

in the holes' in an open term. The system ats as a struture editor, providing

support for term onstrution.

Nuprl, HOL and Isabelle

Constable et al.'s [1986℄ system Nuprl does have proof-objets, but a judgment

` p : A;

indiating that p is a proof of A, is not deidable. The reason for this is that the

Poinar�e priniple is assumed not only for �Æ�-onversion, (the intensional equality)

but also for extensional equality. See Setion 2.8. So there is a rule

p : A(t) q : (t = s)

p : A(s)

So, Nuprl is based on an extensional type system. This implies that type heking

p : A? (TCP, see Setion 2.1) is no longer deidable and therefore proofs annot

be heked. However, there are `expanded' proof-objets d that an establish that

p : A. In fat, the d takes into aount the terms q for whih q : t = s. So these d

serve as the `real' proof-objets.

The proof-assistant HOL [1998℄ is based on Churh's [1940℄ simple type theory.

This is a lassial system of higher order logi. That HOL uses non-standard proof-

objets has a di�erent reason. HOL does not satisfy the Poinar�e priniple for any

onversion relation. As a onsequene omputations involving reursion beome

quite lengthy when onverted to a proof-objet (for example establishing by a proof

that ` fa 

n

= 

n!

). Therefore the design deision was made that proof-objets
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are not stored, only the proof-sripts. Even if a proof of fa 

n

= 

n!

may be long,

it is possible to give it a short desription in the proof-sript. Indution is done by

de�ning an indutive prediate in a higher order way as the smallest set satisfying

a losure property.

Also Isabelle is based on intuitionisti simple type theory. But this proof-assistant

is �ne-tuned towards using this logi as a meta-logi in whih various logis (for

example �rst-order prediate logi, the systems of the lambda ube or higher or-

der logi) are desribed internally, in the Logial Framework style. This makes it

having non-standard proof-objets. Again the system does not satisfy the Poinar�e

priniple, but avoids the problem by not onsidering proof-objets. Both assistants

HOL and Isabelle have pretty good rewrite engines, needed to run the non-standard

proof-objets.

It should be emphasized that HOL and Isabelle did not fail to adept the Poinar�e

priniple beause it was forgotten, but beause the problem of equational reasoning

was solved in a di�erent way, by the non-standard proof-objets in the form of

the tatis. It makes formalizing more easy, but one annot use proof-objets for

example to see details of the proof or for program extration. However, it is in

priniple not diÆult to modify either HOL or Isabelle to reate and store proof

objets.

Mizar, ACL2, PVS

Mizar [1989℄ is based on a form of set theory (Tarski-Grothendiek, that is ZFC

extended with an axiom expressing the existene arbitrary large ardinals). It does

not work with proof-objets nor does it have the Poinar�e priniple. The system has

some automated dedution and a user-friendly set of tatis. In fat a nie feature

of the system is that the proof-sript is lose to an ordinary proof in mathematis

(whih are internally represented as proofs in set theory). An impressive olletion

of results is in the Mizar library. It seems that in priniple it is possible that the

Mizar sripts are translated into a proof-objet.

ACL2 [2000℄ is an extension of the theorem prover of Boyer-Moore. It is based on

lassial primitive reursive arithmeti and it is used in industry. It is not possible

for the user to onstrut indutive types, but there is a powerful built-in indution:

a user an de�ne his own well-founded reursive funtions (up to �

0

reursion) and

let the system ompute with them. (The funtions are atually Lisp funtions.)

PVS [1999℄ again is based on lassial simple type theory. It is without proof-

objets and exploits this by allowing all kind of rewriting, for numeri and symboli

equalities. The system is very user-friendly beause of automated dedution that is

built in. The system allows subtypes of the form

A = fx : B j P (x)g:

If the system has to hek a : A it will generate a proof-obligation for the reader:

\prove P (a)". Up to our knowledge no e�ort has been made to provide PVS with

proof-objets.
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Comparison

The proof-assistants onsidered follow the following pattern:

Agda-Coq-Lego-Nuprl-HOL-Isabelle-Mizar-ACL2-PVS.

Agda, Coq and Lego are to the left, indiating reliability (Agda given the �rst

plae beause it has only prediative logi; Coq oming seond, sine only strongly

normalizing rewrite rules may be added). After that follow Nuprl, HOL and Isabelle,

with their non-standard proof-objets (Nuprl oming �rst for the same reasons as

Agda; Isabelle oming last, beause the extra layer making things a bit harder to

manage). Finally ome Mizar, ACL2 and PVS, beause they do not work with

proof-objets. We put PVS last, beause every now and then bugs are found in this

system).

On the other hand, the order for internal automation is the opposite: ACL2 and

PVS win and Agda loses. Of ourse eventually proof-assistants should be developed

that are both reliable and user-friendly. The following judgments are based on some

intuition and should not be taken too seriously.

Ass. p.o. reliab. PP logi dep.t. ind.t autom. #users

Agda yes +++ �Æ�R

1

int. pred. yes yes none

8

-

Coq yes ++ �Æ�R

2

int. yes yes + ++

Lego yes ++ �Æ�R

1

int. yes yes + +

Nuprl n.s. ++ �Æ�R

3

int. yes yes + ++

HOL n.s. ++ none l. no yes ++ ++

Isabelle n.s. ++ none t.b.s. no no ++ ++

Mizar none + none l. yes no + ++

ACL2 none + R

4

pra no yes

9

+++ +++

PVS none � none l. no no +++ +++

8

There is a little use of higher order uni�ation

9

Basially, there's only one indutive type in whih the user `odes' his indution
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Legenda

Ass. name of the Proof Assistant;

p.o. proof-objets;

n.s. non-standard;

reliab. reliability;

PP Poinar�e priniple;

dep.t. dependent types;

ind.t. indutive types;

autom. degree of automation;

int. intuitionisti logi preferred;

pred. only prediative quanti�ation;

l. lassial logi;

pra primitive reursive arithmeti (so no quanti�ers);

t.b.s. to be spei�ed by the user;

R

1

arbitrary notion of redution;

R

2

struturally well-founded reursion;

R

3

arbitrary provable equality;

R

4

�

0

-reursion.

There are very many other proof-assistants. See [Digimath 2000℄ for an impressive

list.

5.2. Appliations of proof-assistants

At present there are two approahes to the mehanial veri�ation of ompliated

statements. The �rst one, that we may all the pragmati approah, uses proof assis-

tants with many omplex tools to verify the orretness of statements. These tools

inlude theorem provers and omputer algebra systems, the orretness of whih

has not been veri�ed (as a matter of fat, omputer algebra systems are often not

formally orret at all). Even if these systems may ontain bugs the orretness of

hardware systems and (relatively small but ritial) software systems (like proto-

ols) is dramatially inreased, see [Rushby and Henke 1993℄ and [Ruess, Shankar

and Srivas 1996℄. Proof-assistants that are used inlude PVS, Nuprl, Isabelle and

HOL.

The other approah, that we may all the fundamental one, aims at the highest

degree of reliability. In this approah one only uses proof-assistants with a proof-

heker that satis�es the de Bruijn riterion, i.e. have a small verifying program.

In this hapter we have foused our attention on the seond approah. It should

be remarked that even in this approah there is some spetrum of reliability. If

the Poinar�e priniple is adopted for �Æ�-onversion, the verifying program is more
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omplex than the one for just �Æ-onversion. This is natural and fair, sine adopting

the Poinar�e priniple for �-onversion has as onsequene that primitive reursive

omputations within a proof ome without proof obligations. In fat the pragmati

proof-assistants an be viewed as a strong use of the omputational power as pro-

vided by a form of the Poinar�e priniple.

Another parameter in a fundamental proof-assistant is the hoie of strength of

the underlying type system and hene the related logial system. For example, one

may use �rst-order, seond-order or higher-order logi. This parameter determines

the logial strength of the proof system.

Rather than making a hoie for the omputational and logial strength one may

think of a universal

10

system in whih these two an be set aording to the taste

and appliation area of the user. It is hoped (and expeted) that it is possible

to onstrut a universal proof-assistant that is suÆiently eÆient. Also there is

a onsiderable foundational interest in the enterprise of onstruting user-friendly

proof-assistants. One has to realize whih steps are obvious to the mathematiian

and provide suitable tools.

It is a (possibly long term) goal of the seond approah to make the formalization

of an informally known mathematial proof as easy as writing a mathematial paper

say in L

A

T

E

X. At the same time the eÆieny should be omparable to eÆient

systems for omputer algebra.

Several notions in lassial mathematis are not diretly available in the on-

strutive approah of type theory. Next to the failure of the exluded middle these

inlude quotient sets, subsets de�ned by a property and partial funtions. It is for

good reasons that these onstrutions are not available. In the onstrutive type

theoreti approah the notion a : A should be deidable, a property that is lost in

the presene of types representing undeidable sets.

In order to inrease the ease of formalizing proofs several tools are being on-

struted that enhane the power of the fundamental approah. In this way even-

tually the power of the fundamental approah may be equal to that of the present

day pragmati one.

When the goal of easy formalization has been reahed not only spin-o� in system

design, but also in the development of mathematis is expeted. First of all there

may emerge a di�erent system of refereeing. People will only submit papers that

are orret. The referee an fous on the judgment whether the paper is of interest

and point out relations with other work. Then there will be an impat on teahing

mathematis. The notion of proof an be taught by patient omputers.

It is also to be expeted that eventually proof-assistants will help the working

mathematiian. Arbitrary mathematial notions an be represented on a omputer;

not just the omputable ones, as is presently the ase in systems of omputer

algebra. The interation between humans and omputers may lead to fruitful new

mathematis, where humans provide the intuition and mahines take over part of

10

Of ourse there annot be a universal proof-assistant, due to G�odel's theorem. The word

universal is used in the same way as ZFC is seen as a universal foundation: it aptures large parts

of mathematis
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the raftsmanship.

Next to these theoretial aspets, there is a potential pratial spin-o� in the

form of program extration. In ase a statement of the form

8x9y:A(x; y)

has been proved onstrutively, an algorithm �nding the y in terms of the x an

be extrated automatially. See [Mohring 1986, Paulin-Mohring and Werner 1993,

Parent 1995℄.

For a disussion of issues related to (the future of) proof-assistants, see also the

QED-manifesto in [Bundy 1994℄ (pp. 238{251).

Many (often smaller) proof-assistants we have not mentioned. For a (probably

inomplete) but extended survey see [Digimath 2000℄.
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