
On the Church-Rosser Property for Expressive Type Systems and

its Consequences for their Metatheoretic Study

�

Herman Geuvers

y

Faculty of Mathematics and Computer Science

Technological University of Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Benjamin Werner

z

Department of Computer Science,

Cornell University,

Ithaca NY, 14 853, USA

Projet Coq,

INRIA{Rocquencourt BP 105,

78 153 LE CHESNAY cedex, France

Abstract

We consider two alternative de�nitions for the con-

version rule in Pure Type Systems. We study the con-

sequences of this choice for the metatheory and point

out the related implementation issues. We relate two

open problems by showing that if a PTS allows the

construction of a �xed point combinator, then Church-

Rosser for ��-reduction fails. We present a new for-

malization of Russell's paradox in a slight extension of

Martin-L�of's inconsistent theory with Type:Type and

show that the resulting term leads to a �x-point con-

struction. The main consequence is that the corre-

sponding system is non-conuent. This example shows

that in some typed �-calculi, the Church-Rosser proof

for the ��-reduction is not purely combinatorial any-

more, as in pure �-calculus, but relies on the normal-

ization and thus the logical consistency of the system.

1 Introduction

This paper deals with the syntactic study of ex-

pressive Type Systems, i.e. typed �-calculi which can

be used to model and formalize mathematical reason-

ning. We present new results concerning two open

problems: the validity of the Church-Rosser property

for Pure Type Systems with �-conversion and the ex-

istence of a �xed-point operator in inconsistent Type

Theories, especially in Martin-L�of's original system

with Type:Type.

While these results might seem quite specialized, we

will show how they actually shed light on the complex

links between three essential features of Type Systems;

namely itemdepth >3 toodeep

the exact de�nition of the system, especially the choice

of the conversion or type equality rule

�

This research was partially supported by ESPRIT Basic

Research Action \TYPES".

y

herman@info.win.tue.nl

z

Benjamin.Werner@inria.fr

the metatheoretic study of the system, i.e. the manner

and the order of proof of the the system's fundamen-

tal properties (normalization, conuence, consistency

: : :)

the implementation issues, or more precisely, the pos-

sibility of building an e�cient and realistic computer

implementation of the considered theory.

There are several di�erent ways to describe a sys-

tem of typed � calculus, like, for example, the poly-

morphic �-calculus or the Calculus of Constructions.

Each of these descriptions of the syntax has its own

advantages and disadvantages, depending on what one

wants to do with the system: implement it, study its

denotational semantics or study its meta-theory, for

example. It is important to know that all these dif-

ferent descriptions de�ne the same system. (That is,

they all have the same set of derivable typing judge-

ments.) For a system like the polymorphic �-calculus

- which does not incorporate type dependency - this

question is easily solved. For systems with dependent

types, like the Calculus of Constructions or Martin-

L�of style type theories, the question of equivalence of

the di�erent descriptions of the syntax is rather more

subtle. Here we sketch the situation by giving two

formulations of the collection of Pure Type Systems,

the original one which we call syntactical and is better

suited for implementation and syntactic meta-theory,

and a version with a typed conversion rule which we

call semantical because it is better suited for model

construction and denotational semantics.

We will show how to prove the equivalence between

the two versions of a system. The proof relies very

heavily on the conuence of reduction. It is well-

known that if one restricts oneself to �-conversion,

conuence holds and hence the two presentations are

equivalent. However, if one considers ��-reduction

(and conversion), the situation is much more subtle

because all known proofs of conuence of �� for sys-

tems with dependent types rely on the normalization

property. In other words, normalization has to be

proven independently, and before conuence. And this

makes the already complicated normalization proof

much more tedious. Furthermore, for non-normalizing

systems, conuence of �� is certainly not immediate

and, as we will show, may even be not true. This

last point is important, because it indicates that in

the general case there is no combinatorial proof of the

Church-Rosser property which we could carry on in-

dependently of the logical normalization property.

To prove this last point, we start by showing that,

if a typed �-calculus (of a certain rather general form)

allows the construction of a �xed point operator, then

conuence for ��-reduction cannot hold. It is not yet

known whether one can type a �xed point operator in

any Pure Type System, but we give a small and natu-

ral extension of the system in which `Type' is itself a

type, where a �xed point combinator can be typed. To

do so, we start by de�ning what it means to formalize

Russell's paradox in a typed �-calculus and we give

a necessary condition for this formalization to yield a

typing of a �xed point operator. We �nally propose

a new formalization of Russell's paradox which full-

�lls that condition. Hence, for the considered system,

��-reduction is not conuent.

2 Syntactical versus Semantical ver-

sions of typed � calculi

We now describe the syntactical version of Pure

Type Systems, as it can be found in [Barendregt 1992],

[Geuvers and Nederhof 1991] and the variant with a

��-conversion rule. For these systems the Church-

Rosser property (for ��-reduction) has been discussed

in [Geuvers 1992] (and proved for Pure Type Systems

that are functional and normalizing.) This Church-

Rosser property will play an important role in the

proof of equivalence of the syntactical and the seman-

tical versions of Pure type Systems. The typing rules

of a Pure Type System de�ne how to derive judge-

ments of the form � ` M : A, where � is a sequence

of declarations of variables to types and M and A are

terms. Usually this is done by �rst giving the set of

so called pseudoterms over a speci�c base set, from

which the typing rules then select the typable (or le-

gal) terms. For S some set, the set of pseudoterms

over S, T, is de�ned by

T ::= S jVar j (�Var:T:T) j (�Var:T:T) jTT;

where Var is a countable set of expressions, called vari-

ables. (The dependency of T on S is usually left im-

plicit.) Both � and � bind variables and hence we have

the usual notions of free variable and bound variable.

On T we have the usual notions of �-reduction (�!

�

)

and �-reduction (�!

�

). We adopt from the untyped

� calculus the conventions of denoting the transitive

reexive closure of�!

�

by�

�

and the transitive sym-

metric closure of�

�

by =

�

(and similar for �!

�

and

�!

��

��!

�

[�!

�

).

De�nition 2.1 A Pure Type System with ��-

conversion (PTS

��

) is given by a set S, a set A �

S � S and a set R � S � S � S. The PTS that is

given by S, A and R is denoted by �

��

(S;A;R) and

is the typed lambda calculus with the following deduc-

tion rules.

(sort) ` s

1

: s

2

if (s

1

; s

2

) 2 A

(var)

� ` A : s

�; x:A ` x : A

(weak)

� ` A : s � ` M : C

�; x:A ` M : C

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

3

(s

1

; s

2

; s

3

) 2 R

(�)

�; x:A ` M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� ` M : �x:A:B � ` N : A

� ` MN : B[N=x]

(conv

��

)

� ` M : A � ` B : s

� ` M : B

A =

��

B

In the rules (var) and (weak) it is always assumed

that the newly declared variable is fresh, that is, it

has not yet been declared in �. If s

2

� s

3

in a triple

(s

1

; s

2

; s

3

) 2 R, we write (s

1

; s

2

) 2 R. The equality

in the conversion rule (conv

��

) is the ��-equality on

the set of pseudoterms T.

The elements of S are called sorts, the elements of A

(usually written as s

1

: s

2

) are called axioms and the

elements of R are called rules.

A Pure Type System with �-conversion (PTS

�

) is

also given by a triple (S;A;R), now denoted by

�

�

(S;A;R). The only di�erence with a PTS

��

is that

a PTS

�

has a �-conversion rule:

(conv

�

)

� ` M : A � ` B : s

� ` M : B

A =

�

B

In [Geuvers 1993] a lot of meta-theoretic properties

are proved for these PTS

��

s; in particular:

Proposition 2.2 (Subject Reduction for �, SR

�

)

If � ` M : A and M �

�

M

0

then � `M

0

: A.

An important subclass of all PTSs is the class of

functional ones.

De�nition 2.3 A PTS �(S;A;R) is functional if the

relation A is a function from S to S and the relation

R is a function from S �S to S. (That is, if s : s

0

, s :

s

00

2 A, then s

0

� s

00

and if (s

1

; s

2

; s

3

); (s

1

; s

2

; s

0

3

) 2 R

then s

3

� s

0

3

.)

De�nition 2.4 (Strengthening)

We say that strengthening holds for a PTS

��

, if when

�

1

; x:A;�

2

` M : B and x =2 FV(�

2

;M;B), then

�

1

;�

2

` M : B.

The meta-theory for PTS

��

s is not yet understood

in its full generality. For example, it is not clear

whether strengthening and its consequence, subject re-

duction for �, hold for all these systems. However the

following condition is su�cient for proving these prop-

erties for most well-known systems:

De�nition 2.5 A PTS

��

satis�es ��-preservation of

sorts if � ` A : s, � ` B : s

0

and A =

��

B together

imply that s � s

0

:

Proposition 2.6 (Subject Reduction for �, SR

�

)

For a PTS

��

s verifying 2.5, if � ` M : A and

M �

�

M

0

then � ` M

0

: A.

It can easily be shown that all systems of Baren-

dregt's cube, including the Calculus of Constructions,

more generally all functional normalizingPTSs, as well

as the non-normalizing systems �U

�

; �U and �� ver-

ify 2.5 and thus subject reduction. As already pointed

out, the main di�culty is the Church-Rosser property

which, up to now, can only be proven for normalizing

systems [Geuvers 1992]:

Theorem 2.7 (Church-Rosser for ��) In a func-

tional and normalizing PTS

��

, if � ` M;N : A and

M =

��

N , then 9P [M �

��

P; N �

��

P]: (By sub-

ject reduction, this P is then also of type A in �.)

It should be clear that Church-Rosser is a very de-

sirable property for a PTS

��

. As a matter of fact,

Church-Rosser together with subject reduction imply

that the system in itself is sound:

De�nition 2.8 A PTS

��

is sound if the following

holds. If � ` A;B : s and A =

��

B, then there is

a ��-expansion/reduction path from A to B that re-

mains inside the set of typable terms

�

.

In a sense, soundness of a PTS

��

says that, al-

though the system was de�ned by making use of the

set of pseudoterms, the pseudoterms that are not ty-

pable do not play an essential role in the system. Of

course, this is what we want: the set T was just intro-

duced for obtaining a rather smooth de�nition of the

system, but we really do not want to attach any mean-

ing to the pseudoterms that are not typable. This

also implies that one might construct a denotational

semantics for the system, without having to give an in-

terpretation for those terms that are not typable. Note

however that normalization proofs are much easier if

one can disposes of the soundness condition in the �rst

place.

For the reasons mentioned above, and because

soundness basically says that the relation =

��

can be

read as a typed equality, it is very tempting to impose

soundness in the de�nition of the system. This leads

us to the semantical version of PTSs:

�

A ��-expansion/reduction path from A to B is a sequence

of terms C

0

;C

2

; : : : ; C

n

such that C

0

� A, C

n

� B and 8i <

n[C

i

�!

��

C

i+1

_ C

i+1

�!

��

C

i

].

De�nition 2.9 The semantical version of a PTS

�(S;A;R)) has the following typing rules. First we

have the rules (sort), (weak), (var), (�), (�), and

(app) as for ordinary PTSs. (To denote that we are

in a semantical version we write `

=

in the rules.) The

conversion rule is a typed one:

(conv

=

��

)

� `

=

M : A � `

=

A = B : s

� `

=

M : B

The judgement � `

=

A = B : s is generated by the

rules

(�)

� `

=

�x:A:M : �x:C:D � `

=

N : C

� `

=

(�x:A:M)N = M [N=x] : D[N=x]

(�)

� `

=

�y:A:My : B

� `

=

�y:A:My = M : B

if y =2 FV(M):

There are rules (re), (sym) and (trans) to make it an

equivalence relation and furthermore there are rules

(�

=

), (�

=

) and (app

=

) to make the equality com-

patible with abstraction and application. Finally, the

rules (weak

=

) and (conv

=

) make the equality relation

is closed under extensions of the context and replac-

ing the type by an equal type. We give some of these

rules as illustration. (For the rule (�

=

), assume that

(s

1

; s

2

; s

3

) 2 R.)

(re)

� `

=

M : A

� `

=

M = M : A

(�

=

)

� `

=

A = A

0

: s

1

�; x:A `

=

B = B

0

: s

2

� `

=

�x:A:B = �x:A

0

:B

0

: s

3

(app

=

)

� `

=

M = M

0

: �x:A:B � `

=

N = N

0

: A

� `

=

MN = M

0

N

0

: B[N=x]

(conv

=

)

� `

=

M = M

0

: A � `

=

A = B : s

� `

=

M =M

0

: B

The main problem with these systems, is that it

seems much more di�cult to prove some very ba-

sic properties, especially subject-reduction. More

precisely, there is no known combinatorial proof of

subject-reduction (especially for �). This last property

is quite important in the case of an implementation,

when we need an e�cient algorithm for type-checking.

We �rst describe one method, which is to prove the

equivalence with the syntactical version after having

done the meta-theory of the latter. We discuss alter-

natives at the end of this section.

The main equivalence result is:

Theorem 2.10 For S a PTS

��

for which strengthen-

ing and Church-Rosser hold,

� `M : A

� ` N : A

M =

��

N

)

()

(

� `

=

M : A

� `

=

N : A

� `

=

M = N : A:

It is this result which validates for example the

model construction made by Streicher [Streicher 1991,

Hofmann and Streicher] for the Calculus of Construc-

tions. The proof, even if not too surprising is not

totally trivial, and relatively long. Therefore we only

give an outline of the proof and omit most of the de-

tails.

The proof of the implication from right to left is

straightforward by proving the following lemma.

Lemma 2.11 If strengthening holds for a PTS

��

,

then

� `

=

M : A =) � ` M : A;

� `

=

M = N : A =) � ` M;N : A & M =

��

N:

Proof Note that if � `

=

M = N : A, then M =

��

N

(as pseudoterms). Furthermore, if �

1

; x:B;�

2

` N : C

and �

1

` B

0

: s with B =

��

B

0

, then �

1

; x:B

0

;�

2

`

N : C. The proof is now by simultaneous induction

on the derivation. (Strengthening is only needed to

prove the soundness of the (�)-rule, especially to show

that, if � ` �y:A:My : B, then � ` M : B.) 2

A proof of the implication from left to right in

Theorem 2.10 amounts to constructing a proof of

� `

=

M = N : A from the equality M =

��

N , using

the fact that M and N are typable. This means that

one has to �nd a path fromM to N which remains in-

side the typable terms. It should be clear that subject

reduction and conuence for the syntactical version

are essential properties for this proof. Therefore, we

can only show the equivalence for Pure Type Systems

for which strengthening (and hence subject reduction

for �) and conuence for �� hold.

To prove the equivalence of S and S

=

we introduce

a slightly di�erent version of S, which is better suited

to show the inclusion of S in S

=

.

De�nition 2.12 For S a PTS

��

, the system S

+

is

de�ned by replacing the (app)-rule by the restricted

application rule (app

+

) and the (conv

��

)-rule by the

one-step-conversion rule (1-conv

��

). These two rules

are as follows.

(app

+

)

� `

+

M : �x:A:B � `

+

N :A � `

+

B[N=x]:s

� `

+

MN : B[N=x]

(1-conv

��

)

� `

+

M : A � `

+

B : s

� `

+

M : B

A

1

=

��

B

where A

1

=

��

B stands for one-step-conversion, that

is, A �!

��

B or B �!

��

A.

It is not di�cult to see that the restricted appli-

cation rule does not really put any restriction on the

system. (If � ` �x:A:B : s and � ` N : A, then

B[N=x] is always a typable term.) It is mainly there

to take care that for every derivation of � ` M : A

there is a shorter derivation of � ` A : s for some

sort s, if A is not itself a sort. We state this lemma

explicitly. (The proof is by induction on derivations.)

Sublemma 2.13 Suppose A =2 S. If there is a deriva-

tion of � `

+

M : A of length k, then there is a deriva-

tion of � `

+

A : s of length � k for some s 2 S.

The one-step-conversion rule can be a real restric-

tion if CR

��

is not true in the system. (In S

+

, two

types have the same inhabitants only if they are equal

via a path through the typable terms.) We shall there-

fore assume in the following that CR

��

holds for the

system that we are considering.

Lemma 2.14 If S is a PTS

��

for which strengthening

holds and CR

��

, then

� ` M : A() � `

+

M : A:

Proof Both implications are by induction on the

derivation. The implication from right to left is

straightforward. The implication from left to right

really uses the fact that S j= CR

��

and that subject

reduction holds for �- and �-reduction. (SR

�

follows

from strengthening. See [Geuvers 1993] for details.)

2

Now, if we prove that S

+

is a subsystem of S

=

we

are done. This is the most di�cult part of the proof of

equivalence of S and S

=

(Theorem 2.10). To give the

proof we need the notion of simultaneous reduction,

denoted by))

��

.

De�nition 2.15 Simultaneous ��-reduction,))

��

, is

de�ned on the set of pseudoterms T by x))

��

x, and if

M))

��

M

0

, N))

��

N

0

and A))

��

A, then MN))

��

M

0

N

0

, �x:A:M))

��

�x:A

0

:M

0

and (�x:A:M)N))

��

M

0

[N

0

=x].

We have the following (expected) properties for a

simultaneous reduction:

If M))

��

N; then M �

��

N;

If M �!

��

N; then M))

��

N:

The simultaneous reduction))

��

immediately ex-

tends to simultaneous reduction on contexts by letting

x

1

:A

1

; : : : ; x

n

:A

n

))

��

x

1

:A

0

1

; : : : ; x

n

:A

0

n

if A

i

))

��

A

0

i

for all i � n.

Lemma 2.16 For S a PTS

��

for which strengthening

holds,

� `

+

M : A

�))

��

�

0

M))

��

N

)

=)

(

�

0

`

=

M : A

�

0

`

=

N : A

�

0

`

=

M = N : A:

Proof The proof is by induction on the length of a

derivation of � `

+

M : A, using Sublemma 2.13. 2

This completes the proof of Theorem 2.10.

As mentioned above, the direct study of se-

mantical systems is less well understood. Al-

tenkirch [Altenkirch 1993] proves decidability of typ-

ing for a semantical Calculus of Constructions, but

because he gives no proof of SR

�

, the resulting al-

gorithm has to check the correctness of each reduc-

tion to the detriment of e�ciency

2

. This might

lso be problematic for justifying proof-search algo-

rithms, like [Dowek 1993a]. Another possibility is the

approach of [Coquand 1991], where the reducibility

method is used not only for proving normalization,

but also SR

�

, which allows the derivation of an e�-

cient type-checking algorithm; the counter-part is that

the reducibility proof is more complicated. In this

case, subject-reduction becomes a logical property. It

would be interesting to apply this method to a more

complex system like the Calculus of Constructions.

3 Fixed point operator and Conuence

for ��

It is not at all obvious that all PTSs (the syn-

tactical versions) satisfy conuence for ��. If one

considers �-reduction only, the problem of conuence

is relatively easy, because we have conuence for �-

reduction on the pseudoterms (the set T), that is for

all M;N;P 2 T, if M �

�

N and M �

�

P , then

there is a Q such that N �

�

Q and P �

�

Q. Then,

by subject reduction for � (saying that, if � ` M : A

and M �

�

N , then � ` N : A), one concludes that

conuence holds for the typed terms:

� ` M;N : A

M =

�

N

�

=) 9Q

(

� ` Q : A

M �

�

Q

N �

�

Q

Notation 3.1 This latter property is abbreviated to

CR

�

, where CR

��

of course denotes the same property

for the �� case. We write S j= CR

��

to denote that

��-reduction is conuent in a Type System S and S 6j=

CR

��

to denote the negation of that.

When one considers ��-reduction, this proof breaks

down on the fact that ��-reduction is not Church-

Rosser on T: if A 6=

��

B, then �x:A:(�y:B:y)x �!

�

�x:A:x and �x:A:(�y:B:y)x �!

�

�y:B:y and

these two terms have no common reduct

3

. In

[Geuvers 1992] this counter-example was used in a

positive way, in the form of the following lemma.

2

Actually, Altenkirch mainly uses a slight variation of

this presentation of semantical systems, but which remains

quite similar. Other possible presentations include the one of

[Streicher 1991] (semantical) and of [Dowek et al. 1993] (syn-

tactical). In all these cases however, it remains quite easy to

show the equivalence between the di�erent syntactical (resp.

semantical) presentations.

3

A tempting possibility is therefore to use a presentation

based on untyped abstractions (�x:t instead of �x : T:t). In

[Giannini et al. 1993] the `cube of typed �-calculi' (containing

the Calculus of Constructions) is de�ned in this Curry-style.

Actually such a presentationmakes some sense, but jeopardizes

the decidability of typing (see [Dowek 1993b]). It is therefore

not very useful. Furthermore, it allows terms to be typed that

should not be typable, see [Liquori et al. 93] for an example.

Lemma 3.2 (Domain Lemma) If C[�x:A:M] and

B are in T (i.e. C is a pseudoterm with subterm

�x:A:M), then

C[�x:A:M] =

��

C[�x:B:M]

Proof C[�y:B:(�x:A:M)y] �!

�

C[�x:B:M] and

C[�y:B:(�x:A:M)y] �!

�

C[�x:A:M] where y is any

variable not occurring free in A or M . 2

We will now show that, if a PTS

��

(satisfying some

extra requirements) has a �xed point operator, then

conuence for �� does not hold. The proof of this fact

uses the Domain Lemma 3.2. Let, for the rest of this

section, S be a PTS

��

that contains a speci�c sort �

and furthermore axioms s

0

: � and � : s

1

and rules

(�; �), (s

1

; �), (�; s

0

) and (s

0

; s

0

) for some sorts s

0

; s

1

.

We now want to look at the situation that S has a

�xed point operator.

De�nition 3.3 S has a �xed point operator if there

is a closed term Fix of type ��:� :(�!�)!� such that

Fixf = f(Fixf).

Theorem 3.4 If S has a �xed point operator, then

S 6j= CR

��

.

Proof Let Fix : ��: � :(�!�)!� be the �xed point

operator in S. Let furthermore �; and � be distinct

(type) variables. (So �; ; � : s

0

) Now, de�ne

A � Fixs

0

(�� : s

0

:�!(�!�)!�) : s

0

;

B � Fixs

0

(�� : s

0

:�!(!)!�) : s

0

:

Then A =

�

A!(�!�)!� and B =

�

B!(!)!�.

Now de�ne

M � �y:A:yy : A!(�!�)!�(= A);

N � �y:B:yy : B!(!)!�(= B):

To construct two ��-convertible terms of the same

type that have no common reduct, de�ne

M

0

� MM (�z:�:z) : �;

N

0

� NN (�z::z) : �:

The terms M

0

and N

0

only di�er in their domains

(the type labels in the � abstractions), for the rest

they are exactly the same. Hence M

0

and N

0

are

��-convertible, due to the Domain Lemma 3.2. Fur-

thermore, the part �z:�:z in M

0

and the part �z::z

in N

0

are not a�ected by a possible reduction (they

remain in position), so M

0

and N

0

have no common

reduct. 2

Remark 3.5 The above result holds also for any ex-

tension of S. This means in particular, that if we add

arbitrary recursive types to a polymorphic �-calculus

(like Constructions, F

!

or even F) we immediately

break CR

��

4

.

4

The system F does not strictly respect the above con-

ditions, but adding a primitive �x-point contruct over types

makes the sort s

0

superuous in the proof. More precisely,

in F we have � : s

1

and as rules (�;�) and (s

1

; �). Then for

�; ; � : �, one can de�ne A � ��: � :�!(�!�)!�) : � and

B � ��: � :�!(!)!�) : �, where � represents the primitive

�xed point construct.

In case the system S has type dependency, it

is also possible to construct typable terms Q, Q

1

and Q

2

such that Q �!

�

Q

1

, Q �!

�

Q

2

and

Q

1

and Q

2

have no common reduct. Say we have

the rule (s

0

; s

1

). Take M

0

and N

0

as in the proof

of Theorem 3.4 and let P be a variable of type

�!�. Then �x:PM

0

:(�y:PN

0

:y)x : PM

0

!PM

0

and �x:PM

0

:(�y:PN

0

:y)x �!

�

�x:PM

0

:x and

�x:PM

0

:(�y:PN

0

:y)x �!

�

�y:PN

0

:y.

One example of a system for which Theorem 3.4

applies is �� where the universe of types is itself a

type. (Take both s

0

and s

1

to be �.) It is not known

whether �� has a �xed point operator, hence we can

not conclude from Theorem 3.4 that conuence for

�� is false. In the next section we discuss a slight

extension of �� and show how to type a �xed point

operator in it.

4 Fixed point operator and the Russell

paradox

Our aim is now to exhibit a �xed point combinator

in some Type Theory as \reasonable" as possible, in

order to show that the Church-Rosser property relies

on normalization in the general case. A �xed point

combinator can be used to inhabit any type, and thus

corresponds to the formalization of some mathemat-

ical paradox. There are various studies of the com-

putational behavior of paradoxical terms, especially

in ��; [Meyer and Reinhold 1986] �rst thought they

could build a �xed point on the top of the proof of Gi-

rard's paradox (see [Coquand 1986]), but [Howe 87]

then showed that this only lead to a weaker class of

so-called looping combinators. This is a family of com-

binators Y

0

; Y

1

; Y

2

; : : :, all of type ��: � :(�!�)!�

such that

Y

n

�f = f(Y

n+1

�f):

The work of [Howe 87] was later extended by

[Coquand and Herbelin 1992], who gave a general pro-

cedure for turning a proof of inconsistency into a loop-

ing combinator. So far nobody has succeeded in ex-

hibiting a real �xed point operator.

We now continue by pointing out that Russell's

paradox, because of its \ip-op" structure, is a good

candidate for a formalization of a �xed point opera-

tor. At the end of this section we shall give another

criterion for the existence of a �xed point combinator,

which is the existence of an enumerator.

De�nition 4.1 Let S be a pure type system that con-

tains a speci�c sort � (the sort of propositions) and

furthermore an axiom � : s

1

and rules (�; �), (s

1

; �)

and (s

1

; s

1

) for some sort s

1

(the sort of domains).

1. A representation of the Russell paradox in S consists

of a triple (V; �; comp) such that

` V : s

1

;

` � : V!V!�;

` comp : (V!�)!V;

such that the type

�P :V!� :�x:V:Px$�x(compP)

is inhabited in the empty context.

2. A strong representation of the Russell paradox in

S consists of a tuple (V; �; comp; F;G) such that

(V; �; comp) is a representation of the Russell paradox

in S and

P :V!�; x:V ` F : �x(compP)!Px;

P :V!�; x:V ` G : Px!�x(compP);

such that

F (Gz) = z for arbitrary z:

So F and G together establish the proof of �P :V!�

:�x:V:Px$�x(compP).

In this de�nition and also in the rest of this paper

we freely use the logical connectives$ and & between

types. They are formally de�ned by letting A & B �

��:� :(A!B!�)!�, A$B � (A!B) & (B!A). It

is well-known that the logical rules for the connectives

can be obtained from these de�nitions.

In all the following, let � be a variable of type �; we

write

�

:
T for T ! �. The intuition is that, to show

inconsistency, it su�ces to construct a term of type �

in the context � : �. This is done by `proving' both T

and

�

:
T for some type T . Furthermore, to construct a

�xed point combinator it su�ces to construct a term

M of type � in the context � : �; f : �!� with the

property that M = fM .

The following lemma motivates De�nition 4.1:

Lemma 4.2 If (V; �; comp) is a representation of the

Russell paradox in S, then there is a closed term R of

type V in S for which both

�

:
(�RR) and

�

:

�

:
(�RR)

hold (in the context � : �.)

Proof Let (V; �; comp) be a representation of the Rus-

sell paradox in S. So,�P :V!�:�x:V:Px$�x(compP)

is inhabited. De�ne Russell's paradoxical \set" (the

set of all elements that do not contain themself as an

element) as:

R � comp(�x:V:

�

:
(�xx)) : V:

Then �RR � �R(comp(�x:V:

�

:
(�xx))), which implies

(�x:V:

�

:
(�xx))R, which is equal to

�

:
(�RR). Hence,

�RR implies

�

:
(�RR), and so

�

:
(�RR) holds. Now,

�

:
(�RR) is equal to (�x:V:

�

:
(�xx))R, which implies

�RR, so

�

:

�

:
(�RR) holds. 2

The Lemma immediately implies that a system that

has a representation of the Russell paradox is incon-

sistent. It is interesting to see what a term M with

� : � ` M : � would look like in that case. Let

therefore (V; �; comp) be a representation of the Rus-

sell paradox in S with the terms F and G such that

P :V!�; x:V ` F : �x(compP)!Px;

P :V!�; x:V ` G : Px!�x(compP):

To keep our terms short we de�ne F

0

and G

0

by

F

0

� F [�x:V:

�

:
(�xx)=P;R=x] : (�RR)!

�

:
(�RR);

G

0

� G[�x:V:

�

:
(�xx)=P;R=x] :

�

:
(�RR)!(�RR):

Then terms of type

�

:
(�RR) and

�

:

�

:
(�RR) are

� : � ` �p:�RR:F

0

pp :

�

:
(�RR);

� : � ` �q:

�

:
(�RR):q(G

0

q) :

�

:

�

:
(�RR):

So, a term of type � is

� : � ` (�q:

�

:
(�RR):q(G

0

q))(�p:�RR:F

0

pp) : �:

A term of type ? is now constructed by abstracting

over �.

So, we see that if we have a representation of the

Russell paradox in S, then a term of type ? can be

constructed that is quite close to
. To really be able

to type
 (that is, �nd types A and B such that

(�x:A:xx)(�x:B:xx) is typable in S) we need some

speci�c requirements from the representation of the

Russell paradox. It su�ces that the triple (V; �; comp)

can be chosen in such a way that �x(compP) = Px for

arbitrary x and P . (Then

�

:
(�RR) = �RR and for the

terms F and G above one can just take the identity

and so F

0

= G

0

= Id

�RR

.) It is possible to do with

less than �x(compP) = Px to get a typing for
. In

fact it su�ces to have a strong representation of the

Russel paradox.

Proposition 4.3 If there is a strong representation

of the Russell paradox in S, then there is a �xed point

operator in S. (That is, a closed term Fix of type

��: � :(�!�)!� such that Fix�f = f(Fix�f).)

Proof Let the tuple (V; �; comp; F;G) be a strong rep-

resentation of the Russell paradox in S. Let � be a

variable of type � and f a variable of type �!�. De-

�ne R, F

0

and G

0

as above, so

R � comp(�x:V:(�xx)!�);

F

0

� F [�x:V:

�

:
(�xx)=P;R=x];

G

0

� G[�x:V:

�

:
(�xx)=P;R=x]:

Then F

0

� G

0

= Id
�

:
�RR

and de�ne

!

F

� �p:�RR:f(F

0

pp) :

�

:
�RR;

!

G

� �q:

�

:
�RR:f(q(G

0

q)) :

�

:

�

:
�RR:

Hence !

G

!

F

: � and

!

G

!

F

�

�

f(!

F

(G

0

!

F

))

�

�

f(f(F

0

(G

0

!

F

)(G

0

!

F

)))

= f(f(!

F

(G

0

!

F

))); (using F

0

� G

0

= Id)

= f(!

G

!

F

):

So, the term

Fix � ��: � :�f :�!�:!

G

!

F

is a �xed point operator. 2

Obviously, every inconsistent Pure Type System S

has a representation of the Russell paradox. (Pro-

vided that S contains a sort of propositions �, an

axiom � : s

1

and rules (�; �), (s

1

; �) and (s

1

; s

1

) for

some sort s

1

.) This is the case because, due to in-

consistency, for any triple (V; �; comp) with ` V : s

1

,

` � : V!V!�, ` comp : (V!�)!V , the type

�P :V! � :�x:V:Px$�x(compP) is inhabited in the

empty context: just apply the term of the type ?

(� ��:�:�) to �P :V!�:�x:V:Px$�x(compP). Note

that this will never generate a strong representation

of the Russel paradox, because the term of type ? has

no head-normal form.

It is not known whether there are Pure Type Sys-

tems that have a strong representation of the Russell

paradox. There is however a slight extension of the

Pure Type System �� in which there is a strong rep-

resentation of the Russell paradox, and hence a �xed

point operator. This extension will be discussed in the

next section. The system �� has another nice prop-

erty, which is that the existence of a �xed point op-

erator is equivalent to the existence of a strong repre-

sentation of the Russell paradox:

Proposition 4.4 The PTS ��, or any of its exten-

sions, has a strong representation of the Russell para-

dox i� it has a �xed point combinator.

Proof The implication from left to right holds by

Proposition 4.3. For the implication from right to

left, let Fix : ��:(�!�)!� be a �xed point operator

in ��. De�ne V � Fix(��: � :�!�), so V = V!�.

Now we can take � � �xy:V:yx : V!V!� and

comp � Id

V

: V!V!�. This yields a strong rep-

resentation of the Russell paradox, because

P :V!�; x:V ` Id

Px

: Px!�x(compP);

P :V!�; x:V ` Id

�x(compP)

: �x(compP)!Px: 2

5 A type system that does have a

Fixed point operator

In this section, let S be a PTS that contains a sort

�, an axiom � : s

1

and rules (�; �), (s

1

; �), (s

1

; s

1

)

and (�; s

1

) for some sort s

1

. So, in addition to what is

required in De�nition 4.1, S must have the rule (�; s

1

).

This rule introduces type dependency into the system:

If A : � then we can have P : A!� and hence Pt : �

for t : A, so the type Pt depends on a term t (note

that, for example, the Calculus of Constructions and

�� satisfy these requirements). We extend S by the

following constants and typing rules:

eq

= : �A:�:A!A!�

re : �A:�:�x:A:x

eq

=

A

x

elim : �A:�:�x; y :A:�P :A!� :Px!(x

eq

=

A

y)!Py

K : �A:�:�x:A:�P :(x

eq

=

A

x)!� :

P (re

A

x)!�q :x

eq

=

A

x:Pq

where (as in the following), x

eq

=

A

y is in�x notation for

(

eq

= A x y) and re

A

, elim

A

and K

A

stand respectively

for re A, elim A and K A. Furthermore, we extend

the conversion relation by:

elim

A

xyPq(re

A

z) �!

=

q

K

A

xPq(re

B

y) �!

K

q

An important remark is that all the rules and re-

duction not involving K can be obtained by using the

usual Leibniz equality, i.e. de�ning

x

eq

=

A

y � �P : A!� :Px!Py:

It is not very di�cult to show that Leibniz equal-

ity is an equivalence relation and furthermore that if

two terms are convertible, then they are Leibniz-equal.

The proof of the fact that each term is equal to itself

is re

A

� �x:A:�P :A!� :�q:Px:q

Two terms are Leibniz-equal if the same `properties'

hold for them, viewing a property of terms of type A

as a function of type A!�. This is formally expressed

by the equality elimination rule. (The term re is the

equality introduction rule.)

elim

A

� �x; y:A:�P :A!� :�z:Px:�q:(x

eq

=

A

y):qPz

: �x; y:A:�P :A!� :Px!(x

eq

=

A

y)!Py:

We also have elim

A

xxPq(re

A

x)�

�

q.

If two terms are Leibniz-equal, they need not be

convertible. (The reverse is obviously the case.) So, if

the types A and B (of type �) are Leibniz-equal, they

need not have the same inhabitants. This can be seen

as a drawback, but it is the price one has to pay for

the typing to be decidable.

The addition of the K axiom has been suggested

by [Streicher 1993]. This axiom has been proven to

be extremely useful in practice and now appears as

a natural extension to theories like the Calculus of

Constructions. It is in particular necessary for dealing

with equality over family of types. This is because in a

system with K-axiom, it can be shown that all equality

proofs are equal:

Lemma 5.1 In a type system that includes K, the

type

�x; y:A:�p; q:(x

eq

=

A

y):p

eq

=

x

eq

=

A

y

q

is inhabited.

Proof A term of this type can be constructed by �rst

constructing a term M (using K) such that

A:�; x:A ` �p; q:(x

eq

=

A

x):p

eq

=

x

eq

=

A

x

q:

Then de�ne R : A!� by

R � �y:A:�p; q:(x

eq

=

A

y):p

eq

=

x

eq

=

A

y

q:

There is a term of type Rx in the context A:�; x:A,

hence we can construct a term N such that

A:�; x:A; r : x

eq

=

A

y ` N : Ry

But then there is a term of type

�x; y:A:�p; q:(x

eq

=

A

y):p

eq

=

x

eq

=

A

y

q 2

The consequence of K mentioned in the Lemma can

also be frased in the following way. If P is a polymor-

phic predicate on equality proofs, then this predicate

holds for all equality proofs i� P holds for re. More

precisely, there is a term of type

�P :(�x; y:A:(x

eq

=

A

y)!�):

(�x:A:Pxx(re

A

x))!(�x; y:A:�q:(x

eq

=

A

y):Pxyq):

What is essential to point out, is that this ex-

tension with K does not jeopardize the previous

metatheoretical results; in particular it preserves the

Church-Rosser property in the case of normalizing sys-

tems (Theorem 2.7) and it preserves subject-reduction

(Lemma 2.6) (all the proofs of [Geuvers 1993] go

through). Therefore, the system � � +K is a good

candidate for illustrating the fact that Church-Rosser

might not hold, for a, \at �rst sight" interesting Type

Theory

5

.

Proposition 5.2 In � � +K, there is a strong repre-

sentation of the Russell paradox; hence ��+K 6j= CR

��

Proof Let

eq

= be the equality for which we have the

K-axiom. Now, de�ne V , � and comp as follows.

V � ��: � :�!� (: �);

� � �x; y:V:yV x (: V!V!�);

comp � �P :V!� :��: � :�x:�:�q:V

eq

=

�

�:

elim

�

V �(��:�!�)Pqx (: (V!�)!V):

For comp, note that, if q : V

eq

=

�

� and Q : �!�,

then any inhabitant of QV can be transformed into

an inhabitant of Q�. (This is done by applying

elim

�

V �Qq to the inhabitant of QV .) So, if we take

Q � ��:�:�!�, then the term P of type QV (� V!�)

can be transformed into a term of type Q� (� �!�).

The latter term is then applied to x.

Now, the terms F and G are constructed as follows.

Let P :V!�; x:V . Then

�x(compP) = compPV x

= �q:V

eq

=

�

V:elim

�

V V (��: � :�!�)qPx;

5

There exist other formalizations of Russell's paradox; in

particular, T. Streicher had independently developed one in

� � +K. They seem however more complicated and, to our

knowledge, do not lead to a �xed point operator. Another re-

mark is that this �xed-point construction can also be done in

the Calculus of Constructions with strong sums [Coquand 1986]

extended with K.

so for z : �x(compP), we have that z(re

�

V) :

elim

�

V V (��: � :�!�)(re

�

V)Px = Px. Now take

F � �z:�x(compP):z(re

�

V) and G �

�z:Px:K

�

V (�q:V

eq

=

�

V:elim

�

V V (��: � :�!�)Px)z:

Then indeed, P :V!�; x:V ` F : �x(compP)!Px and

P :V!�; x:V ` G : Px!�x(compP). Also F (Gz) �

�

K

�

V (�q:V

eq

=

�

V:q(��: � :�!�)Px)z(re

�

V)

�!

K

z; for arbitrary z. 2

Another way to describe this fact is to say that the

syntactical and semantical versions of � �+K are not

equivalent or that � �+K is not sound.

To end this section we want to describe another

criterion for the existence of a �xed point combina-

tor. The construction we give here is largely due to

[van Draanen 1994], who described it in the frame-

work of the simply typed lambda calculus. In a nut-

shell the result says that, if there is an emuerator in

the system S, then there is a �xed point opertor in

the system S.

To describe what it means to have an enumerator

in S, we assume that we have a coding of all the closed

terms as natural numbers #. So, ifM is a closed term

in S, then #M 2 IN: Furthermore we assume that we

have a �xed closed type N : �, the type of numerals,

and for n 2 IN we let pnq be the representation of the

number n as a (closed) term of type N . (So, for exam-

ple in ��, one could have N � ��: � :�!(�!�)!�

and pnq � ��: � :�x:�:�f :�!�:f

n

(x), the polymor-

phic Church numerals.)

De�nition 5.3 An enumerator in S is a family of

combinators E

�

, for every closed type �, such that

E

�

: N!�;

E

�

p#Mq = M; for all closed terms M of type �:

(The equality is the conversion of the system.)

Lemma 5.4 ([van Draanen 1994]) If there is a

(family of) enumerators, then there is a family of

�xed point combinators. That is, for every closed

type � there is a term Y

�

: (�!�)!� such that

Y

�

f = f(Y

�

f):

Proof Take

A

�

:� �n:N:�f :�!�:f(E

�

nnf);

where � :� N!(�!�)!� and E

�

is the enumerator

for the type � . Take

Y

�

:� A

�

p#A

�

q:

Then

Y

�

f = f(E

�

p#A

�

qp#A

�

qf)

= f(A

�

p#A

�

qf)

= f(Y

�

f): 2

So, the �xed point combinator Y

�

is a close rel-

ative to the Turing Fixed point combinator � �

(�xy:y(xxy))(�xy:y(xxy)). Now in �� we have the

following.

Lemma 5.5 If there is a �xed point combinator for

the type ��:� :(�!�)!�, then there is a polymorphic

�xed point combinator Y : ��: � :(�!�)!�.

Proof Write � for the type ��: � :(�!�)!� and let

Y

�

: (�!�)!� be the �xed point combinator for �.

Take

G � �g:�:��: � :�f :�!�:f(g�f):

Then G : �!� and G has a �xed point Y

�

G, for which

we have

Y

�

G�f = G(Y

�

G)�f = f(Y

�

G�f);

so Y

�

G is a polymorphic �xed point combinator. 2

Corollary 5.6 If �� has enumerators, then it has a

polymorphic �xed point operator.

In fact, it su�ces to have an enumerator for the

type N!(�!�)!�, where � is the type of the poly-

morphic �xed point operator.

It is obvious that a type of numeralsN and a coding

exist, but it is not clear how the typable terms E

�

should be constructed.

6 Discussion and conclusion

We have motivated the importance of the Church-

Rosser property for typed �-calculi and related it to

the existence of a �xed point combinator. By con-

structing such a �xed point in a relatively natural

extension of ��, we have shown that Church-Rosser

might actually be false for non-normalizing systems.

Therefore, a direct conuence proof for PTSs

��

seems

much less likely to exist, and, what is more impor-

tant, would not be extremely useful, as we now know

it could not apply for more general systems including

extensions like a reasonable equality. The main practi-

cal conclusion seems to be that a clear trade-o� has to

be made between the power of the studied Type Sys-

tem, its implementability, and the tediousness of the

normalization proof. For example, by working with

a semantical version of the Calculus of Constructions,

Altenkirch is able to achieve an extremely elegant nor-

malization and consistency proof; but he cannot show

that his system is equivalent to the implementable

syntactical version without dropping �-conversion be-

cause he lacks the necessary Church-Rosser proof. On

the other hand, it is possible to do all the metathe-

ory for the syntactical version, but having to deal

with untyped conversions complicates some parts of

the proof [Werner 1994].

Referencesmkboth

ReferencesReferences

[Altenkirch 1993] T. Altenkirch, Constructions, Inductive

Types and Strong Normalization, Ph.D. thesis,

University of Edinburgh, 1993.

[Barendregt 1984] H.P. Barendregt, The lambda calculus:

its syntax and semantics, revised edition. Studies in

Logic and the Foundations of Mathematics, North

Holland.

[Barendregt 1992] H.P. Barendregt, Typed lambda

calculi. In Handbook of Logic in Computer Science,

eds. Abramski et al., Oxford Univ. Press.

[van Benthem Jutting 199+] L.S. van Benthem Jutting,

Typing in Pure Type Systems, Information and

Computation.

[Berardi 1990] S. Berardi, Type dependence and

constructive mathematics, Ph.D. thesis, Universita

di Torino, Italy.

[de Bruijn 1980] N.G. de Bruijn, A survey of the project

Automath, In To H.B. Curry: Essays on

Combinatory Logic, Lambda Calculus and

Formalism, eds. J.P. Seldin, J.R. Hindley,

Academic Press, New York, pp 580-606.

[Coquand 1986] Th. Coquand, An analysis of Girard's

paradox, Proceedings of the �rst symposium on

Logic in Computer Science, Cambridge Mass.,

IEEE, pp 227-236.

[Coquand 1990] Th. Coquand, Metamathematical

investigations of a calculus of constructions. In

Logic and Computer Science, ed. P.G. Odifreddi,

APIC series, vol. 31, Academic Press, pp 91-122.

[Coquand 1991] Th. Coquand, An algorithm for testing

conversion in type theory, Logical Frameworks, eds.

G. Huet and G. Plotkin, Cambridge University

Press, 1991.

[Coquand 199+] Th. Coquand, A new paradox in type

theory, to appear in Proceedings of the 9th

International Congress of Logic, Methodology and

Philosophy of Science, Uppsala, Sweden 1991.

[Coquand and Herbelin 1992] Th. Coquand and H.

Herbelin, An Application of A-translation to the

existence of families of looping combinators in

inconsistent Type Systems, to appear in Journal of

Functional Programming.

[Coquand and Huet 1985] Th. Coquand and G. Huet,

Constructions: a higher order proof system for

mechanizing mathematics. Proceedings of

EUROCAL '85, Linz, LNCS 203.

[Dowek et al. 1991] G. Dowek, A. Felty, H. Herbelin, G.

Huet, Ch. Paulin-Mohring, B. Werner, The Coq

proof assistant version 5.6, user's guide. INRIA

Rocquencourt - CNRS ENS Lyon.

[Dowek et al. 1993] G. Dowek, G. Huet and B. Werner,

On the De�nition of the �-long Normal Form in

Type Systems of the Cube. Informal Proceedings of

the BRA Types workshop, H. Geuvers Ed.,

Nijmegen, 1993.

[Dowek 1993a] G. Dowek, A Complete Proof Synthesis

Method for the Cube of Type Systems, Journal of

Logic and Computation, vol 3 (3), pp 287-315, 1993.

[Dowek 1993b] G. Dowek, The undecidability of typing

in the lambda-pi-calculus, in Typed Lambda Calculi

and Applications, LNCS 664, eds. M. Bezem and

J.F. Groote, pp 139-146.

[van Draanen 1994] J.-P. van Draanen, Personal

Communication.

[Geuvers and Nederhof 1991] J.H. Geuvers and M.J.

Nederhof, A modular proof of strong normalisation

for the calculus of constructions. Journal of

Functional Programming, vol 1 (2), pp 155-189.

[Geuvers 1992] J.H. Geuvers, The Church-Rosser

property for ��-reduction in typed lambda calculi.

In Proceedings of the seventh annual symposium on

Logic in Computer Science, Santa Cruz, Cal.,

IEEE, pp 453-460.

[Geuvers 1993] J.H. Geuvers, Logics and Type Systems,

PhD. Thesis, Katholieke Universiteit Nijmegen,

Netherlands.

[Giannini et al. 1993] P. Giannini, F. Honsell, S. Ronchi

della Rocca, Type inference: some results, some

problems, Fundamenta Informaticae, 19, 1,2, 1993,

pp 87-126.

[Girard 1972] J.-Y. Girard, Interpr�etation fonctionelle et

�elimination des coupures dans l'arithm�etique

d'ordre sup�erieur. Ph.D. thesis, Universit�e Paris

VII, France.

[Hofmann and Streicher] M. Hofmann and T. Streicher,

A groupoid model refutes uniqueness of identity

types, this volume, 1994.

[Howe 87] D.J. Howe, The computational behavior of

Girard's paradox, Proccedings of LICS 1987.

[Liquori et al. 93] L. Liquori, S. Ronchi della Rocca, S.

van Bakel and P. Urzyczyn, Comparing Cubes,

manuscript, University of Turin, Italy.

[Luo and Pollack 1992] Z. Luo, R. Pollack, Lego proof

development system: User's Manual, Dept. of

Computer Science, University of Edinburgh, April

1992.

[Meyer and Reinhold 1986] A.R. Meyer, M.B. Reinhold,

Type is not a type, Proceedings of POPL 1986.

[Streicher 1991] T. Streicher, Semantics of type theory :

correctness, completeness and independence results,

Birkhauser, 1991.

[Streicher 1993] T. Streicher, Investigations into

Intensional Type Theory, Habilitationsschrift,

University of M�unich, 1993.

[Werner 1994] B. Werner, Une Th�eorie des Constructions

Inductives, Th�ese de Doctorat, Universit�e Paris

VII, 1994.

