
Indu
tion is not derivable in se
ond order

dependent type theory

Herman Geuvers

?

Department of Computer S
ien
e, University of Nijmegen, The Netherlands

Abstra
t. This paper proves the non-derivability of indu
tion in se
ond

order dependent type theory (�P2). This is done by providing a model


onstru
tion for �P2, based on a saturated sets like interpretation of

types as sets of terms of a weakly extensional 
ombinatory algebra. We

give 
ounter-models in whi
h the indu
tion prin
iple over natural num-

bers is not valid. The proof does not depend on the spe
i�
 en
oding

for natural numbers that has been 
hosen (like e.g. polymorphi
 Chur
h

numerals), so in fa
t we prove that there 
an not be an en
oding of nat-

ural numbers in �P2 su
h that the indu
tion prin
iple is satis�ed. The

method extends immediately to other data types, like booleans, lists,

trees, et
.

In the pro
ess of the proof we establish some general properties of the

models, whi
h we think are of independent interest. Moreover, we show

that the Axiom of Choi
e is not derivable in �P2.

1 Introdu
tion

In se
ond order dependent type theory, �P2, we 
an en
ode all kinds of indu
tive

data types, like the types of natural numbers, lists, trees et
etera. This is usually

done via the B�ohm-Berardu

i en
oding (see [Girard et al. 1989℄ for a general

exposition), whi
h yields e.g. the well-known polymorphi
 Chur
h numerals as

interpretation of the natural numbers. This en
oding already works for non-

dependent se
ond order type theory (the well-known polymorphi
 �-
al
ulus

�2), but dependent types give the extra advantage that we 
an also state the

indu
tion prin
iple for the indu
tive data types. For example, if nat is the type

of polymorphi
 Chur
h numerals with zero O and su

essor fun
tion su

, then

the indu
tion prin
iple is represented by the type ind de�ned as

ind := �P :nat! ? :(PO)!(�y:nat:(Py)!(P (su

y)))!�x:nat:(Px):

Here, ? denotes the `kind' (universe) of all types, whi
h 
aptures both the sets

(nat : ?) and the propositions (ind : ?). The indu
tion prin
iple for nat is said to

be derivable in �P2 if there is a 
losed term of type ind.

In this paper we show that the indu
tion prin
iple for nat is not derivable in

�P2. As a matter of fa
t, we prove something stronger: the non-derivability of

?
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indu
tion does not depend on the spe
i�
 
hoi
e of the en
oding of the natural

numbers: given any (
losed) type N with 0 : N and s : N!N , there 
an be

no 
losed term of type �P :N! ? :(P0)!(�y:N:(Py)!(P (sy)))!�x:N:(Px):

This rules out any `smart' en
oding of the natural numbers (like the N above)

for whi
h indu
tion would be provable in �P2. What a `smart en
oding' 
ould

possibly look like, see the small diversion below in 1.1.

It should be pointed out here that, of 
ourse, indu
tive reasoning 
an easily

represented in �P2 by `relativizing' all statements about nat to the indu
tive

natural numbers. If we let Indx say that x is an `indu
tive natural number',

de�ned in �P2 as follows,

Indx := �P :nat! ? :(PO)!(�y:nat:(Py)!(P (su

y)))!(Px);

we 
an relativize�x:nat:' to �x:nat:(Indx)!'. Then one 
an reason by indu
-

tion, just be
ause all statements about nat are restri
ted to the indu
tive natural

numbers. However, this does not give us an indu
tive type of natural numbers.

Our result extends immediately to other indu
tive data types, so indu
tion

is not derivable for any en
oding of any indu
tive data type in �P2. Also we

show in this paper that the indu
tion prin
iple for one data type 
an not be

derived from the indu
tion prin
iple for another data type. The results extend

immediately to other systems like the Cal
ulus of Constru
tions (without indu
-

tive types). In [Strei
her 1991℄, also a non-derivability indu
tion result is proved,

using a realizability semanti
s, but only for one spe
i�
 en
oding of the natu-

ral numbers, as polymorphi
 Chur
h numerals. Our proof of non-derivability

uses a fairly simple model 
onstru
tion whi
h originates from [Geuvers 1996℄

and [Stefanova and Geuvers 1996℄. The model we 
onstru
t has some similari-

ties with the one used in [Berardi 1993℄ to justify en
oding mathemati
s in the

Cal
ulus of Constru
tions. To establish our main result we 
onstru
t a model in

whi
h the type that represents indu
tion is empty.

Apart from the indu
tion prin
iple we also show the non-derivability of the

Axiom of Choi
e.

1.1 Small diversion: a possible smart en
oding of the naturals

One may wonder whether there are other `smarter' en
odings of the natural

numbers for whi
h indu
tion is provable. In this subse
tion we suggest a possible

di�erent en
oding of the naturals. Our �nal result implies that indu
tion is also

non-derivable for this representation. Let us de�ne

N := 9x:nat:(Indx);

with Indx saying that x is an `indu
tive natural number', de�ned as above. Now

the `indu
tivity' of the natural numbers is `built in' in their en
oding. (9 is

de�ned in the well-known se
ond order way: 9x:�:� := ��: ? :(�x:�:�!�)!�.)

By using the de�nable 9-elim and 9-intro rules, it is now easy to de�ne O, su





for this en
oding:

O := �� : ?:�h:(�x:nat:(Indx)!�):hOq

O

;

su

 := �n:N:nN

�

�x:nat:�p:(Indx):

��: ? :�h:(�y:nat:(Indy)!�):h(su

x)(q

su



xp)

�

;

where q

O

and q

su



are terms su
h that q

O

: (IndO) and

q

su



: �x:nat:(Ind x)!(Ind (su

x)). One may wonder whether the indu
tion

prin
iple is derivable for the type N . It is not the 
ase, whi
h 
an intuitively be

grasped from the fa
t that there is no `
oheren
e' among the possible proofs of

Indx. (There are many possible proofs of IndO, whi
h are not all 
aptured.)

2 Se
ond order dependent type theory

The system of se
ond order dependent type theory, �P2, is an extension of

the polymorphi
 �-
al
ulus with dependent types and it was �rst introdu
ed in

[Longo and Moggi 1988℄. It 
an be seen as a subsystem of the Cal
ulus of Con-

stru
tions ([Coquand and Huet 1988℄, [Coquand 1990℄), where the operations of

forming type 
onstru
tors are restri
ted to se
ond order ones. (So, one 
an quan-

tify over type 
onstru
tors of kind �!?, but one 
an not form type 
onstru
tors

of kind (�!?)!?.) It 
an also be seen as an extension of the �rst order system

�P , where quanti�
ation over type 
onstru
tors has been added. For an extensive

dis
ussion on these systems and their relations, we refer to [Barendregt 1992℄ or

[Geuvers 1993℄. Here we just de�ne the system �P2 and give some initial moti-

vation for it.

De�nition 1. The type system �P2 is de�ned as follows. The set of pseudo-

terms,T, is de�ned by

T ::= ? jKind jVar j (�Var:T:T) j (�Var:T:T) jTT;

where Var is a 
ountable set of variables. On T we have the usual notion of �-

redu
tion, �!

�

. We adopt from the untyped �-
al
ulus the 
onventions of denot-

ing the transitive re
exive 
losure of �!

�

by �!�!

�

and the transitive symmetri



losure of �!�!

�

by =

�

.

The typing of terms is done under the assumption of spe
i�
 types for the

free variables that o

ur in the term. This is done in a 
ontext, a �nite sequen
e

of de
larations � = v

1

:T

1

; : : : ; v

n

:T

n

(the v are variables and the T are pseudo-

terms). Typing judgments are written as � ` M : T , with � a 
ontext and M

and T pseudo-terms.

The dedu
tion rules for �P2 are as follows. (v ranges over Var, s, s

1

and s

2

range over f?;Kindg and M;N; T and U range over T.)

(axiom) ` ? : Kind (var)

� ` T : ?=Kind

�; v:T ` v : T

(weak)

� ` T : ?=Kind � `M : U

�; v:T `M : U



(�)

� ` T : s

1

�; v:T ` U : s

2

� ` �v:T:U : s

2

if (s

1

; s

2

) 6= (Kind;Kind)

(�)

�; v:T `M : U � ` �v:T:U : s

� ` �v:T:M : �v:T:U

(app)

� `M : �v:T:U � ` N : T

� `MN : U [N=v℄

(
onv

�

)

� `M : T � ` U : s

� `M : U

if T =

�

U

In the rules (var) and (weak) it is always assumed that the newly de
lared variable

is fresh, that is, it has not yet been de
lared in � . For 
onvenien
e, we split up

the set Var into a set Var

?

, the obje
t variables, and Var

Kind

, the 
onstru
tor

variables. Obje
t variables will be denoted by x; y; z; : : : and 
onstru
tor variables

by �; �; : : :. In the rules (var) and (weak), we take the variable v out of Var

?

if

s = ? and out of Var

Kind

if s = Kind.

We 
all a pseudo-term M well-typed if there is a 
ontext � and another

pseudo-term N su
h that either � ` M : N or � ` N : M is derivable. The

well-typed terms 
an be split into the following disjoint subsets:

{ fKindg,

{ the set of kinds: terms A su
h that � ` A : Kind for some � ; this in
ludes ?.

In �P2 all kinds are of the form �x

1

:�

1

: : : �x

n

:�

n

:?, with �

1

; : : : ; �

n

types

and x

1

; : : : ; x

n

2 Var

?

.

{ the set of 
onstru
tors: terms of type a `kind', i.e. terms P su
h that � ` P :

A for some kind A; this in
ludes the types, terms of type ?.

In �P2 all 
onstru
tors are of one of the following forms

� � 2 Var

Kind

,

� Pt, with P a 
onstru
tor and t an obje
t,

� �x:�:P , with � a type, P a 
onstru
tor, x 2 Var

?

,

� �x:�:� , with � and � types, x 2 Var

?

,

� ��:A:� , with A a kind, � a type, � 2 Var

Kind

.

{ the obje
ts: terms of type a `type', i.e. terms M su
h that � ` M : � for

some type �. In �P2 all obje
ts are of one of the following forms

� x 2 Var

?

,

� qt, with q and t an obje
ts,

� qP , with P a 
onstru
tor and q an obje
t,

� �x:�:t, with � a type, t an obje
t, x 2 Var

?

,

� ��:A:t, with A a kind, t an obje
t, � 2 Var

Kind

.

Convention We denote kinds by A;B;C; : : :, types by �; �; : : :, 
onstru
tors by

P;Q; : : : and obje
ts by t; q; : : :.

If v is not free in U , we denote { as usual { �v:T:U by T!U . In arrow types,

we let bra
kets asso
iate to the right, so T!T!T denotes T!(T!T ). In ap-

pli
ation types, we let bra
kets asso
iate to the left, so MNP denotes (MN)P .



Data types and formulas in �P2 The well-known en
oding of indu
tive data

types in polymorphi
 �-
al
ulus extends immediately to �P2. For the general

pro
edure we refer to [Girard et al. 1989℄. Here we give some examples. It is also

standard that these indu
tive data types 
ome together with the possibility of

de�ning fun
tions by iteration. We do not dis
uss the iteration s
heme, as it is

outside the s
ope of this paper. We do give, for ea
h data type the asso
iated

indu
tion prin
iple. In this paper we show that the indu
tion prin
iple for natural

numbers is not provable in �P2. However the same method applies immediately

to other data types, like the ones given below.

1. The natural numbers 
an be en
oded by nat := ��: ? :�!(�!�)!�, with

zero and su

essor:

O := ��: ? :�x:�:�f :�!�:x;

su

 := �n:nat:��: ? :�x:�:�f :�!�:f(n�xf):

The indu
tion prin
iple reads

ind

nat

:= �P :nat! ? :(PO)!(�y:nat:(Py)!(P (su

y)))!�x:nat:(Px):

2. The list over a given 
arrier type � 
an be en
oded by list

�

:= ��: ?

:�!(�!�!�)!�, with empty list and `
ons' map:

nil := ��: ? :�x:�:�f :�!�!�:x;


ons := �a:�:�l:list

�

:��: ? :�x:�:�f :�!�!�:fa(l�xf):

As we are in �P2, we 
an not de�ne list as a type 
onstru
tor list := ��: ?

:list

�

: ?!?, simply be
ause the kind ?!? is not available in �P2. For

simpli
ity we write list for list

�

if the � is 
lear from the 
ontext.

The indu
tion prin
iple reads

ind

list

:= �P :list!?:(Pnil)!(�a:�:�y:list:(Py)!(P (
onsay)))!�x:list:(Px):

3. The well-founded labeled trees of bran
hing type � and with labels in � 
an

be en
oded by tree

��

:= ��:?:(�!�)!(�!(�!�)!�)!�, with maps leaf

and join (taking a label and a `� -sequen
e' of trees and returning a tree):

leaf := �a:�:��: ? :�x:�!�:�f :�!(�!�)!�:xa;

join := �a:�:�t:�!tree

��

:��: ? :�x:�!�:�f :�!(�!�)!�:fa(�z:�:tz�xf):

The remark about not being able to de�ne list : ?!? also applies to tree. We

omit the indi
es in tree if no 
onfusion arises. The indu
tion prin
iple reads

ind

tree

:= �P :tree! ? :(�a:�:(P (leafa)))!

(�a:�:�y:�!tree:(�z:�:(P (yz)))!(P (joinay)))!�x:tree:(Px):

There is a formulas-as-types embedding from 
onstru
tive se
ond order pred-

i
ate logi
 into �P2.



3 Model 
onstru
tion for �P2

The model notion for �P2 we give is not a general (
ategori
al) one, but a

des
ription of a 
lass of models, whi
h is the same as in [Geuvers 1996℄. It 
an

be extended to a 
lass of models for the Cal
ulus of Constru
tions, whi
h is done

in [Stefanova and Geuvers 1996℄.

The models of �P2 are built from weakly extensional 
ombinatory algebras

(we
a for short). A 
ombinatory algebra (
a for short) is a tuple A = hA; �;k; si,

with A a set, � a binary fun
tion from A �A to A (as usual denoted by in�x

notation), k; s 2 A su
h that (k �a) �b = a and ((s �a) �b) �
 = (a �
) �(b �
). For A a


ombinatory algebra, the set of terms over A, T (A), is de�ned by letting T (A)


ontain in�nitely many variables v

1

; v

2

; : : : and distin
t elements 


a

for every

a 2 A, and letting T (A) be 
losed under appli
ation (the operation �). Given a

term t and a valuation �, mapping variables to elements of A, the interpreta-

tion of t in A under �, notation [[t℄℄

A

�

, is de�ned in the usual way ([[


a

℄℄

A

�

= a,

[[MN ℄℄

A

�

= [[M ℄℄

A

�

� [[N ℄℄

A

�

, et
etera). An important property of 
as is that they are


ombinatory 
omplete, i.e. if t[v℄ 2 T (A) is a term with free variable v, then there

is an element inA, usually denoted by �

�

v:t[v℄, su
h that 8x((�

�

v:t[v℄) �x = t[x℄)

in A. (More te
hni
ally, this means that [[(�

�

v:t[v℄) � x℄℄

A

�

= [[t[x℄℄℄

A

�

for all �.) A


a is weakly extensional if [[t

1

℄℄

A

�(x:=a)

= [[t

2

℄℄

A

�(x:=a)

for all a 2 A implies that

[[�

�

x:t

1

℄℄

A

�

= [[�

�

x:t

2

℄℄

A

�

. In other words: a 
a is weakly extensional if abstra
-

tion is a fun
tion on the we
a hT (A); �;k; si, i.e. if (in T (A)) t

1

= t

2

, then

�

�

x:t

1

= �

�

x:t

2

.

The need for weakly extensional 
as 
omes from the fa
t that we want

M =

�

N ) ([M ℄)

�

= ([N ℄)

�

for all �;

where ([�℄)

�

interprets pseudo-terms as elements of A, using a valuation � for

the free variables. Of 
ourse, ([�℄)

�

is 
lose to [[�℄℄

A

�

, ex
ept for the fa
t that now

we also have to interpret abstra
tion: under ([�℄)

�

, � is interpreted as �

�

.

1

Example 1. 1. A standard example of a we
a is �, 
onsisting of the 
lasses

of open �-terms modulo �-equality. So, A is just �=� and [M ℄ = [N ℄ i�

M =

�

N . It is easily veri�ed that this yields a we
a.

2. Given a set of 
onstants C, we de�ne the we
a �(C) as the equivalen
e


lasses of open �

C

-terms (i.e. lambda-terms over the 
onstant set C) modulo

�
-equality, where the 
-equality rules says


N =





 �v:
 =







for all 
 2 C and N 2 �

C

.

3. Another example of a we
a is 1, the degenerate we
a where A = 1, the one-

element set. In this 
ase k = s, whi
h is usually not allowed in 
ombinatory

algebras, but note that we do allow it here.

1

In general, for 
as, M = N 6) ([M ℄)

�

= ([N ℄)

�

(e.g. take 
ombinatory logi
 and

M � x, N � Ix). However, for we
as this impli
ation holds.



The types of �P2 will be interpreted as subsets of A.

De�nition 2. A polyset stru
ture over the weakly extensional 
ombinatory al-

gebra A is a 
olle
tion P � }(A) su
h that

1. A 2 P,

2. P is 
losed under arbitrary interse
tion

T

,

3. P is 
losed under dependent produ
ts, i.e. if X 2 P and F : X ! P, then

�

t2X

F (t) 2 P, where �

t2X

F (t) is de�ned as

fa 2 A j 8t 2 X(a � t 2 F (t))g:

The elements of a polyset stru
ture are 
alled polysets. If F is the 
onstant

fun
tion with value Y , we write X!Y instead of �

t2X

Y .

Example 2. 1. We obtain the full polyset stru
ture over the we
a A if we take

P = }(A).

2. The simple polyset stru
ture over the we
a A is obtained by taking P =

f;;Ag. It is easily veri�ed that this is a polyset stru
ture.

3. Given the we
a �(C) as de�ned in Example 1 (so C is a set of 
onstants),

we de�ne the polyset stru
ture generated from C by

P := fX � �(C) j X = ; _ C � Xg:

To show that P is a polyset stru
ture, the only interesting thing is to verify

that P is 
losed under dependent produ
t. So, let X 2 P and F : X ! P .

We distinguish 
ases: if X = ;, then �

t2X

F (t) = �(C) 2 P ; if F (t) = ;

for some t 2 X , then �

t2X

F (t) = ; 2 P ; in all other 
ases C � �

t2X

F (t),

be
ause for 
 2 C and t 2 X , 
t =





 2 C � F (t), so 
t 2 F (t).

4. Given the we
a A and a set C � A su
h that 8a; b 2 A(a � b 2 C ) a 2 C,

we de�ne the power polyset stru
ture of C by

P := fX � A jX � C _X = Ag:

To 
he
k that this is a polyset stru
ture, one only has to verify that, for

X 2 P and F : X!P , �

t2X

F (t) 2 P . This follows from an easy 
ase

distin
tion: 8t 2 X(F (t) = A) or 9t 2 X(F (t) � C).

An interesting instan
e of a power polyset stru
ture is the one arising from

C = HNF, the set of �-terms with a head-normal-form, in the we
a �=�.

The dependent produ
t of a polyset stru
ture will be used to interpret types

of the form �x:�:� , where both � and � are types. The interse
tion will be used

to interpret types of the form ��:A:�, where � is a type and A is a kind. To

interpret kinds we need a predi
ative stru
ture.

De�nition 3. For P a polyset stru
ture, the predi
ative stru
ture over P is the


olle
tion of sets N de�ned indu
tively by

1. P 2 N ,



2. If X 2 P and 8t 2 X(F (t) 2 N , then

Q

t2X

F (t) 2 N .

If F is a 
onstant fun
tion with value P, we write X!P in stead of

Q

t2X

P.

De�nition 4. If A is a 
ombinatory algebra, P a polyset stru
ture over A and

N the predi
ative stru
ture over P, then we 
all the tuple hA;P ;Ni a �P2-

model.

The predi
ative stru
ture over a polyset stru
ture P is intended to give a

domain of interpretation for the kinds. For example, if the type � is interpreted

as the polyset X , then the kind �!�!? is interpreted as

Q

t2X

Q

q2X

P , for

whi
h we usually write X!X!P .

We now de�ne three interpretation fun
tions, one for kinds, V(�), that maps

kinds to elements of N , one for 
onstru
tors (and types), [[�℄℄, that maps 
on-

stru
tors to elements of

S

N (and types to elements of P , whi
h is a subset

of

S

N ) and one for obje
ts, ([�℄), that maps obje
ts to elements of the 
om-

binatory algebra A. All these interpretations are parametrized by valuations,

assigning values to the free variables (de
lared in the 
ontext).

Let in the following M = hA;P ;Ni be a �P2-model: A = hA; �;k; si is a


ombinatory algebra, P is a polyset stru
ture over A and N is the predi
ative

stru
ture over the polyset stru
ture P .

De�nition 5. A 
onstru
tor variable valuation is a map � from Var

Kind

to

S

N .

An obje
t variable valuation is a map � from Var

?

to A.

De�nition 6. For � an obje
t variable valuation, we de�ne the map ([�℄)

M

�

from

the set of obje
ts to A as follows. (We leave the model M impli
it.)

([x℄)

�

:= �(x);

([tq℄)

�

:= ([t℄)

�

� ([q℄)

�

; if q is an obje
t;

([tQ℄)

�

:= ([t℄)

�

; if Q is a 
onstru
tor;

([�x:�:t℄)

�

:= �

�

v:([t℄)

�(x:=v)

; if � is a type;

([��:A:t℄)

�

:= ([t℄)

�

; if A is a kind:

De�nition 7. For � an obje
t variable valuation and � a 
onstru
tor variable

valuation, we de�ne the maps V(�)

M

��

and [[�℄℄

M

��

respe
tively from kinds to N

and from 
onstru
tors to

S

N as follows. (We leave the model M impli
it.)

V(?)

��

:= P ;

V(�x:�:B)

��

:=

Y

t2[[�℄℄

��

V(B)

��(x:=t)

;

[[�℄℄

��

:= �(�);

[[��:A:� ℄℄

��

:=

\

a2V(A)

��

[[� ℄℄

�(�:=a)�

; if A is a kind;

[[�x:�:� ℄℄

��

:= �

t2[[�℄℄

��

[[� ℄℄

��(x:=t)

; if � is a type;

[[Pt℄℄

��

:= [[P ℄℄

��

(([t℄)

�

);

[[�x:�:P ℄℄

��

:= �t 2 [[�℄℄

��

:[[P ℄℄

��(x:=t)

:



Note that V(A)

��

and [[P ℄℄

��

may be unde�ned. For example, in the de�nition

of [[Pt℄℄

��

, ([t℄)

�

may not be in the domain of [[P ℄℄

��

, in the de�nition of [[�x:�:� ℄℄

��

,

[[�℄℄

��

may not be a polyset and in the de�nition of V(�x:�:B)

��

, [[�℄℄

��

may not

be de�ned. From the Soundness Theorem (1) it will follow that, under 
ertain

natural 
onditions for � and rho, V(A)

��

and [[P ℄℄

��

are well-de�ned.

De�nition 8. For � a �P2-
ontext, � an obje
t variable valuation and � a


onstru
tor variable valuation, we say that �; � ful�lls � , notation �; � j= � , if

for all x 2 Var

?

and � 2 Var

Kind

, x : � 2 � ) �(x) 2 [[�℄℄

��

and � : A 2 � )

�(�) 2 V(A)

��

.

It is (impli
it) in the de�nition that �� j= � only if for all de
larations

x:� 2 � , [[�℄℄

��

is de�ned (and similarly for �:A 2 � ).

De�nition 9. The notion of truth in a �P2-model, notation j=

M

and of truth,

notation j= are de�ned as follows. For � a 
ontext, t an obje
t, � a type, P a


onstru
tor and A a kind of �P2,

� j=

M

t : � if 8�; �[�; � j= � ) ([t℄)

�

2 [[�℄℄

��

℄;

� j=

M

P : A if 8�; �[�; � j= � ) [[P ℄℄

��

2 V(A)

��

℄:

Quantifying over the 
lass of all �P2-models, we de�ne, for M an obje
t or a


onstru
tor of �P2,

� j=M : T if � j=

M

M : T for all �P2-models M:

Soundness states that if a judgment � ` M : T is derivable, then it is true

in all models. It is proved `model-wise', by indu
tion on the derivation in �P2.

Theorem 1 (Soundness). For � a 
ontext, M an obje
t or a 
onstru
tor and

T a type or a kind of �P2,

� `M : T ) � j=M : T:

Example 3. Let A be a we
a.

1. The full �P2-model over A is M = hA;P ;Ni, where P is the full polyset

stru
ture over A (as de�ned in Example 2).

2. The simple �P2-model over A is M = hA;P ;Ni, where P is the simple

polyset stru
ture over A. (So P = f;;Ag.)

3. The simple �P2-model over the degenerateA is also 
alled the proof-irrelevan
e

model or PI-model for �P2.

4. For C a set of 
onstants, the �P2-model generated from C is de�ned by

M = h�(C);P ;Ni, where P is the polyset stru
ture generated from C.



4 Non-derivability results in �P2

We now show that the indu
tion-prin
iple is not derivable in �P2 by 
onstru
ting

a 
ounter-model. We �rst introdu
e some notation and then we study some

spe
i�
 models and their properties.

In a logi
al model, validity of a formula ' means that the interpretation

of ' is true in the model. In a type theoreti
al model, we 
all a type valid

if its interpretation is nonempty. This 
onforms with the `formulas-as-types'

embedding from PRED2 to �P2, where a formula is interpreted as the type of

its proofs. (Hen
e, a formula is provable i� its asso
iated type is nonempty.)

De�nition 10. For M a �P2-model, � a 
ontext, � a type in � and �; � val-

uations su
h that �; � j= � , we say that � is valid in M under �; �, notation

M; �; � jj=

�P2

�, if

[[�℄℄

M

��

6= ;:

In 
ase the model M is 
lear from the 
ontext, we omit it. Similarly we omit �

and/or � if they are 
lear from the 
ontext or if the spe
i�
 
hoi
e of � or � is

irrelevant (e.g. in 
ase of a 
losed type �).

So, to prove the non-derivability of ind in �P2, we are looking for a �P2-

model M su
h that

M 6jj=

�P2

ind:

De�nition 11. A �P2-model M is 
onsistent if ; 2 P.

For a �P2-model, being 
onsistent is equivalent to saying that [[?℄℄ = ;,

be
ause [[?℄℄ is the minimal element (w.r.t. �) of P . Here, ? is de�ned as usual

as ��: ? :�.

Note that the polyset stru
tures of Example 2 all yield a 
onsistent �P2-

model.

Convention 12 From now on we only dis
uss 
onsistent �P2-models.

De�nition 13. In a �P2-model M = hA;P ;Ni we de�ne the `
onne
tives' ?,

:, ^, _ and 9 as follows. (X;Y 2 P, F : X!P and Y

i

2 P for all i 2 I; as in

types, we let bra
kets asso
iate to the right.)

? :=

T

Z2P

Z; :X := X!?;

X ^ Y :=

T

Z2P

(X!Y!Z)!Z; X _ Y :=

T

Z2P

(X!Z)!(Y!Z)!Z;

9

x2X

F (x) :=

T

Z2P

(�

x2X

F (x)!Z)!Z; 9

i2I

Y

i

:=

T

Z2P

(

T

i2I

Y

i

!Z)!Z:

Note that, due to the assumptions on a polyset stru
ture, these are all elements

of P.

Remark 1. The de�nition of 9

i2I

Y

i

is 
lose to the union. If we de�ne the elements

F and G of the we
a A by F := �

�

x:xI and G := �

�

xh:hx (where I denotes the

identity in A: I := skk), then F 2 9

i2I

Y

i

!

S

i2I

Y

i

and G 2

S

i2I

Y

i

!9

i2I

Y

i



even with F ÆG = I

2

. Note however, that

S

i2I

Y

i

need not be an element of P

3

,

but we do have 9

i2I

Y

i

= ; ,

S

i2I

Y

i

= ;:

Lemma 1. The following holds in arbitrary (
onsistent) �P2-models M.

:X = ; , X 6= ;; (1)

X!Y 6= ; , if X 6= ; then Y 6= ;; (2)

X ^ Y 6= ; , X 6= ; and Y 6= ;; (3)

X _ Y 6= ; , X 6= ; or Y 6= ;; (4)

9

x2X

F (x) 6= ; , 9t 2 X(F (t) 6= ;); (5)

9

i2I

Y

i

6= ; , 9i 2 I(Y

i

6= ;); (6)

�

x2X

F (x) 6= ; ) 8t 2 X(F (t) 6= ;); (7)

\

i2I

Y

i

6= ; ) 8i 2 I(Y

i

6= ;): (8)

Proof. We reason 
lassi
ally in the meta-theory of the models (otherwise ( in

(2) and ) in (4)-(6) are problemati
).

(1) follows immediately from ? = ; (i.e. the 
onsisten
y of the �P2-model).

For (2), ) is immediate. For (, we distinguish 
ases: if X 6= ;, then Y 6= ;, say

q 2 Y , and hen
e �

�

x:q 2 X!Y ; if X = ;, then �

�

x:x 2 X!Y . For (3), ):

M 2 X ^ Y , then Mk 2 X and M(ki) 2 Y (where i is the identity in the we
a,

i := skk). (: if M

1

2 X , M

2

2 Y , then �

�

h:hM

1

M

2

2 X ^ Y .

For (4),): letM 2 X_Y and suppose X = Y = ;. ThenMaa 2 ; (a 2 A arbi-

trary), 
ontradi
tion. So X 6= ; or Y 6= ; (: if M 2 X , then �

�

hg:hM 2 X _ Y

and similarly for M 2 Y .

For (5),): letM 2 9

x2X

F (x) and suppose 8x 2 X(F (x) = ;). ThenM(�

�

x:�

�

y:y) 2

;, 
ontradi
tion, so 9x 2 X(F (x) 6= ;). (: If q 2 F (t) for 
ertain t 2 X , then

�

�

h:htq 2 9

x2X

F (x).

(6) follows from Remark 1 and (7) and (8) are immediate.

Remark 2. The reverse impli
ations in Lemma 1, 
ases (7) and (8), do not hold in

general. A 
ounterexample 
an be found by looking at the full polyset stru
ture

over A = �. De�ne F : A!P by F (t) = � n ftg. Then F (t) 6= ; for all t 2 �.

Now suppose M 2 �

x2X

F (x). Then Mt 6= t for all t 2 �, but this is not

possible, sin
e M has a �xed point. This 
ontradi
ts the reverse impli
ation of

(7). If we 
onsider

T

x2A

F (x), we immediately �nd a 
ounterexample to the

reverse impli
ation of (8).

Lemma 2. For a simple �P2-model over A the reverse impli
ations in Lemma

1, 
ases (7) and (8), hold. Similarly for a �P2-model generated from a set C.

2

In a we
a A, 
omposition is de�ned as usual by a Æ b := �

�

x:a � (b � x).

3

The example Ps of Example 2 are all 
losed under arbitrary union and at this

moment we don 't know of any P that is not 
losed under unions. However, De�nition

2 does not a priori require a P to be 
losed under union.



Proof. Case (8) is immediate:

T

i2I

Y

i


an only be empty if one of the Y

i

is empty.

For (7), if for all t 2 X , Ft 6= ;, then there is an element q su
h that 8t 2 X(q 2

Ft) (this is a pe
uliar feature of these models) and hen
e �

�

x:q 2 �

t2X

Ft.

Lemma 3. All �P2-models satisfy 
lassi
al logi
, i.e.

::X!X 6= ;

for all X 2 P in all �P2-models.

Proof. We reason 
lassi
ally in the models, using Lemma 1. LetX 2 P . IfX 6= ;,

say t 2 X , then ::X!X 6= ;, be
ause e.g. �

�

x:t 2 ::X!X . If X = ;, then

:X = A, so ::X = ;, so ::X!X = A.

Remark 3. It is not the 
ase that \

X2P

::X!X 6= ; in all �P2-models. In fa
t

we have the following.

1. In the full �P2-model over �, \

X2P

::X!X = ;.

2. In simple �P2-models or models generated by some C, \

X2P

::X!X 6= ;.

The �rst is proved by de�ning X

i

= fx

i

g for all i 2 IN (with, of 
ourse all x

i

di�erent). Then ::X

i

= �. Now, suppose M 2 \

X2P

::X!X . Then for any

N 2 �, we �nd that 8i 2 IN(MN 2 X

i

), i.e. MN =

�

x

i

for all i, whi
h is not

possible, as MN 
ontains only �nitely many free variables.

The se
ond is proved by noti
ing that, in these models there is an element P su
h

that X 6= ; ) P 2 X . Hen
e �

�

x:P 2 \

X2P

::X!X , following the reasoning

in the proof of Lemma 3.

Equality is de�ned in �P2 using Leibniz equality: for � : ?, M;N : �

M =

�

N := �P :�! ? :(PM)!(PN):

In 
ase the type is 
lear from the 
ontext, we often do not write it as a subs
ript

in the Leibniz equality. The notion of `Proof-Irrelevan
e', meaning that for any

type �, all terms of type � are equal, is de�ned by PI := ��: ? :�x; y:�:x =

�

y.

Lemma 4. Given a �P2-model M, a type � and terms M;N : �, we have

M; �; � jj=M =

�

N , ([M ℄)

�

= ([N ℄)

�

:

Proof. ): Suppose \

Q2[[�℄℄!P

Q([M ℄)

�

!Q([N ℄)

�

6= ;. Take Q su
h that Qx 6= ;

i� x = ([M ℄)

�

Then it is the 
ase that Q([N ℄)

�

6= ;, hen
e ([M ℄)

�

= ([N ℄)

�

.

(: If ([M ℄)

�

= ([N ℄)

�

, thenQ([M ℄)

�

= Q([N ℄)

�

, so �

�

x:x 2 \

Q2[[�℄℄!P

Q([M ℄)

�

!Q([N ℄)

�

.

Corollary 1. M jj= PI,M is the PI-model.

In this paper we fo
us espe
ially on the indu
tion prin
iple for (an arbitrary

en
oding of) the natural numbers. We therefore 
hara
terize when a �P2-model

satis�es indu
tion for the natural numbers.



De�nition 14. Given a 
losed �P2-type N and 
losed terms 0 : N and S :

N!N , we de�ne the type ind

N;0;S

by

�P :N! ? :P0!(�x:N:Px!P (Sx))!�x:N:Px:

Lemma 5. For M = hA;P ;Ni a �P2-model,

M jj= ind

N;0;S

) [[N ℄℄ = fS

n

0 j n 2 INg

If, moreover, the test-for-zero and the prede
essor fun
tion are de�nable on the

type N in the model M, then also

[[N ℄℄ = fS

n

0 j n 2 INg )M jj= ind

N;0;S

:

Proof. For simpli
ity, we denote the interpretations of N , 0 and S in the model

just by N , 0 and S. Suppose M jj= ind

N;0;S

. Then

\

Q2N!P

Q0!(�

t2N

Qt!Q(St))!�

t2N

Qt 6= ;:

Let X be some non-empty element of P . De�ne Q : N!P as follows: Qt =

X if t = S

n

0 for some n 2 IN and Qt = ; otherwise. Then Q0 6= ; and

�

t2N

Qt!Q(St) 6= ;, hen
e �

t2N

Qt 6= ;, say M 2 �

t2N

Qt. Now, suppose

q 2 N with q 6= S

n

0 (for all n 2 IN). Then Qq = ; but also Mq 2 Qq,


ontradi
tion. So all q 2 N are of the form S

n

0.

For the reverse impli
ation, suppose that the test-for-zero and the prede
essor

fun
tion are de�nable in the model and suppose that N = fS

n

0 j n 2 INg.

To prove that

T

Q2N!P

Q0!(�

t2N

Qt!Q(St))!�

t2N

Qt 6= ;, let Q 2 N!P

arbitrary and let Z 2 Q0, F 2 �

t2N

Qt!Q(St). We are looking for an element

of �

t2N

Qt, whi
h is given by an H whi
h is a solution to

Hx = if Zero(x) then Z else F (x� 1)(H(x� 1)):

This 
an be obtained by taking forH a �xed point of �

�

hx:if Zero(x) then Z else

F (x � 1)(h(x � 1)). Note that we need the test-for-zero and prede
essor to be

able to de�ne this H .

Theorem 2. Indu
tion over the natural numbers is not derivable in �P2 for

any type N and terms 0 : N , S : N!N .

Proof. In the simple �P2-model over� (see Example 3), the interpretation of N

is �. So, using the Lemma, we 
on
lude that ind

N;0;S

is not valid in the model

and hen
e ind

N;0;S

is not inhabited in �P2.

As 
an be observed from the proof, the non-derivability of indu
tion in �P2

is not 
aused by the fa
t that the logi
 of �P2 is 
onstru
tive. Note that, taking

the PI-model in the proof of the Theorem does not work, be
ause then [[N ℄℄ =

1 = fS

n

0 j n 2 INg, so we do not obtain a 
ounterexample.

The arguments of Lemma 5 and Theorem 2 also apply to other data types

like lists and trees and even to a �nite data type like the booleans. So, indu
tion

is not derivable for any data type.



Remark 4. It is in general not the 
ase in �P2 that the indu
tion prin
iple for

one data type (say the natural numbers) implies the indu
tion prin
iple for

another data type (say booleans). For a 
ounterexample 
onsider the 
ontext

� = N : ?; 0 : N;S : N!N; h : ind

N;0;S

and the �P2-model h�(C);P ;Ni,

where C = fS

n

(0) j n 2 INg (so the S

n

(0) are 
onsidered as 
onstants) and P is

the polyset stru
ture generated from C. (See Example 2.)

Now, take valuations � and � with �(N) = C, �(0) = 0, �(S) = S and

�(h) = �

�

zfx:0. Then �(h) 2 [[ind

N;0;S

℄℄

��

:

�

�

zfx:0 2

\

Q2C!P

Q0!(�

t2C

Qt!Q(St))!�

t2C

Qt;

be
ause for Q 2 C!P , Z 2 Q0, G 2 �

t2C

Qt!Q(St) and t 2 C, we �nd that

t = S

n

(0) (def of C) and for all n 2 IN, Q(S

n

(0)) 6= ; (indu
tion on n, using Z

and G), so 0 2 Qt. We 
on
lude that �; � j= � .

So, M; �; � jj= ind

N;0;S

. On the other hand, for any 
losed type B (the

`booleans') with 
losed terms T : B and F : B, [[B℄℄ ) f([F ℄); ([T ℄)g, so indu
tion

over booleans is not valid.

One may wonder what happens with the 
ounterexample in the proof of

Theorem 2 if we add indu
tion over natural numbers to �P2 as a primitive


on
ept, together with the asso
iated redu
tion rules. Let's take a 
loser look at

this situation.

We extend �P2 with a type 
onstant N and term 
onstants 0 : N , S : N!N ,

R : �P :N! ? :(P0)!(�y:N:Py!P (Sy))!�x:N:(Px). Furthermore we add

redu
tion rules

RPzf0 �!

r

z and RPzf(Sx) �!

r

fx(RPzfx):

To make a model of this extension of �P2 we have to give an interpretation to

the 
onstants in su
h a way that the equality rule for R is preserved. For � (that

we used in the 
ounter-model of 2), this 
an be a
hieved by adding primitive


onstants 0, S and R to �, with the redu
tion rules

Rzf0 �!

r

z and Rzf(Sx) �!

r

fx(Rzfx):

Let's denote this extension of �-
al
ulus (it is a we
a) by �

+

. (So we interpret

0 by 0, S by S and R by R.) Now 
onsider the simple �

+

-model determined

by the polyset stru
ture f;;�g and noti
e that it is not a model of this �P2

extension, be
ause ind

N;0;S

is empty in this model (so we 
an not interpret R).

We give one more non-derivability result in �P2, based on our models.

Lemma 6. There are 
losed types �; � and a relation R : �!�!? in �P2 for

whi
h the Axiom of Choi
e, (�x:�:9y:�:Rxy)!(9f :�!�:�x:�:Rx(fx)), is not

derivable.

Proof. The 
ounterexample is similar to the one in Remark 2. Take � = � = nat

and Rxy := x 6=

nat

y and 
onsider the simple �P2-model over A = �. Now



M jj= �x:�:9y:�:Rxy, be
ause this is equivalent to (using Lemmas 1 and 4)

8t 2 �9q 2 �(t 6=

�

q). On the other hand,M 6jj= 9f :�!�:�x:�:Rx(fx), be
ause

this is equivalent to the statement 9g 2 �8t 2 �(gt 6=

�

t), whi
h is not possible,

be
ause every element of � has a �xed point.

The proof of non-derivability of the Axiom of Choi
e bears a strong simi-

larity to a proof in [Barendregt 1973℄, 
redited originally to S
ott, showing that


lassi
al Combinatory Logi
 extended with the Axiom of Choi
e is in
onsistent.
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