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1 Introduction

In this note, we discuss the way that set theory was done in Automath, e.g. by van Benthem
Jutting in his formalization of Landau’s “Grundlagen der Arithmetik”. The approach taken in
Automath is to axiomatize the power-set of a type A : Prop as a new type P A : Prop, and add
constants and hypotheses to make sure that one can move between A→Prop and P A. In first
order dependent type theory, this is a viable approach. In the setting of an impredicative type
theory, however, this is not: we show that it leads to an inconsistency.

One way to show the inconsistency is to add the rule that A→Prop : Prop for A : Prop. This
rule should somehow enable the Prop : Prop axiom and therefore inconsistency. We do something
seemingly weaker which is to introduce a context Γ0, consisting of axioms that ensure that there
is a type P A : Prop that is equivalent to A→Prop.

The way we do this is by showing that the axioms of Γ0 imply a context Γ1 that has been
shown inconsistent by Coquand [2]. The context Γ1 of Coquand states that there is a “retract” of
Prop inside some B : Prop. Coquand indicates how the inconsistent system λU can be encoded in
Γ1. In the paper, Coquand also asks whether there is a direct way of showing inconsistency of Γ1.
That is what we do here, by interpreting Hurkens’ paradox inside Γ1. The latter is done inside
the Coq system.

2 A context for set theory

We place ourselves in the Calculus of Constructions. We use Coq syntax.

Definition 2.1 The context Γ0 in Coq notation is the following. (We use “Implicit Arguments”.)

Variable ps : Prop->Prop.

Variable eps : forall S:Prop, S -> ps S -> Prop.

Variable subs : forall S:Prop, (S->Prop) -> ps S.

Variable eps_in : forall S:Prop, forall P:S->Prop, forall x:S,

P x -> eps x (subs P).

Variable eps_el : forall S:Prop, forall P:S->Prop, forall x:S,

eps x (subs P) -> P x.

In addition one could assume some extensionality axiom, like

Variable eps_eq : forall S:Prop, forall P:S->Prop,

P = fun x => eps x (subs P).

or alternatively

Variable EXT : forall S:Prop, forall P Q :S->Prop,

(forall x:S, P x -> Q x) -> P = Q.
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The latter implies the first, but we need neither of them.
The idea is that ps A is the type of subsets of A and that eps is the ε relation and subs turns

a predicate into a subset. The equivalence of eps x (subs P) and P x is ensured by eps in and
eps el.

Definition 2.2 The context Γ1 of Coquand [2] is the following, again in Coq syntax.

Variable B : Prop.

Variable IN : Prop -> B.

Variable OUT : B -> Prop.

Variable Hin : forall A : Prop, A -> OUT(IN A).

Variable Hout : forall A : Prop, OUT(IN A) -> A.

So the type B is a retract of Prop via IN and OUT, which is ensured by Hin and Hout.

Lemma 2.3 the context Γ1 can be interpreted in Γ0 and therefore Γ0 is inconsistent.

Proof Use the following Coq definitions.

Definition T := forall A: Prop, A -> A.

Definition t := fun A: Prop => fun x:A => x.

Definition D := ps T.

Definition IN := fun A:Prop => subs(fun x:T => A).

Definition OUT := fun x:ps T => eps t x.

Then one can prove

Lemma Hin : forall A : Prop, A -> OUT(IN A).

using eps in and

Lemma Hout : forall A : Prop, OUT(IN A) -> A.

using eps el.
We conclude that Γ0 is inconsistent, because Γ1 is inconsistent, as was shown by Coquand in

[2] by interpreting λU inside it.

3 A direct proof of inconsistency of Γ1

Here we give a direct proof of inconsistency of the context Γ1 of [2]. We translate the paradox of
Hurkens in it and as it is so short we give the code completely. The first 5 declarations are Γ1.
Then we construct a term of type B for an arbitrary B : Prop using the definitions and Lemmas
from Hurkens paradox, with small modifications to make it all type check: in comparison to the
paradox presented in [4, 3, 1], we use D in place of Prop at various places.

Section Paradox.

Set Implicit Arguments.

Variable D : Prop.

Variable IN : Prop -> D.

Variable OUT : D -> Prop.

Variable Hin : forall A : Prop, A -> OUT(IN A).

Variable Hout : forall A : Prop, OUT(IN A) -> A.

Variable B:Prop.

Definition V := forall A:Prop, ((A -> Prop) -> A->Prop) -> A -> Prop.
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Definition U := V -> D.

Definition sb := fun (A:Prop) (r:(A-> Prop) -> A -> Prop)(a:A)(z:V) =>(r (z A r) a).

Definition le (i : U->Prop)(x:U) :=

OUT(x (fun A r => fun a => i (fun v:V => IN(sb r a v)))).

Definition induct := fun i : U->Prop => forall x:U, le i x -> i x.

Definition WF : U := (fun z :V => IN(induct (z U le))).

Definition I (x:U) : Prop :=

(forall i: U->Prop, le i x -> i (fun v:V => IN(sb le x v))) -> B.

Lemma Omega : forall i: U -> Prop, induct i -> i WF.

Proof.

intros i y.

apply y.

unfold le, WF, induct in |- *.

apply Hin.

intros x H0.

apply y.

unfold le.

apply Hin.

exact H0.

Qed.

Lemma lemma1 : induct (fun u => I u).

Proof.

unfold induct in |- *.

intros x p.

unfold I.

intro q.

apply (q (fun u => (I u)) p).

intros i Haux.

apply q.

apply (Hout Haux).

Qed.

Lemma lemma2 : (forall i:U -> Prop, induct i -> (i WF)) -> B.

Proof.

intro x.

apply (x (fun u => (I u)) lemma1).

intros i H0.

apply (x (fun y => i(fun v => IN(sb le y v)))).

unfold le, WF in H0.

apply (Hout H0).

Qed.

Theorem paradox : B.

Proof.

exact (lemma2 Omega).

Qed.

End Paradox.
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