
Indution is not derivable in seond order

dependent type theory

Herman Geuvers

?

Department of Computer Siene, University of Nijmegen, The Netherlands

Abstrat. This paper proves the non-derivability of indution in seond

order dependent type theory (�P2). This is done by providing a model

onstrution for �P2, based on a saturated sets like interpretation of

types as sets of terms of a weakly extensional ombinatory algebra. We

give ounter-models in whih the indution priniple over natural num-

bers is not valid. The proof does not depend on the spei� enoding

for natural numbers that has been hosen (like e.g. polymorphi Churh

numerals), so in fat we prove that there an not be an enoding of nat-

ural numbers in �P2 suh that the indution priniple is satis�ed. The

method extends immediately to other data types, like booleans, lists,

trees, et.

In the proess of the proof we establish some general properties of the

models, whih we think are of independent interest. Moreover, we show

that the Axiom of Choie is not derivable in �P2.

1 Introdution

In seond order dependent type theory, �P2, we an enode all kinds of indutive

data types, like the types of natural numbers, lists, trees etetera. This is usually

done via the B�ohm-Berardui enoding (see [Girard et al. 1989℄ for a general

exposition), whih yields e.g. the well-known polymorphi Churh numerals as

interpretation of the natural numbers. This enoding already works for non-

dependent seond order type theory (the well-known polymorphi �-alulus

�2), but dependent types give the extra advantage that we an also state the

indution priniple for the indutive data types. For example, if nat is the type

of polymorphi Churh numerals with zero O and suessor funtion su, then

the indution priniple is represented by the type ind de�ned as

ind := �P :nat! ? :(PO)!(�y:nat:(Py)!(P (suy)))!�x:nat:(Px):

Here, ? denotes the `kind' (universe) of all types, whih aptures both the sets

(nat : ?) and the propositions (ind : ?). The indution priniple for nat is said to

be derivable in �P2 if there is a losed term of type ind.

In this paper we show that the indution priniple for nat is not derivable in

�P2. As a matter of fat, we prove something stronger: the non-derivability of

?

email: herman�s.kun.nl, fax: +31 24 3652525

indution does not depend on the spei� hoie of the enoding of the natural

numbers: given any (losed) type N with 0 : N and s : N!N , there an be

no losed term of type �P :N! ? :(P0)!(�y:N:(Py)!(P (sy)))!�x:N:(Px):

This rules out any `smart' enoding of the natural numbers (like the N above)

for whih indution would be provable in �P2. What a `smart enoding' ould

possibly look like, see the small diversion below in 1.1.

It should be pointed out here that, of ourse, indutive reasoning an easily

represented in �P2 by `relativizing' all statements about nat to the indutive

natural numbers. If we let Indx say that x is an `indutive natural number',

de�ned in �P2 as follows,

Indx := �P :nat! ? :(PO)!(�y:nat:(Py)!(P (suy)))!(Px);

we an relativize�x:nat:' to �x:nat:(Indx)!'. Then one an reason by indu-

tion, just beause all statements about nat are restrited to the indutive natural

numbers. However, this does not give us an indutive type of natural numbers.

Our result extends immediately to other indutive data types, so indution

is not derivable for any enoding of any indutive data type in �P2. Also we

show in this paper that the indution priniple for one data type an not be

derived from the indution priniple for another data type. The results extend

immediately to other systems like the Calulus of Construtions (without indu-

tive types). In [Streiher 1991℄, also a non-derivability indution result is proved,

using a realizability semantis, but only for one spei� enoding of the natu-

ral numbers, as polymorphi Churh numerals. Our proof of non-derivability

uses a fairly simple model onstrution whih originates from [Geuvers 1996℄

and [Stefanova and Geuvers 1996℄. The model we onstrut has some similari-

ties with the one used in [Berardi 1993℄ to justify enoding mathematis in the

Calulus of Construtions. To establish our main result we onstrut a model in

whih the type that represents indution is empty.

Apart from the indution priniple we also show the non-derivability of the

Axiom of Choie.

1.1 Small diversion: a possible smart enoding of the naturals

One may wonder whether there are other `smarter' enodings of the natural

numbers for whih indution is provable. In this subsetion we suggest a possible

di�erent enoding of the naturals. Our �nal result implies that indution is also

non-derivable for this representation. Let us de�ne

N := 9x:nat:(Indx);

with Indx saying that x is an `indutive natural number', de�ned as above. Now

the `indutivity' of the natural numbers is `built in' in their enoding. (9 is

de�ned in the well-known seond order way: 9x:�:� := ��: ? :(�x:�:�!�)!�.)

By using the de�nable 9-elim and 9-intro rules, it is now easy to de�ne O, su

for this enoding:

O := �� : ?:�h:(�x:nat:(Indx)!�):hOq

O

;

su := �n:N:nN

�

�x:nat:�p:(Indx):

��: ? :�h:(�y:nat:(Indy)!�):h(sux)(q

su

xp)

�

;

where q

O

and q

su

are terms suh that q

O

: (IndO) and

q

su

: �x:nat:(Ind x)!(Ind (sux)). One may wonder whether the indution

priniple is derivable for the type N . It is not the ase, whih an intuitively be

grasped from the fat that there is no `oherene' among the possible proofs of

Indx. (There are many possible proofs of IndO, whih are not all aptured.)

2 Seond order dependent type theory

The system of seond order dependent type theory, �P2, is an extension of

the polymorphi �-alulus with dependent types and it was �rst introdued in

[Longo and Moggi 1988℄. It an be seen as a subsystem of the Calulus of Con-

strutions ([Coquand and Huet 1988℄, [Coquand 1990℄), where the operations of

forming type onstrutors are restrited to seond order ones. (So, one an quan-

tify over type onstrutors of kind �!?, but one an not form type onstrutors

of kind (�!?)!?.) It an also be seen as an extension of the �rst order system

�P , where quanti�ation over type onstrutors has been added. For an extensive

disussion on these systems and their relations, we refer to [Barendregt 1992℄ or

[Geuvers 1993℄. Here we just de�ne the system �P2 and give some initial moti-

vation for it.

De�nition 1. The type system �P2 is de�ned as follows. The set of pseudo-

terms,T, is de�ned by

T ::= ? jKind jVar j (�Var:T:T) j (�Var:T:T) jTT;

where Var is a ountable set of variables. On T we have the usual notion of �-

redution, �!

�

. We adopt from the untyped �-alulus the onventions of denot-

ing the transitive reexive losure of �!

�

by �!�!

�

and the transitive symmetri

losure of �!�!

�

by =

�

.

The typing of terms is done under the assumption of spei� types for the

free variables that our in the term. This is done in a ontext, a �nite sequene

of delarations � = v

1

:T

1

; : : : ; v

n

:T

n

(the v are variables and the T are pseudo-

terms). Typing judgments are written as � ` M : T , with � a ontext and M

and T pseudo-terms.

The dedution rules for �P2 are as follows. (v ranges over Var, s, s

1

and s

2

range over f?;Kindg and M;N; T and U range over T.)

(axiom) ` ? : Kind (var)

� ` T : ?=Kind

�; v:T ` v : T

(weak)

� ` T : ?=Kind � `M : U

�; v:T `M : U

(�)

� ` T : s

1

�; v:T ` U : s

2

� ` �v:T:U : s

2

if (s

1

; s

2

) 6= (Kind;Kind)

(�)

�; v:T `M : U � ` �v:T:U : s

� ` �v:T:M : �v:T:U

(app)

� `M : �v:T:U � ` N : T

� `MN : U [N=v℄

(onv

�

)

� `M : T � ` U : s

� `M : U

if T =

�

U

In the rules (var) and (weak) it is always assumed that the newly delared variable

is fresh, that is, it has not yet been delared in � . For onveniene, we split up

the set Var into a set Var

?

, the objet variables, and Var

Kind

, the onstrutor

variables. Objet variables will be denoted by x; y; z; : : : and onstrutor variables

by �; �; : : :. In the rules (var) and (weak), we take the variable v out of Var

?

if

s = ? and out of Var

Kind

if s = Kind.

We all a pseudo-term M well-typed if there is a ontext � and another

pseudo-term N suh that either � ` M : N or � ` N : M is derivable. The

well-typed terms an be split into the following disjoint subsets:

{ fKindg,

{ the set of kinds: terms A suh that � ` A : Kind for some � ; this inludes ?.

In �P2 all kinds are of the form �x

1

:�

1

: : : �x

n

:�

n

:?, with �

1

; : : : ; �

n

types

and x

1

; : : : ; x

n

2 Var

?

.

{ the set of onstrutors: terms of type a `kind', i.e. terms P suh that � ` P :

A for some kind A; this inludes the types, terms of type ?.

In �P2 all onstrutors are of one of the following forms

� � 2 Var

Kind

,

� Pt, with P a onstrutor and t an objet,

� �x:�:P , with � a type, P a onstrutor, x 2 Var

?

,

� �x:�:� , with � and � types, x 2 Var

?

,

� ��:A:� , with A a kind, � a type, � 2 Var

Kind

.

{ the objets: terms of type a `type', i.e. terms M suh that � ` M : � for

some type �. In �P2 all objets are of one of the following forms

� x 2 Var

?

,

� qt, with q and t an objets,

� qP , with P a onstrutor and q an objet,

� �x:�:t, with � a type, t an objet, x 2 Var

?

,

� ��:A:t, with A a kind, t an objet, � 2 Var

Kind

.

Convention We denote kinds by A;B;C; : : :, types by �; �; : : :, onstrutors by

P;Q; : : : and objets by t; q; : : :.

If v is not free in U , we denote { as usual { �v:T:U by T!U . In arrow types,

we let brakets assoiate to the right, so T!T!T denotes T!(T!T). In ap-

pliation types, we let brakets assoiate to the left, so MNP denotes (MN)P .

Data types and formulas in �P2 The well-known enoding of indutive data

types in polymorphi �-alulus extends immediately to �P2. For the general

proedure we refer to [Girard et al. 1989℄. Here we give some examples. It is also

standard that these indutive data types ome together with the possibility of

de�ning funtions by iteration. We do not disuss the iteration sheme, as it is

outside the sope of this paper. We do give, for eah data type the assoiated

indution priniple. In this paper we show that the indution priniple for natural

numbers is not provable in �P2. However the same method applies immediately

to other data types, like the ones given below.

1. The natural numbers an be enoded by nat := ��: ? :�!(�!�)!�, with

zero and suessor:

O := ��: ? :�x:�:�f :�!�:x;

su := �n:nat:��: ? :�x:�:�f :�!�:f(n�xf):

The indution priniple reads

ind

nat

:= �P :nat! ? :(PO)!(�y:nat:(Py)!(P (suy)))!�x:nat:(Px):

2. The list over a given arrier type � an be enoded by list

�

:= ��: ?

:�!(�!�!�)!�, with empty list and `ons' map:

nil := ��: ? :�x:�:�f :�!�!�:x;

ons := �a:�:�l:list

�

:��: ? :�x:�:�f :�!�!�:fa(l�xf):

As we are in �P2, we an not de�ne list as a type onstrutor list := ��: ?

:list

�

: ?!?, simply beause the kind ?!? is not available in �P2. For

simpliity we write list for list

�

if the � is lear from the ontext.

The indution priniple reads

ind

list

:= �P :list!?:(Pnil)!(�a:�:�y:list:(Py)!(P (onsay)))!�x:list:(Px):

3. The well-founded labeled trees of branhing type � and with labels in � an

be enoded by tree

��

:= ��:?:(�!�)!(�!(�!�)!�)!�, with maps leaf

and join (taking a label and a `� -sequene' of trees and returning a tree):

leaf := �a:�:��: ? :�x:�!�:�f :�!(�!�)!�:xa;

join := �a:�:�t:�!tree

��

:��: ? :�x:�!�:�f :�!(�!�)!�:fa(�z:�:tz�xf):

The remark about not being able to de�ne list : ?!? also applies to tree. We

omit the indies in tree if no onfusion arises. The indution priniple reads

ind

tree

:= �P :tree! ? :(�a:�:(P (leafa)))!

(�a:�:�y:�!tree:(�z:�:(P (yz)))!(P (joinay)))!�x:tree:(Px):

There is a formulas-as-types embedding from onstrutive seond order pred-

iate logi into �P2.

3 Model onstrution for �P2

The model notion for �P2 we give is not a general (ategorial) one, but a

desription of a lass of models, whih is the same as in [Geuvers 1996℄. It an

be extended to a lass of models for the Calulus of Construtions, whih is done

in [Stefanova and Geuvers 1996℄.

The models of �P2 are built from weakly extensional ombinatory algebras

(wea for short). A ombinatory algebra (a for short) is a tuple A = hA; �;k; si,

with A a set, � a binary funtion from A �A to A (as usual denoted by in�x

notation), k; s 2 A suh that (k �a) �b = a and ((s �a) �b) � = (a �) �(b �). For A a

ombinatory algebra, the set of terms over A, T (A), is de�ned by letting T (A)

ontain in�nitely many variables v

1

; v

2

; : : : and distint elements

a

for every

a 2 A, and letting T (A) be losed under appliation (the operation �). Given a

term t and a valuation �, mapping variables to elements of A, the interpreta-

tion of t in A under �, notation [[t℄℄

A

�

, is de�ned in the usual way ([[

a

℄℄

A

�

= a,

[[MN ℄℄

A

�

= [[M ℄℄

A

�

� [[N ℄℄

A

�

, etetera). An important property of as is that they are

ombinatory omplete, i.e. if t[v℄ 2 T (A) is a term with free variable v, then there

is an element inA, usually denoted by �

�

v:t[v℄, suh that 8x((�

�

v:t[v℄) �x = t[x℄)

in A. (More tehnially, this means that [[(�

�

v:t[v℄) � x℄℄

A

�

= [[t[x℄℄℄

A

�

for all �.) A

a is weakly extensional if [[t

1

℄℄

A

�(x:=a)

= [[t

2

℄℄

A

�(x:=a)

for all a 2 A implies that

[[�

�

x:t

1

℄℄

A

�

= [[�

�

x:t

2

℄℄

A

�

. In other words: a a is weakly extensional if abstra-

tion is a funtion on the wea hT (A); �;k; si, i.e. if (in T (A)) t

1

= t

2

, then

�

�

x:t

1

= �

�

x:t

2

.

The need for weakly extensional as omes from the fat that we want

M =

�

N) ([M ℄)

�

= ([N ℄)

�

for all �;

where ([�℄)

�

interprets pseudo-terms as elements of A, using a valuation � for

the free variables. Of ourse, ([�℄)

�

is lose to [[�℄℄

A

�

, exept for the fat that now

we also have to interpret abstration: under ([�℄)

�

, � is interpreted as �

�

.

1

Example 1. 1. A standard example of a wea is �, onsisting of the lasses

of open �-terms modulo �-equality. So, A is just �=� and [M ℄ = [N ℄ i�

M =

�

N . It is easily veri�ed that this yields a wea.

2. Given a set of onstants C, we de�ne the wea �(C) as the equivalene

lasses of open �

C

-terms (i.e. lambda-terms over the onstant set C) modulo

�-equality, where the -equality rules says

N =

 �v: =

for all 2 C and N 2 �

C

.

3. Another example of a wea is 1, the degenerate wea where A = 1, the one-

element set. In this ase k = s, whih is usually not allowed in ombinatory

algebras, but note that we do allow it here.

1

In general, for as, M = N 6) ([M ℄)

�

= ([N ℄)

�

(e.g. take ombinatory logi and

M � x, N � Ix). However, for weas this impliation holds.

The types of �P2 will be interpreted as subsets of A.

De�nition 2. A polyset struture over the weakly extensional ombinatory al-

gebra A is a olletion P � }(A) suh that

1. A 2 P,

2. P is losed under arbitrary intersetion

T

,

3. P is losed under dependent produts, i.e. if X 2 P and F : X ! P, then

�

t2X

F (t) 2 P, where �

t2X

F (t) is de�ned as

fa 2 A j 8t 2 X(a � t 2 F (t))g:

The elements of a polyset struture are alled polysets. If F is the onstant

funtion with value Y , we write X!Y instead of �

t2X

Y .

Example 2. 1. We obtain the full polyset struture over the wea A if we take

P = }(A).

2. The simple polyset struture over the wea A is obtained by taking P =

f;;Ag. It is easily veri�ed that this is a polyset struture.

3. Given the wea �(C) as de�ned in Example 1 (so C is a set of onstants),

we de�ne the polyset struture generated from C by

P := fX � �(C) j X = ; _ C � Xg:

To show that P is a polyset struture, the only interesting thing is to verify

that P is losed under dependent produt. So, let X 2 P and F : X ! P .

We distinguish ases: if X = ;, then �

t2X

F (t) = �(C) 2 P ; if F (t) = ;

for some t 2 X , then �

t2X

F (t) = ; 2 P ; in all other ases C � �

t2X

F (t),

beause for 2 C and t 2 X , t =

 2 C � F (t), so t 2 F (t).

4. Given the wea A and a set C � A suh that 8a; b 2 A(a � b 2 C) a 2 C,

we de�ne the power polyset struture of C by

P := fX � A jX � C _X = Ag:

To hek that this is a polyset struture, one only has to verify that, for

X 2 P and F : X!P , �

t2X

F (t) 2 P . This follows from an easy ase

distintion: 8t 2 X(F (t) = A) or 9t 2 X(F (t) � C).

An interesting instane of a power polyset struture is the one arising from

C = HNF, the set of �-terms with a head-normal-form, in the wea �=�.

The dependent produt of a polyset struture will be used to interpret types

of the form �x:�:� , where both � and � are types. The intersetion will be used

to interpret types of the form ��:A:�, where � is a type and A is a kind. To

interpret kinds we need a prediative struture.

De�nition 3. For P a polyset struture, the prediative struture over P is the

olletion of sets N de�ned indutively by

1. P 2 N ,

2. If X 2 P and 8t 2 X(F (t) 2 N , then

Q

t2X

F (t) 2 N .

If F is a onstant funtion with value P, we write X!P in stead of

Q

t2X

P.

De�nition 4. If A is a ombinatory algebra, P a polyset struture over A and

N the prediative struture over P, then we all the tuple hA;P ;Ni a �P2-

model.

The prediative struture over a polyset struture P is intended to give a

domain of interpretation for the kinds. For example, if the type � is interpreted

as the polyset X , then the kind �!�!? is interpreted as

Q

t2X

Q

q2X

P , for

whih we usually write X!X!P .

We now de�ne three interpretation funtions, one for kinds, V(�), that maps

kinds to elements of N , one for onstrutors (and types), [[�℄℄, that maps on-

strutors to elements of

S

N (and types to elements of P , whih is a subset

of

S

N) and one for objets, ([�℄), that maps objets to elements of the om-

binatory algebra A. All these interpretations are parametrized by valuations,

assigning values to the free variables (delared in the ontext).

Let in the following M = hA;P ;Ni be a �P2-model: A = hA; �;k; si is a

ombinatory algebra, P is a polyset struture over A and N is the prediative

struture over the polyset struture P .

De�nition 5. A onstrutor variable valuation is a map � from Var

Kind

to

S

N .

An objet variable valuation is a map � from Var

?

to A.

De�nition 6. For � an objet variable valuation, we de�ne the map ([�℄)

M

�

from

the set of objets to A as follows. (We leave the model M impliit.)

([x℄)

�

:= �(x);

([tq℄)

�

:= ([t℄)

�

� ([q℄)

�

; if q is an objet;

([tQ℄)

�

:= ([t℄)

�

; if Q is a onstrutor;

([�x:�:t℄)

�

:= �

�

v:([t℄)

�(x:=v)

; if � is a type;

([��:A:t℄)

�

:= ([t℄)

�

; if A is a kind:

De�nition 7. For � an objet variable valuation and � a onstrutor variable

valuation, we de�ne the maps V(�)

M

��

and [[�℄℄

M

��

respetively from kinds to N

and from onstrutors to

S

N as follows. (We leave the model M impliit.)

V(?)

��

:= P ;

V(�x:�:B)

��

:=

Y

t2[[�℄℄

��

V(B)

��(x:=t)

;

[[�℄℄

��

:= �(�);

[[��:A:� ℄℄

��

:=

\

a2V(A)

��

[[� ℄℄

�(�:=a)�

; if A is a kind;

[[�x:�:� ℄℄

��

:= �

t2[[�℄℄

��

[[� ℄℄

��(x:=t)

; if � is a type;

[[Pt℄℄

��

:= [[P ℄℄

��

(([t℄)

�

);

[[�x:�:P ℄℄

��

:= �t 2 [[�℄℄

��

:[[P ℄℄

��(x:=t)

:

Note that V(A)

��

and [[P ℄℄

��

may be unde�ned. For example, in the de�nition

of [[Pt℄℄

��

, ([t℄)

�

may not be in the domain of [[P ℄℄

��

, in the de�nition of [[�x:�:� ℄℄

��

,

[[�℄℄

��

may not be a polyset and in the de�nition of V(�x:�:B)

��

, [[�℄℄

��

may not

be de�ned. From the Soundness Theorem (1) it will follow that, under ertain

natural onditions for � and rho, V(A)

��

and [[P ℄℄

��

are well-de�ned.

De�nition 8. For � a �P2-ontext, � an objet variable valuation and � a

onstrutor variable valuation, we say that �; � ful�lls � , notation �; � j= � , if

for all x 2 Var

?

and � 2 Var

Kind

, x : � 2 �) �(x) 2 [[�℄℄

��

and � : A 2 �)

�(�) 2 V(A)

��

.

It is (impliit) in the de�nition that �� j= � only if for all delarations

x:� 2 � , [[�℄℄

��

is de�ned (and similarly for �:A 2 �).

De�nition 9. The notion of truth in a �P2-model, notation j=

M

and of truth,

notation j= are de�ned as follows. For � a ontext, t an objet, � a type, P a

onstrutor and A a kind of �P2,

� j=

M

t : � if 8�; �[�; � j= �) ([t℄)

�

2 [[�℄℄

��

℄;

� j=

M

P : A if 8�; �[�; � j= �) [[P ℄℄

��

2 V(A)

��

℄:

Quantifying over the lass of all �P2-models, we de�ne, for M an objet or a

onstrutor of �P2,

� j=M : T if � j=

M

M : T for all �P2-models M:

Soundness states that if a judgment � ` M : T is derivable, then it is true

in all models. It is proved `model-wise', by indution on the derivation in �P2.

Theorem 1 (Soundness). For � a ontext, M an objet or a onstrutor and

T a type or a kind of �P2,

� `M : T) � j=M : T:

Example 3. Let A be a wea.

1. The full �P2-model over A is M = hA;P ;Ni, where P is the full polyset

struture over A (as de�ned in Example 2).

2. The simple �P2-model over A is M = hA;P ;Ni, where P is the simple

polyset struture over A. (So P = f;;Ag.)

3. The simple �P2-model over the degenerateA is also alled the proof-irrelevane

model or PI-model for �P2.

4. For C a set of onstants, the �P2-model generated from C is de�ned by

M = h�(C);P ;Ni, where P is the polyset struture generated from C.

4 Non-derivability results in �P2

We now show that the indution-priniple is not derivable in �P2 by onstruting

a ounter-model. We �rst introdue some notation and then we study some

spei� models and their properties.

In a logial model, validity of a formula ' means that the interpretation

of ' is true in the model. In a type theoretial model, we all a type valid

if its interpretation is nonempty. This onforms with the `formulas-as-types'

embedding from PRED2 to �P2, where a formula is interpreted as the type of

its proofs. (Hene, a formula is provable i� its assoiated type is nonempty.)

De�nition 10. For M a �P2-model, � a ontext, � a type in � and �; � val-

uations suh that �; � j= � , we say that � is valid in M under �; �, notation

M; �; � jj=

�P2

�, if

[[�℄℄

M

��

6= ;:

In ase the model M is lear from the ontext, we omit it. Similarly we omit �

and/or � if they are lear from the ontext or if the spei� hoie of � or � is

irrelevant (e.g. in ase of a losed type �).

So, to prove the non-derivability of ind in �P2, we are looking for a �P2-

model M suh that

M 6jj=

�P2

ind:

De�nition 11. A �P2-model M is onsistent if ; 2 P.

For a �P2-model, being onsistent is equivalent to saying that [[?℄℄ = ;,

beause [[?℄℄ is the minimal element (w.r.t. �) of P . Here, ? is de�ned as usual

as ��: ? :�.

Note that the polyset strutures of Example 2 all yield a onsistent �P2-

model.

Convention 12 From now on we only disuss onsistent �P2-models.

De�nition 13. In a �P2-model M = hA;P ;Ni we de�ne the `onnetives' ?,

:, ^, _ and 9 as follows. (X;Y 2 P, F : X!P and Y

i

2 P for all i 2 I; as in

types, we let brakets assoiate to the right.)

? :=

T

Z2P

Z; :X := X!?;

X ^ Y :=

T

Z2P

(X!Y!Z)!Z; X _ Y :=

T

Z2P

(X!Z)!(Y!Z)!Z;

9

x2X

F (x) :=

T

Z2P

(�

x2X

F (x)!Z)!Z; 9

i2I

Y

i

:=

T

Z2P

(

T

i2I

Y

i

!Z)!Z:

Note that, due to the assumptions on a polyset struture, these are all elements

of P.

Remark 1. The de�nition of 9

i2I

Y

i

is lose to the union. If we de�ne the elements

F and G of the wea A by F := �

�

x:xI and G := �

�

xh:hx (where I denotes the

identity in A: I := skk), then F 2 9

i2I

Y

i

!

S

i2I

Y

i

and G 2

S

i2I

Y

i

!9

i2I

Y

i

even with F ÆG = I

2

. Note however, that

S

i2I

Y

i

need not be an element of P

3

,

but we do have 9

i2I

Y

i

= ; ,

S

i2I

Y

i

= ;:

Lemma 1. The following holds in arbitrary (onsistent) �P2-models M.

:X = ; , X 6= ;; (1)

X!Y 6= ; , if X 6= ; then Y 6= ;; (2)

X ^ Y 6= ; , X 6= ; and Y 6= ;; (3)

X _ Y 6= ; , X 6= ; or Y 6= ;; (4)

9

x2X

F (x) 6= ; , 9t 2 X(F (t) 6= ;); (5)

9

i2I

Y

i

6= ; , 9i 2 I(Y

i

6= ;); (6)

�

x2X

F (x) 6= ;) 8t 2 X(F (t) 6= ;); (7)

\

i2I

Y

i

6= ;) 8i 2 I(Y

i

6= ;): (8)

Proof. We reason lassially in the meta-theory of the models (otherwise (in

(2) and) in (4)-(6) are problemati).

(1) follows immediately from ? = ; (i.e. the onsisteny of the �P2-model).

For (2),) is immediate. For (, we distinguish ases: if X 6= ;, then Y 6= ;, say

q 2 Y , and hene �

�

x:q 2 X!Y ; if X = ;, then �

�

x:x 2 X!Y . For (3),):

M 2 X ^ Y , then Mk 2 X and M(ki) 2 Y (where i is the identity in the wea,

i := skk). (: if M

1

2 X , M

2

2 Y , then �

�

h:hM

1

M

2

2 X ^ Y .

For (4),): letM 2 X_Y and suppose X = Y = ;. ThenMaa 2 ; (a 2 A arbi-

trary), ontradition. So X 6= ; or Y 6= ; (: if M 2 X , then �

�

hg:hM 2 X _ Y

and similarly for M 2 Y .

For (5),): letM 2 9

x2X

F (x) and suppose 8x 2 X(F (x) = ;). ThenM(�

�

x:�

�

y:y) 2

;, ontradition, so 9x 2 X(F (x) 6= ;). (: If q 2 F (t) for ertain t 2 X , then

�

�

h:htq 2 9

x2X

F (x).

(6) follows from Remark 1 and (7) and (8) are immediate.

Remark 2. The reverse impliations in Lemma 1, ases (7) and (8), do not hold in

general. A ounterexample an be found by looking at the full polyset struture

over A = �. De�ne F : A!P by F (t) = � n ftg. Then F (t) 6= ; for all t 2 �.

Now suppose M 2 �

x2X

F (x). Then Mt 6= t for all t 2 �, but this is not

possible, sine M has a �xed point. This ontradits the reverse impliation of

(7). If we onsider

T

x2A

F (x), we immediately �nd a ounterexample to the

reverse impliation of (8).

Lemma 2. For a simple �P2-model over A the reverse impliations in Lemma

1, ases (7) and (8), hold. Similarly for a �P2-model generated from a set C.

2

In a wea A, omposition is de�ned as usual by a Æ b := �

�

x:a � (b � x).

3

The example Ps of Example 2 are all losed under arbitrary union and at this

moment we don 't know of any P that is not losed under unions. However, De�nition

2 does not a priori require a P to be losed under union.

Proof. Case (8) is immediate:

T

i2I

Y

i

an only be empty if one of the Y

i

is empty.

For (7), if for all t 2 X , Ft 6= ;, then there is an element q suh that 8t 2 X(q 2

Ft) (this is a peuliar feature of these models) and hene �

�

x:q 2 �

t2X

Ft.

Lemma 3. All �P2-models satisfy lassial logi, i.e.

::X!X 6= ;

for all X 2 P in all �P2-models.

Proof. We reason lassially in the models, using Lemma 1. LetX 2 P . IfX 6= ;,

say t 2 X , then ::X!X 6= ;, beause e.g. �

�

x:t 2 ::X!X . If X = ;, then

:X = A, so ::X = ;, so ::X!X = A.

Remark 3. It is not the ase that \

X2P

::X!X 6= ; in all �P2-models. In fat

we have the following.

1. In the full �P2-model over �, \

X2P

::X!X = ;.

2. In simple �P2-models or models generated by some C, \

X2P

::X!X 6= ;.

The �rst is proved by de�ning X

i

= fx

i

g for all i 2 IN (with, of ourse all x

i

di�erent). Then ::X

i

= �. Now, suppose M 2 \

X2P

::X!X . Then for any

N 2 �, we �nd that 8i 2 IN(MN 2 X

i

), i.e. MN =

�

x

i

for all i, whih is not

possible, as MN ontains only �nitely many free variables.

The seond is proved by notiing that, in these models there is an element P suh

that X 6= ;) P 2 X . Hene �

�

x:P 2 \

X2P

::X!X , following the reasoning

in the proof of Lemma 3.

Equality is de�ned in �P2 using Leibniz equality: for � : ?, M;N : �

M =

�

N := �P :�! ? :(PM)!(PN):

In ase the type is lear from the ontext, we often do not write it as a subsript

in the Leibniz equality. The notion of `Proof-Irrelevane', meaning that for any

type �, all terms of type � are equal, is de�ned by PI := ��: ? :�x; y:�:x =

�

y.

Lemma 4. Given a �P2-model M, a type � and terms M;N : �, we have

M; �; � jj=M =

�

N , ([M ℄)

�

= ([N ℄)

�

:

Proof.): Suppose \

Q2[[�℄℄!P

Q([M ℄)

�

!Q([N ℄)

�

6= ;. Take Q suh that Qx 6= ;

i� x = ([M ℄)

�

Then it is the ase that Q([N ℄)

�

6= ;, hene ([M ℄)

�

= ([N ℄)

�

.

(: If ([M ℄)

�

= ([N ℄)

�

, thenQ([M ℄)

�

= Q([N ℄)

�

, so �

�

x:x 2 \

Q2[[�℄℄!P

Q([M ℄)

�

!Q([N ℄)

�

.

Corollary 1. M jj= PI,M is the PI-model.

In this paper we fous espeially on the indution priniple for (an arbitrary

enoding of) the natural numbers. We therefore haraterize when a �P2-model

satis�es indution for the natural numbers.

De�nition 14. Given a losed �P2-type N and losed terms 0 : N and S :

N!N , we de�ne the type ind

N;0;S

by

�P :N! ? :P0!(�x:N:Px!P (Sx))!�x:N:Px:

Lemma 5. For M = hA;P ;Ni a �P2-model,

M jj= ind

N;0;S

) [[N ℄℄ = fS

n

0 j n 2 INg

If, moreover, the test-for-zero and the predeessor funtion are de�nable on the

type N in the model M, then also

[[N ℄℄ = fS

n

0 j n 2 INg)M jj= ind

N;0;S

:

Proof. For simpliity, we denote the interpretations of N , 0 and S in the model

just by N , 0 and S. Suppose M jj= ind

N;0;S

. Then

\

Q2N!P

Q0!(�

t2N

Qt!Q(St))!�

t2N

Qt 6= ;:

Let X be some non-empty element of P . De�ne Q : N!P as follows: Qt =

X if t = S

n

0 for some n 2 IN and Qt = ; otherwise. Then Q0 6= ; and

�

t2N

Qt!Q(St) 6= ;, hene �

t2N

Qt 6= ;, say M 2 �

t2N

Qt. Now, suppose

q 2 N with q 6= S

n

0 (for all n 2 IN). Then Qq = ; but also Mq 2 Qq,

ontradition. So all q 2 N are of the form S

n

0.

For the reverse impliation, suppose that the test-for-zero and the predeessor

funtion are de�nable in the model and suppose that N = fS

n

0 j n 2 INg.

To prove that

T

Q2N!P

Q0!(�

t2N

Qt!Q(St))!�

t2N

Qt 6= ;, let Q 2 N!P

arbitrary and let Z 2 Q0, F 2 �

t2N

Qt!Q(St). We are looking for an element

of �

t2N

Qt, whih is given by an H whih is a solution to

Hx = if Zero(x) then Z else F (x� 1)(H(x� 1)):

This an be obtained by taking forH a �xed point of �

�

hx:if Zero(x) then Z else

F (x � 1)(h(x � 1)). Note that we need the test-for-zero and predeessor to be

able to de�ne this H .

Theorem 2. Indution over the natural numbers is not derivable in �P2 for

any type N and terms 0 : N , S : N!N .

Proof. In the simple �P2-model over� (see Example 3), the interpretation of N

is �. So, using the Lemma, we onlude that ind

N;0;S

is not valid in the model

and hene ind

N;0;S

is not inhabited in �P2.

As an be observed from the proof, the non-derivability of indution in �P2

is not aused by the fat that the logi of �P2 is onstrutive. Note that, taking

the PI-model in the proof of the Theorem does not work, beause then [[N ℄℄ =

1 = fS

n

0 j n 2 INg, so we do not obtain a ounterexample.

The arguments of Lemma 5 and Theorem 2 also apply to other data types

like lists and trees and even to a �nite data type like the booleans. So, indution

is not derivable for any data type.

Remark 4. It is in general not the ase in �P2 that the indution priniple for

one data type (say the natural numbers) implies the indution priniple for

another data type (say booleans). For a ounterexample onsider the ontext

� = N : ?; 0 : N;S : N!N; h : ind

N;0;S

and the �P2-model h�(C);P ;Ni,

where C = fS

n

(0) j n 2 INg (so the S

n

(0) are onsidered as onstants) and P is

the polyset struture generated from C. (See Example 2.)

Now, take valuations � and � with �(N) = C, �(0) = 0, �(S) = S and

�(h) = �

�

zfx:0. Then �(h) 2 [[ind

N;0;S

℄℄

��

:

�

�

zfx:0 2

\

Q2C!P

Q0!(�

t2C

Qt!Q(St))!�

t2C

Qt;

beause for Q 2 C!P , Z 2 Q0, G 2 �

t2C

Qt!Q(St) and t 2 C, we �nd that

t = S

n

(0) (def of C) and for all n 2 IN, Q(S

n

(0)) 6= ; (indution on n, using Z

and G), so 0 2 Qt. We onlude that �; � j= � .

So, M; �; � jj= ind

N;0;S

. On the other hand, for any losed type B (the

`booleans') with losed terms T : B and F : B, [[B℄℄) f([F ℄); ([T ℄)g, so indution

over booleans is not valid.

One may wonder what happens with the ounterexample in the proof of

Theorem 2 if we add indution over natural numbers to �P2 as a primitive

onept, together with the assoiated redution rules. Let's take a loser look at

this situation.

We extend �P2 with a type onstant N and term onstants 0 : N , S : N!N ,

R : �P :N! ? :(P0)!(�y:N:Py!P (Sy))!�x:N:(Px). Furthermore we add

redution rules

RPzf0 �!

r

z and RPzf(Sx) �!

r

fx(RPzfx):

To make a model of this extension of �P2 we have to give an interpretation to

the onstants in suh a way that the equality rule for R is preserved. For � (that

we used in the ounter-model of 2), this an be ahieved by adding primitive

onstants 0, S and R to �, with the redution rules

Rzf0 �!

r

z and Rzf(Sx) �!

r

fx(Rzfx):

Let's denote this extension of �-alulus (it is a wea) by �

+

. (So we interpret

0 by 0, S by S and R by R.) Now onsider the simple �

+

-model determined

by the polyset struture f;;�g and notie that it is not a model of this �P2

extension, beause ind

N;0;S

is empty in this model (so we an not interpret R).

We give one more non-derivability result in �P2, based on our models.

Lemma 6. There are losed types �; � and a relation R : �!�!? in �P2 for

whih the Axiom of Choie, (�x:�:9y:�:Rxy)!(9f :�!�:�x:�:Rx(fx)), is not

derivable.

Proof. The ounterexample is similar to the one in Remark 2. Take � = � = nat

and Rxy := x 6=

nat

y and onsider the simple �P2-model over A = �. Now

M jj= �x:�:9y:�:Rxy, beause this is equivalent to (using Lemmas 1 and 4)

8t 2 �9q 2 �(t 6=

�

q). On the other hand,M 6jj= 9f :�!�:�x:�:Rx(fx), beause

this is equivalent to the statement 9g 2 �8t 2 �(gt 6=

�

t), whih is not possible,

beause every element of � has a �xed point.

The proof of non-derivability of the Axiom of Choie bears a strong simi-

larity to a proof in [Barendregt 1973℄, redited originally to Sott, showing that

lassial Combinatory Logi extended with the Axiom of Choie is inonsistent.

Aknowledgments Thanks to the referees for pointing out some mistakes in the

original manusripts and suggesting several improvements. Furthermore I want

to thank Thierry Coquand for raising the question of derivability of indution

in �P2 and for some valuable disussions on the topi.

Referenes

[Barendregt 1973℄ H.P. Barendregt, Combinatory Logi and the Axiom of Choie, in

Indagationes Mathematiae, vol. 35, nr. 3, pp. 203 { 221.

[Barendregt 1992℄ H.P. Barendregt, Typed lambda aluli. In Handbook of Logi in

Computer Siene, eds. Abramski et al., Oxford Univ. Press.

[Berardi 1993℄ S. Berardi, Enoding of data types in Pure Constrution Calulus: a

semanti justi�ation, in Logial Environments, eds. G. Huet and G. Plotkin,

Cambridge University Press, pp 30{60.

[Coquand 1990℄ Th. Coquand, Metamathematial investigations of a alulus of

onstrutions. In Logi and Computer Siene, ed. P.G. Odifreddi, APIC series,

vol. 31, Aademi Press, pp 91-122.

[Coquand and Huet 1988℄ Th. Coquand and G. Huet, The alulus of onstrutions,

Information and Computation, 76, pp 95-120.

[Geuvers 1993℄ J.H. Geuvers, Logis and Type systems, Ph.D. Thesis, University of

Nijmegen, Netherlands.

[Geuvers 1996℄ J.H. Geuvers, Extending models of seond order logi to models of

seond order dependent type theory, Computer Siene Logi, Utreht, eds. D.

van Dalen and M. Bezem, LNCS 1258, 1997, pp 167{181.

[Hyland and Ong 1993℄ J.M.E. Hyland and C.-H. L. Ong, Modi�ed realizability

toposes and strong normalization proofs. In Typed Lambda Caluli and

Appliations, Proeedings, eds. M. Bezem and J.F. Groote, LNCS 664, pp.

179{194, Springer-Verlag, 1993.

[Girard et al. 1989℄ J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and types, Camb.

Trats in Theoretial Computer Siene 7, Cambridge University Press.

[Longo and Moggi 1988℄ G. Longo and E. Moggi, Construtive Natural Dedution

and its \Modest" Interpretation. Report CMU-CS-88-131.

[Stefanova and Geuvers 1996℄ M. Stefanova and J.H. Geuvers, A Simple Model

Constrution for the Calulus of Construtions, in Types for Proofs and

Programs, Int. Workshop, Torino, eds. S. Berardi and M. Coppo, LNCS 1158,

1996, pp. 249{264.

[Streiher 1991℄ T. Streiher, Independene of the indution priniple and the axiom

of hoie in the pure alulus of onstrutions, TCS 103(2), pp 395 - 409.

