
[17] H. Geuvers and M.J. Nederhof. A simple modular

proof of the strong normalization for the calculus

of constructions. J. of Functional Programming,

vol.1, 1991.

[18] J.-Y. Girard. Interpr�etation fonctionelle et

�elimination des coupures dans l'arithm�etique

d'ordre sup�erieur. Th�ese d'Etat, Univ. Paris VII,

France, 1972.

[19] R. Harper, F. Honsell and G. Plotkin. A frame-

work for de�ning logics. Proceedings second sym-

posium on Logic In Computer Science., IEEE,

Washington DC, 1987.

[20] J.-P. Jouannaud and M. Okada. Executable

higher-order algebraic speci�cation languages. In

Proc. 6th IEEE Symp. Logic in Computer Science,

Amsterdam, 1991.

[21] J. W. Klop. Term rewriting systems: a tutorial.

EATCS Bulletin, 32:143{182, June 1987.

[22] M. H. A. Newman. On theories with a combi-

natorial de�nition of `equivalence'. Ann. Math.,

43(2):223{243, 1942.

[23] T. Nipkow. Higher order critical pairs. Proc.

IEEE Symp. on Logic in Comp. Science, Amster-

dam, 1991.

[24] Mitsuhiro Okada. Strong normalizability for the

combined system of the types lambda calculus and

an arbitrary convergent term rewrite system. In

Proc. ISSAC 89, Portland, Oregon, 1989.

[25] M. Rusinowitch. On termination of the direct

sum of term rewriting systems. Information Pro-

cessing Letters, 26:65{70, 1987.

[26] Y. Toyama. Counterexamples to termination for

the direct sum of term rewriting systems. In-

formation Processing Letters, 25:141{143, April

1987.

[27] B. Werner. M�eta-th�eorie du Calcul des Construc-

tions Inductives. Th�ese Univ. Paris VII, France.

higher order rules (�rst order rules are simply required

to be non-duplicating).

Con
uence and strong normalization are essential

properties of logical systems, since they ensure the

consistence of the system. Proving these properties

is in general a di�cult task, so, it is important to

study under which conditions these proofs are mod-

ular. Our results show that in order to prove strong

normalization of any of the systems in the �R-cube

it is su�cient to prove termination of the �rst or-

der rewrite rules in R on algebraic terms, provided

that R satis�es certain syntactical conditions, namely

non-duplication for FOR and the general schema for

HOR. As a consequence, we get the strong normal-

ization of a restriction of CCI (with pattern-matching)

where the inductive types are de�ned by structural

induction. The restriction on �rst order rules is not

important in practice, since most implementations of

rewriting use sharing, and shared reductions are al-

ways conservative. The general schema, however, lim-

its the power of the higher order rules. The general-

ization of the proof of strong normalization to wider

classes of higher order rules will be the subject of fu-

ture work.

Acknowledgements

We wish to thank Jean-Pierre Jouannaud and Mar-

iangiola Dezani for their scienti�c support. The �rst

author is also grateful to Margherita Lombardi for her

constant encouragement.

References

[1] F. Barbanera. Adding algebraic rewriting to the

calculus of constructions: Strong normalization

preserved. In Proc. of the 2nd Int. Workshop on

Conditional and Typed Rewriting, 1990.

[2] F. Barbanera and M. Fern�andez. Combining �rst

and higher order rewrite systems with type as-

signment systems. Proceedings of the international

conference on Typed Lambda Calculi and Applica-

tions, Utrecht, LNCS 664, Springer Verlag, 1993.

[3] F. Barbanera and M. Fern�andez. Modular-

ity of termination and con
uence in combina-

tions of rewrite systems with �

!

. Proceed-

ings of the 20th International Colloquium on

Automata, Languages, and Programming, Lund,

A.Lingas, R.Karlsson and S.Carlsson eds., LNCS

700, Springer Verlag, 1993.

[4] H. Barendregt. Introduction to generalised type

systems. Journal of Functional Programming,

1991.

[5] H. Barendregt, M. Coppo, and M. Dezani-

Ciancaglini. A �lter �-model and the completeness

of type assignment. Journal of Symbolic Logic,

48(4):931{940, 1983.

[6] S. Berardi. Type dependence and constructive

mathematics. Ph.D. Thesis, Mathematical Insti-

tute, University of Torino, 1990.

[7] V. Breazu-Tannen. Combining algebra and

higher-order types. In Proc. 3rd IEEE Symp.

Logic in Computer Science, Edinburgh, July 1988.

[8] V. Breazu-Tannen and J. Gallier. Polymorphic

rewriting conserves algebraic strong normaliza-

tion. Theoretical Computer Science, 1990.

[9] V. Breazu-Tannen and J. Gallier. Polymorphic

rewriting conserves algebraic con
uence. To ap-

pear, 1993.

[10] M. Coppo, and M. Dezani-Ciancaglini. An ex-

tension of the basic functionality theory for the �-

calculus. Notre Dame J. of Formal Logic, 21(4),

1980.

[11] Th. Coquand. Pattern matching with dependent

types. In Proceedings of the Workshop on Logical

Frameworks, 1992.

[12] Th. Coquand and G. Huet. The calculus of con-

structions. Information and Computation, 76:95{

120, February 1988.

[13] Th. Coquand and C. Paulin-Mohring. Inductively

de�ned types. In Proceedings of Colog'88, LNCS

417, Springer-Verlag, 1990.

[14] D. J. Dougherty. Adding algebraic rewriting to

the untyped lambda calculus. In Proc. 4th Rewrit-

ing Techniques and Applications, Como, LNCS

488, 1991.

[15] H. Geuvers. The Church-Rosser property for ��-

reduction in typed �-calculi. Proceedings seventh

symposium on Logic In Computer Science., IEEE,

Santa Cruz, 1992.

[16] H. Geuvers. Logics and type systems. Ph.D. The-

sis, dept. of Computer Science, university of Ni-

jmegen, 1993.

De�nition 4.3 The map [] : Kind(�

RC

) [

Constr(�

RC

)[Object(�

RC

)! Object(�

R!

) is induc-

tively de�ned by

1. [?] = c

0

2. [x] = x if x 2 V ar

?

3. [�] = x

�

if � 2 V ar

2

4. [s] = c

0

if s 2 S

5. [f] = f if f 2 F

6. [�x:M:N] = c

0!0!0

[M][N][c

�(M)

=x] if �x:M:N

is formed by (?; ?) or (?;2)

[��:M:N] = c

0!0!0

[M][N][c

�(M)

=x]; [c

�(M)

=�]

if ��:M:N is formed by (2; ?) or (2;2)

7. [�x:M:N] = (�z: 0:�x: � (M):[N])[M] where z is

a fresh variable, if �x:M:N is formed by (?; ?) or

(?;2)

[��:M:N] = (�z: 0:��: �(M):�x

�

: � (M):[N])[M]

where z is a fresh variable, if ��:M:N is formed

by (2; ?) or (2;2)

8. [MN] = [M][N] if MN is formed by (?; ?) or

(?;2)

[MN] = [M]� (N)[N] if MN is formed by (2; ?)

or (2;2).

This de�nition by cases is correct by Lemma 3.5.

The following theorems state that [�] satis�es the re-

quired conditions: Theorem 4.4 says that the range of

[�] is really Object(�

R!

), and Theorem 4.5 that the

mapping preserves all possible reduction sequences.

Theorem 4.4 Let � 2 Context(�

RC

), M;N 2

Term(�

RC

).

If � `

�

RC

M : N then � (�) `

�

R!

[M] : � (N).

Theorem 4.5 Let M;M

0

2 Term(�

RC

). If M !

R�

M

0

then [M]!

R�

[M

0

].

Using the previous theorems we can now easily

prove the main result of this section.

Theorem 4.6 !

R�

-strong normalization of �

R!

implies !

R�

-strong normalization of �

RC

.

5 Modularity of Con
uence

For strongly normalizing relations, local con
uence

is equivalent to con
uence (Newman's Lemma [22]).

So, to prove con
uence for !

R�

in �

RC

, it is enough

to prove local con
uence. The following lemmas show

that the con
uence of FOR for algebraic terms trans-

fers to �

RC

-terms, and that for the class of higher

order rewrite systems which we consider, the absence

of critical pairs implies con
uence (note that this is

not true for arbitrary higher-order rewrite systems, as

shown in [23]).

Lemma 5.1 If FOR is con
uent on the set of alge-

braic terms of �

RC

then !

FOR

is locally con
uent on

�

RC

.

Lemma 5.2 Let HOR be a higher order rewrite sys-

tem satisfying the general schema. If there is no crit-

ical pair, then !

HOR

is con
uent on �

RC

.

Now using the previous lemmas we can prove that

!

R�

is locally con
uent.

Theorem 5.3 (Local Con
uence of !

R�

in �

RC

)

If FOR is con
uent over the set of algebraic terms,

and HOR does not introduce critical pairs then !

R�

is locally con
uent in �

RC

.

For example, the class of higher order rewriting

systems de�ning higher order functions by primitive

recursion (structured recursion) on �rst order data

structures, verify the required hypothesis and then

!

R�

is con
uent in this case.

6 Conclusions

We have extended the Calculus of Constructions

with algebraic types and rewrite rules. Our sys-

tem is closely related to the Calculus of Construc-

tions with inductive types (CCI) de�ned by Th. Co-

quand and C. Paulin-Mohring [13], since CCI can be

seen as an extension of the Calculus of Constructions

with a particular class of higher order rewrite rules.

The strong normalization of CCI was recently proved

by B. Werner [27]. The problem of extending the

CCI with pattern-matching de�nitions was studied

by Th. Coquand in [11]. In particular, in [11] there

is a notion of recursive schema ensuring strong nor-

malization, and rewrite rules are assumed critical-pair

free. In our framework these restrictions apply only to

method has been used by Harper, Honsell and Plotkin

[19] to obtain SN of their system LF (roughly cor-

responding to �

P

) using SN of simply typed lambda

calculus (corresponding to �

!

).

The translation for proving �

^R

j= SN) �

R!

j=

SN is nothing but a type-erasing function. For its de�-

nition and the proof of reduction-preservation we refer

to [3].

The translation and the reduction preservation

proof for �

R!

j= SN) �

RC

j= SN will be described

below.

4.1 �

R!

j= SN) �

RC

j= SN

The translation from terms in �

RC

to terms in �

R!

is a simple generalization of that provided by Geuvers

and Nederhof in [17] to prove strong normalization for

�

C

. Geuvers and Nederhof's translation can be seen

as a higher order version of the map de�ned by Harper,

Honsell and Plotkin in [19].

As in [19] and [17], it is not possible here to de�ne

a reduction-preserving map [�] such that

� `

�

RC

M :A) [�] `

�

R!

[M]:[A]

i.e. [�] cannot work uniformly on all the terms of �

RC

.

One is then forced to de�ne another map � (�) from

kinds and constructors to types and to prove that

� `

�

RC

M :A) � (�) `

�

R!

[M]:� (A):

Since also � cannot work uniformly on constructors

and kinds, in its de�nition we shall use another map,

� : f2g[Kind(�

RC

)! Kind(�

R!

) such that ifM is a

constructor of kind k in �

RC

then � (M) is a construc-

tor of kind �(k) in �

R!

. �(k) is just the �

R!

-kind

obtained by erasing from k all type dependencies.

De�nition 4.1 The map � : f2g [Kind(�

RC

) !

Kind(�

R!

) is inductively de�ned by:

1. �(?) = �(2) = ?

2. �(��:M:N) = �(M) ! �(N) if ��:M:N is

formed by (2;2)

3. �(�x:M:N) = �(N) if �x:M:N is formed by

(?;2).

The de�nition by cases is correct by Lemma 3.5.

Now, we choose one of the variables of V ar

2

to

act as a �xed constant, i.e. it will not be used as a

bound variable in an abstraction. This variable will

be denoted by 0.

De�nition 4.2 The map � : f2g [Kind(�

RC

) [

Constr(�

RC

)! Term(�

R!

) is inductively de�ned by:

1. � (?) = � (2) = 0 : ?

2. � (�) = � if � is a variable.

� (s) = s if s 2 S.

3. � (��:M:N) = ��: �(M):� (M) ! � (N) : ? if

��:M:N is formed by (2;2) or (2; ?).

� (�x:M:N) = �x: � (M):� (N) if �x:M:N is

formed by (?;2) or (?; ?).

4. � (��:M:N) = ��: �(M):� (N) if ��:M:N is

formed by (2;2).

� (�x:M:N) = � (N) if �x:M:N is formed by

(?;2).

5. � (MN) = � (M)� (N) if MN is formed by (2;2).

� (MN) = � (M) if MN is formed by (?;2).

The de�nition by cases is correct by Lemma 3.5.

In order to map Context(�

RC

) into Context(�

R!

)

we choose for each variable � 2 V ar

2

a connected

variable x

�

2 V ar

?

, such that no two variables of

V ar

2

are connected to the same variable of V ar

?

. We

extend now the map � in such a way that it acts also

on Context(�

RC

) yielding elements of Context(�

R!

):

1. Let A 2 Kind(�

RC

) [Type(�

RC

).

� (x : A) = x : � (A) if x 2 V ar

?

.

� (� : A) = � : �(A); x

�

: � (A) if � 2 V ar

2

.

2. Let � = hu

1

: A

1

; u

2

: A

2

; : : : ; u

n

: A

n

i 2

Context(�

RC

).

� (�) = h0 : ?; d :?; � (u

1

: A

1

); � (u

2

:

A

2

); : : : ; � (u

n

: A

n

)i.

The reason for putting 0 : ? and d :?� ��: ?:�

in the context is that in the following de�nition of

the map [�] on terms of �

RC

it will be necessary to

have a canonical inhabitant for each type and kind.

If � (�) `

�

R!

B : ? or � (�) `

�

R!

B : 2, we want

� (�) `

�

R!

c

B

: B for a c

B

which does not depend on

the structure of �.

Now, if � (�) `

�

R!

B : ? we shall put c

B

� dB and

if � (�) `

�

R!

B : 2, a canonical inhabitant of B is

inductively de�ned by

1. If B � ? then c

?

= 0

2. If B � k

1

! k

2

then c

k

1

!k

2

= �� : k

1

:c

k

2

.

Then the systems of the �R-cube are strongly normal-

izable w.r.t. !

R�

.

The rest of the paper will be devoted to the proof of

the main theorem. Since all the systems of �R-cube

are subsystems of �

RC

the proof of the main theorem

will be given for �

RC

.

3 Metatheory of the �R-cube

In this section we will deal with the main syntac-

tical properties of �

RC

that will be used in the proof

of Theorem 2.11. The proofs of some of them are

straightforward extensions of the corresponding proofs

for the �-cube, but other properties, like Subject Re-

duction, require the development of some technical

machinery.

It is easy to show Subject Reduction for !

r

:

Proposition 3.1 (Subject Reduction Lemma

for rewriting, SR

R

)

For � a context, P; P

0

and D terms and r 2 R,

� ` P :D & P !

r

P

0

) � ` P

0

:D:

It turns out that Subject Reduction for � is a much

harder nut to crack. The standard proof is by induc-

tion on the derivation. Here we run into a problem

when we consider the base case:

� ` �x:C:M : �x:A:B � ` N : A

� ` (�x:C:M)N : B[N=x]

with (�x:C:M)N !

�

M [N=x] and we want to show

that � ` M [N=x] : B[N=x]. By Stripping we con-

clude that � ` �x:C:M : �x:C:D with �x:C:D =

R�

�x:A:B; but we cannot conclude from this thatC =

R�

A and D =

R�

B, because we do not have the Church-

Rosser property.

Following [15] and [16], we solved this problem

by showing �rst the commutativity of weak-head-

reduction and �-reduction, and then the commuta-

tivity of weak-head-reduction and R-reduction. We

also proved that we have postponement of R-reduction

with respect to weak-head-reduction on types and

kinds. Using this properties we can prove the lemma:

Lemma 3.2 If �x:A:C =

R�

�x:B:D and all the

terms on the reduction-expansion-path from �x:A:C

to �x:B:D are types or kinds, then �x:A:C =

R�

�x:B:D via a path that only uses �-terms.

Corollary 3.3 If �x:A:C =

R�

�x:B:D, then A =

R�

B and C =

R�

D.

Proposition 3.4 (Subject Reduction for �) For

� and �

0

contexts, P; P

0

and D terms,

� ` P : D & P �

�

P

0

) � ` P

0

: D

� ` P : D & ��

�

�

0

) �

0

` P : D:

Proof By induction on the derivation one proves

the statement for a one step reduction. The only

interesting case is when the last rule is (app) and

P � (�x:A:B)C, P

0

� B[C=x]. We then use the

fact that �x:A:C =

R�

�x:B:D implies A =

R�

B and

C =

R�

D, which is what the previous Corollary states.

2

From Propositions 3.1 and 3.4 we obtain the Sub-

ject Reduction for !

R�

.

The following lemma will be used in the following

section.

Lemma 3.5 (Uniqueness of formation) Let �

and �

0

be contexts and B a term.

B formed by (p

1

; p

2

) in � & B formed by (p

0

1

; p

0

2

) in

�

0

implies p

1

� p

0

1

; p

2

� p

0

2

:

4 The proof of the Main Theorem

From now on, when dealing with a set R of rewrit-

ing rules, we shall implicitely assume conditions 1.

and 2. of the Main Theorem (2.11) to be satis�ed.

� j= SN will denote the fact that system � is strongly

normalizable.

The proof of the Main Theorem consists in three

main steps

� �

^R

j= SN

� �

^R

j= SN) �

R!

j= SN

� �

R!

j= SN) �

RC

j= SN

where system �

^R

is a type assignment system con-

sisting in the extension of the intersection system of

[5] [10] with a set R of rewriting rules.

For �

^R

j= SN we refer to [2], where a proof based

on the Tait-Girard computability predicate method is

given.

The proofs of the other two steps are based instead

on a method that, together with that of Tait-Girard,

is among the most used in proofs of strong normaliza-

tion: the method of reduction-preserving translations.

The implications are proved by providing a transla-

tion from the terms of the former system to the terms

of the latter such that reductions are preserved, i.e.

reducible terms are mapped to reducible terms. This

�-cube. We will denote by �

R

a generic system of the

�R-cube.

Some systems of the �R-cube are already present

in the literature. In particular, when HOR is empty,

i.e.we have only �rst-order rewriting, �

R!

is the sys-

tem studied in [7] and [24], while �

R2

is equivalent to

the system de�ned by Breazu-Tannen and Gallier in

[8]. The systems of [20] correspond to �

R!

and �

R2

.

We have already mentioned in the introduction which

results were proved for these systems.

Now that we have de�ned the �R-cube, we can say

what is an algebraic term (in �) in the �R-cube (the

notion of algebraic term used to de�ne it was for the

�-cube).

De�nition 2.8 An algebraic term (in �) in the

�R-cube is an algebraic pseudoterm such that � `

R�

t : A and

8x 2 FV (t):[x : B 2 �) B =

R�

� 2 T

S

]:

Moreover each occurrence of function symbols has to

be saturated in t.

We are interested in the strong normalization prop-

erty for the systems of the �R-cube. However, if un-

restricted terminating higher-order rewrite rules are

considered it can be easily shown that this property

fails. Then, following [20], we consider higher-order

rules that always terminate on algebraic terms thanks

to their structure: a generalization of primitive recur-

sion called general schema.

Higher order rewrite rules satisfying the general

schema are of wide use in the practice of higher-order

rewriting and can be considered as de�nitions of new

functionals of a language.

De�nition 2.9 (The general schema [20])

A higher-order rewrite rule r : t ! t

0

satis�es the

general schema w.r.t.FOR if it is of the form

F

~

l[

~

X;~x]

~

Y ! v[(F ~r

1

[

~

X;~x]

~

Y);: : : ; (F ~r

m

[

~

X;~x]

~

Y);

~

X; ~x;

~

Y]

where

~

X and

~

Y are sequences of higher-order variables

and ~x is a sequence of �rst-order variables, and such

that

1.

~

X �

~

Y

6

2. F is function symbol that can appear neither in

~

l; ~r

1

; : : : ; ~r

m

, nor in the rules of FOR, and its oc-

currences in v are only the ones explicitly indi-

cated

6

Note that this condition ensures that F

~

l[

~

X;~x]

~

Y is

rewritable.

3.

~

l; ~r

1

; : : : ; ~r

m

are terms of sort type

4. 8i 2 [1::m],

~

l >

mul

~r

i

(where < denotes strict

subterm ordering and >

mul

denotes the multiset

extension of >)

A set HOR of higher-order rewrite rules satis�es the

general schema (w.r.t. FOR) if each rule r 2 HOR

satis�es the general schema and there are not mutually

recursive de�nitions.

Some of the conditions given in the de�nition of

the general schema can be loosened. The condition

~

X �

~

Y could be removed by reasoning on a trans-

formed version of F , while mutually recursive de�ni-

tions can be managed by introducing product types

and packing them together in the same product. Al-

though restricted, the general schema is interesting

from a practical point of view: it allows the intro-

duction of functional constants of higher-order types

by primitive recursion on a �rst-order data structure.

We refer to [20] for examples and applications of the

general schema.

A restriction is also to be imposed on the �rst-order

rewrite rules: FOR must be non-duplicating.

De�nition 2.10 A �rst-order rewrite rule r : t ! t

0

is non-duplicating

7

if for any variable x the number of

its occurrences in t is less than or equal to the number

of its occurrences in t

0

. A set of rewrite rules is non-

duplicating if each of them is so.

The restriction to non-duplicating �rst-order rules

is necessary to get strong normalization also if we con-

sider algebraic terms only (otherwise we could easily

code Toyama's example of non-termination [26]). In

[25] it was shown that strong normalization is a modu-

lar property of disjoint unions of non-duplicating �rst-

order term rewriting systems. In practice, however,

the restriction to non-duplicating rules is not a real

constraint, since most implementations of rewrite sys-

tems use sharing, and shared-reductions are always

non-duplicating.

We can now state our main result.

Theorem 2.11 (Main Theorem) Let R be a set of

rewrite rules such that

1. FOR is non-duplicating and �rst-order algebraic

terms

8

are strongly normalizable w.r.t. !

FOR

2. HOR satis�es the general schema (w.r.t. FOR).

7

Also called conservative in the literature.

8

By Lemma 2.3 we can avoid referring to a context.

is not a real restriction, since all �rst-order terms and

higher-order terms of a relevant class satisfy it. We

will call such terms \rewritable".

De�nition 2.4 A term t is rewritable if it is alge-

braic in some context � and for any x 2 FV (t) there

exists a subterm fP

1

: : : P

k

of t such that f 2 F and

P

j

� x for some 1 � j � k.

We can now use the notion of rewritable term to

de�ne that of rewrite rule.

De�nition 2.5 A rewrite rule r is a pair ht; t

0

i, such

that t; t

0

are algebraic terms (for some contexts), t is

rewritable

3

, FV (t

0

) � FV (t), and, for any context �

and pseudoterm A, � ` t : A) � ` t

0

: A: A

rewrite rule will be denoted by r : t! t

0

:

A �rst-order rewrite rule is a rewrite rule r : t! t

0

where both t and t

0

are �rst-order algebraic terms. A

higher-order rewrite rule is a rewrite rule which is not

�rst-order. We will generalize the notion of rewrite

rule by allowing also �-abstractions in the right-hand

side. We have then �-higher-order rewrite rules

4

.

Given a set R of rewriting rules, we denote by

FOR and HOR the subsets of �rst-order and higher-

order rules of R, respectively. A rewrite rule induces

a rewriting relation on pseudoterms as follows.

De�nition 2.6 Let M and N be pseudoterms.

M !

r

N i� there exists a rewrite rule r : t ! t

0

,

a context C[] and a substitution ' such that M �

C[t'] and N � C[t

0

']. �

r

denotes the re
exive and

transitive clusure of !

r

.

If R is a set of rewrite rules we de�ne

M !

R

N , 9r 2 R :M !

r

N

and

M !

R�

N , M !

R

N _ M !

�

N:

Once one speci�es a set S of sorts, a signature F

and a set R of rewriting rules, it would seem that to

de�ne the algebraic extension of the �-cube speci�ed

by hS;F ; Ri, it su�ces, besides the additional axioms

for sorts and function symbols given before, to replace

the rule (conv) of the pure �-cube by the following one

� ` A : B � ` B

0

: p B =

R�

B

0

� ` A : B

0

3

This condition subsumes the usual condition \t not a vari-

able" for rewrite rules.

4

The notion of �-higher-order rewrite rule does not match

the usual notion of rewrite rule, being more general. We intro-

duced it since the result we will obtain holds also for a particular

class of such rewrite rules.

where =

R�

is the least congruence containing !

R�

.

This, however, would not work. In the pure cube

if we have A =

�

B, then the Church-Rosser prop-

erty of =

�

, together with the property of subject-

reduction, ensures that A and B are always equal via

�-reductions and �-expansions that remain inside the

set of well-typed terms. It is easy to realize, however,

that we cannot rely, in general, on the Church-Rosser

property for =

R�

Therefore we cannot consider =

R�

in the (conv) rule. We have instead to consider the

R�-reduction relation.

The complete de�nition of algebraic extension of

the �-cube runs now as follows.

De�nition 2.7 (The �R-cube) Let S = fs

1

; s

2

: : :g

be a set of sorts, F = ff

1

; f

2

; : : :g a signature on S

and R a set of rewriting rules

5

.

The �hS;F ; Ri-cube (�R-cube for short) is de�ned by

adding the following axioms to the axioms of the �-

cube

(alg1) ` s : ? for any s 2 S

(alg2) ` f : � for any f 2 F

�

and by replacing the following rule for the (conv)

rule

(red

R�

)

� ` M : A � ` B : s

� ` M : B

A!

R�

B or B!

R�

A

The eight systems of the �R-cube will be called

�

R!

, �

R2

, �

RP

, �

R!

, �

RP2

, �

R!

, �

RP!

and �

RP!

(or �

RC

).

Then, graphically the �R-cube turns out to be as

follows

�

R!

6

-

�

�

�>

�

R
!

6

-

�

R2

-

�

�

�>

�

R!

-

�

RP

�

�

�>

6

�

RP
!

6

�

RP2

�

�

�>

�

RC

All the de�nitions which are not a�ected by the

introduction of the algebraic features, like that of

kind, object and so on, remain the same as for the

5

Recall that the notion of rewriting rule is independent from

contexts and systems.

2 Adding Algebraic Rewriting to the

�-cube

The �-cube is a coherent collection of eight type

systems. Each system (generically denoted by �) is

placed on a vertex of the cube in a way that geomet-

rically exploits the possible \dependencies" between

types and terms. Each of the possible directions in

the three dimensional space in which the cube is cor-

responds to a particular dependency.

As said in the introduction, we wish to modify the

de�nition of the �-cube in order to have also algebraic

features. We begin by considering a denumerable set

S of sorts: S = fs

1

; s

2

; : : :g. The elements of S denote

algebraic base types. So, �rst of all, we add to the rules

of the cube the following axiom: (alg1) ` s

i

: ?, for

each s

i

2 S. We de�ne now, by induction, a set of

algebraic types.

De�nition 2.1 (Algebraic types) The set T

S

of

algebraic types on S is inductively de�ned as follows:

� If s 2 S then s 2 T

S

� If �; � 2 T

S

then �x:�:� 2 T

S

We will call �rst-order algebraic types the elements

�

1

! : : : ! �

n

! � 2 T

S

such that �; �

i

2 S (1 �

i � n). A context � = hx

1

:A

1

; : : : ; x

n

:A

n

i is called

algebraic if A

i

2 T

S

(1 � i � n).

The next step is to consider, for each algebraic type,

a set of function symbols of that type, i.e. a signature

F =

[

�2T

S

F

�

, where F

�

denotes the set of function

symbols of type � . We assume F

�

\F

�

0

= ; if � 6� �

0

.

Each function symbol f in F is assumed to have an

arity which, when it will be necessary, will be denoted

by superscripts (f

n

)

1

. The introduction of the sig-

nature is naturally expressed in the framework of the

cube by adding, for each f 2 F

�

, the following ax-

iom: (alg2) ` f : �. A function symbol f

m

is

called �rst-order if it has a �rst-order algebraic type

s

1

!; : : : ; s

n

! s and n � m. Function symbols which

are not �rst-order will be called higher-order .

We have now to extend the notion of pseudoterm

with sorts and function symbols, i.e. pseudoterms are

de�ned by

T ::= x j f j s j ? j 2 j TT j �x:T:T j �x:T:T

1

The motivation for the introduction of arities is that a sym-

bol f with type s

1

! : : :! s

n

! s could be otherwise consid-

ered, at the same time, �rst- and higher-order. Arities ensure

that such ambiguities cannot arise.

where f and s range over F and S, respectively. In-

tuitively, ? and 2 denote respectively the set of types

and kinds. The set f?;2g will be called PK.

A function symbol f

n

is said to be saturated in

a pseudoterm M if any occurrence of its appears in

subterms of the form fP

1

: : :P

m

with m � n.

We have now to de�ne the notion of algebraic term,

i.e. the natural translation of the notion of term of

term rewriting systems. This notion has to be de�ned

in the setting of the �-cube since its algebraic exten-

sion is being de�ned.

De�nition 2.2 (Algebraic Terms) (i)

A pseudoterm is algebraic if it is formed only by

variables and function symbols of the signature.

(ii) An algebraic term in � (in a system �), for

� 2 Context(�), is an algebraic pseudoterm t

such that � `

�

t : A, any f 2 F is saturated

in t, and

8x 2 FV (t):[x : B 2 �) 9� 2 T

S

:B =

�

�]:

(iii) A �rst-order algebraic term t (in �) is an alge-

braic term (in �) such that any f 2 F occurring

in t is �rst-order and there is no subterm of t of

the form xP .

It is easy to see that the � of (ii) of the above de�ni-

tion is unique. Notice that it is not possible to speak

of algebraic terms independently of contexts. How-

ever, if we restrict to �rst-order algebraic terms we

can avoid contexts, as the following lemma shows.

Lemma 2.3 In any system � , if t is a �rst-order

algebraic term in � (and t is not a variable) then for

any �

0

such that �

0

` t : A, t is algebraic in �

0

.

We will now de�ne the notion of rewrite rule and on

top of that the notion of rewrite relation. A rewrite

rule will be a pair of algebraic terms. Since we are

going to use the induced rewrite relation as part of

the de�nition of term (in the conversion rule), then,

in order not to create a circularity, we will de�ne it on

pseudoterms

2

. Dealing with pseudoterms the context

� turns out to have no sense, so we will impose that

r : t ! t

0

is a rewrite rule only if, for any context �,

t is algebraic in � whenever it is typable in it. This

2

Of course one could de�ne the reduction relation on terms

of the algebraic extension of the �-cube simply by stratifying

its de�nition, starting from the �-cube and de�ning the rule

(conv) for the level i using the rewrite relation de�ned at level

i� 1. The �nal system would then be the limit of such a chain

of systems. Our choice is however motivated, with respect to

this one, by its simplicity.

on the languages the interactions between these com-

putational models raise several problems, as shown in

[21] and [14]. For typed languages (typed versions of

�-calculus and typed term rewriting systems) things

work out nicely. In [8] and [24] it is shown that the sys-

tem obtained by combining a terminating �rst-order

many-sorted term rewrite system with the second or-

der typed �-calculus is again terminating with respect

to �-reduction and the algebraic reductions induced by

the rewrite rules, i.e. strong normalization is a mod-

ular property in this case. The same result is proven

for con
uence in [9]. In [20] both results are extended

to combinations of �rst- and higher-order rewriting

systems with second order �-calculus, under certain

conditions on the form of the rewrite rules.

The question that naturally arises is whether such

a nice interaction between typed �-calculi and alge-

braic rewriting is independent of the power of the type

discipline. More precisely, the question is whether the

existing results extend to higher-order type disciplines

such as the Calculus of Constructions of Coquand and

Huet [12]. Even more, one could wonder if such inter-

action is \well-behaved" also in case one considers not

only �rst-order algebraic rewriting, but the powerful

form of higher-order algebraic rewriting de�ned in [20]

as well. Indeed, considering only �rst-order algebraic

rewriting, this problem has already been addressed in

[1]. A strong restriction was however imposed on the

de�nition of the combined system: in the conversion

rule only �-conversion (=

�

) was considered as equal-

ity. So, even if there was a rewrite rule x+ 0 ! x in

the system, two types of the form P (x) and P (x+ 0)

were not considered to be the same (where P is a type

depending on natural numbers). Such a choice was

motivated mainly by the essential use of the property

of con
uence in the proof of the modularity of strong

normalization: con
uence does not hold in general for

R�-equality, where R is the given set of �rst-order al-

gebraic rules.

In this paper we extend the Calculus of Construc-

tions, adding not only �rst- but also higher-order al-

gebraic rewriting, and considering in the type conver-

sion rule (conv) the R�-equality generated by the al-

gebraic reductions together with �-reduction. Consid-

ering R�-equality, a proof of strong normalization can

no longer rely on the con
uence property. Actually,

also other properties of the metatheory of the system,

like Subject Reduction, which in the case of the pure

Calculus of Constructions are proven using con
uence,

will have to be proven independently of con
uence in

this extension.

In fact, using R�-equality in (conv) even the de�-

nition of the system is more involved. Indeed the rule

(conv) is part of the de�nition of the terms of the sys-

tem and one cannot de�ne a notion of R�-equality to

be used in the rule unless one knows what the terms

are. We have then to cope with a circularity, which can

be solved in two ways, either by de�ning the system

by levels, starting from the pure Calculus of Construc-

tions, or by de�ning algebraic rewriting on terms of the

pure calculus enriched with algebraic constants, and

using this relation on pseudoterms in the rule (conv).

The second solution, to be better discussed later, is

the one we have chosen in the present paper where,

for sake of uniformity, we provide a de�nition of the

extension with �rst- and higher-order (in the sense of

[20]) algebraic rewriting of all the systems of the so-

called �-cube [6], [4]. This extension will be called

algebraic-�-cube (�R-cube for short).

The main result we prove for the systems of the

�R-cube is the modularity of the strong normaliza-

tion property, i.e. that the systems are strongly nor-

malizing in case the �rst-order algebraic rules are so

on algebraic terms (the higher-order rules we will use

are strongly normalizing because of their structure).

As said before, we had to cope with the problem

of not having at hand the property of con
uence. We

solved such a problem by extending some technical re-

sults devised in [15] (see also [16]). We prove strong

normalization in three steps. By means of a reduc-

tion preserving translation we prove strong normal-

ization of the extended Calculus of Constructions to

be implied by the same property of system �

R!

(the

extended polymorphic typed �-calculus of order !).

The strong normalization property of this last system

was proven in [3] by a reduction preserving transla-

tion, showing it to be implied by the same property of

system �

^R

(a type assignment system for �-calculus

with intersection types and algebraic rewriting), which

in turn was proven strongly normalizable in [2].

Finally, we will prove that local con
uence is a mod-

ular property provided that the higher-order rules do

not introduce critical pairs. This, and the previous

strong normalization result, imply the modularity of

con
uence in the systems of the �R-cube.

We assume the reader familiar with the basic no-

tions and notations of Pure Type Systems and the

�-cube as presented in [6], [16], [4]. The algebraic ex-

tension of the �-cube will be discussed in Section 2.

Section 3 will be devoted to the metatheory of the

�R-cube. We will then outline the strong normaliza-

tion proof in Section 4. In Section 5 we prove the

modularity of con
uence. Section 6 contains the con-

clusions.

Modularity of Strong Normalization and Con
uence in the

algebraic-�-cube

Franco Barbanera Maribel Fern�andez

Dipartimento di Informatica CNRS

Universita' di Torino Universit�e de Paris-Sud

Corso Svizzera 185, 10149 Torino 91405 Orsay Cedex

Italy France

barba@di.unito.it maribel@lri.fr

Herman Geuvers

Faculty of Mathematics and Informatics

Catholic University of Nijmegen

Toernooiveld 1, 6525 ED Nijmegen

The Netherlands

herman@cs.kun.nl

Abstract

In this paper we present the algebraic-�-cube, an ex-

tension of Barendregt's �-cube with �rst- and higher-

order algebraic rewriting. We show that strong nor-

malization is a modular property of all systems in the

algebraic-�-cube, provided that the �rst-order rewrite

rules are non-duplicating and the higher-order rules

satisfy the general schema of Jouannaud and Okada.

This result is proven for the algebraic extension of the

Calculus of Constructions, which contains all the sys-

tems of the algebraic-�-cube.

We also prove that local con
uence is a modular

property of all the systems in the algebraic-�-cube, pro-

vided that the higher-order rules do not introduce crit-

ical pairs. This property and the strong normalization

result imply the modularity of con
uence.

1 Introduction

Many di�erent computational models have been de-

veloped and studied by theoretical computer scien-

tists. One of the mainmotivations for the development

�

This research was partially supported by ESPRIT Basic

Research Action \TYPES".

of such models is no doubt that of isolating particu-

lar aspects of the practice of computing, in order to

better investigate them, so allowing either to tune ex-

isting programming languages or to devise new ones.

However, the study of computational models cannot

exploit all its possibilities to help the development of

actual computing tools unless also their interactions

and possible (in)compatibilities are investigated. In

this framework, many research e�orts have been de-

voted in the last years to the study of the interac-

tions between two closely related models of compu-

tation: the one based on �-reduction on �-terms and

the one formalized by means of rewrite rules on alge-

braic terms. These particular models are relevant for

the study of two aspects of programming languages:

higher-order programming and data types speci�ca-

tion. The combination of these two models has also

provided an alternative in the design of new program-

ming languages: the algebraic functional languages

[20]. These languages allow algebraic de�nitions of

data types and operators (as in equational languages

like OBJ) and de�nition of higher-order functions (as

in functional languages like ML), in a uni�ed frame-

work.

The study of systems based on �-calculi and alge-

braic rewriting has been carried out both in untyped

and typed contexts. If no type discipline is imposed

1

