Induction is not derivable in second order
dependent type theory

Herman Geuvers*

Department of Computer Science, University of Nijmegen, The Netherlands

Abstract. This paper proves the non-derivability of induction in second
order dependent type theory (AP2). This is done by providing a model
construction for AP2, based on a saturated sets like interpretation of
types as sets of terms of a weakly extensional combinatory algebra. We
give counter-models in which the induction principle over natural num-
bers is not valid. The proof does not depend on the specific encoding
for natural numbers that has been chosen (like e.g. polymorphic Church
numerals), so in fact we prove that there can not be an encoding of nat-
ural numbers in AP2 such that the induction principle is satisfied. The
method extends immediately to other data types, like booleans, lists,
trees, etc.

In the process of the proof we establish some general properties of the
models, which we think are of independent interest. Moreover, we show
that the Axiom of Choice is not derivable in AP2.

1 Introduction

In second order dependent type theory, AP2, we can encode all kinds of inductive
data types, like the types of natural numbers, lists, trees etcetera. This is usually
done via the B6hm-Berarducci encoding (see [Girard et al. 1989] for a general
exposition), which yields e.g. the well-known polymorphic Church numerals as
interpretation of the natural numbers. This encoding already works for non-
dependent second order type theory (the well-known polymorphic A-calculus
A2), but dependent types give the extra advantage that we can also state the
induction principle for the inductive data types. For example, if nat is the type
of polymorphic Church numerals with zero O and successor function succ, then
the induction principle is represented by the type ind defined as

ind := IT P:nat— x .(PO)—(ITy:nat.(Py)—(P(succy)))— I z:nat.(Pz).

Here, * denotes the ‘kind’ (universe) of all types, which captures both the sets
(nat : x) and the propositions (ind : x). The induction principle for nat is said to
be derivable in AP2 if there is a closed term of type ind.

In this paper we show that the induction principle for nat is not derivable in
AP2. As a matter of fact, we prove something stronger: the non-derivability of

* email: herman@cs.kun.nl, fax: +31 24 3652525

induction does not depend on the specific choice of the encoding of the natural
numbers: given any (closed) type N with 0 : N and s : N—N, there can be
no closed term of type IT P:N— x .(P0)—(ITy:N.(Py)—(P(sy)))— I z:N.(Pz).
This rules out any ‘smart’ encoding of the natural numbers (like the N above)
for which induction would be provable in AP2. What a ‘smart encoding’ could
possibly look like, see the small diversion below in 1.1.

It should be pointed out here that, of course, inductive reasoning can easily
represented in AP2 by ‘relativizing’ all statements about nat to the inductive
natural numbers. If we let Indx say that z is an ‘inductive natural number’,
defined in AP2 as follows,

Indz := IT P:nat— x .(PO)— (ITy:nat.(Py)—(P(succy)))—(Pxz),

we can relativize ITz:nat.@ to ITz:nat.(Ind z)—¢. Then one can reason by induc-
tion, just because all statements about nat are restricted to the inductive natural
numbers. However, this does not give us an inductive type of natural numbers.

Our result extends immediately to other inductive data types, so induction
is not derivable for any encoding of any inductive data type in AP2. Also we
show in this paper that the induction principle for one data type can not be
derived from the induction principle for another data type. The results extend
immediately to other systems like the Calculus of Constructions (without induc-
tive types). In [Streicher 1991], also a non-derivability induction result is proved,
using a realizability semantics, but only for one specific encoding of the natu-
ral numbers, as polymorphic Church numerals. Our proof of non-derivability
uses a fairly simple model construction which originates from [Geuvers 1996]
and [Stefanova and Geuvers 1996]. The model we construct has some similari-
ties with the one used in [Berardi 1993] to justify encoding mathematics in the
Calculus of Constructions. To establish our main result we construct a model in
which the type that represents induction is empty.

Apart from the induction principle we also show the non-derivability of the
Axiom of Choice.

1.1 Small diversion: a possible smart encoding of the naturals

One may wonder whether there are other ‘smarter’ encodings of the natural
numbers for which induction is provable. In this subsection we suggest a possible
different encoding of the naturals. Our final result implies that induction is also
non-derivable for this representation. Let us define

N :=3Jz:nat.(Ind),

with Ind z saying that z is an ‘inductive natural number’, defined as above. Now
the ‘inductivity’ of the natural numbers is ‘built in’ in their encoding. (3 is
defined in the well-known second order way: 3z:0.7 := Ho: *.([[z:0.7—a)—a.)
By using the definable 3-elim and J-intro rules, it is now easy to define O, succ

for this encoding:

0 := da : x.M\h:(ITz:nat.(Indz)—a).hOqo,
succ := Mn:N.nN (Az:nat.Ap:(Ind z).
Ao * Ah:(ITy:nat.(Indy) —a).h(succ) (gsuccp)),

where go and gsucc are terms such that go : (Ind O) and

Gsuce ¢ ITz:nat.(Ind z)—(Ind (succ z)). One may wonder whether the induction
principle is derivable for the type N. It is not the case, which can intuitively be
grasped from the fact that there is no ‘coherence’ among the possible proofs of
Ind z. (There are many possible proofs of Ind O, which are not all captured.)

2 Second order dependent type theory

The system of second order dependent type theory, AP2, is an extension of
the polymorphic A-calculus with dependent types and it was first introduced in
[Longo and Moggi 1988]. It can be seen as a subsystem of the Calculus of Con-
structions ([Coquand and Huet 1988], [Coquand 1990]), where the operations of
forming type constructors are restricted to second order ones. (So, one can quan-
tify over type constructors of kind o—*, but one can not form type constructors
of kind (c—*)—*.) It can also be seen as an extension of the first order system
AP, where quantification over type constructors has been added. For an extensive
discussion on these systems and their relations, we refer to [Barendregt 1992] or
[Geuvers 1993]. Here we just define the system AP2 and give some initial moti-
vation for it.

Definition 1. The type system A\P2 is defined as follows. The set of pseudo-
terms, T, is defined by

T ::= % | Kind| Var | (II'Var:T.T) | (AVar:T.T) | TT,

where Var is a countable set of variables. On T we have the usual notion of B-
reduction, —g. We adopt from the untyped \-calculus the conventions of denot-
ing the transitive reflexive closure of —g by —g and the transitive symmetric
closure of —»g by =4.

The typing of terms is done under the assumption of specific types for the
free variables that occur in the term. This is done in a context, a finite sequence
of declarations I' = vy:T1,...,v,:Ty, (the v are variables and the T are pseudo-
terms). Typing judgments are written as ' = M : T, with I' a context and M
and T pseudo-terms.

The deduction rules for AP2 are as follows. (v ranges over Var, s, s1 and ss
range over {x,Kind} and M, N, T and U range over T.)

_ I'FT:%/Kind TFT:x/Kind TFM:U
(aziom) F x: Kind (var) ——— (weak
ovTkrov:T LvlTk+M:U

(H)FI—T:sl I'vTFU: s 1) # (Kind, Kind)
if (81,8 ind, Kin
I'F IuT.U : 55 v
)\F,U:TI-M:U I'-1vT.U:s

' v:T.M: Iv:T.U

I'-M:llvvTU TI'N:T I'M:T TI'FU:s
(app) (conug) ifT=pU
' MN :U[N/v] r-M:U

In the rules (var) and (weak) it is always assumed that the newly declared variable
18 fresh, that is, it has not yet been declared in I'. For convenience, we split up
the set Var into a set Var®, the object variables, and Va,rKi"d, the constructor
variables. Object variables will be denoted by x,y, 2, . .. and constructor variables
by a, B, In the rules (var) and (weak), we take the variable v out of Var* if
s = * and out of Var"™ if s = Kind.

We call a pseudo-term M well-typed if there is a context I' and another
pseudo-term N such that either ' = M : N or I' - N : M is derivable. The
well-typed terms can be split into the following disjoint subsets:

— {Kind},

— the set of kinds: terms A such that I" - A : Kind for some I'; this includes *.
In AP2 all kinds are of the form ITxq:01 ... Hxy:0pn.%, with o1, ...,0, types
and z1,...,z, € Var.

— the set of constructors: terms of type a ‘kind’, i.e. terms P such that I'+ P :
A for some kind A; this includes the types, terms of type *.

In AP2 all constructors are of one of the following forms

o € VarKind,

Pt, with P a constructor and ¢ an object,

\z:0.P, with ¢ a type, P a constructor, z € Var*,

IIz:0.7, with o and 7 types, ¢ € Var”,

Ha:A.r, with A a kind, 7 a type, a € Var

— the objects: terms of type a ‘type’, i.e. terms M such that I" - M : ¢ for
some type o. In AP2 all objects are of one of the following forms

x € Var™,

qt, with ¢ and ¢t an objects,

qP, with P a constructor and ¢ an object,

\z:0.t, with o a type, t an object, z € Var*,

Aa:A.t, with A a kind, ¢ an object, a € Var®ind,

Kind

Convention We denote kinds by A, B,C,..., types by o, 7, ..., constructors by
P,Q,... and objects by t,q,....

If v is not free in U, we denote — as usual — I[Tv:T.U by T—U. In arrow types,
we let brackets associate to the right, so T—T—T denotes T—(T'—T). In ap-
plication types, we let brackets associate to the left, so M N P denotes (M N)P.

Data types and formulas in AP2 The well-known encoding of inductive data
types in polymorphic A-calculus extends immediately to AP2. For the general
procedure we refer to [Girard et al. 1989]. Here we give some examples. It is also
standard that these inductive data types come together with the possibility of
defining functions by iteration. We do not discuss the iteration scheme, as it is
outside the scope of this paper. We do give, for each data type the associated
induction principle. In this paper we show that the induction principle for natural
numbers is not provable in AP2. However the same method applies immediately
to other data types, like the ones given below.

1. The natural numbers can be encoded by nat := ITa: x .a—(a—a)—a, with
zero and successor:
0 := da: x Az:a A fra—a.z,
succ := An:nat. Ao x Az:a. A f:a—a. f(nazf).

The induction principle reads
indnat := IT P:nat— % .(PO)— (ITy:nat.(Py)—(P(succy)))— I z:nat.(Pz).

2. The list over a given carrier type o can be encoded by list, := ITa: x
.a—(c—a—a)—a, with empty list and ‘cons’ map:

nil := da: x Az:a A\ f:o—a—a.x,
cons := Aa:o.Al:list, Ao x Az:a A fro—a—a. fa(lazf).

As we are in AP2, we can not define list as a type constructor list := Aa: %
Jdistq : *—*, simply because the kind x—x is not available in AP2. For
simplicity we write list for list, if the o is clear from the context.

The induction principle reads

indist := IT P:list—*.(Pnil)— (ITa:o.ITy:list.(Py)— (P(consay)))— T z:list.(Pz).

3. The well-founded labeled trees of branching type 7 and with labels in o can
be encoded by tree,, := Ha:x.(c—a)— (0—(T—a)—a)—a, with maps leaf
and join (taking a label and a ‘T-sequence’ of trees and returning a tree):

leaf := Aa:o. A x Azio—=a A fio—(T—a)—a.za,
join := Aaio. A\t:T—=tree, , Aa: * Azio—a A f:o—=(T—=a)—a. fa(AziT.tzax f).

The remark about not being able to define list : x—* also applies to tree. We
omit the indices in tree if no confusion arises. The induction principle reads

indiree := Il P:tree— x .(ITa:0.(P(leafa)))—
(Ha:o.Ily:T—tree.(Ilz:1.(P(y2)))— (P(joinay)))— I z:tree.(Pz).

There is a formulas-as-types embedding from constructive second order pred-
icate logic into A\P2.

3 Model construction for AP2

The model notion for AP2 we give is not a general (categorical) one, but a
description of a class of models, which is the same as in [Geuvers 1996]. It can
be extended to a class of models for the Calculus of Constructions, which is done
in [Stefanova and Geuvers 1996].

The models of AP2 are built from weakly extensional combinatory algebras
(weca for short). A combinatory algebra (ca for short) is a tuple A = (A, -, k,s),
with A a set, - a binary function from A x A to A (as usual denoted by infix
notation), k,s € A such that (k-a)-b = a and ((s-a)-b)-c = (a-c)-(b-c). For A a
combinatory algebra, the set of terms over A, T(A), is defined by letting 7 (A)
contain infinitely many variables v1,vs,... and distinct elements ¢, for every
a € A, and letting 7 (A) be closed under application (the operation -). Given a
term ¢ and a valuation p, mapping variables to elements of A, the interpreta-
tion of t in A under p, notation [[t]]f, is defined in the usual way ([c.], = a,
[[MN]];;t = [[M]];:t . [[N]]f, etcetera). An important property of cas is that they are
combinatory complete, i.e. if tfv] € T (A) is a term with free variable v, then there
is an element in A, usually denoted by A*v.t[v], such that Vz((A*v.t[v]) -z = t[z])

in A. (More technically, this means that [(A*v.t[v]) - alc]]::l = [[t[:c]]]:)4 for all p.) A

ca is weakly extensional if [[tl]];:t(= [[tg]]f(m::a) for all @ € A implies that

z:=a)
[[/*:v.tl]];4 = [[/*:c.tQ]]f. In other words: a ca is weakly extensional if abstrac-
tion is a function on the weca (T (A),-,k,s), i.e. if (in T(A)) t; = t2, then
N z.ty = Nz .ts.

The need for weakly extensional cas comes from the fact that we want

M =g N = (M), = (N), for all p,

where (—) , interprets pseudo-terms as elements of A, using a valuation p for

the free variables. Of course, (-], is close to [[—]];4, except for the fact that now
we also have to interpret abstraction: under (—))) is interpreted as *. !

Example 1. 1. A standard example of a weca is A, consisting of the classes
of open A-terms modulo $-equality. So, A is just A/8 and [M] = [N] iff
M =g N. It is easily verified that this yields a weca.

2. Given a set of constants C, we define the weca A(C) as the equivalence
classes of open Ac-terms (i.e. lambda-terms over the constant set C') modulo
[Bc-equality, where the c-equality rules says

cN =.c M.c=cc

forallce C and N € Ag.

3. Another example of a weca is 1, the degenerate weca where A = 1, the one-
element set. In this case k = s, which is usually not allowed in combinatory
algebras, but note that we do allow it here.

! In general, for cas, M = N % (M), = (N], (e.g. take combinatory logic and

M =z, N = Iz). However, for wecas this implication holds.

The types of AP2 will be interpreted as subsets of A.

Definition 2. A polyset structure over the weakly extensional combinatory al-
gebra A is a collection P C p(A) such that

1. AeP,

2. P is closed under arbitrary intersection (),

3. P is closed under dependent products, i.e. if X € P and F : X — P, then
I x F(t) € P, where ITycx F(t) is defined as

{a€ A|Vte X(a-t€ F(t))}.

The elements of a polyset structure are called polysets. If F is the constant
function with value Y, we write X =Y instead of II;cxY .

Example 2. 1. We obtain the full polyset structure over the weca A if we take
P =p(A).

2. The simple polyset structure over the weca A is obtained by taking P =
{0, A}. Tt is easily verified that this is a polyset structure.

3. Given the weca A(C) as defined in Example 1 (so C' is a set of constants),
we define the polyset structure generated from C by

P:={XCAC)|X=0VvCCX}.

To show that P is a polyset structure, the only interesting thing is to verify
that P is closed under dependent product. So, let X € P and F : X — P.
We distinguish cases: if X = 0, then II;exF(t) = A(C) € P;if F(f) = 0
for some t € X, then IT;cx F(t) = 0 € P; in all other cases C' C IT;cx F(t),
because for c€ C and t € X, ct =. c € C C F(t), so ct € F(t).

4. Given the weca A and a set C' C A such that Va,b€ A(a-be C = a € C,
we define the power polyset structure of C' by

P={XCA|XCCOVX=A.

To check that this is a polyset structure, one only has to verify that, for
X € Pand F : X—P, IIi,cxF(t) € P. This follows from an easy case
distinction: Vt € X (F(t) = A) or 3t € X(F(¢t) C C).

An interesting instance of a power polyset structure is the one arising from
C = HNF, the set of A-terms with a head-normal-form, in the weca A/f.

The dependent product of a polyset structure will be used to interpret types
of the form ITz:0.7, where both o and 7 are types. The intersection will be used
to interpret types of the form ITa:A.o, where o is a type and A is a kind. To
interpret kinds we need a predicative structure.

Definition 3. For P a polyset structure, the predicative structure over P is the
collection of sets N defined inductively by

1. PEN,

2. If X € P and Vt € X(F(t) € N, then [[,cx F(t) € N.
If F is a constant function with value P, we write X —P in stead of [],c x P-

Definition 4. If A is a combinatory algebra, P a polyset structure over A and
N the predicative structure over P, then we call the tuple (A,P,N) a \P2-
model.

The predicative structure over a polyset structure P is intended to give a
domain of interpretation for the kinds. For example, if the type o is interpreted
as the polyset X, then the kind o—o—x is interpreted as [[,cx qux P, for
which we usually write X - X —P.

We now define three interpretation functions, one for kinds, V(—), that maps
kinds to elements of A/, one for constructors (and types), [—], that maps con-
structors to elements of |JN (and types to elements of P, which is a subset
of [JN) and one for objects, (—]), that maps objects to elements of the com-
binatory algebra .A. All these interpretations are parametrized by valuations,
assigning values to the free variables (declared in the context).

Let in the following M = (A, P,N) be a A\P2-model: A = (A, k,s) is a
combinatory algebra, P is a polyset structure over A and A is the predicative
structure over the polyset structure P.

Definition 5. A constructor variable valuation is a map & from Var*™ to |JN.
An object variable valuation is a map p from Var* to A.

Definition 6. For p an object variable valuation, we define the map ([—])::A from
the set of objects to A as follows. (We leave the model M implicit.)

(=), := p(z),
([tq])p = ([t])p . ([q])p, if q 18 an object,
([tQ])p = ([t])p, if Q 1s a constructor,
(z:0.t), := A 0.(t) (y.0)> f O is a type,
(Aa:At), == (t),, if A is a kind.
Definition 7. For p an object variable valuation and £ a constructor variable

valuation, we define the maps V(—)é\g and [[—]]2; respectively from kinds to N
and from constructors to |JN as follows. (We leave the model M implicit.)

V(*)ep :=P,
V(HCD:O’.B)&, = H V(B)gp(z::t),
telo]le,
[, := &(a),
[o:A.T],, = ﬂ [7]¢(aima)pr if A is a kind,
acV(A)e,

[[H:c:a.r]]gp = Hte[[a]]fp [[T]]gp(z::t), if o 1s a type,
[Ptle, := [Ple,((2D,),
[[)\CC:O'.P]]&) = At € [[U]]gp'[[P]]gp(z::t)'

Note that V(A4)¢, and [P],, may be undefined. For example, in the definition
of [Pt];,, (t) , may not be in the domain of [P], , in the definition of [[Tz:0.7], ,,
[o]¢, may not be a polyset and in the definition of V(IIz:0.B)¢,, [o],, may not
be defined. From the Soundness Theorem (1) it will follow that, under certain
natural conditions for { and rho, V(A)¢, and [P],, are well-defined.

Definition 8. For I' a AP2-context, p an object variable valuation and £ a
constructor variable valuation, we say that &, p fulfills I', notation &,p |= I, if
for all z € Var* and o € Vark™, z : 0 € I' = p(z) € [o]¢, and a: A€ T =

£(a) € V(A)ep-

It is (implicit) in the definition that {p |E= I only if for all declarations
z:0 € I, [o],, is defined (and similarly for az:A € I').

Definition 9. The notion of truth in a AP2-model, notation = and of truth,
notation = are defined as follows. For I' a context, t an object, o a type, P a
constructor and A a kind of AP2,

rEMt:oifveple,p ET = (1), € [o],,],
I'EMP:AifYEplE,p =T = [P, € V(A)e,).

Quantifying over the class of all AP2-models, we define, for M an object or a
constructor of AP2,

T'EM:T if TEMM:T for all \P2-models M.

Soundness states that if a judgment I' = M : T is derivable, then it is true
in all models. It is proved ‘model-wise’, by induction on the derivation in AP2.

Theorem 1 (Soundness). For I' a context, M an object or a constructor and
T a type or a kind of AP2,

'-M:T=TI=M:T.
Ezample 3. Let A be a weca.

1. The full AP2-model over A is M = (A, P,N), where P is the full polyset
structure over A (as defined in Example 2).

2. The simple AP2-model over A is M = (A, P,N), where P is the simple
polyset structure over A. (So P = {0, A}.)

3. The simple A P2-model over the degenerate A is also called the proof-irrelevance
model or PI-model for AP2.

4. For C a set of constants, the A\P2-model generated from C' is defined by
M = (A(C),P,N), where P is the polyset structure generated from C.

4 Non-derivability results in AP2

We now show that the induction-principleis not derivable in AP2 by constructing
a counter-model. We first introduce some notation and then we study some
specific models and their properties.

In a logical model, validity of a formula ¢ means that the interpretation
of ¢ is true in the model. In a type theoretical model, we call a type wvalid
if its interpretation is nonempty. This conforms with the ‘formulas-as-types’
embedding from PRED2 to AP2, where a formula is interpreted as the type of
its proofs. (Hence, a formula is provable iff its associated type is nonempty.)

Definition 10. For M a AP2-model, I' a contezt, o a type in I' and &, p val-
uations such that £, p |E I', we say that o is valid in M under &, p, notation

M, &p N o, if
[o12) # 0.

In case the model M is clear from the context, we omit it. Similarly we omit £
and/or p if they are clear from the context or if the specific choice of £ or p is
irrelevant (e.g. in case of a closed type o).

So, to prove the non-derivability of ind in AP2, we are looking for a AP2-
model M such that
M M ind.

Definition 11. A AP2-model M is consistent if) € P.

For a AP2-model, being consistent is equivalent to saying that [L] = 0,
because [.L] is the minimal element (w.r.t. C) of P. Here, L is defined as usual
as INa: x .a.

Note that the polyset structures of Example 2 all yield a consistent AP2-
model.

Convention 12 From now on we only discuss consistent A\P2-models.

Definition 13. In a AP2-model M = (A, P,N) we define the ‘connectives’ 1,
=, A\, V and 3 as follows. (X, Y € P, F: X—P andY; € P for alli € I; as in
types, we let brackets associate to the right.)

L:=Nzep Z, -X:=X-—1,
XANY :=Ngep(X=Y=2)=2Z, XVY :=Nzep(X=2)=(Y=2)=7Z,
eexF(x) := NgepTaex F(x)=2Z)=Z, Jic1Yi := Nzep(Nie i Z) = Z.

Note that, due to the assumptions on a polyset structure, these are all elements

of P.

Remark 1. The definition of 3;<;Y; is close to the union. If we define the elements
F and G of the weca A by F := A z.2zl and G := A*zh.hz (where I denotes the

identity in A: I := skk), then F' € 3jcrYi— U, Vi and G € U;c; Yi—TierVs

even with F'oG = I”. Note however, that |J,_; Y; need not be an element of P3,

but we do have J;c;V; =0 & U, Vi =0

icl

Lemma 1. The following holds in arbitrary (consistent) AP2-models M.

-X =0 X #0, (1)
XY 420 if X #0 thenY #10, (2)
XAY #0e X #0 andY #0, (3)
XVY #0aX#0orY #0, (4)

YexF(z) £ 0 3t e X(F(t) £ 0), (5)
1Y # 0 < i € I(Y; # 0), (6)
MexF(z) # 0 =Vt € X(F(t) # 0), (7)
(Y: #0 = Vie I(Y; #0). 8)

i€l

Proof. We reason classically in the meta-theory of the models (otherwise < in
(2) and = in (4)-(6) are problematic).

(1) follows immediately from | = @ (i.e. the consistency of the AP2-model).
For (2), = is immediate. For <, we distinguish cases: if X # (), then Y # 0, say
q € Y, and hence *z.q € X—Y; if X = 0, then *z.z € X=Y. For (3), =
M € X AY, then Mk € X and M (ki) € Y (where i is the identity in the weca,
i:=skk). <:if My € X, M, € Y, then *h.hM; My € X A Y.

For (4), =:1let M € X VY and suppose X =Y = (). Then Maa € § (a € A arbi-
trary), contradiction. So X # B orY # 0 «<:if M € X, then *hg.hM € X VY
and similarly for M € Y.

For (5), =:let M € 3,cx F(z) and suppose Vz € X (F(z) = 0). Then M(A*z.*y.y) €
0, contradiction, so 3x € X (F(z) # (). <: If ¢ € F(t) for certain t € X, then
X*h.htq € Jpex F(2).

(6) follows from Remark 1 and (7) and (8) are immediate.

Remark 2. The reverse implications in Lemma 1, cases (7) and (8), do not hold in
general. A counterexample can be found by looking at the full polyset structure
over A = A. Define F : A—P by F(t) = A\ {t}. Then F(t) # 0 for all t € A.
Now suppose M € M,cxF(z). Then Mt # t for all t € A, but this is not
possible, since M has a fixed point. This contradicts the reverse implication of
(7). If we consider [),.5 F(z), we immediately find a counterexample to the
reverse implication of (8).

Lemma 2. For a simple A\P2-model over A the reverse implications in Lemma
1, cases (7) and (8), hold. Similarly for a AP2-model generated from a set C.

2 In a weca A, composition is defined as usual by aob := X*z.a - (b-).

® The example Ps of Example 2 are all closed under arbitrary union and at this
moment we don 't know of any P that is not closed under unions. However, Definition
2 does not a priori require a P to be closed under union.

Proof. Case (8) is immediate:),.; Y; can only be empty if one of the Y; is empty.
For (7), if for all t € X, Fit # (, then there is an element g such that Vt € X (q €
F't) (this is a peculiar feature of these models) and hence *z.q € IT;c x F't.

Lemma 3. All A\P2-models satisfy classical logic, i.e.
X=X £
for all X € P in all AP2-models.

Proof. We reason classically in the models, using Lemma. 1. Let X € P.If X # 0,
say t € X, then ——X—X # (), because e.g. *z.t € ~—X—=X.If X = (), then
-X=A,50 X =0,s0 —X—X =A.

Remark 3. Tt is not the case that Nxecp——=X—X # 0 in all AP2-models. In fact
we have the following.

1. In the full AP2-model over A, Nxecp——X—X = (.
2. In simple AP2-models or models generated by some C, Nxcp——X—X # 0.

The first is proved by defining X; = {z;} for all i € IN (with, of course all z;
different). Then =—X; = A. Now, suppose M € Nxep——X—X. Then for any
N € A, we find that Vi € N(MN € X;), i.e. MN =g x; for all 4, which is not
possible, as MN contains only finitely many free variables.

The second is proved by noticing that, in these models there is an element P such
that X # 0 = P € X. Hence Mz.P € Nxcp——X—X, following the reasoning
in the proof of Lemma 3.

Equality is defined in AP2 using Leibniz equality: for o : x, M, N : ¢
M=, N := IP:ioc— x.(PM)—(PN).

In case the type is clear from the context, we often do not write it as a subscript
in the Leibniz equality. The notion of ‘Proof-Irrelevance’, meaning that for any
type o, all terms of type o are equal, is defined by PI := ITa: x . Ilz,y:0.x =4 ¥.

Lemma 4. Given a AP2-model M, a type o and terms M, N : o, we have
Magap ”: MZO' N<:> ([M])p = ([N])p

Proof. =: Suppose DQG[[G]HPQ([MD —=Q(N), # (). Take @ such that Qz # 0
iff x = ([M])p Then it is the case that Q(N), ;é 0, hence (M), = (N),.

= If ([M]) = ([N]) then Q([M]) Q([N])p, so *z.x € er[[a-]]_pr([MD —>Q([N]) .
Corollary 1. M |= PI < M is the PI-model.

In this paper we focus especially on the induction principle for (an arbitrary
encoding of) the natural numbers. We therefore characterize when a AP2-model
satisfies induction for the natural numbers.

Definition 14. Given a closed AP2-type N and closed terms 0 : N and S :
N—N, we define the type indn 9.5 by

IIP:N— x .PO—(I[Tz:N.Px—P(Sz))—Iz:N.Px.
Lemma 5. For M = (A, P,N) a AP2-model,
M|Eindyos = [N]={S"0|n e N}

If, moreover, the test-for-zero and the predecessor function are definable on the
type N in the model M, then also

[N] = {5"0|neN} = M |=indyos.

Proof. For simplicity, we denote the interpretations of N, 0 and S in the model
just by N, 0 and S. Suppose M |=indn,,s. Then

| Q0=(TenQt—Q(St)~MenQt # 0.

QEN—P

Let X be some non-empty element of P. Define QQ : N—P as follows: Qt =
X if t = S™0 for some n € N and Qt = () otherwise. Then Q0 # 0 and
IienQt—Q(St) # 0, hence ITienQt # 0, say M € Il;enyQt. Now, suppose
g € N with ¢ # S™0 (for all n € N). Then Qg = 0 but also Mq € Qq,
contradiction. So all ¢ € N are of the form S™0.

For the reverse implication, suppose that the test-for-zero and the predecessor
function are definable in the model and suppose that N = {S™0 | n € N}.
To prove that Noey_,p Q0= (TienQt—Q(St)) = MienQt # 0, let Q € N—=P
arbitrary and let Z € QO0, F € II;c nQt—Q(St). We are looking for an element
of IT;cnQt, which is given by an H which is a solution to

Hzx = if Zero(z) then Z else F(z — 1)(H(z — 1)).

This can be obtained by taking for H a fixed point of A*hz.if Zero(z) then Z else
F(z — 1)(h(z — 1)). Note that we need the test-for-zero and predecessor to be
able to define this H.

Theorem 2. Induction over the natural numbers is not derivable in AP2 for
any type N and terms0: N, S: N—N.

Proof. In the simple AP2-model over A (see Example 3), the interpretation of N
is A. So, using the Lemma, we conclude that indy o s is not valid in the model
and hence indy 0,5 is not inhabited in AP2.

As can be observed from the proof, the non-derivability of induction in AP2
is not caused by the fact that the logic of AP2 is constructive. Note that, taking
the PI-model in the proof of the Theorem does not work, because then [N] =
1={S"0|n € N}, so we do not obtain a counterexample.

The arguments of Lemma 5 and Theorem 2 also apply to other data types
like lists and trees and even to a finite data type like the booleans. So, induction
is not derivable for any data type.

Remark 4. Tt is in general not the case in AP2 that the induction principle for
one data type (say the natural numbers) implies the induction principle for
another data type (say booleans). For a counterexample consider the context
I'=N:%0:N,S: N=>N,h:indyos and the AP2-model (A(C),P,N),
where C' = {S™(0) | n € N} (so the S™(0) are considered as constants) and P is
the polyset structure generated from C. (See Example 2.)

Now, take valuations £ and p with £&(N) = C, p(0) = 0, p(S) = S and
p(h) = A"z fz.0. Then p(h) € [indn,o,s];,:

Nefe.0e () QU=(MecQt—Q(St)—MiccQt,
QeC—P

because for Q € C—=P, Z € QO0, G € Il;ccQt—Q(St) and t € C, we find that
t = S™(0) (def of C) and for all n € N, Q(S™(0)) # 0 (induction on n, using Z
and G), so 0 € Qt. We conclude that &, p =TI

So, M,&,p | indno,s. On the other hand, for any closed type B (the
‘booleans’) with closed terms T': B and F': B, [B] 2 {(F), (T)}, so induction
over booleans is not valid.

One may wonder what happens with the counterexample in the proof of
Theorem 2 if we add induction over natural numbers to AP2 as a primitive
concept, together with the associated reduction rules. Let’s take a closer look at
this situation.

We extend AP2 with a type constant NV and term constants 0 : N, S : N—N,
R : IP:N— * .(P0)—(IIy:N.Py—P(Sy))—Iz:N.(Pz). Furthermore we add
reduction rules

RPzf0 —, z and RPzf(Sz) —, fz(RPzfz).

To make a model of this extension of AP2 we have to give an interpretation to
the constants in such a way that the equality rule for R is preserved. For A (that
we used in the counter-model of 2), this can be achieved by adding primitive
constants 0, S and R to A, with the reduction rules

Rzf0 —, z and Rzf(Sz) —, fz(Rzfz).

Let’s denote this extension of \-calculus (it is a weca) by AT. (So we interpret

0 by 0, S by S and R by R.) Now consider the simple A*-model determined

by the polyset structure {#, A} and notice that it is not a model of this AP2

extension, because indy o s is empty in this model (so we can not interpret R).
We give one more non-derivability result in AP2, based on our models.

Lemma 6. There are closed types o,7 and a relation R : o—1—% in AP2 for
which the Aziom of Choice, (IIz:0.3y:7.Rzy)—(3f:0—71.1Ix:0.Rx(fx)), is not
derivable.

Proof. The counterexample is similar to the one in Remark 2. Take 0 = 7 = nat
and Rzy := T #nat y and consider the simple A\P2-model over A = A. Now

M | Hz:0.3y:T.Rzy, because this is equivalent to (using Lemmas 1 and 4)
Vt € Adg € A(t #g q). On the other hand, M = 3f:0—>7.1lz:0.Rx(fx), because
this is equivalent to the statement Ig € AVt € A(gt #p t), which is not possible,
because every element of A has a fixed point.

The proof of non-derivability of the Axiom of Choice bears a strong simi-
larity to a proof in [Barendregt 1973], credited originally to Scott, showing that
classical Combinatory Logic extended with the Axiom of Choice is inconsistent.

Acknowledgments Thanks to the referees for pointing out some mistakes in the
original manuscripts and suggesting several improvements. Furthermore I want
to thank Thierry Coquand for raising the question of derivability of induction
in AP2 and for some valuable discussions on the topic.

References

[Barendregt 1973] H.P. Barendregt, Combinatory Logic and the Axiom of Choice, in
Indagationes Mathematicae, vol. 35, nr. 3, pp. 203 — 221.

[Barendregt 1992] H.P. Barendregt, Typed lambda calculi. In Handbook of Logic in
Computer Science, eds. Abramski et al., Oxford Univ. Press.

[Berardi 1993] S. Berardi, Encoding of data types in Pure Construction Calculus: a
semantic justification, in Logical Environments, eds. G. Huet and G. Plotkin,
Cambridge University Press, pp 30-60.

[Coquand 1990] Th. Coquand, Metamathematical investigations of a calculus of
constructions. In Logic and Computer Science, ed. P.G. Odifreddi, APIC series,
vol. 31, Academic Press, pp 91-122.

[Coquand and Huet 1988] Th. Coquand and G. Huet, The calculus of constructions,
Information and Computation, 76, pp 95-120.

[Geuvers 1993] J.H. Geuvers, Logics and Type systems, Ph.D. Thesis, University of
Nijmegen, Netherlands.

[Geuvers 1996] J.H. Geuvers, Extending models of second order logic to models of
second order dependent type theory, Computer Science Logic, Utrecht, eds. D.
van Dalen and M. Bezem, LNCS 1258, 1997, pp 167-181.

[Hyland and Ong 1993] J.M.E. Hyland and C.-H. L. Ong, Modified realizability
toposes and strong normalization proofs. In Typed Lambda Calculi and
Applications, Proceedings, eds. M. Bezem and J.F. Groote, LNCS 664, pp.
179-194, Springer-Verlag, 1993.

[Girard et al. 1989] J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Camb.
Tracts in Theoretical Computer Science 7, Cambridge University Press.

[Longo and Moggi 1988] G. Longo and E. Moggi, Constructive Natural Deduction
and its “Modest” Interpretation. Report CMU-CS-88-131.

[Stefanova and Geuvers 1996] M. Stefanova and J.H. Geuvers, A Simple Model
Construction for the Calculus of Constructions, in Types for Proofs and
Programs, Int. Workshop, Torino, eds. S. Berardi and M. Coppo, LNCS 1158,
1996, pp. 249-264.

[Streicher 1991] T. Streicher, Independence of the induction principle and the axiom
of choice in the pure calculus of constructions, T'C'S 103(2), pp 395 - 409.

