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Abstract. We introduce the framework of algebraic pure type systems,

a generalisation of pure type systems with higher order rewriting �a la

Jouannaud-Okada, and initiate a generic study of the modular proper-

ties of these systems. We give a general criterion for a system of this

framework to be strongly normalising. As an application of our crite-

rion, we recover all previous strong normalisation results for algebraic

pure type systems.

1 Introduction

Algebraico-functional languages, introduced by Jouannaud and Okada in [18],

are based on a very powerful paradigm combining type theory and higher-order

rewriting systems. These languages embed in typed �-calculi higher-order rewrit-

ing and hence allow the de�nition of abstract data types as it is done in equa-

tional languages such as OBJ. Examples of such languages which have been

studied in the literature include the algebraic simply typed �-calculus ([18]), al-

gebraic type assignments systems ([1]) and the algebraic calculus of constructions

([2]). In this paper, we introduce a very general framework to study the combi-

nation of type theories with higher-order rewriting systems. The combination is

based on pure type systems ([3]); the result is a very general framework of alge-

braic pure type systems which covers in particular the systems of the algebraic

�-cube, a generalisation of Barendregt's cube studied in [2, 18]. A particular

interest of the framework is that it o�ers the possibility to initiate a generic

study of the meta-theory of these systems. First, basic meta-theoretic results,

such as the substitution lemma or the generation lemma ([3, 13]) can be proved

for arbitrary algebraic pure type systems. Second, one can address modularity

results in a very abstract way, as it has been successfully done in term-rewriting

(some striking examples can be found in [20, 25]). The main contribution of

this paper is to give a general criterion for an algebraic pure type system to be

strongly normalising. We show that if a pure type system satisi�es a certain ab-

stract condition (slightly stronger than being strongly normalising) and a �nite

?
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list of higher-order algebraic rewriting systems satisfy Jouannaud and Okada's

scheme, then the combined system is strongly normalising for the combined re-

duction if it satis�es the subject reduction property. As a corollary, we obtain a

new proof of strong normalisation for the algebraic calculus of constructions ([2]

and [1, 7, 8, 18] for subsystems) and to our knowledge the �rst proof of strong

normalisation for algebraic higher-order logic (the algebraic extension of �HOL

[13]) and the algebraic calculus of constructions with universes (with left-linear

rewriting systems). In our view, the distinctive features of our approach are its

generality (all the known results on modularity of termination for algebraic pure

type systems can be obtained as a corollary of our result), its simplicity (the

complexity of the proof is similar to the corresponding strong normalisation ar-

gument for pure type systems) and its exibility (it is easy to adapt the proof

to variants of pure type systems).

The paper is organised as follows: in the next section, we introduce algebraic

pure type systems. In section 3, we give an alternative syntax in which variables

come labelled with a potential type and show the `equivalence' between the two

formulations. Besides we formulate a general criterion for an algebraic pure type

system to be strongly normalising. In section 4, we prove strong normalisation for

those systems satisfying the virterion by a general model construction. Section

5 focuses on the applications of the result to existing systems. The last section

contains some �nal remarks about the work as well as directions for future

research.

We assume the reader to be reasonably familiar with pure type systems and

their basic meta-theory, as presented for example in [3] or [13].

2 Combining higher-order rewriting systems and pure

type systems

2.1 Higher-order rewriting systems

In this section, we introduce higher-order rewriting systems. The presentation

is deliberately non-conventional in some respects but has been chosen to give a

clear presentation of the general schema of [18]. For examples and applications

of the general schema, the reader is refered to [10, 18].

Let � be a set. Elements of � are called base data

2

. The set of data is de�ned

inductively as follows:

- every base datum is a datum;

- if �

1

; : : : ; �

n

are data and � is a base datum, then (�

1

; : : : ; �

n

! � ) is a datum.

By convention, brackets associate to the right and will be omitted when the

convention applies. A datum of the form (�

1

; : : : ; �

m

; �

1

; : : : ; �

n

! �) where the

�

i

's are higher-order data (i.e of arrow type) and the �

i

's are base data is called

2

Usually elements of � are called sorts. We prefer to keep this name for the sorts of

the pure type system.



a saturated datum. The set of �rst-order data is the subset of saturated data for

which m = 0, i.e. a �rst-order datum is one of the form (�

1

; : : : ; �

n

! �) where

the �

i

's are base data. (Note that � is a base datum by the de�nition of data.)

The set of saturated data and �rst-order data are respectively denoted by �

�

and �

1

.

De�nition 1 A higher-order signature � over � consists of an indexed family

of (pairwise disjoint) sets (F

w

)

w2�

�

.

Elements of the F

w

's are called function symbols. A function symbol is �rst-order

if it belongs to F

w

for some �rst-order datum w and higher-order otherwise. For

every datum � , the set T

(�;�)

of terms of datum � is de�ned inductively. As

usual, we start from a countably in�nite set of variables V

�

for each datum � .

The rules are:

- elements of V

�

are terms of datum � ;

- if x 2 V

(�

1

;:::;�

n

!�)

and t

i

has datum �

i

for i = 1; : : : ; n, then x(t

1

; : : : ; t

n

)

has datum �

- if f 2 F

(�

1

;:::;�

n

!�)

and t

i

has datum �

i

for i = 1; : : : ; n, then f(t

1

; : : : ; t

n

)

has datum � .

A term is �rst-order if all variables occurring in it are of base datum and all

function symbols occurring in it are of �rst-order datum. A term is higher-order

otherwise. Note that all terms are fully applied in the sense that only variables

can be of higher-order datum. First-order terms are of the form f(t

1

; : : : ; t

n

)

where f is a �rst-order function symbol and the t

i

's are �rst-order terms. Higher-

order terms are of the form F (X

1

; : : : ; X

m

; t

1

; : : : ; t

n

) where the X

i

's are higher-

order variables and the t

i

's are terms of base datum. The set var of variables of

a term, occurences and substitution are de�ned as usual.

De�nition 2 A rewrite rule is a pair (s; t) (written s! t) of terms of the same

datum such that var(t) � var(s) and s is not a variable.

A rewrite rule is �rst-order if the terms are and higher-order otherwise. Recall

that a rewrite rule s ! t is non-duplicating if the number of occurences of each

variable x in t is lesser or equal to the number of occurences of x in s.

De�nition 3 ([2, 18]) A higher-order rewrite rule F (X

1

; : : : ; X

m

; t

1

; : : : ; t

n

)!

v satis�es the general schema if

1. F is a higher-order function symbol;

2. F does not occur in any of the t

i

's;

3. the higher-order variables occuring in the t

i

's belong to (X

1

; : : : ; X

m

);

4. for every subterm of v of the form F (X

0

1

; : : : ; X

0

m

; r

1

; : : : ; r

n

), one has t.

mul

r

where .

mul

is the multiset extension of the strict subterm ordering.

Condition 2 is not essential but ensures that F (X

1

; : : : ; X

m

; t

1

; : : : ; t

n

) is rewritable

in the sense of [10]. Note that as a consequence of the de�nition, F does not occur

in any subterm of v of the form F (X

0

1

; : : : ; X

0

m

; r

1

; : : : ; r

n

) except in head posi-

tion. Higher-order rewrite rules are a mild generalisation of the rules of primitive

recursion.



De�nition 4 A higher-order rewriting system is a set of rewrite rules such that:

- �rst-order rules are non-duplicating;

- higher-order rules satisfy the general schema;

- there are no mutually recursive de�nitions of higher-order function symbols.

The last requirement is not essential but has been added to simplify proofs.

In the sequel, we let !

R

denote the algebraic reduction relation. As usual, we

distinguish between �rst-order reduction!

for

and higher-order reduction!

hor

.

2.2 Algebraic pure type systems

In this paragraph, we extend the framework of pure type systems with higher-

order rewriting �a la Jouannaud-Okada. The resulting framework of algebraic

pure type systems covers a large class of algebraico-functional languages and

provides a suitable basis to study modular properties of these languages.

De�nition 5 An algebraic pure type system (or apts for short) is speci�ed by

a quintuple �S = (R; S; sortax; rules; datax) where

- R is a �nite list of higher-order rewriting systems R

i

= (�

i

; �

i

; R

i

) (i.e. �

i

is a set of (base) data, �

i

is a higher-order signature over �

i

and R

i

is a

higher-order rewriting system over �

i

) for i = 1; : : : ; n;

- S is a set of sorts;

- sortax : S * S, rules : S � S * S and datax : f�

1

; : : : ; �

n

g * S are partial

functions.

Note that the de�nition implicitely requires the algebraic pure type system to

be functional in the sense of [13] (such systems are called singly-sorted in [3]).

This is not a real restriction as one can hardly imagine a non-functional pure

type system of interest.

De�nition 6 Let V be an arbitrary in�nite set. The set of pseudo-terms Pseudo

of an algebraic pure type system �S = (R; S; sortax; rules; datax) is de�ned as

follows:

- variables, sorts and data are pseudo-terms;

- if A;B are pseudo-terms and x 2 V , then A B, �x : A:B and �x : A:B are

pseudo-terms;

- if f is a function symbol of some signature �

i

of datum (�

1

; : : : ; �

n

! � ) and

t

1

; : : : ; t

n

are pseudo-terms, then f(t

1

; : : : ; t

n

) is a pseudo-term.

In [2], function symbols are treated as constants whereas we chose to treat them

as constructors. Our choice was dicted by matters of convenience but there is

no real di�erence between the two systems. In particular, our result applies to

algebraic pure type systems with either de�nition of pseudo-terms.

There are two notions of reduction on pseudo-terms: algebraic reduction !

R

inherited from the term-rewriting systems and �-reduction. The combined re-

duction is denoted by !

mix

. The rules for derivation for �S are:



Axiom

` c : s

if datax � = s and c 2 � or

sortax c = s

Function

� ` t

i

: �

i

for i = 1; : : : ; n

� ` f(t

1

; : : : ; t

n

) : �

if f is a function symbol

of datum �

1

; : : : ; �

n

! �

Start

� ` A : s

�; x : A ` x : A

if x 62 �

Weakening

� ` t : B � ` B : s

�; x : B ` t : B

if x 62 �

Product

�;� ` A : s

1

�; x : A;� ` B : s

2

�;� ` �x : A:B : s

3

if rules(s

1

; s

2

) = s

3

and x 62 FV(�)

Application

� ` t : �x : A:B � ` u : A

� ` tu : B[u=x]

Abstraction

�; x : A;� ` t : B � ` �x : A:B : s

�;� ` �x : A:t : �x : A:B

if x 62 FV(�)

Exp/Red

� ` u : A � ` B : s

� ` u : B

if A !

�R

B

or B !

�R

A

Note that the abstraction and product rules have a slightly more general

presentation than usual (see [3] for example). For pure type systems, the two

presentations can be shown to be equivalent; in fact, this is a simple consequence

of the permutation lemma and strengthening ([17]). In an algebraic pure type

system, the reduction relation is not conuent on the set of pseudo-terms; as

a result, the usual proofs of subject reduction and of other results relying on

subject reduction, such as strenghtening cannot be extended. This motivates

the following de�nition.

De�nition 7 An (algebraic) pure type system �S = (R; S; sortax; rules; datax)

has the subject reduction property if for all pseudo-termsM;N;A withM !

�

N

and pseudo-context � ,

� ` M : A ) � ` N : A

As subject reduction for R-reduction holds in an arbitrary algebraic pure type

system, it is easy to conclude that in an algebraic pure type system with the

subject reduction property,

� ` M : A ) � ` N : A

for every pseudo-context � and all pseudo-terms M;N;A with M !

mix

N .

The fact that one cannot prove subject reduction for algebraic pure type

systems might appear as a serious drawback of the system. Fortunately, for most

systems of interest, including the systems of the algebraic �-cube ([2, 10]) or

algebraic higher-order logic, subject reduction holds ([2, 10]). Subject reduction

can also be ensured by imposing some conditions on the rewriting systems: if the

rewriting systems are left-linear, then the reduction relation is conuent on the



set of pseudo-terms and subject reduction can be proved as usual. Finally, note

that we know that conversion paths in derivations go through legal terms even if

we do not know subject reduction: this is enforced by the expansion/reduction

rule. This restrictive rule ensures that the very basic property of soundness, as

de�ned in [15], holds.

In order to have a standard presentation of the results in this paper, we

introduce the following terminology.

De�nition 8 An algebraic pure type system �S = (R; S; sortax; rules; datax) is

R-conuent (resp. R-terminating, resp. R-canonical) if all its rewriting systems

are conuent (resp. terminating, resp. canonical).

3 A criterion for strong normalisation

In [24], Terlouw gives a general criterion for a type system to be strongly nor-

malising. We adapt his criterion to pure type systems and give an equivalent

criterion in terms of algebraic pure type systems with labelled variables. The

advantage of the second characterisation is that it eliminates the need to reason

on contexts.

3.1 Strati�ed algebraic pure type systems

De�nition 9 A term M is a prototype in context � if there exist a sort s and

pseudo-terms P

1

; : : : ; P

n

such that � ` M P

1

: : : P

n

: s.

For every family of contexts � = (�

i

)

i2N

, we can de�ne a relation �

�

on pseudo-

terms as the smallest relation such that for every pseudo-terms M;N , if M N

is a prototype in context �

i

for some i 2 N, then M N �

�

M and N �

�

M .

Furthermore, we say that a family of contexts (�

i

)

i2N

is compatible if for every

i 2 N, the context �

i

is an initial part of the context �

i+1

.

De�nition 10 An (algebraic) pure type system is strati�ed if for every compat-

ible family of contexts � = (�

i

)

i2N

, the relation �

�

is well-founded.

The main result of the paper is the following general strong normalisation crite-

rion.

Theorem 11 Every strati�ed R-terminating (algebraic) pure type system with

the subject reduction property is strongly normalising.

The combined reduction is weakly Church-Rosser on legal terms, so we can

advocate Newton's Lemma to lift Theorem 11 to R-canonical algebraic pure

type system.

Proposition 12 Every strati�ed R-canonical (algebraic) pure type system with

the subject reduction property is strongly normalising and conuent.



As a corollary, we recover the standard results on strong normalisation of alge-

braic pure type systems as well as some new results. As for the known results,

we feel our proof improves on previous work by being direct and of the same

complexity as the strong normalisation proof for the (pure) �-cube. In contrast,

the authors of [2] have to consider a reduction-preserving mapping of the alge-

braic calculus of constructions into an algebraic type assignment system and to

show that the target system is strongly normalising.

Corollary 13 - Systems of the algebraic �-cube are strongly normalising pro-

vided R-reduction is strongly normalising on algebraic terms ([2, 18]).

- Algebraic higher-order logic is strongly normalising provided R-reduction is

strongly normalising on algebraic terms.

- The algebraic calculus of constructions with universes is strongly normalis-

ing provided all rewrite systems are left-linear and R-reduction is strongly

normalising on algebraic terms.

Similar results exist for R-canonical algebraic pure type systems.

3.2 Labelled variables

In this section, we introduce a technical variant of (algebraic) pure type systems

in which variables are \typed". This is reminiscent of some presentations of

simply typed �-calculus in which each type � comes equipped with a set of

variables of type � . In (algebraic) pure type systems, terms and types are de�ned

simultaneously so the naive approach taken for simply typed �-calculus cannot

be used any longer. Our solution is to assign to every variable a pseudo-term,

which will be its unique type if the variable is well-typed. In the sequel, we

consider a �xed pure type system �S = (S;A;R); as usual, its set of pseudo-

terms is denoted by T .

De�nition 14 A variable labelling is a map � : V ! T is such that the set

fx 2 V j�x = tg is in�nite for every t 2 T .

Of course, such maps always exist if V is su�ciently large (the cardinal of V is

determined by the cardinal of S). One nice aspect of variable labelling is that

it eliminates the need to manipulate contexts. In the sequel, we assume we are

given a �xed labelling �. We can de�ne a notion of derivation w.r.t. �; the rules

are



Axiom

`

�

c : s

if datax � = s and c 2 � or sortax c = s

Function

` t

i

: �

i

for i = 1; : : : ; n

` f(t

1

; : : : ; t

n

) : �

if f is a function symbol

of datum �

1

; : : : ; �

n

! �

Start

`

�

A : s

`

�

x : A

if �x � A and x is fresh in A

Product

`

�

A : s

1

`

�

B : s

2

`

�

�x : A:B : s

3

if �x � A and (s

1

; s

2

; s

3

) 2 R

Application

`

�

t : �x : A:B `

�

u : A

`

�

tu : B[u=x]

Abstraction

`

�

t : B `

�

�x : A:B

`

�

�x : A:t : �x : A:B

Conversion

`

�

u : A `

�

B : s

`

�

u : B

if A!

�R

B or B !

�R

A

It is not di�cult to check that (algebraic) pure type systems with variable la-

belling are essentially equivalent to (algebraic) pure type systems.

Proposition 15 { If `

�

M : A, then � ` M : A for some context � .

{ If � ` M : A, then `

�

�M : �A for some variable renaming �.

It follows that strong normalisation and subject reduction of the system with

labelled variables (or labelled system for short) is equivalent to strong normali-

sation and subject reduction of the original system. Besides, one can reformulate

the criterion for systems with labelled variables.

De�nition 16 Let �S be an algebraic pure type system with a variable labelling

�. A prototype is a pseudo-term M for which there exist N

1

; : : : ; N

p

2 Pseudo

and s 2 S such that

`

�

M N

1

: : : N

p

: s

The set of prototypes is denoted by Proto. As before, we consider the relation �

de�ned as the smallest relation such that

8M;N 2 Pseudo:(M N ) 2 Proto) N � M ^ (M N ) � M

De�nition 17 �S is strati�ed if the relation � is well-founded.

Theorem 11 can now be rephrased as:

Theorem 18 Every R-terminating strati�ed labelled pure type system with the

subject reduction property is strongly normalising.

Theorem 11 follows easily from Theorem 18.



4 The proof of Theorem 18

In this section, we prove Theorem 18. The proof is divided in two parts: in the

�rst part, we prove that algebraic reduction is strongly normalising on legal

terms. In the second part, we give a model-construction for strati�ed algebraic

pure type systems. Strong normalisation is derived easily from the model con-

struction.

4.1 Strong normalisation of algebraic reduction

Strong normalisation of algebraic reduction on legal terms can be established

in a straightforward fashion by advocating modularity results from [11] for ex-

ample. The technique is inspired from [4] and consists of viewing �-calculus as

an algebraic signature. In this way, we de�ne for every R-algebraic pure type

system �S = (R; S; sortax; rules; datax) an algebraic signature �

�S

extending

the signatures of the rewrite systems and upon which algebraic reduction is ter-

minating. Then we show that all legal terms can be obtained from the terms

of �

�S

by an erasure map j:j which reects reduction. Strong normalisation of

algebraic reduction on legal terms follows easily. In the sequel, we consider a

�nite sequence of terminating higher-order rewriting systems R

i

= (�

i

; �

i

; R

i

)

for i = 1; : : : ; n. Let � =

S

i=1;:::;n

�

i

and let �

�S

= (

S

i=1;:::;n

�

i

) [ �

0

where

�

0

is the signature with function symbols:

- s

�

: � for s 2 f�;�g and � 2 �,

- �

x;�

1

;�

2

;�

3

; �

x;�

1

;�

2

;�

3

: �

1

� �

2

! �

3

for every variable x and �

1

; �

2

; �

3

2 �,

- Appl

�

1

;�

2

;�

3

: �

1

� �

2

! �

3

for every �

1

; �

2

; �

3

2 �.

The union R

0

of the R

i

's can be seen as a higher-order rewriting system over

�

�S

. Moreover R

0

is terminating.

Proposition 19 !

R

is strongly normalising on legal terms.

Proof: we de�ne a map from the terms of �

�S

to pseudo-terms. For the sake of

simplicity, we assume that the set of variables for every sort � is fx

�

j x 2 V g.

The map d:e is de�ned as follows:

dx

�

e = x

df(t

1

; : : : ; t

n

)e = f(dt

1

e; : : : ; dt

n

e)

d�

x;�

1

;�

2

;�

3

(t

1

; t

2

)e = �x : dt

1

e:dt

2

e

d�

x;�

1

;�

2

;�

3

(t

1

; t

2

)e = �x : dt

1

e:dt

2

e

dAppl

�

1

;�

2

;�

3

(t

1

; t

2

)e = dt

1

e dt

2

e

The map is surjective on the set of legal terms. Moreover, every in�nite R-

reduction sequence on pseudo-terms can be lifted to an in�nite R

0

-reduction

sequence on the terms of �

�S

.�



4.2 The model construction

In this section, we present a model construction for strati�ed aptss with the

subject reduction property. The construction is based on saturated sets and is a

generalisation of strong normalisation proofs for pure type systems, such as the

polymorphic �-calculus ([16, 23, 12]) or the calculus of constructions ([14, 24]).

The model is heavily inspired by [24]. Before giving a proof of Theorem 18, we

need some preliminaries on saturated sets.

Saturated sets Traditionally, saturated sets are de�ned as sets of �-strongly

normalisable untyped �-terms. Here we consider a slightly di�erent notion of

saturated sets, more adapted to our framework: we de�ne saturated sets as sets

of pseudo-terms rather than sets of �-terms. This is not really important but

makes the proof slightly more elegant. Moreover, we consider typed saturated

sets as in [19, 24] rather than untyped saturated sets. This means that the

notion of saturated sets is de�ned relative to a set of pseudo-terms. This is not

important for pure type systems but turns out to be crucial for algebraic pure

type systems (otherwise, we cannot use the results of the principal case).

Recall that a pseudo-termM is strongly normalising if all reduction sequences

starting from M are �nite. The set of strongly normalising terms is denoted

by SN. Saturated sets will be de�ned as subsets of SN with certain closure

properties.

De�nition 20 A base term is a term of the form x P

1

: : : P

n

where x 2 V and

P

1

; : : : ; P

n

2 SN.

The set of base terms is denoted by Base. Note that all base terms are strongly

normalising.

De�nition 21 Key-reduction !

k

is the smallest relation on pseudo-terms such

that for every pseudo-terms M;N;O; P

1

; : : : ; P

n

(�x :M:N ) O P

1

: : : P

n

!

k

N [O=x] P

1

: : : P

n

Note that a term has at most one key-redex. The term obtained from M by

contracting its key redex is denoted by kred(M ).

De�nition 22 Let U � Pseudo. A set X of pseudoterms is saturated in U if :

(i) X � SN \ U ;

(ii) Base \ U � X;

(iii) If kred(M ) 2 X and M 2 SN \ U , then M 2 X.

The collection of all saturated sets in U is denoted by SAT (U ). In the sequel,

we will use SAT (M ) for M 2 Pseudo to denote the set of saturated sets in

fN 2 Pseudo j ` N : Mg. If X 2 SAT(M ), we will say X is a M -saturated set.

We list some closure properties of saturated sets.



Fact 23 Let U;U

0

� Pseudo.

- SN(U ) = SN \ U is a saturated set in U .

- The set of saturated sets in U is closed under arbitrary non-empty intersec-

tions.

- If X is saturated in U and Y is saturated in U

0

, then X ! Y de�ned by

X ! Y = fM 2W j8N 2 X:M N 2 Y g

is saturated in W provided that Base \W � X ! Y (i.e. for every w 2

Base \W and x 2 X, wx 2 Y ).

-

- If X is saturated in U and Y

x

is saturated in U

0

x

for x 2 X, then �x 2 X:Y

x

de�ned by

�x 2 X:Y

x

= fM 2 W j8N 2 X:M N 2 Y

N

g

is saturated in W provided Base \ W � �x 2 X:Y

x

(i.e. for every w 2

Base \W and x 2 X, wx 2 Y

x

).

If M 2 Pseudo, then SN(M ) is the saturated set of strongly normalising terms

of type M .

The principal case The key fact in the model construction for algebraic pure

type systems is that the sets of strongly normalising terms of base datum enjoy

suitable closure properties.

Proposition 24 Let f be a function symbol of datum (�

1

; : : : ; �

n

! � ). Then

for all pseudo-terms t

1

; : : : ; t

n

,

t

i

2 SN(�

i

) for i = 1; : : : ; n ) f(t

1

; : : : ; t

n

) 2 SN(� )

The proof is an adaptation of [18, 1]. This key fact ensures that the model

construction for algebraic pure type systems can be carried out in exactly the

same way as for pure type systems.

Intuition behind the proof The idea of the proof is to give a model con-

struction in which types are interpreted as (saturated) sets and legal terms as

pseudo-terms such that the following soundness condition is satis�ed:

`

�

M : A ) ([M ]) 2 hhAii

where hhAii is the saturated set interpretation of A and ([M ]) is the pseudo-

term interpretation of M . For simple systems, such as the (algebraic) simply

typed �-calculus �

!

, the de�nition of hhAii can be given inductively on the

structure of the terms and the soundness condition can be proved inductively. For

the polymorphic �-calculus �2, one is forced to parameterise interpretations by

valuations. One then has to prove that if a valuation � satis�es certain properties,

then

`

�

M : A ) ([M ])

�

2 hhAii

�



In a system with dependent types such as �P or �P!, terms might occur in

types so one cannot any longer de�ne hhAii inductively. The standard solution

is to de�ne hhAii as a partial interpretation and show that it is well-de�ned on

legal types. This requires the introduction of a new interpretation a(M ) which

assigns to a term its possible values. The idea is that a(M ) should be de�ned

for every type and be a set of saturated sets such that under suitable conditions

`

�

M : A ) ([M ])

�

2 hhAii

�;�

Note that in this context valuations are of the form (�; �) where � assigns to every

variable (in some domain) a pseudo-term and � assigns to every variable (in some

domain) a saturated set. Note that dependent types introduce a new di�culty:

we have indexed families of types, i.e. terms of type B ! �

3

. These terms,

which we have de�ned earlier as prototypes, will also need to be intepreted. To

be able to interpret them as families of types, we must use induction on their

structure: if M is of type B ! C ! �, we want to de�ne a(M ) as the set of

families of maps f

b

: a(b) ! a(M b) for b 2 B. This requires a(b) and a(M b)

to be already de�ned. This requirement matches exactly the de�nition of �:

the assumption that � is well-founded enables us to de�ne the interpretation

a(M ) by �-induction. The other two interpretations will be de�ned as usual by

induction on the structure of the terms.

Convention From now on, we will drop the subscript in `

�

.

The construction The set Data of data is de�ned as the union of the set of

sorts of the rewriting systems. The set Type of types is de�ned by

Type = fM 2 Pseudo j ` M : s for some s 2 Sg

The map a : Pseudo ! Set is de�ned by case distinction:

- if M 2 Type nData, a(M ) = SAT(M );

- if M 2 Proto, a(M ) = f(f

B

)

B2cone(M)

jf

B

: a(B)! a(M B)g;

- if M 2 Data, a(M ) = fSN(M )g;

- otherwise, a(M ) = ff;gg;

where cone(M ) = fB 2 Pseudoj(M B) 2 Protog. De�ne A =

S

M2Pseudo

a(M ).

De�nition 25 A valuation is a pair (�; �) such that � : V ! Pseudo and � :

V ! A .

The extension ([:])

�

: Pseudo ! Pseudo of � is de�ned as the unique capture-

avoiding substitution extending �. We can extend � to terms by de�ning a map

hh:ii

��

: Pseudo! A as follows:

3

This is not only true for dependent types but also for higher-order polymorphism as

it occurs in �!.



hhxii

��

= �(x) if x 2 V and �(x) 2 Proto

hh�x : A:Bii

��

= fP 2 Pseudoj8(N;Q) 2 E

��

(A):

PN 2 hhBii

�(x:=N);�(x:=Q)

)g if ([�x : A:B])

�

2 Type

hhM Nii

��

= (hhMii

��

)

([N ])

�

hhNii

��

if ([MN])

�

2 Proto

hh�x : A:bii

��

= (�c 2 a(B):hhbii

�(x:=B);�(x:=c)

)

B2cone(([�x:A:b])

�

)

if ([�x : A:b])

�

2 Proto

hhMii

��

= SN(M) if M 2 Data

hhMii

��

= f;g otherwise

where for every M 2 Pseudo,

E

��

(M ) = f(N;Q) 2 Pseudo � A j ` N : ([M ])

�

; N 2 hhM ii

��

; Q 2 a(N )g

The following lemma is easily established by induction on the structure of M .

Lemma 26 Let M;N 2 Pseudo. Let (�; �) and (�

0

; �

0

) be two valuations.

- If �x = �

0

x and �x = �

0

x for every x 2 FV(M ), then hhM ii

��

= hhM ii

�

0

�

0

.

- hhM [N=x]ii

��

= hhM ii

�(x:=([N ])

�

);�(x:=hhNii

��

)

As a consequence of Lemma 26 and of the subject reduction property, we con-

clude that hh:ii

��

is invariant under reduction on legal terms.

Corollary 27 For every valuation (�; �) and terms M;N such that M !

mix

N

and ([M ])

�

; ([N ])

�

2 Proto, we have hhM ii

��

= hhN ii

��

.

In order to prove the main theorem, we must establish that the model behaves

as expected. It requires a standard soundness argument. In the sequel, we call

a context a �nite list of variables � = y

1

; : : : ; y

n

such that for i = 1; : : : ; n,

y

i

62 FV(�y

j

) (8j � i). One can check that for every well-typed term M , FV(M )

can be ordered into a context.

De�nition 28 Let� be a context. A valuation (�; �) satis�es � (denoted (�; �) j=

�) if for every x 2 �,

(i) ` �x : ([�x])

�

,

(ii) �x 2 hh�xii

��

,

(iii) hhxii

��

2 a(([x])

�

).

We say that j=M : A if

(i) ` ([M ])

�

: ([A])

�

,

(ii) ([M ])

�

2 hhAii

��

,

(iii) hhM ii

��

2 a(([M ])

�

),

for every valuation (�; �) satisfying FV(M ) [ FV(A).

Fact 29 Let (�; �) be a valuation satisfying �. Let x 62 � and x 62 FV(�y) for

all y 2 �. Then for every C 2 a(x), �(x := x); �(x := C) satis�es � [ fxg.

As a(x) 6= ;, valuations can always be extended to a larger context while pre-

serving satisfaction. We can now prove the main technical result of this paper.



Proposition 30 (Soundness) ` M : A ) j= M : A.

Proof: by induction on the length of derivations.

- Axiom: if ` s

1

: s

2

is an axiom, then it is easy to show j= s

1

: s

2

.

- Start: assume ` x : A is deduced from ` A : s by a start rule. Then �x = A.

Assume (�; �) satisi�es FV(A)[fxg. By de�nition of satisfaction, ` �x : ([A])

�

,

�x 2 hhAii

��

and hhxii

��

2 a(�x), so we are done.

- Function symbol: assume ` f(t

1

; : : : ; t

n

) : � is deduced by a function rule

from ` t

i

: �

i

for i = 1; : : : ; n where f is a function symbol of datum

(�

1

; : : : ; �

n

! � ). Assume (�; �) j= FV(f(t

1

; : : : ; t

n

)).

` ([f(t

1

; : : : ; t

n

)])

�

: � follows immediately from the induction hypothesis.

Next one has to prove that ([f(t

1

; : : : ; t

n

)])

�

2 hh� ii

��

. This is an immediate

consequence of Lemma 24.

Finally, we need to prove hhf(t

1

; : : : ; t

n

)ii

��

2 a(([f(t

1

; : : : ; t

n

)])

�

). This is

easy because ([f(t

1

; : : : ; t

n

)])

�

62 Proto.

- Product: assume ` �x : A:B : s

3

is deduced by a formation rule from ` A : s

1

and ` B : s

2

. Let (�; �) be a valuation such that(�; �) j= FV(�x : A:B).

We prove ` ([�x : A:B])

�

: s

3

. By induction hypothesis, ` ([A])

�

: s

1

. By fact

29,

�(x := x); �(x := C) j= FV(�x : A:B) [ fxg

for every C 2 a(x). Hence ` ([B])

�;(x:=x)

: s

2

by induction hypothesis. By

the product rule, ` �x : ([A])

�

:([B])

�;(x:=x)

: s

3

. As �x : ([A])

�

:([B])

�;(x:=x)

=

([�x : A:B])

�

, we conclude (i) holds.

Next we show ([�x : A:B])

�

2 hhs

3

ii

��

. By de�nition of hh:ii

��

, it is equivalent

to show that ([�x : A:B])

�

is strongly normalising (we already know that

(i) holds). By induction hypothesis, ([A])

�

2 hhs

1

ii

��

� SN and ([B])

�

0

2

hhs

2

ii

�

0

�

0

� SN for every valuation (�

0

; �

0

) satisfying FV(B). Let C 2 a(x).

Then �(x := x); �(x := C) j= FV(�x : A:B) [ fxg. Hence ([B])

�(x:=x)

2 SN

and ([�x : A:B])

�

2 SN.

Finally, we show hh�x : A:Bii

��

2 a(([�x : A:B])

�

). By (i), we know that

([�x : A:B])

�

2 Type, so we have to prove that hh�x : A:Bii

��

is a ([�x : A:B])

�

-

saturated set. As ([A])

�

is a type, it follows by induction hypothesis that

hhAii

��

is a ([A])

�

-saturated set. Besides, ([B])

�(x:=x)

is a type and by the sub-

stitution lemma, ([B])

�(x:=N)

is a type whenever ` N : �x. Hence hhBii

�(x:=N);�(x:=Q)

is a ([B])

�(x:=N)

-saturated set whenever �(x := N ); �(x := Q) j= FV(B)

(equivalently for every (N;Q) 2 E

��

(A)). We conclude hh�x : A:Bii

��

is a

([�x : A:B])

�

-saturated set.

- Application: assume ` M N : B[N=x] is deduced from ` M : �x : A:B

and ` N : A by an application rule. Let (�; �) be a valuation satisfying

FV(M ) [ FV(B[N=x]).

First, we show that ` ([MN ])

�

: ([B[N=x]])

�

. Consider the valuation (�

0

; �

0

)

de�ned by

�

0

y =

�

�y if y 2 FV(M ) [ FV(B[N=x])

y otherwise



and

�

0

y =

�

�y if y 2 FV(M ) [ FV(B[N=x])

C

y

otherwise

where C

y

is an arbitrary element of a(y). Then

(�

0

; �

0

) j= FV(MN ) [ FV(�x : A:B)

By induction hypothesis, we have

- ` ([M ])

�

0

: ([�x : A:B])

�

0

;

- ` ([N ])

�

0

: ([A])

�

0

.

Hence ` ([MN ])

�

0

: ([B])

�

0

;(x:=x)

[([N ])

�

0

=x]. In other words, ` ([MN ])

�

0

:

([B[N=x]])

�

0

. As � and �

0

coincide on FV(M ) [ FV(B[N=x]), we conclude

that (i) holds.

Next, we show that ([MN ])

�

2 hhB[N=x]ii

��

. Note that it is equivalent to

show ([MN ])

�

0

2 hhB[N=x]ii

�

0

�

0

where (�

0

; �

0

) is de�ned as above. By in-

duction hypothesis, we know that ` ([N ])

�

0

: ([A])

�

0

, ([N ])

�

0

2 hhAii

�

0

�

0

and

hhN ii

�

0

�

0

2 a(([N ])

�

0

). Hence, (([N ])

�

0

; hhN ii

�

0

�

0

) 2 E

�

0

�

0

(A). By induction hy-

pothesis, ([M ])

�

0

2 hh�x : A:Bii

�

0

�

0

. Hence

([MN ])

�

0

2 hhBii

�

0

(x:=([N ])

�

0

);�

0

(x:=hhNii

�

0

�

0

)

By Lemma 26, hhB[N=x]ii

�

0

�

0

= hhBii

�

0

(x:=([N ])

�

0

);�

0

(x:=hhNii

�

0

�

0

)

. So we are

done.

Finally, we prove that hhMN ii

��

2 a(([MN ])

�

). There are two cases two

distinguish. If ([MN ])

�

62 Proto, then a(([MN ])

�

) = ff;gg and hhMN ii

��

=

f;g, so we are done. Otherwise, ([M ])

�

2 Proto. By induction hypothesis,

hhM ii

��

2 a(([M ])

�

) and hhN ii

��

2 a(([N ])

�

). Hence (hhM ii

��

)

([N ])

�

hhN ii

��

2

a(([MN ])

�

).

- abstraction: assume ` �x : A:t : �x : A:B is deduced by an abstraction

rule from ` t : B and ` �x : A:B : s. Let (�; �) be a valuation satisfying

FV(�x : A:t) [ FV(�x : A:B).

We prove ` ([�x : A:t])

�

: ([�x : A:B])

�

. By induction hypothesis, ` ([�x : A:B])

�

:

s. By Fact 29, �(x := x); �(x := C) j= FV(t) for every C 2 a(x). Hence

` ([t])

�(x:=x)

: ([A])

�(x:=x)

. As x is not free in A, we have ([A])

�(x:=x)

= ([A])

�

.

We can apply the abstraction rule to conclude.

Next we prove that ([�x : A:t])

�

2 hh�x : A:Bii

��

. This amounts to showing

that for every (N;Q) 2 E

��

(A), we have

([�x : A:t])

�

N 2 hhBii

�(x:=N);�(x:=Q)

By de�nition of saturated sets, this follows from

([t])

�(x:=N)

2 hhBii

�(x:=N);�(x:=Q)

which is a direct consequence of the induction hypothesis.

Finally we prove hh�x : A:tii

��

2 a(([�x : A:t])

�

). There are two cases to dis-

tinguish. If ([�x : A:t])

�

62 Proto, this is an easy consequence of the de�ni-

tions. Otherwise, we have to prove that for every B 2 cone(([�x : A:t])

�

) and



c 2 a(B), hhtii

�(x:=B);�(x:=c)

2 a(([�x : A:t])

�

B). By the generation lemma, it

follows that ` B : ([A])

�

, hence (�(x := B); �(x := c)) satis�es FV(t). The

result is a consequence of the induction hypothesis.

- expansion/reduction: assume ` M : B is deduced from ` M : A and `

B : s using the expansion/reduction rule. Let (�; �) be a valuation satisfying

FV(M )[FV(B). As before, we can extend the valuation into a new valuation

(�

0

; �

0

) such that (�

0

; �

0

) satis�es FV(M )[FV(B)[FV(A) and coincides with

(�; �) on FV(M ) [ FV(B).

To prove ` ([M ])

�

0

: ([B])

�

0

, note that ([A])

�

0

! ([B])

�

0

or ([B])

�

0

! ([B])

�

0

.

Besides, it follows from the induction hypothesis that:

- ` ([M ])

�

0

: ([A])

�

0

;

- ` ([B])

�

0

: s.

We conclude by the conversion rule.

To prove ([M ])

�

2 hhBii

��

, we just apply Corollary 27.

Finally, hhM ii

��

2 a(([M ])

�

) is immediate from the induction hypothesis.�

Corollary 31 ` M : A ) M 2 SN.

Proof: for every derivation ` M : A, consider the valuation (�; �) such that

�(x) = x for every x 2 V and �(x) = max(x) where max is de�ned on pseudo-

terms by �-induction:

- if M 2 Type, max(M ) = SN(M );

- if M 2 Proto, max(M ) = (�x : a(B):max(M B))

B2cone(M)

;

- otherwise, max(M ) = f;g.

Then (�; �) j= FV(M )[FV(A). It follows from Proposition 30 thatM 2 hhAii

�;�

.

As hhAii

�;�

� SN, we conclude.

5 Applications of the main theorem

Theorem 11 has several important consequences. On the one hand, we recover

all the known results about algebraic pure type systems. On the other hand,

we obtain new results for algebraic higher-order logic and for the calculus of

constructions with in�nitely many universes:

- Systems of the algebraic �-cube are strongly normalising provided R-reduction

is strongly normalising on algebraic terms ([2, 18]).

- Algebraic higher-order logic is strongly normalising provided R-reduction is

strongly normalising on algebraic terms.

- The algebraic calculus of constructions with universes are strongly normalis-

ing provided all rewrite systems are left-linear and R-reduction is strongly

normalising on algebraic terms.

These results follow from Theorem 11 by proving that the systems are strati�ed

(we already know that the have the subject reduction property). For the algebraic

calculus of constructions and the systems of the algebraic cube, this is rather

easy. A prototype can only be of type kind and kinds are of the form:



- �,

- �x : A:B where A and B are kinds,

- �x : A:B where B is a kind and A is a type.

Note that we are implicitely assuming that algebraic data live in � as in [2]; it is

easy to adapt the proof to the other case. One can de�ne a measure � on kinds

as follows:

- �(�) = 1,

- �(�x : A:B) = �(A) + �(B) + 1 if A and B are kinds,

- �(�x : A:B) = �(B) + 1 if B is a kind and A is a type.

Note that the measure is preserved by conversion. By uniqueness of types, this

yields a measure � on prototypes: de�ne �(M ) = n if for some A, ` (M ) : A

and �(A) = n. Then for every P;Q,

P � Q) �(P ) < �(Q)

Hence the systems of the algebraic �-cube are strati�ed. A similar technique

applies to algebraic higher-order logic.

For the algebraic calculus of constructions with universes, the proof is more

involved and requires a quasi-normalisation argument, as developed in [19]. The

quasi-normalisation theorem shows that every type has a weak head normal form.

This enables us to give a measure on types. As before, we can invoke uniqueness

of types to turn this measure into a measure � for prototypes with the property

that P � Q) �(P ) < �(Q) for every pseudo-terms P;Q. Note that in this case

it is crucial to know subject reduction and conuence of reduction on normal

terms before the strong normalisation proof so we must restrict ourselves to left-

linear rewriting system. For such systems, the combined reduction is conuent

on the set of pseudo-terms of the algebraic pure type system (this follows from

[21]).

We want to close this section by making a few remarks about the generality

of the criterion. The criterion is not as general as it could seem. We believe that

a pure type system (with a countable set of sorts) is strati�ed if and only if it can

be embedded in the calculus of constructions with universes. One can easily �nd

pure type systems which are strongly normalising without being strati�ed. The

easiest example is probably obtained by adding to the polymorphic �-calculus

a new sort 4 and an axiom4 : �. So not every strongly normalising pure type

system is strati�ed. Yet every pure type system of interest is strati�ed and our

proof therefore applies to all of those systems.

6 Conclusion

We have introduced in the uni�ed framework of algebraic pure type systems

a large class of algebraico-functional languages which includes all the systems

considered in the literature so far. In this general framework, we have been able

to address modularity questions. We have given a general criterion for algebraic



pure type systems to be strongly normalising and shown that all the usual al-

gebraic pure type systems meet this criterion. One nice aspect of the proof is

that it gives a uniform treatment of all the usual algebraic pure type systems

and emphasizes the fact that proving strong normalisation for algebraic pure

type systems is not essentially more di�cult than proving strong normalisation

for pure type systems. It would be interesting to extend the present work to

more powerful type systems: possible extensions to be considered are �rst-order

inductive types (i.e. inductive types generated by �rst-order signatures, see for

example [22]), congruence types (an extension of algebraic pure type systems in

which data come equipped with an elimination principle, see [5]). . . However, we

feel more enclined to focus on two important problems which remain unsolved:

- there is no direct proof of subject reduction in algebraic pure type systems.

This is a serious drawback of the framework which we hope could be reme-

died. However, we do not know of any proof technique which would solve

the problem. Note that a positive answer to the Expansion Postponement

problem ([26]) could yield a positive solution to our problem.

- the approach we chose here is uniform in the sense that algebraic pure type

systems are treated simultaneously with pure type systems. Yet in prac-

tice, one would like to know that an algebraic pure type system is strongly

normalising if its underlying pure type system is. Note that such a result

would require a purely syntactic proof as no assumption is made on the al-

gebraic pure type system. One idea would be to try to use a generalisation

of Dougherty's results ([9]). However, it requires to prove subject reduction

and also that the algebraic pure type system is strongly normalising with �-

reduction. One approach would be to try to de�ne a �-reduction-preserving

mapping from the algebraic pure type system to its underlying pure type

system.
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