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Abstract

We describe a framework of algebraic structures in the proof assistant
Coq. We have developed this framework as part of the FTA project in
Nijmegen, in which a constructive proof of the Fundamental Theorem of
Algebra has been formalized in Coq.
The algebraic hierarchy that is described here is both abstract and

structured. Structures like groups and rings are part of it in an abstract
way, defining e.g. a ring as a tuple consisting of a group, a binary operation
and a constant that together satisfy the properties of a ring. In this way, a
ring automatically inherits the group properties of the additive subgroup.
The algebraic hierarchy is formalized in Coq by applying a combination
of labeled record types and coercions. In the labeled record types of Coq,
one can use dependent types: the type of one label may depend on another
label. This allows to give a type to a dependent-typed tuple like 〈A, f, a〉,
where A is a set, f an operation on A and a an element of A. Coercions are
functions that are used implicitly (they are inferred by the type checker)
and allow, for example, to use the structure A := 〈A, f, a〉 as synonym
for the carrier set A, as is often done in mathematical practice. Apart
from the inheritance and reuse of properties, the algebraic hierarchy has
proven very useful for reusing notations.

1. Introduction

1.1. Background

When we started working on the FTA (Fundamental Theorem of Algebra)
project in the proof tool Coq [2] (see Sect. 2 for an overview of this project)
we needed an algebraic framework for it. The requirements for such a framework
included the following.

• We wanted to formalize a constructive proof of the fundamental theorem
of algebra, so we needed support for constructive algebra.

• We wanted to reason about real numbers and polynomials over the reals.
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• We wanted to use an abstract presentation of the real numbers that could
be instantiated with various constructions in the future. In intensional type
theory, such as Coq, this requires the use of setoids, which are a type and
an equivalence relation packaged together. This allows to deal with the set-
theoretic notion of a quotient, which any actual construction of the reals is
a typical example of.

No algebraic developments in Coq at that time could be a base for our work,
so we decided to develop our own algebraic hierarchy for Coq. This would be a
constructive theory of the real numbers and beyond, built on a pervasive notion
of constructive setoid.

1.2. Approach

We did not want our mathematics to be dependent on specific representations
of the various algebraic structures, so we decided to use an axiomatic approach.
Instead of defining the real numbers as, e.g. Cauchy sequences or Dedekind
cuts, we have defined a notion of real number structure of which both these
constructions would be an instance. For any ‘implementation’ of this notion all
of our theory would immediately be available.

Constructive mathematics is supposed to have computational content, but a
proof of FTA based on an abstract real number structure, although using only
constructive principles, cannot compute the number that the theorem claims ex-
ists, because the real number structure is like an abstract data-type specification
without an implementation. However, after instantiating the abstract proof with
a concrete construction of the real number structure, the proof has full compu-
tational content. Indeed, the proof of FTA that we have formalized contains a
root-finding algorithm. (As a matter of fact, the proof can be seen as a correct-
ness proof of this algorithm.) It should be pointed out that, in order to do feasible
computations with this algorithm the actual representation of the real numbers
is crucial. The straightforward representation of reals as Cauchy sequences over
Q the rationals, as used in [11], does not yield feasible computations.

1.3. Related work

Other algebraic hierarchies are similar to ours. However, they often have not
been used in a large proof development. Our framework has been written and
optimized for real-life use (to prove the fundamental theorem of algebra).

Paul Jackson, in his Ph.D. thesis [15], presents a constructive development of
algebra in Nuprl and uses it to prove some results in abstract algebra. Nuprl,
like Coq, is based on type theory, but it uses an extensional equality. This makes
several constructions easier (e.g. quotienting), but renders type checking un-
decidable. As Nuprl does not have coercive sub-typing, there is in general no
inheritance between structures.

A constructive algebraic hierarchy for Lego appears in the Ph.D. thesis of
Anthony Bailey [1].
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Löıc Pottier has implemented a classical algebraic hierarchy for Coq [23]. This
hierarchy is more elaborate than ours and mimics the hierarchy of the Axiom
computer algebra system [16].

In the FOC project, Sylvain Boulmé, Thérèse Hardin, Valérie Ménissier-Mo-
rain, Virgile Prévosto and Renaud Rioboo are building an environment to de-
velop certified programs for symbolic computation [6]. This environment will
contain a classical algebraic hierarchy. It is built from a certain kind of records
with dependent labeled fields, on which several operations (refinement, extension,
redefinition) have been defined [5]. A Coq formalization of the FOC algebraic
hierarchy is planned. Currently only the framework of the FOC records has been
formalized.

Many provers have a formalization of the real numbers. Often such a formal-
ization is ‘flat’ – the type of the real numbers is not an instance of a notion of
‘field’ – but some are part of an algebraic hierarchy.

A flat development of the real numbers has been added to the Coq library by
Micaela Mayero [8]. This development gives classical axioms for the real numbers
but does not implement a specific model of it.

The Mizar system [20; 25] has both flat real numbers as well as an algebraic
hierarchy. Interestingly, it is the flat real numbers that is used in most proofs that
need the real numbers. The Mizar algebraic hierarchy has not been designed by
one person. The various types, like Group, Ring and Field are defined in various
articles by various authors.

1.4. Contribution

We have built a library for doing algebra and analysis in Coq. It is completely
self-contained and completely constructive. That is, it uses the Coq logic (the
calculus of inductive constructions) and contains no axioms. The algebraic hier-
archy that we describe in this paper is part of this library. It ranges from con-
structive setoids to real number structures. (In [11] it is shown that the notion
real number structure is categoric: any two real number structures are isomor-
phic.) The library also contains a construction of the complex numbers (out of
a real number structure) and of the polynomials over an arbitrary ring. The
complex numbers are shown to be an instance of a field and the polynomials are
shown to be a ring, which allows the inheritance of properties and notation from
fields, respectively rings. Finally, the library contains a construction of the real
numbers as Cauchy sequences, so despite the fact that our theory is axiomatic
in spirit we also give a specific construction of the field of the real numbers (see
[11]).

Subjects treated in our framework are:

• groups, rings and fields

• finite sums

• polynomials
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• finite dimensional vector spaces

• the real and complex numbers

• real valued functions and continuity

• the intermediate value theorem

• real and complex roots

All together our Coq code consists of approximately 35000 lines or 860 kilobytes.
The theory that we have developed contains many ‘calculation lemmas’. These

are lemmas that give a calculation rule used to manipulate algebraic expressions.
We have created an automatic way to keep track of these lemmas in the form of a
LATEX document, in the spirit of ‘literate programming’. Also we have developed
specific reasoning tools to make it easier to reason inside our framework without
having to know the names of the lemmas [12].

1.5. Outline of this paper

In Sect. 2 an overview of the FTA project is presented. Sect. 3 gives the notion
of constructive setoid. Building on this, Sect. 4 presents the algebraic hierarchy.
Sect. 5 develops our approach to representing the inheritance of common notions
in the hierarchy. Sect. 6 describes the way our framework models partial functions
such as division. For this we introduce the notion of sub-setoid. Finally Sect. 7
discusses the syntax of expressions and the complexity of the underlying Coq
terms.

In order to understand this paper one must have some basic familiarity with
the Coq system [2].

2. The Fundamental Theorem of Algebra project

In 1999 and 2000 in the group of Henk Barendregt at the University of Nijmegen,
a proof of the fundamental theorem of algebra was formalized in the Coq proof
assistant [2]. This work was done in the spirit of the QED Manifesto [7]. See
[9; 10; 13] for further details of this formalization project.

The proof of the FTA project is constructive. Before the FTA project had been
finished, a classical proof of the fundamental theorem of algebra had already been
formalized by Robert Milewski in Mizar [19] and by John Harrison in HOL [14].

The four authors of the present paper designed the algebraic hierarchy that is
part of the FTA project.

The fundamental theorem of algebra states that every non-constant polyno-
mial over the complex numbers has a zero. In other words it says that the field
of the complex numbers is algebraically closed. The proof that was formalized in
Coq was a constructive proof by Hellmuth and Martin Kneser [17; 13]. We have
kept the formalization free of axioms. All that we needed was already present in
the Coq logic, the calculus of inductive constructions.

The final statement that we proved in the formalization was:
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Lemma fta :

(f:(cpoly_cring CC))(nonConst ? f)->(EX z | f!z[=]Zero).

This says that for every non constant polynomial f over the complex numbers
there exists some complex number z such that f(z) = 0.

3. Setoids, constructive setoids and setoid functions

Coq is an intensional type theory. A notion called Leibniz equality is definable; it
is the smallest reflexive relation. In a context with no assumptions about Leibniz
equality, it is equivalent to the meta theoretic (intensional) definitional equality.
On concrete constructions, such as natural numbers, where equality and identity
coincide, Leibniz equality coincides with the definable structural identity. How-
ever, in abstract mathematics, this is not a very useful relation. For instance
consider the representation of real numbers as Cauchy sequences. Two differ-
ent Cauchy sequences (i.e. intensionally distinguished by Leibniz equality) can
represent the same (extensionally) real number. If we were to assume axioms
restricting Leibniz equality to behave as intended for an abstract real number
structure, it would be impossible to implement that structure with a construc-
tion.

We want to make a quotient type by dividing out the equivalence relation ‘rep-
resent the same real’. The solution is to work with setoids instead of raw types.
A setoid is a type together with an equivalence relation on it. (This equiva-
lence, called setoid equality , or book equality, is written x[=]y in our use of Coq
notation.) Quotienting a setoid is achieved by changing its equivalence relation.

In constructive mathematics there is a little more to say, as the notion of apart-
ness (written x#y) is more fundamental than the notion of equality. No amount
of information can show that concretely presented real numbers are equal. For
example, consider real numbers, x and y, presented as Cauchy sequences: no
matter how many terms of x and y we may have examined and found to be
equal, we can not be sure that some later terms will not distinguish x from y.
However, after some number of terms we may see that x and y are so far apart
that, being Cauchy sequences, they cannot represent the same real. Two objects
are apart if we ‘positively’ know (have evidence) that they are different. For in-
stance a real number x is apart from 0 only if we can give some natural number
n such that we know that |x| > 1/n.

Packaging a carrier set with an equivalence relation and an apartness rela-
tion, we get the notion of constructive setoid , called CSetoid in our framework.
Apartness in such a CSetoid is written x[#]y. In Coq we define constructive
setoid as a record type, as is shown on the top of the following page. A record
type in Coq consists of labeled tuples, where the type of a field may be de-
pendent on other fields. A term of type CSetoid is a tuple 〈A, R1, R2, p〉, with
A:Set, R1:(relation A), R2:(relation A) and p:(is_CSetoid A R1 R2). (p
is a proof that A, R1, R2 have property is_CSetoid.) The labels allow projec-
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tion of a specific field of the tuple: if S:CSetoid, then (cs_crr S):Set and
(cs_eq S):(relation (cs_crr S)).

Record CSetoid : Type :=

{ cs_crr :> Set;

cs_eq : (relation cs_crr);

cs_ap : (relation cs_crr);

cs_proof : (is_CSetoid cs_crr cs_eq cs_ap)

}.

As a matter of fact, the projection cs_crr does not have to be written, because
cs_crr is declared (by the annotation :>) to be a coercion function. This means
that the type checker will insert this function when necessary, driven by type-
checking. For example S is not a type, and cannot have inhabitants, but if we
declare a variable x:S, the type checker implicitly forms the correct declaration
x:(cs_crr S). This captures the common mathematical usage of confusing a
structure with its carrier.

In the above definition, is_CSetoid is a predicate, the conjunction of the
defining properties of a constructive setoid. It is itself defined as a record:

Record is_CSetoid [A:Set; eq,ap:(relation A)] : Prop :=

{ ax_ap_irreflexive : (irreflexive A ap);

ax_ap_symmetric : (symmetric A ap);

ax_ap_cotransitive : (cotransitive A ap);

ax_ap_tight : (tight_apart A eq ap)

}.

This says that a constructive setoid is a tuple 〈A,≈,#〉 that satisfies, for all x,
y and z in A:

• apartness is irreflexive: ¬(x# x)

• apartness is symmetric: x# y → y # x

• apartness is cotransitive: x# y → x# z ∨ z # y

• apartness is tight: ¬(x# y)↔ x ≈ y

Because of the property of tightness we could have defined equality in terms
of apartness, rather than carrying it in our setoid structure. However, equality
is a very central notion in algebra (algebraic properties are equational) and we
wanted the notion of constructive setoid to be a refinement of the notion of
setoid. (Also to make the work readily accessible for classical mathematicians.)
Therefore we didn’t do this.

The field cs_eq of a CSetoid record is the function that represents the equality.
Hence the Coq expression:

(cs_eq S x y)

represents x ≈ y in S. Since Coq can determine the argument S from the types
of x and y, we can define an operator [=] such that x[=]y is a shorthand for
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(cs_eq S x y). Similarly we can define x[#]y as an abbreviation of (cs ap S

x y).
The notion of setoid allows an intensional formalization of quotient. A function

f only induces a corresponding function on a quotient of its domain when it
respects the equivalence ≈ that is being divided out:

x ≈ y → f(x) ≈ f(y)

This is called weak extensionality or well-definedness of the function. It is defined
in the Coq formalization as:

Definition fun_well_def [f:S1->S2] : Prop :=

(x,y:S1)(x[=]y)->((f x)[=](f y)).

Constructively, as apartness is more fundamental than equality, so the property
of strong extensionality

Definition fun_strong_ext [f:S1->S2] : Prop :=

(x,y:S1)((f x)[#](f y))->(x[#]y).

is more fundamental than well-definedness. It is easily shown that strong exten-
sionality implies well-definedness. The properties of well-definedness and strong
extensionality are also defined for relations.

We have a record type of constructive setoid functions, consisting of pairs
〈f, p〉, with f:S1->S2 and p:(fun strong ext f). (p is a proof that f is strongly
extensional.)

Record CSetoid_fun [S1,S2:CSetoid] : Set :=

{ csf_fun :> S1 -> S2;

csf_strext : (fun_strong_ext csf_fun)

}.

Due to the implicit coercions, the term csf_fun is actually a term of type
(cs_crr S1) -> (cs_crr S2). This record type of functions also illustrates
another use of implicit coercions: if F:(CSetoid_fun S1 S2) and a:S1, then we
can apply F to a. The term (F a) is expanded by the type checker to ((csf fun

F) a).
Constructively, there are naturally occurring functions that are not well-defined

in the above sense. For instance the n-th root n
√
x in the complex plane; it is pos-

sible to define the n-th root of a complex number, but different representations of
the same complex number will sometimes have different complex roots (not just
different representations of the same complex root). So although the n-th root
function can be defined it does not respect the setoid equality. Thus it is neces-
sary to distinguish between functions, which are ‘just’ terms f of functional type
S1->S2, and setoid functions, which should also be strongly extensional (and
hence respect the equality).∗ The non-well-definedness (constructively) of some
functions is unavoidable. Classically, this non-well-definedness is mirrored by the

∗Bishop [4] calls these operations and functions respectively.
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fact that a function is not continuous and is not computable on the represen-
tations. For example, the n-th root is classically non-continuous as a function
from C to C. (It can be made continuous by mapping to sets of roots, with an
appropriate topology on those sets.)

4. Algebraic structures and coercive sub-typing

We have defined a number of types in Coq representing algebraic structures of
which the carriers are constructive setoids. Each algebraic type is defined in
terms of the previous one.

CSetoid constructive setoids
CSemi_grp semi-groups
CMonoid abelian monoids
CGroup abelian groups
CRing rings
CField fields
COrdField ordered fields
CReals ‘real number structures’

We will not present the definitions of these types in detail, but refer the in-
terested reader to the FTA files [9]. The structures of fields, ordered fields and
real numbers are explained in detail in [11]. A more elaborate discussion of all
the structures and the whole FTA project will appear in [10].

From the level of CMonoid up, all structures we deal with are assumed to be
abelian. Henceforth, we will not explicitly mention this property when talking
about the hierarchy: when we speak about groups we mean abelian groups.

In this paper we only present the definition of the type of rings in terms of the
type of groups; the other definitions follow the same pattern. The type of rings
is defined:

Record CRing : Type :=

{ cr_crr :> CGroup;

cr_one : cr_crr;

cr_mult : (CSetoid_bin_op cr_crr);

cr_proof : (is_CRing cr_crr cr_one cr_mult)

}.

The function cr_crr that gives the underlying group is a coercion (indicated
by the annotation :>) which Coq can silently insert, as explained above (Sect.
3). So the type CRing is a coercive subtype of CGroup. For details of coercions
in Coq see [24; 2]. For a more general introduction into coercive sub-typing see
[3; 18; 22].

The multiplication operation of a ring is a setoid function: it respects setoid
equality. We have types for such setoid functions called CSetoid_bin_fun and
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CSetoid_bin_op (the second is a specialized case of the first in which the domain
and range setoids are the same).

The defining property is_CRing is:

Record is_CRing

[G:CGroup; one:G; mult:(CSetoid_bin_op G)] : Prop :=

{ ax_mult_assoc : (Associative mult);

ax_mult_mon : (is_CMonoid

(Build_CSemi_grp G one mult ax_mult_assoc));

ax_dist : (Distributive mult (csg_op G));

ax_non_triv : one[#]Zero

}.

This completes the definition of rings in terms of groups.
The general scheme of defining an algebraic structure B in terms of an algebraic

structure A is:

Record BName : Type :=

{ b_crr :> AName;
b_opName1 : σ1;

...
b_opName

n
: σn;

b_proof : (is_BName b_crr b_opName1 . . . b_opName
n
)

}.

Record is_BName
[A:AName; opName1:σ1; . . . ; opName

n
:σn] : Prop :=

{ ax_propName1 : P1;
...

ax_propName
m

: Pm

}.

Note that BName is not a structural subtype of AName in the sense of having
at least all the fields of AName. Instead AName occurs as a field in BName.
(Records in Coq are right associative and not extensible, in the classification of
[22].) However BName is a subtype of AName by the coercion b_crr, so that
wherever an AName is expected, a BName can be used instead.

In Coq, any term can be declared as a coercion: if f:A->B, then we can declare
f as a coercion by putting Coercion f:A>->B. (See [24] for a detailed account
of coercions in Coq.) Declaring a coercion f means that the type checker will try
to insert f if the term doesn’t type check. If there are more coercions, the type
checker will try them all, so coercions will be composed. There are some restric-
tions on coercions: for obvious reasons, the system does not allow to have two
coercions with the same type at one time. This implies an important restriction
for our algebraic hierarchy: we can not have both a coercion from a ring to its
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additive monoid and to its multiplicative monoid. So, multiple inheritance is not
possible in full generality.

In our algebraic hierarchy, we have only used coercions that arise from a
field selection, as shown in the example above where the coercion b_crr selects
the first field of the labeled record type BName. This yields a linear hierarchy
of structures, with field selecting coercions between them, as depicted in the
following diagram, where the names of the coercions are omitted.

CReals >-> COrdField >-> CField >-> CRing >-> CGroup

CGroup >-> CMonoid >-> CSemi_grp >-> CSetoid

So, the only multiple inheritance arises from the composition of coercions: rings
inherit structure (properties and operations) from groups and monoids and semi-
groups and constructive setoids.

5. Three ways to classify addition

We will now compare three ways to treat addition in Coq. The first is the way
it is done in the standard Coq library, the second is a bridge to the third, which
is the way it is done in the algebraic hierarchy.

5.1. The standard Coq library: separate additions

In the naive approach one defines an addition for every new type with addition
that is introduced. In the Coq standard library there are three different additions
for the natural numbers, the integers and the reals:

plus : nat->nat->nat

Zplus : Z->Z->Z

Rplus : R->R->R

The properties of these additions must be developed (or assumed) from scratch
each time. For instance the commutativity of the addition is present three times:

Lemma plus_com : (x,y:nat)(plus x y)=(plus y x).

Lemma Zplus_com : (x,y:Z)(Zplus x y)=(Zplus y x).

Axiom Rplus_com : (x,y:R)(Rplus x y)=(Rplus y x).

In this approach, the multiplicity continues for every new type that is introduced:
complex numbers, polynomials, matrices, functions, etc.

5.2. The algebraic structure as a parameter

The naturals, integers and reals are all commutative groups under addition, and
one can develop the theory of addition uniformly for groups. This group addition
is polymorphic in (i.e. parameterized by) the particular group:

Gplus : (G:Group)(crr G)->(crr G)->(crr G).
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where the carrier function crr:Group->Set gives the underlying set of a group.
For any concrete structure we wish to define, (e.g. the naturals) we must still

define addition and prove it satisfies the commutative group axioms, but two
significant advantages are gained. First, the theory of commutative groups need
only be developed once, and will be inherited by each particular group. We
can also declare abstract groups, which immediately inherit all the properties
of groups. Second, and very important in large scale formalization, there are
uniform names for all the properties of abelian groups. Users of the formalization
need only consider one commutative law:

Lemma Gplus_com :

(G:Group; x,y:(crr G))(Gplus G x y)=(Gplus G y x).

This law is applicable to all groups.

5.3. Addition in the algebraic hierarchy

In the previous subsection, we have considered the advantages of classifying
structures as groups. Two refinements are necessary.

• In our framework there is not just one type of structure, but a hierarchy of
structures: CSemi_grp, CMonoid, CGroup, CRing, . . . . Addition is declared
at the level of semi-groups, and inherited at more highly specified levels†.

• Addition is not just an intensional function, but a setoid function.

Each structure is a ‘subtype’ of each simpler structure by a chain of forgetful
coercions

cm_crr : CMonoid->CSemi_grp.

csg_crr : CSemi_grp->CSetoid.

cs_crr : CSetoid->Set.

applied in the proper order.
The addition function, called csg_op, is one of the fields of the CSemi_grp

record. It has type:

csg_op : (G:CSemi_grp)

(CSetoid_bin_fun (csg_crr G) (csg_crr G) (csg_crr G)).

This returns a CSetoid_bin_fun which is the type of a binary setoid function.
From it one can retrieve the underlying type theoretic function by applying
csbf_fun:

csbf_fun : (S1,S2,S3:CSetoid)(CSetoid_bin_fun S1 S2 S3)->

(cs_crr S1)->(cs_crr S2)->(cs_crr S3).

†Commutativity of addition is declared at the level of monoids. This property is then
inherited at higher levels. As has already been mentioned in Section 4, all structures from
CMonoid up are abelian, also if not explicitly stated.
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Putting this together the sum of x and y in a semi-group G will be:

(csbf_fun (csg_crr G) (csg_crr G) (csg_crr G) (csg_op G) x y)

The syntax of Coq is powerful enough to allow this to be abbreviated by:

x[+]y

The G argument will be determined from the types of x and y. See Sect. 7 for
discussion of the complexity of the underlying representation.

The fact that in CMonoid the right unit of addition is unique is stated by the
following Lemma.

Lemma cm_unit_unique_rht:

(M:CMonoid; x:M) ((y:M)(y[+]x [=] y)) -> (x [=] Zero).

Because of coercions, this lemma will work for every structure that can be coerced
to a monoid. Those are the groups, rings, fields, the real and complex numbers,
the polynomials, etc. The two advantages mentioned in the previous subsection
hold across the whole algebraic hierarchy.

There are some technical restrictions on coercions, necessary to maintain the
meaning of the implicit notations. For example, it is not possible to define a ring
as the ‘union’ of an additive and a multiplicative monoid, because there can not
be two coercions from rings to monoids, see Section 4.

6. Partial functions and subsetoids

One of the main problems in formal mathematics is how to deal with partial
functions. The type theoretic way to treat this problem is to add proof objects
as arguments to the functions; this is the approach that we followed in our
framework.

The prototypical partial function is division. In the algebraic hierarchy the
expression representing x/y will have three arguments, and be written

x[/]y[//]H

where H:(y[#]Zero) is a proof that y is apart from zero. This is actually man-
aged by having a subsetoid of non-zero elements. Informally, the division function
might be written:

·/· : F × F 6=0 → F.

Formally we define a type corresponding to F 6=0 using the notion of a sub-setoid.
The elements of a subcsetoid_crr, the carrier of a sub-setoid, are pairs of an

element of setoid S, and a proof that the element satisfies property P.

Record subcsetoid_crr [S:CSetoid; P:S->Prop]: Set :=

{ scs_elem :> S;

scs_prf : (P scs_elem)

}.
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An instance of subcsetoid_crr can be turned into a setoid in a canonical way,
by inheriting the apartness and equality of S, and showing that they satisfy the
required properties. This is done via the map Build_SubCSetoid, which takes
a setoid S and a predicate P over it, and returns the setoid of elements of S that
satisfy P.

Using this sub-setoid construction we can define the setoid of the non-zeroes
of a ring, together with functions nzinj and nzpro (injection and projection)
that relate it to the original setoid. (We only give the types of the latter two
functions.)

Variable F : CRing.

Definition NonZeroP [x:F] : Prop := x[#]Zero.

Definition NonZeros : CSetoid :=

(Build_SubCSetoid F NonZeroP).

Definition nzinj : NonZeros->F := ...

Definition nzpro : (x:F)(x[#]Zero)->NonZeros := ...

Division in our framework is defined from the reciprocal function. This is a setoid
function on the sub-setoid of the non-zeroes:

cf_rcpcl : (CSetoid_un_op (NonZeros F))

Division therefore has type

cf_div : (F:CField)F->(NonZeros F)->F

and the expression x[/]y[//]H (parsed as x[/](y[//]H)) is shorthand for

(cf_div F x (nzpro F y H))

The expression (nzpro F y H) represents y considered as an element of F 6=0.
The proof terms that occur in expressions cause some calculation rules to have

more conditions than one might expect. For instance the lemma formalizing:

x/y

z
=

x

y · z

is:

Lemma div_div : (x,y,z:F)(nzy:y[#]Zero)(nzz:z[#]Zero)

(nzyz:(y[*]z)[#]Zero)

(((x[/]y[//]nzy)[/]z[//]nzz) [=] (x[/](y[*]z)[//]nzyz)).

In this lemma the condition (y[*]z)[#]Zero is superfluous, as it is implied by
y[#]Zero and z[#]Zero. However, if we omit it (and plug in a proof using nzy

and nzz in the place of nzyz), then the lemma is harder to apply in practice.
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7. Syntax and complexity of terms

We can’t use the customary operator symbols in our syntax because Coq doesn’t
support overloading and the customary symbols are already in use. We indicate
that we are using a setoid analogue of a normal operation by putting the operator
in square brackets [ and ]. So an equation like:

(x+ y)2 = x2 + 2xy + y2

becomes in our syntax:

(x[+]y)[^](2)[=]x[^](2)[+]Two[*]x[*]y[+]y[^](2)

and the equation:

p(X) =
n∑

i=0

aix
i

becomes:
p!x[=](Sum (0) n [i:nat](a i)[*]x[^]i)

Clearly our notation could be more readable.
However, the notational features of Coq provide significant benefits, and the

official terms in our framework are much more complex than the notation sug-
gests. For instance suppose we have x,y:IR (where IR is the type of the real
numbers) then

x[+]y

is an abbreviation of:

(csbf_fun (csg_crr (cm_crr (cg_crr (cr_crr (cf_crr (cof_crr

(crl_crr IR)))))))

(csg_crr (cm_crr (cg_crr (cr_crr (cf_crr (cof_crr (crl_crr

IR)))))))

(csg_crr (cm_crr (cg_crr (cr_crr (cf_crr (cof_crr (crl_crr

IR)))))))

(csg_op (cm_crr (cg_crr (cr_crr (cf_crr (cof_crr (crl_crr

IR))))))) x y)

Instead of what seems to be just one function symbol [+], the term actually
contains 33 function symbols. This shows that the terms in our framework are
relatively ‘heavy’. But note that most of this big term is inferable coercions. In
Luo’s coercive sub-typing [18] these parts of the term are actually elided, not
just suppressed in printing. This may be an important optimization for large
scale formal mathematics.

8. Conclusion

We presented a framework for writing algebraic expressions in the Coq proof
assistant. The features of Coq that made our approach possible were:
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• record types

• coercive sub-typing

• implicit arguments

Similar features are also available in other systems (for instance the Mizar sys-
tem) and therefore something like our framework can be implemented in those
systems.

In practice the framework that we have presented here works well. There is
hardly any duplication of theory despite the great number of algebraic structures
that we defined. For example, the theory of rings has been used for the rationals,
the reals, the complex numbers and the polynomials. Apart from the reuse of
theory, the reuse of notation (via a form of overloading introduced by the coercion
mechanism) is also very convenient. Moreover this keeps user-level expressions
reasonably concise.

8.1. Future work

There are various things that need to be investigated further:

8.1.1. Better record types.

As already pointed out, one would like both the multiplicative monoid and the
additive monoid of a ring to be a coercive super-type of the ring type itself.
This is not allowed, because it creates two coercions of the same type. Also, one
would like a sub-setoid to be a subtype of the setoid it is derived from. This
coercion doesn’t work well in the current version of Coq. Further research on
how coercions can be improved is necessary. In [22] a start has been made with
these investigations.

8.1.2. Structure of the hierarchy.

The current hierarchy has been designed to make it possible to prove the funda-
mental theorem of algebra. This means that it is not as rich as one would like.
For instance we don’t have non-commutative structures (apart from the basis
CSemi_grp) because they didn’t occur in our work.

One place where the hierarchy might be more refined is between CField,
COrdField and CReals. Currently, the useful properties of fields of characteristic
zero are derived in COrdField. This is not the right place because the complex
numbers are not an ordered field (but they are a field of characteristic zero)
so for the complex numbers these results don’t apply. (We have to restate and
prove these results for the complex numbers separately.) The situation could be
remedied by extending the hierarchy as described in Section 4 with

COrdField >-> CFieldCharzero >-> CField

Similarly a number of the convergence notions are now defined only for CReals.



H. Geuvers et al.: A Constructive Algebraic Hierarchy in Coq 16

However this is a subtype of COrdField so again these results don’t apply to the
complex numbers. But the complex numbers do have a metric structure, and it
would be desirable to have a type CMetricField for this. This could be done by
adding the following to the hierarchy

CMetricField >-> CField

In Coq, we can have both CMetricField and CFieldCharzero in the hierarchy
(as indicated above), but we can not have coercions from the complex numbers
to both types, because this would produce (by composition of coercions) two
coercions from the complex numbers to CField, which is not allowed.

8.1.3. Partial functions.

The current way Coq deals with partiality is through proof terms in the expres-
sions. This is unnatural. The PVS system [21] offers a different solution: in PVS
a partial function is a total function on its domain. Whether a partial function
is defined on an element is handled through so-called ‘type check conditions’,
which may create extra proof obligations, but don’t show up in syntax. A simi-
lar approach is used in Nuprl, that has subset types. This approach works very
well, but the price to be paid is that type checking becomes undecidable. This
is not felt as a serious problem among PVS users. It is valuable to investigate
whether a similar approach can be adapted to Coq.

8.1.4. Better syntax.

The current syntax of our framework is not very readable. The integers and
reals in the Coq standard library have custom parsers that allow for the more
common algebraic notation. It would be valuable to build a parser like that for
the algebraic hierarchy.

8.1.5. Classical logic.

The current algebraic hierarchy is completely constructive. For many people it
is irrelevant whether their reasoning is constructive or not. In their case classical
logic would be much easier, and it would be useful to have a classical variant of
the algebraic hierarchy. One could for instance define a notion of decidable setoid
in which the equality is decidable. Combining this notion with the types of the
algebraic hierarchy then would give a classical algebraic hierarchy.
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