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Introduction

Natural deduction originates from the work by the German mathematician Gerhard Gentzen (1909-

1945): Untersuchungen über das logische Schliessen, 1935 [3]. Right after the Second World War he

was arrested and died of hunger. During his short life, he studied mathematical foundations and proof

theory. His most famous contributions are natural deduction and sequent calculus. He constructed

both logical systems in his attempts to prove the consistency of number theory. He first defined

natural deduction, for which he tried to prove consistency using the cut elimination theorem, which

he called the Hauptsatz. However, he did not manage to prove the Hauptsatz for natural deduction.

Therefore he introduced the sequent calculus for which he proved the Hauptsatz. Later, in 1956, the

Swedish logician Dag Prawitz (born in 1936) gave a direct prove for the cut elimination theorem for

natural deduction in Natural deduction: a proof-theoretical study [11].

The main idea of natural deduction is that propositions are deduced by applying derivation rules

from a set of assumptions. Gentzen distinguished so-called introduction and elimination rules, that

should be defined in a ‘natural’ way. The Hauptsatz states that elimination from introduced formulas

can be avoided, which results in ‘normal’ derivations. Since the work of Gentzen and Prawitz, various

other natural deduction systems have been introduced.

This thesis covers an analysis of the truth table natural deduction system, which is a natural

deduction system recently defined by Herman Geuvers and Tonny Hurkens [4]. They developed a

general method for deriving propositional natural deduction rules for an arbitrary connective from

its truth table. It is remarkable that in this way not only classical rules can be derived, but also

intuitionistic rules. The analysis in this thesis focuses on proof-theoretic properties and semantics.

We devote an extensive part of the thesis to a study of cut elimination for intuitionistic logic, resulting

in a number of normalization results. We have included a lot of examples to illustrate the properties

of the system.

A main contribution of this thesis is the proof of strong normalization of the intuitionistic truth

table natural deduction system. To establish this result, we have examined the work of Philippe de

Groote who proved strong normalization for proof reduction in the natural deduction system from

Gentzen and Prawitz [6]. In addition, we extend the simply typed lambda calculus to a parallel simply

typed lambda calculus. This enables us to use the method of De Groote to prove strong normalization.

The thesis is structured in the following way. Chapter 1 is a preliminary chapter in which we

present the basics of natural deduction studied by Gentzen and Prawitz. Those who are familiar

with propositional logic can skip this chapter and consult it when necessary. Chapter 2 defines the

truth table natural deduction system and gives a lot of examples. Many properties have already

been established in [5], but some of them are new, such as Glivenko’s theorem. Chapter 3 gives an

elaborated analysis of normalization of the intuitionistic truth table natural deduction system, using

some techniques from Chapter 1. We conclude with a chapter on related work and future research.

I would like to thank my supervisor Herman Geuvers who proposed to study this beautiful topic

in the field of logic. During the process we had good discussions about the content. I would also like

to thank Tonny Hurkens for his tremendous enthusiasm for mathematics. It is fantastic that he does

mathematics in his free time.
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Chapter 1 | Natural Deduction

We start with basic results about natural deduction for propositional logic to set out general proof

methods. This is useful in order to study the truth table natural deduction system in Chapter 2 and

Chapter 3. Natural deduction is introduced by Gentzen in 1935 [3]. In 1965, Prawitz proved the cut

elimination theorem for the natural deduction in his work called Natural deduction: a proof-theoretical

study [11]. The cut elimination theorem states that every derivation can be transformed into a normal

derivation. The theorem is also known under the name weak normalization. This chapter is the result

of a close reading of Prawitz’s work. Although Gentzen introduced the natural deduction system,

we refer to it as the Prawitz system, because our focus is on weak normalization which is proved by

Prawitz.

1.1 Propositional logic

The function of this section is to introduce the basics of natural deduction for propositional logic.

This is useful in order to fix definitions and notation. We focus on propositional logic, because the

truth table natural deduction system is only defined for propositional logic. The following definitions

and notations are based on the work of Van Dalen [1], which is a modern reference book on logic.

Definition 1.1.1. The language of propositional logic contains the following symbols:

(1) proposition symbols: p0, p1, p2, . . . ,

(2) connectives: ∧,∨,→,¬,⊥,

(3) auxiliary signs: parentheses ( and ).

These connectives are the standard connectives used in propositional logic. The names of the connec-

tives are, conjunction (∧), disjunction (∨), implication (→), negation (¬) and bottom or falsum (⊥).

The proposition symbols and ⊥ are indecomposable propositions, which are called atomic propositions

or just atoms.

Definition 1.1.2. The set PROP of propositions is the smallest set X such that

(1) for proposition symbols p we have p ∈ X and ⊥∈ X,

(2) if A,B ∈ X, then (A ∧B), (A ∨B), (A→ B) ∈ X,

(3) if A ∈ X, then (¬A) ∈ X.

We work in propositional logic, but we prefer to speak of formulas instead of propositions. We

write formulas with capital letters A, B, C, etc.

The connectives ∧, ∨ and → are 2-ary connectives, ¬ is a 1-ary connective, and ⊥ is a 0-ary

connective. The formulas (A ∧ B) can also be denoted by ∧(A,B). The same holds for the other

connectives, where (¬A) translates to ¬(A). In this notation, it is possible to speak of an arbitrary

connective c.
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CHAPTER 1. NATURAL DEDUCTION

Definition 1.1.3. Formula A′ is a subformula of formula A if one of the following holds.

- A′ = A,

- A = c(A1, A2) and A′ is subformula of A1 or A2,

- A = ¬A1 and A′ is subformula of A1.

Definition 1.1.4. The rank r(A) of a formula A is defined by

r(A) =


0, for atomic A

max(r(A1), r(A2)) + 1, if A = c(A1, A2) with c a 2-ary connective,

r(A1) + 1, if A = ¬(A1).

The rank of a formula is an important concept, because it makes it possible to do induction on

the structure of formulas.

Now we will examine natural deduction. Natural deduction is based on derivation rules that were

first designed by Gentzen. These rules render an intuitive meaning of the connectives and make it

possible to reason with logical formulas. It is possible to define an intuitionistic system and a classical

set of rules.

Definition 1.1.5. For each connective we have the following introduction and elimination rules [11].

We distinguish between an intuitionistic and a classical rule for falsum (⊥). All the other rules are

intuitionistic and classical.

(∧-I)
A B
A ∧B (∧-E)

A ∧B
A

A ∧B
B

(∨-I)
A

A ∨B
B

A ∨B (∨-E)
A ∨B

[A]

...
C

[B]

...
C

C

(→-I)

[A]

...
B

A→ B

(→-E)
A→ B A

B

(⊥i)
⊥
A

(⊥c, RAA)

[¬A]

...
⊥
A

Negation is defined as ¬A ≡ (A→⊥)

We stick to the convention that A is different from ⊥ in the ⊥-rules.

The top-formulas in the rules are called assumptions. Assumptions written between brackets [·]
are discharged assumptions and assumptions without brackets are open assumptions. When writing

[A], we mean that 0, 1 or more instances of A are discharged at the same time. Formulas immediately

above the line of a rule are called premises. The formulas A∧B, A∨B and A→ B in the elimination

rules ∧-E, ∨-E and →-E are called major premises. The other formulas immediately above the line in

those rules are called minor premises. The formula below the line of a derivation rule is the conclusion

or consequence of the rule.

– 7 –



1.2 Normal derivations

We are able to construct deductions of formulas, also known as derivations. Informally, a derivation

is a tree built up from the rules from Definition 1.1.5. Derivations are inductively defined by the rules.

See Definition 1.4.1. of [1] for a formal definition.

Derivations are often denoted by the Greek letters Π or Σ. Top-formulas of a derivation are

called assumptions and the bottom-formula is called the conclusion of the derivation. Discharged

assumptions [A] are often labelled with a natural number k, that is [A]k, indicating at which rule the

assumption is discharged. If Γ is a set of open assumptions and A is the conclusion of a deduction Π,

then we say that Π is a deduction from Γ to A or simply A is derivable from Γ. If Π does not contain

any open assumptions, then Π is a proof of A.

Definition 1.1.6. Let Γ be a set of formulas and A a formula. We write Γ ` A to mean that there

is a derivation with open assumption in Γ and conclusion A. If Γ is empty we write ` A.

Example 1.1.7. The tree below proves ` ¬¬¬A→ ¬A. This derivation only contains →-I and →-E

rules, since ¬A = A→⊥.

[¬¬¬A]4

[¬A]1 [A]2
→-E⊥ →-I, 1¬¬A →-I, 2

A→ ¬¬A [A]3
→-E¬¬A

→-E⊥ →-I, 3¬A →-I, 4¬¬¬A→ ¬A

We distinguish between intuitionistic propositional logic and classical logic.

Definition 1.1.8. Intuitionistic propositional logic (IPC) contains derivations with intuitionistic rules

and classical propositional logic CPC is the set of derivations with classical rules, that is, IPC adopts

the ⊥i-rule and CPC uses the ⊥c-rule. We will often refer to these systems as the Prawitz natural

deduction system or just the Prawitz system.

Note that the ⊥i-rule is weaker than the ⊥c-rule, which means that IPC ( CPC. The ⊥c-rule is

often called Reductio ad absurdum (RAA) in the literature. This rule makes it possible to reason

with proof by contradiction. Typical classical statements are `CPC ¬¬A → A and Peirce’s Law

`CPC ((A→ B)→ A)→ A.

We define some more notions concerning derivations. We say that formula A stands immediately

above formula B in a derivation if A is a premise of a rule of which B is the conclusion. Formulas A

and B are said to be side-connected if they stand on the same line. For example in ∧-I, A and B are

side-connected and A stands immediately above A ∧B.

Rule ∨-E is the only rule where some premises are the same as the conclusion. It may happen

that you apply this rule without discharging any of the assumptions. Such an application of the rule

is called a redundant application because it does not add any new information in the derivation tree.

Therefore, we assume from now that no redundant applications of ∨-E are allowed in a derivation.

1.2 Normal derivations

This section is the result of a detailed examination of the well-known proof of weak normalization of

natural deduction by Prawitz [11]. Prawitz proved weak normalization for both CPC and IPC. Here
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CHAPTER 1. NATURAL DEDUCTION

we only work in IPC, because in Chapter 3 we study normalization of the intuitionistic truth table

natural deduction system. Important aspects in this section are the definitions of a normal deduction

and the inspection of the induction value in the normalization proof of Prawitz, used in Theorem

1.2.10.

The most important motivation for defining a normal derivation in natural deduction is the fact

that deductions satisfy the so-called Inversion Principle. That is the idea that an elimination rule of

a connective is, in some sense, the inverse of the corresponding introduction rules. By an elimination

rule one only conclude what had already been established if the major premise of the elimination was

deduced from the corresponding introduction rules. The normalization consists of the removal of such

introduction-elimination pairs. The inversion principle was also a great motivation for Gentzen, he

wrote: ‘the introductions represent, as it were, the ‘definitions’ of the symbols concerned, and the

eliminations are no more, in the final analysis, than the consequences of these definitions.’ [3]

There are different definitions of a normal derivation. Here we focus on two of them. One definition

comes from Prawitz [11] and the other is more commonly used, by for instance Troelstra [15] and

indirectly by Van Dalen [1]. Before we state both definitions, we have to introduce the concept of a

segment.

Definition 1.2.1. A segment in a deduction Π is a sequence A1, . . . , An of formulas such that Ai
stands immediately above Ai+1 and

(1) A1 is not the conclusion of ∨-E,

(2) For i < n, Ai is a minor premise of ∨-E,

(3) An is not the minor premise of ∨-E.

Note that all formulas Ai in a segment represent the same formula. The rank of a segment is the rank

of the formula in that segment. Number n is called the length of the segment.

Definition 1.2.2. A maximum segment is a segment that begins with the consequence of an I-rule

or the ⊥i-rule and ends with a major premise of an E-rule. A maximum segment of length 1 is called

a maximum formula.

A maximum formula is introduced by an introduction or the ⊥i-rule, immediately followed by the

corresponding elimination rule.

Definition 1.2.3. A cut formula is a formula which is the conclusion of ∨-E, ⊥i-rule or an I-rule and

the major premise of an E-rule. A cut segment is a segment that contains a cut formula.

From the definitions, we see that each maximum segment is a cut segment, but the reverse is not

true. Maximum segments play an important role in the definition of a normal derivation by Prawitz.

Cut segments play an important role in the other definition of normal derivations.

Example 1.2.4. There are two segments of length 2 in this deduction, containing the formula A∧B.

The right segment is a maximum segment. Both are cut segments.

(A ∧B) ∨ (B ∧A) [A ∧B]1

[B ∧A]1
∧-E

A

[B ∧A]1
∧-E

B ∧-I
A ∧B

∨-E, 1
A ∧B ∧-E
A

Now we state both definitions of a normal derivation. Since the definition of Prawitz is less used,

we give it the name Prawitz normal.
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1.2 Normal derivations

Definition 1.2.5 (Prawitz normal). A deduction is Prawitz normal if it contains no maximum seg-

ment.

Definition 1.2.6 (Normal). A deduction is normal if every major premise of an E-rule is either an

assumption or the conclusion of an elimination rule different from ∨-E.

Note that a deduction is normal if and only if it contains no cut segment. It is possible to distinguish

between two types of cut segments. If σ is a cut segment of length 1, then it is the conclusion of the

⊥i-rule or an introduction rule and the major premise of an elimination rule. When Length(σ) > 1,

then the cut formula is derived from ∨-E. We get the following standard definitions.

Definition 1.2.7. An E-rule with a major premise derived from an I-rule is a detour convertibility.

Definition 1.2.8. An E-rule with a major premise derived from ∨-E is a permutation convertibility.

Now we see that a deduction is normal in the sense of Definition 1.2.6 if and only if it contains no

detour and no permutation convertibilities and no cut formula derived from the ⊥i-rule. When deleting

such convertibilities, we speak about detour or permutation conversions or reductions. Example 1.2.4

contains a permutation convertibility. In the proof of weak normalization (Theorem 1.2.10), we see

other examples of detour and permutation convertibilities.

We may ask ourselves whether the two definitions of normal derivations are equivalent. The answer

is no, because a cut segment is a stronger concept than a maximum segment. This is illustrated by

the following example.

Example 1.2.9. This is a derivation of formula A from (A ∧B) ∨ (A ∧B).

(A ∧B) ∨ (A ∧B) [A ∧B]1 [A ∧B]1
∨-E, 1

A ∧B (∗)
∧-E

A

This derivation is Prawitz normal, since there is no introduction rule or ⊥i-rule, hence no maximum

segment. But it is not normal in the sense of Definition 1.2.6, because formula A∧B marked by (∗) is

neither an assumption nor the conclusion of an elimination rule different from ∨-E. One might want

the following deduction:

(A ∧B) ∨ (A ∧B)

[A ∧B]1
∧-E

A

[A ∧B]1
∧-E

A
∧-E, 1

A

Here, the application of ∨-E is delayed as long as possible. This derivation is normal according to

both definitions.

In general, if a deduction is normal, then it is also Prawitz normal. Example 1.2.9 shows that

the other way around is not true, but a Prawitz normal deduction can be transformed into a normal

deduction. This follows from the following theorem, which holds for both Definitions 1.2.5 and 1.2.6.

The proof of the theorem is the result of a close reading of Prawitz [11].

Theorem 1.2.10 (Weak normalization). There is an effective procedure for transforming a natural

deduction of Γ ` A in IPC into a (Prawitz) normal deduction of Γ ` A.

Proof. Let Π be a derivation of Γ ` A. This proof is done by induction. The induction value to be

used depends on the chosen definition of a normal derivation.
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CHAPTER 1. NATURAL DEDUCTION

- (Prawitz normal) The induction value is the pair 〈d, l〉 with d the highest rank of a maximum

segment in Π and l is the sum of the lengths of maximum segments of rank d. The induction is

done on the lexicographic ordering of these pairs.

- (normal) The induction value is the pair 〈d, l〉 with d the highest rank of a cut segment in Π

and l is the sum of the lengths of cut segments of rank d. Again, the induction is done on the

lexicographic ordering of these pairs.

Now we can prove the assertion. Here it is proved for Definition 1.2.6, so we are going to transform

Π in a normal derivation of Γ ` A. Let σ be a cut segment of highest rank d such that:

(a) there is no cut segment of rank d above σ,

(b) no cut segment of rank d stands above a formula side-connected with the last formula in σ,

(c) no cut segment of rank d contains a formula side-connected with the last formula in σ.

It is important to mention that such a cut segment σ exists if derivation Π is not normal, see [11] for

a proof. Let F be the cut formula in σ. We treat different cases for F .

(1) F is derived from the ⊥i-rule,

(2) F is in a detour convertibility,

(3) F is in a permutation convertibility.

In case 1, cut formula F in σ is the consequence of the ⊥i-rule and the reduction goes as follows.

Σ1

⊥ ⊥i-ruleF Σ2
E-rule

C
Π

 

Σ1

⊥ ⊥i-ruleC
Π

For case 2, F is in a detour convertibility. This means that F is the conclusion of an I-rule which

is followed by its corresponding E-rule. Such reductions are not so difficult, therefore we only show

the detour reductions for ∨ and →.

Σ1

A
A ∨B

[A]1 . . . [A]1

Σ2

C

[B]1 . . . [B]1

Σ3

C
1

C
Π

 

Σ1

A . . .

Σ1

A
Σ2

C
Π

[A]1 . . . [A]1

Σ1

B
1

A→ B

Σ2

A
B
Π

 

Σ2

A . . .

Σ2

A
Σ1

B
Π

In the reduction of ∨ there can be multiple subderivations containing Σ1. This is not a problem for

the induction value, because of clause (a) in the assumption on σ. So either d is lowered or d remains

the same and l is lowered. The same holds for the reduction for → by clause (b).

In case 3, cut formula F is in a permutation convertibility, that is, F is the consequence of the
∨-E rule. The reduction is as follows:
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1.3 Subformula property, consistency and decidability

Σ1

A ∨B

[A]1 . . . [A]1

Σ2

F

[B]1 . . . [B]1

Σ3

F
1

F Σ4
E

C
Π

 Σ1

A ∨B

[A]1 . . . [A]1

Σ2

F Σ4
E

C

[B]1 . . . [B]1

Σ3

F Σ4
E

C
1

C
Π

Again we have to check whether the induction value 〈d, l〉 is indeed decreased. There can be two

problems. First, subderivation Σ4 is duplicated. But because of clause (b), there will be no extra cut

segment of rank d. Secondly, there could be more cut segments containing formula occurrence C. We

have to check that such a C has a lower rank than F in order to conclude that the induction value

decreases. If the E-rule indicated in the left derivation is not ∨-E, then C has a lower rank than F by

definition of the rules. Suppose C has also rank d and that it is derived from ∨-E. Then Σ4 consists of

two derivations, both ending in C. This means that there is a cut segment (containing C) of rank d

containing a formula side-connected with the last formula F in σ. This contradicts clause (c) above.

So we have shown that C has a lower rank than F , by the assumptions on σ. So we can conclude that

the induction value is lowered.

We have checked all possibilities for cut formula F in chosen cut segment σ. In all cases, the

induction value of the reduced derivation is less than the original one. This makes sure that after

repeated applications of these reductions we obtain a normal derivation.

Weak normalization states that for every deduction, there can be found a normal one. In 2002,

De Groote published a paper where he proved strong normalization for the union of detour and

permutation convertibilities [6]. This means that he does not treat a cut formula derived from ⊥i-rule

as a convertibility. Strong normalization means that it does not matter in what order you reduce the

detour or permutation convertibilities, you always end up with a ‘normal’ derivation. Here we will not

explain his proof, this is done in Chapter 3, where we prove strong normalization for the intuitionistic

truth table natural deduction system.

1.3 Subformula property, consistency and decidability

Normal derivations have several convenient properties. In this section we consider the subformula

property, consistency and decidability of IPC. In order to formulate and prove these properties, we

have to look at the form of a normal derivation. We introduce some more terminology based on

Prawitz [11] and Van Dalen [1].

Definition 1.3.1. A path in a deduction Π is a sequence of formulas A1, . . . , An such that

(1) A1 is an assumption not discharged by ∨-E,

(2) Ai is not a minor premise of →-E and either

- Ai is not a major premise of ∨-E and Ai+1 stands immediately below Ai or

- Ai is the major premise of ∨-E and Ai+1 is a discharged assumption in this rule,

(3) An is either

- a minor premise of →-E,

- the conclusion of Π.

Note that if Ai is the major premise of ∨-E, there are two possibilities to continue the path, because

there are two discharged assumption, since we assume that there are no redundant applications of the

∨-E rule. Also note that segments are totally included in a path.
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CHAPTER 1. NATURAL DEDUCTION

Definition 1.3.2. A path containing the conclusion of the derivation is called a main path.

Example 1.3.3. To denote the different paths in a deduction, it is useful to look at the underlying

tree structure. Derivation

[(C ∨D)→ (A ∨B)]3
[C]4

∨-I
C ∨D

→-E
A ∨B

[A→ B]2 [A]1
→-E

B [B]1
∨-E, 1

B →-I, 2
(A→ B)→ B

→-I, 3
((C ∨D)→ (B ∨A))→ (A→ B)→ B

→-I, 4
C → ((C ∨D)→ (B ∨A))→ (A→ B)→ B

adopts the tree form

1

2

3

4

5

8 9

12

6

10 11

7

A dashed line indicates the minor premise of rule →-E, which is the end of a path. The derivation

contains the following paths: (8,5,11), (8,5,7,4,3,2,1), (12,9) and (10,6,4,3,2,1). This is a normal

derivation.

Now it is possible to prove statements about the form of a (Prawitz) normal derivation. Note that

each formula in a deduction tree belongs to at least one path.

Proposition 1.3.4. A path π in a (Prawitz) normal derivation is divided into at most three parts:

an E-part, followed by a ⊥-part, followed by an I-part, such that

(1) for each segment σ in the E-part, it holds that the last formula in σ is the major premise of an

E-rule or the end-formula of π,

(2) the last formula in segment σ of the ⊥-part is the premise of the ⊥i-rule,

(3) for each segment in the I-part, the last formula is a premise of an I-rule or the end-formula of

π.

Each of the parts may be empty.

Proof. Since normal derivations are also Prawitz normal, it suffices to prove the assertion for Prawitz

normal derivations. Let Π be a Prawitz normal derivation and π a path of Π. Then there is no

maximum segment in Π, that is, there is no segment that starts with an I-rule or ⊥i-rule and ends

with a major premise of an E-rule. In addition, if a segment starting with an I-rule or ⊥i-rule ends

with a minor premise of an E-rule, then it must be the minor premise of →-E, which is the end of

path π. Therefore, if the first rule in π is an E-rule, then all segments that end in an E-rule come

first. This forms the E-part. Look at the last segment that is a consequence of an E-rule. This results

in either
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- the end-formula of π.

- ⊥, in which case only the ⊥i-rule may be applied. Consider now the segment σ′ that starts with

the ⊥i-rule. Note that formula A in σ′ is not equal to ⊥ by convention. Segment σ′ cannot end

in a major premise of an E-rule, since Π is normal. It can end in the minor premise of →-E, the

conclusion of Π or an I-rule. This means that σ′ belongs to the I-part.

- An I-rule. Consider now the segment that starts with an I-rule. This segment cannot end in the

⊥i-rule or a major premise of an E-rule. Again, it may end in the minor premise of →-E, the

conclusion of Π or an I-rule, which yields the I-part.

Note that if we look at normal derivations in the sense of Definition 1.2.6, then the segments

in the E-part have length 1, except for the possible last segment ending in the conclusion. This is

because major premises of elimination rules can not be derived from ∨-E, so segments ending in a

major premise of an elimination rule have length 1.

Example 1.3.5. Here we identify the parts in the paths from Example 1.3.3. We write | to switch

to the next part, that is (E-part | ⊥-part | I-part). Some parts may be empty. We write ; between

segments. We have (8; 5; 11 | | ), (8; 5 | | 7,4; 3; 2; 1), ( | |12,9) and (10| | 6,4; 3; 2; 1).

Definition 1.3.6. Let π be a path in a (Prawitz) normal deduction. Define the order o of π as

follows.

- o(π) = 0 for a main path

- If π ends in a minor premise of →-E, then

o(π) = 1 + min{o(π′) | π′ contains corresponding major premise}.

Informally, the order of a path determines ‘the shortest way’ to a main path. There is at least one

main path in a derivation, since each formula is contained in at least one path. The order of paths is

an important concept to prove the subformula property.

Example 1.3.7. Consider again the derivation of Example 1.3.3. We determine the orders of the

paths.
o(8, 5, 7, 4, 3, 2, 1) = 0

o(10, 6, 4, 3, 2, 1) = 0

o(8, 5, 11) = o(10, 6, 4, 3, 2, 1) + 1 = 1

o(12, 9) = min{o(8, 5, 7, 4, 3, 2, 1), o(8, 5, 11)}+ 1 = min{1, 2} = 1

Lemma 1.3.8. Let π = (A1, . . . , An) be a path. Each formula in the E-part or ⊥-part is subformula

of A1. Each formula in the I-part is subformula of An.

Proof. If B occurs in the E-part, then B is contained in a segment σ, such that the first formula

in σ is either an assumption or it is derived from an E-rule different from ∨-E. Denote this formula

by Aj , note that Aj = B as formulas. If Aj is derived from an E-rule, then B is subformula of the

major premise Aj−1 of that E-rule. When Aj is an assumption, then Aj = A1 or Aj is a discharged

assumption of ∨-E. In the first case we are done. In the second case, Aj is the subformula of the

corresponding major premise Aj−1 = Aj ∨C for some C. When repeating the process for Aj−1, which

is also in the E-part, we see that B is a subformula of A1.

If B occurs in the ⊥-part, then B is contained in a segment σ, such that the first formula Aj =⊥ in

σ is an assumption or the conclusion of an E-rule different from ∨-E. This means that B is subformula

of an open assumption or subformula of some formula in the E-part, hence B is subformula of A1.

If B is a formula in the I-part, then B is subformula of the end-formula An, because of the form

of the I-rules.
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If we look closer at the proof of Lemma 1.3.8, we see that for a path (A1, . . . , An) we have the

following: For E-part and ⊥-part (A1, . . . , Aj) we have that Ai+1 is subformula of Ai and for I-part

(Aj+1, . . . , An) we have that Ai is subformula of Ai+1.

Theorem 1.3.9 (Subformula property). Let Π be a (Prawitz) normal derivation of Γ ` A. Then

each formula B in Π is a subformula of A or of a formula in Γ.

Proof. Let Π be a Prawitz normal deduction of Γ ` A. We proceed by induction on the order of

paths. Consider a formula B in Π in a path π = (A1, . . . , An). By Proposition 1.3.4, B can occur in

the E-part, ⊥-part or I-part of π.

If B = An, then B is either the conclusion of Π or the minor premise of the →-E rule. If B is

the conclusion, then B = A. If B is the minor premise of →-E, then the major premise is of the

form B → C for some C, hence B is subformula of the major premise which is contained in a path

π′ with o(π′) < o(π). Applying the induction hypothesis we find that B is a subformula of an open

assumption or the conclusion.

If B is contained in the I-part of π, then B is a subformula of the end-formula An, by Lemma

1.3.8. So B is a subformula of A or subformula of a formula in Γ.

If B = A1, then either B ∈ Γ or B is discharged by the →-I rule. If B is a cancelled assumption

of →-I, then B is a subformula of the corresponding introduced formula B → C for some C. Formula

B → C is contained in the I-part of π, or in a path π′ with o(π′) < o(π). So we can conclude that B

is subformula of A or subformula of a formula in Γ.

If B occurs in the E-part or ⊥-part, we derive with Lemma 1.3.8 that B is a subformula of A1,

which case we treated above. This finishes the proof.

Corollary 1.3.10. IPC is consistent, that is, 6`IPC ⊥.

Proof. Suppose `⊥, then there is a normal deduction ending in ⊥ without any open assumptions.

There is a main path which contains the conclusion ⊥. This means that there are no I-rules in this

path. But this means that the first formula of the path is not discharged. This is a contradiction.

Corollary 1.3.11. IPC is decidable, that is, there is an effective way to determine whether Γ `IPC A

or not.

Proof. By the weak normalization theorem (Theorem 1.2.10) we can limit our search to a normal

derivation of Γ ` A. This means that we avoid cut segments. We also search in such a way that the

conclusion of the ⊥i-rule is a proposition letter.

(1) First try whether A ∈ Γ, otherwise

(2) try an I-rule if A is composite and try the ⊥i-rule if A is a proposition letter,

(3) and try an E-rule for all B ∈ Γ which are composite.

In the recursive case, this gives finitely many possibilities to check and each try creates a new search of

the form Γ, C ` D or Γ ` C, where C and D are subformulas of Γ or A by the subformula property. The

number of subformulas in the context increases and otherwise the size of the goal-formula decreases.

Since the number of all subformulas in Γ and D is finite, this search terminates.
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Chapter 2 | The Truth Table Natural

Deduction System

In a recent paper [4], Herman Geuvers and Tonny Hurkens developed a method for deriving proposi-

tional natural deduction rules from the truth table for an arbitrary connective. It leads to a method

for defining rules in a ‘standard format’. This makes it possible to define propositional logic for ar-

bitrary sets of connectives. It is remarkable that in this way not only classical rules can be defined,

but also intuitionistic deduction rules. We call this natural deduction system the truth table natural

deduction system.

In this chapter, we examine the truth table natural deduction system on proof-theoretic properties

and semantics of the system. We give the definition and we look at examples and the difference

between the classical and intuitionistic rules. Many results are based on the work of Geuvers and

Hurkens, but we will add some new results here and there. In Chapter 3, we elaborate more on the

system by looking at cut elimination and normalization.

2.1 Definition

Here we will introduce the method of deriving elimination and introduction rules for an arbitrary

connective c from its truth table [4]. In contrast to [4], we first give the basis of the concerned

propositional language. This section can be compared to Section 1.1, where we treated the Prawitz

system.

We consider arbitrary connectives, where each connective c is defined via its truth table. The

truth table of a connective c is denoted by tc. We write tc(a1, . . . , an) with ai ∈ {0, 1} to mean the

value of c(a1, . . . , an) for those ai’s. This corresponds to a value of a row in tc. If the truth table has

n + 1 columns, c is called an n-ary connective. So ⊥ and > are considered as 0-ary connectives. In

this thesis we further look at well-known connective ∨,∧,→ and ¬. Here, ¬ is a defined connective

and not an abbreviation ¬A ≡ A →⊥. We also consider 3-ary connectives if-then-else and most, see

Appendix A for the truth tables.

Definition 2.1.1. The language of the truth table system contains the following symbols:

(1) propositional letters: p0, p1, p2, . . . ,

(2) connectives: c0, c1, c2, . . . ,

(3) auxiliary signs: comma , and parentheses ( and ).

Definition 2.1.2. Let C be a set of connectives. The set PROPC of propositions is the smallest set

X such that

(1) for propositional letter p we have p ∈ X,

(2) for each connective c ∈ C, if A1, . . . , An ∈ X, then c(A1, . . . , An) ∈ X.

We work in propositional logic, but we prefer to speak of formulas instead of propositions. We
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write formulas with capital letters A,B,C, etc. Sometimes we use Greek letters Φ,Ψ for formulas.

For connectives ⊥ and >, ⊥ () and >() are formulas. Since the parentheses are superfluous, we write

⊥ and > for formulas as well.

Definition 2.1.3. Formula A′ is a subformula of formula A if one of the following holds.

- A′ = A,

- A = c(A1, . . . An) for some connective c and formulas A1, . . . , An such that A′ is subformula of

Ai for some i.

Definition 2.1.4. The rank r(A) of a formula A is defined by

r(A) =

{
0, for proposition letter A or 0-ary connective c() = A,

max(r(A1), . . . , r(An)) + 1, if A = c(A1, . . . , An) for n-ary connective c, n ≥ 1.

The definition of the rank of a formula makes it possible to do induction on the structure of

formulas.

Now we turn to the most important definition of this chapter. It defines the natural deduction

rules derived from truth tables [4].

Definition 2.1.5. Let c be an n-ary connective with a truth table tc. We write ϕ = c(p1, . . . , pn)

where p1, . . . , pn are proposition letters and we write Φ = c(A1, . . . An) where A1, . . . , An are formulas.

If the row in truth table tc gives a 0, then we obtain an elimination rule (el). If the row gives a 1,

then it gives rise to a classical and intuitionistic introduction rule (inc and ini). The rules are defined

in the following way, where the truth tables are stated on the left-hand side.

p1 . . . pn ϕ

a1 . . . an 0
7→ ` Φ . . . ` Aj (aj = 1) . . . . . . Ai ` D (ai = 0) . . .

el` D

p1 . . . pn ϕ

b1 . . . bn 1
7→ . . . ` Aj (bj = 1) . . . . . . Ai ` Φ (bi = 0) . . .

ini
` Φ

p1 . . . pn ϕ

c1 . . . cn 1
7→ Φ ` D . . . ` Aj (cj = 1) . . . . . . Ai ` D (ci = 0) . . .

inc

` D

For an n-ary connective c, there will be 2n classical and 2n intuitionistic rules, since there are 2n

rows in the truth table. From the definition, it is clear that the elimination rules for connective c are

the same for classical and intuitionistic logic.

The rules in Definition 2.1.5 are given in sequent notation in abbreviated form, that is without a

possible set containing extended hypotheses. Let Γ be a set of formulas, then the elimination rule is

as follows:

Γ ` Φ . . .Γ ` Aj (aj = 1) . . . . . .Γ, Ai ` D (ai = 0) . . .
el

Γ ` D

The same holds for the introduction rules. We only specify Γ when necessary.

We call the sequents above the line in a rule the premises. Γ ` Φ in the elimination rule is called

the major premise, all others above the line are called minor premises. The sequent below the line is

the consequence of the rule. In general, a derivation rule has the form

Γ ` Φ1 . . . Γ ` Φn Γ,Ψ1 ` D . . . Γ,Ψn ` D
Γ ` D
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We call the Φ’s a lemma and the Ψ’s a case. If we look at the rules in Definition 2.1.5, we see that

Aj occurs as a lemma, if aj = 1 in truth table tc, and Ai occurs as a case, if ai = 0 in tc.

The rules in Definition 2.1.5 give rise to the classical and intuitionistic natural deduction systems

based on truth tables.

Definition 2.1.6. Let C be a set of connectives. We define the intuitionistic and classical natural

deduction systems for C, IPCC and CPCC respectively, as follows:

- Both systems have an axiom rule

axiom, if A ∈ Γ
Γ ` A

- IPCC contains the elimination rules and intuitionistic introduction rules for all connectives in C.
- CPCC contains the elimination rules and classical introduction rules for all connectives in C.

We will often refer to these systems as the truth table natural deduction system system or just as the

truth table system.

We write Γ `IPCC A if Γ ` A is derivable using the rules of IPCC , idem for CPCC with IPCC
replaced by CPCC . In these systems it is possible to make derivations of formulas. A derivation

in IPCC or CPCC is a tree built up from the rules in IPCC or CPCC respectively, where its leaves

are derived from the axiom rule. We use Greek capital letters Π or Σ to denote derivations. The

end-sequent is called the conclusion or consequence. If the end-sequent in a derivation Π is of the

form Γ ` D, then Γ is the set of assumptions and we say that D is derived from Γ.

For the Prawitz system holds IPC ( CPC. This property holds also in the truth table system of

deduction, that is, IPCC ( CPCC , for every set of connectives C. This can be shown by examining

the introduction rules. If Φ is derived from the intuitionistic introduction rule

. . . ` Aj (bj = 1) . . . . . . Ai ` Φ (bi = 0) . . .
ini,` Φ

then this deduction can be transformed into a classical deduction as follows.

Φ ` Φ . . . ` Aj (cj = 1) . . . . . . Ai ` Φ (ci = 0) . . .
inc.` Φ

The terminology of ‘intuitionistic’ rules and ‘classical’ rules will be justified when we define a

Kripke semantics and a 1-point Kripke semantics respectively in Sections 2.4 and 2.5.

Example 2.1.7. Consider the truth table of ∧.

A B A ∧B
0 0 0

0 1 0

1 0 0

1 1 1

We derive the following intuitionistic rules for ∧ labeled by their corresponding entries in the rows.

` A ∧B A ` D B ` D ∧-el00` D
` A ∧B ` A B ` D ∧-el10` D

` A ∧B A ` D ` B ∧-el01` D
` A ` B ∧-ini
` A ∧B

See also Appendix A for the rules of the usual connectives ∨, →, ¬, ⊥ and >.
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Natural deduction derived from truth tables can be defined for each connective via its truth table.

This means that every possible truth table of arity n gives rise to deduction rules. We can for instance

examine the rules for if-then-else and most(A,B,C) which have both arity 3. We write A → B/C,

to mean ‘if A, then B, else C’. See Appendix A for the truth tables and rules for A → B/C and

most(A,B,C).

An important aspect of the rules derived from truth tables is that for each connective, the rules

are completely ‘self-contained’. This means that we do not need to explain one connective in terms

of another. It can be illustrated by Peirce’s Law, ((A → B) → A) → A. This statement holds in

classical logic. In the Prawitz system, we have to use the RAA rule, while ⊥ does not occur in Peirce’s

law. In Example 2.5.1, we will see that we can prove `CPC{→} ((A→ B)→ A)→ A, so we only need

the rules for →.

We end this section with some more terminology, which we also used in the Prawitz system, see

Section 1.1. We adopt the same notions of formula A standing immediately above formula B and A

and B being side-connected. In the truth table system we also exclude redundant application of rules.

An application of a rule is redundant, if a case of that rule is not used in an axiom rule. This means

that this case is not discharged as an assumption. In contrast to the Prawitz system, introduction

rules can also be redundant.

Example 2.1.8. Here we consider a short example where both case B and case C are not used in
an axiom rule. This means that the ∨-el is redundant. Σ is a subderivation with conclusion ` B ∨C.
Sequent ` A → A is two times proved using intuitionistic introduction rules for →, see Appendix A
for the rules.

Σ

` B ∨ C

A ` A A ` A
A ` A→ A

A ` A A ` A
A ` A→ A

` A→ A

A ` A A ` A
A ` A→ A

A ` A A ` A
A ` A→ A

` A→ A ∨-el` A→ A

2.2 Optimizing the rules

Each connective gives rise to many deduction rules, namely 2n for an n-ary connective. However, it is

possible to reduce the number of rules in some cases. In this section we will see the reduced formats

[4].

We first look at two standard lemmas. The first lemma is the weakening property. The second

lemma shows how to put derivations together in one derivation.

Lemma 2.2.1 (Weakening). If Π is a derivation of Γ ` A and Γ ⊆ ∆, then Π is also a derivation of

∆ ` A.

Proof. Proof by simple induction on the derivation of Γ ` A.

Lemma 2.2.2. If Γ ` A and ∆, A ` B, then Γ,∆ ` B.

Proof. This is proved by induction on the derivation of ∆, A ` B. Suppose Γ ` A.

(Axiom) First suppose that ∆, A ` B is derived from the axiom rule. Then B ∈ ∆ or A = B. If

B ∈ ∆ then Γ,∆ ` B. If A = B then Γ ` B and so Γ,∆ ` B, by the weakening property.

(Elimination) Let ∆, A ` B be the conclusion of an elimination rule of some connective c with

major premise Φ = c(C1, . . . , Cn), for some formulas C1, . . . , Cn:
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∆, A ` Φ . . .∆, A ` Cj . . . . . .∆, A,Ci ` B . . .
el

∆, A ` B

From the induction hypothesis we know that Γ,∆ ` Φ and Γ,∆ ` Cj for 1-entries in the truth table

tc and Γ,∆, Ci ` B for 0-entries. With the elimination rule for c, we conclude Γ,∆ ` B.

(Introduction) The proof for classical and intuitionistic introduction is analogous to the elimination

case.

This principle can be written in a more suggestive way using proof trees. If Σ is a derivation of

Γ ` A and Π of ∆, A ` B, then the derivation of Γ,∆ ` B becomes:

Σ
Γ ` A . . .

Σ
Γ ` A

Π
Γ,∆ ` B

This is possible, because the only place in Π where the hypothesis A can be used is at an instance of

the axiom rule of the shape ∆′, A ` A for some ∆′ ⊇ ∆.

The following two lemmas state the reductions to the optimized rules. For proofs see [4]. Note

that Lemma 2.2.2 is needed for Lemma 2.2.4.

Lemma 2.2.3. Two deriving rules of the form

` Φ1 . . . ` Φn Ψ1 ` D . . .Ψm ` D A ` D
` D

,
` Φ1 . . . ` Φn ` A Ψ1 ` D . . .Ψm ` D

` D

are equivalent to the rule

` Φ1 . . . ` Φn Ψ1 ` D . . .Ψm ` D
` D

.

Lemma 2.2.4. The following rules are equivalent:

` Φ1 . . . ` Φn Ψ ` D
` D

and
` Φ1 . . . ` Φn

` Ψ
.

In Appendix A, all optimized rules are written down for ∨,∧,→,¬, ⊥ and >. We also present

there the intuitionistic optimized rules for if-then-else and most.

Example 2.2.5. The classical optimized rules are equivalent to the intuitionistic optimized rules for

∧. There are two elimination rules and one introduction.

` A ∧B ∧-el1` A
` A ∧B ∧-el2` B

` A ` B ∧-in` A ∧B

Note that these rules correspond to the Prawitz rules.

Reductions with Lemma 2.2.3 and Lemma 2.2.4 do not always result in unique optimized rules.

The following example gives the usual intuitionistic optimized rules for if-then-else.

Example 2.2.6. The connective if-then-else is defined by the following truth table, which is also

presented in Appendix A.
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A B C A→ B/C

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

We consider the intuitionistic rules. There are four elimination rules and four introduction rules from

the definition. These can be optimized to two elimination and two introduction rules. The first two

elimination rules optimize to else-el and the last two elimination rules are equivalent to then-el. The

first two introduction rules optimize to else-in and the last two to then-in.

` A→ B/C A ` D C ` D
else-el` D

` A→ B/C ` A
then-el` B

A ` A→ B/C ` C
else-in` A→ B/C

` A ` B
then-in` A→ B/C

These are the usual intuitionistic optimized rules for if-then-else. But it is possible to optimize in

another way, such as the following.

` A→ B/C B ` D C ` D
if-el` D

` B ` C
if-in` A→ B/C

Just as we saw in Example 2.2.5 for ∧, it is possible that the classical rules and the intuitionistic

rules are the same in optimized form. This is also the case for ∨ and most. In general, we establish a

new result stating that IPC and CPC are equivalent for monotone connectives.

Definition 2.2.7. An n-ary connective c is monotone if for each row in the truth table tc with

tc(p1, . . . , pn) = 1, we have that tc(p1, . . . , pi−1, 1, pi+1, . . . , pn) = 1, for each i.

Indeed, ∨,∧ and most are monotone connectives. We can also phrase this definition in a slightly

different way, where we use a preorder on rows of propositional letters p ∈ {0, 1}.

Definition 2.2.8. For sequences of propositional letters of length n, we define ordering v as follows.

If pi ≤ qi for all i, then (p1, . . . , pn) v (q1, . . . , qn).

So n-ary connective c is monotone if: if tc(p1, . . . , pn) = 1 and (p1, . . . , pn) v (q1, . . . , qn), then

tc(q1, . . . , qn) = 1.

It is useful to identify optimized rules of c by certain sequences of 0’s and 1’s including gaps as

follows. Let r be a rule for n-ary connective c with lemmas indexed by set L ⊆ {1, . . . , n} and cases

indexed by C ⊆ {1, . . . , n} \ L. Recall that lemmas correspond to certain 1-entries in the truth table

and cases to 0-entries. Let I ⊆ {1, . . . , n} \ (L ∪ C) be a set of gaps. Then we identify rule r by

sequence (p1, . . . , pn) with pi = 1 if i ∈ L, pi = 0 if i ∈ C and i = for i ∈ I. In this way, for both

CPC and IPC, each rule has a sequence, but not all sequences correspond to a derivation rule of c.
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Example 2.2.9. The two optimized introduction rules of disjunction

` A ∨-in1` A ∨B and
` B ∨-in2` A ∨B

can be identified by (1, ) and ( , 1). Sequences (0, ) and ( , 0) do not correspond to rules of ∨.

We can now adopt the ordering on optimized sequences as follows.

Definition 2.2.10. Let I ⊆ {1, . . . , n} be the index set of gaps. We define vI on sequences with

gaps in I as follows. Define (p1, . . . , pn) vI (q1, . . . , qn), if pi = qi = for all i ∈ I and pj ≤ qj for all

j /∈ I.

Note that sequences can only be related if they have gaps on the same places. This means that

sequences (1, ), ( , 1) and (1, 1) are not comparable. We have ( , 0) v2 ( , 1). If I = {1, . . . , n} then

vI is the same as v. Now we consider crucial definitions.

Definition 2.2.11. Let r be an introduction rule for n-ary connective c identified by sequence

(p1, . . . , pn) with index set I of gaps. We call r minimal with regard to I if (q1, . . . , qn) is not an

introduction rule for all (q1, . . . , qn) vI (p1, . . . , pn) and (q1, . . . , qn) 6= (p1, . . . , pn).

Note that (q1, . . . , qn) does not have to be any rule at all. Since set of gaps I belongs to r we will

just write minimal. Because of the link from optimized rules to sequences, we can also write r vI r′
for rules r, r′.

Definition 2.2.12. Let r be a minimal introduction rule of connective c with index set I of gaps.

For both IPC and CPC, we define the upper set of r as

Ur = {r′ | r vI r′}.

Example 2.2.13. Consider the truth table of disjunction ∨.

A B A ∨B
0 0 0

0 1 1

1 0 1

1 1 1

Both introduction rules defined by rows (0, 1) and (1, 0) are minimal rules. The introduction rule

defined by (1, 1) is not minimal. The two optimized rules identify by (1, ) and ( , 1) are both minimal.

We have U(0,1) = {(0, 1), (1, 1)}, U(1,0) = {(1, 0), (1, 1)}, U(1, ) = {(1, )} and U( ,1) = {( , 1)}.

We have the following observation which is evident from the definition of monotonicity.

Lemma 2.2.14. Let c be a monotone connective with non-optimized minimal introduction rules

r1, . . . , rt for IPC or CPC. Then Ur1 ∪ · · · ∪ Urt contains all introduction rules of c for IPC or

CPC respectively.

Proof. From monotonicity it is clear that Ur1 ∪ · · · ∪Urt only contains introduction rules. It contains

all introduction rules since for each non-optimized introduction rule r we have ri v r for some non-

optimized minimal rule ri.

To prove the next proposition, we need the following definition and lemma.
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Definition 2.2.15. Connective c is monotone in index set I if the following holds. If (p1, . . . , pn)

with gaps in I correspond to an introduction rule, and (p1, . . . , pn) vI (q1, . . . , qn), then (q1, . . . , qn)

with the same gaps is also an introduction rule.

Lemma 2.2.16. If connective c is monotone in index set I, c is monotone in I ∪ {j} for every j.

Proof. Suppose (p1, . . . , pn) is an introduction rules with gaps in I ∪ {j} with j /∈ I such that

(p1, . . . , pn) vI∪{j} (q1, . . . , qn). By Lemma 2.2.3, sequence (p1, . . . , pn) is equivalent to the two

rules

(p1, . . . , pj−1, 0, pj+1, . . . , pn) and (p1, . . . , pj−1, 1, pj+1, . . . , pn).

These are introduction rules, because only introduction rules can reduce to an introduction rule. Con-

nective c is monotone in index set I, so (p1, . . . , pj−1, 0, pj+1, . . . , pn) vI (q1, . . . , qj−1, 0, qj+1, . . . , qn)

and (p1, . . . , pj−1, 1, pj+1, . . . , pn) vI (q1, . . . , qj−1, 1, qj+1, . . . , qn) are also introduction rules. By

Lemma 2.2.3, (q1, . . . , qn) is an introduction rule.

Proposition 2.2.17. Let c be a monotone in index set I. Let r be an optimized minimal rule with

gaps in I and lemmas on 1-entries L = {i1, . . . , ik}. Then the introduction rules in Ur are equivalent

to the following introduction rule

` Ai1 . . . ` Aik
` c(A1, . . . , An)

.

This is true for both IPC and CPC.

Proof. Let rmin be a minimal rule with lemmas indexed by L = {i1, . . . , ik} and gaps I. We have

cases C = {1, . . . , n} \ (L ∪ I). Note that L, I and C are disjoint sets. We proceed by induction on

the number of elements in I until #I = n−#L. Write Φ = c(A1, . . . , An).

If #I = n−#L, then in the intuitionistic rule, there are only lemmas Ai1 , . . . , Aik , so it is already

in the right form. For the classical case, we apply Lemma 2.2.4 such that we have

Φ ` D ` Ai1 . . . ` Aik
` D

is equivalent to
` Ai1 . . . ` Aik

` Φ
.

For #I < n − #L, the first part of the proof is the same for IPC and CPC where we use Lemma

2.2.3. Consider pairs [r1, r2] of rules in Urmin
such that the sequences of the rules differ on one

entry. This means that there exists a j ∈ C such that r1 = (p1, . . . , pj−1, 0, pj+1, . . . , pn) and r2 =

(p1, . . . , pj−1, 1, pj+1, . . . , pn). Note that pi = 1 for all i ∈ L. Such a pair [r1, r2] is equivalent to

rule (p1, . . . , pj−1, , pj+1, . . . , pn) by applying Lemma 2.2.3. In addition, for each j ∈ C there is an r

such that [rmin, r] amounts to a minimal introduction rule r′ with regard to index set I ′ = I ∪ {j}.
Moreover, since c is monotone in I, c is also monotone in I ∪ {j} for every j ∈ C. Note that all rules

in Urmin
are equivalent to all rules in

⋃
Ur′ . For each optimized minimal rule r′ we can apply the

induction hypothesis to Ur′ . For the intuitionistic case, we now have that the rules in each Ur′ are

equivalent to the rule

` Ai1 . . . ` Aik
` Φ

So for IPC, we conclude that rules in Urmin
are equivalent to that derivation. For the classical case

we know that the rules in each Ur′ are equivalent to

Φ ` D ` Ai1 . . . ` Aik
` D

So rules in Urmin
are equivalent to that rule. Now apply Lemma 2.2.4 to get the desired result for

CPC.
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The following example illustrates the strategy of the proof.

Example 2.2.18. Consider an arbitrary monotone 4-ary connective c with non-optimized minimal

introduction rule indicated by r1 = (1, 1, 0, 0). Since c is monotone we have also non-optimized

introduction rules r2 = (1, 1, 1, 0), r3 = (1, 1, 0, 1) and r4 = (1, 1, 1, 1). Pair [r1, r2] optimizes to

r′1 = (1, 1, , 0). We get also optimized rules r′2 = (1, 1, 0, ), r′3 = (1, 1, 1, ), r′4 = (1, 1, , 1). Rules

r′1 and r′2 are minimal with Ur′1 = {r′1, r′4} and Ur′2 = {r′2, r′3}. Then both Ur′1 and Ur′2 optimize to

(1, 1, , ). So we conclude that rules of Ur1 are equivalent to (1, 1, , ).

Elimination rules are the same for IPC and CPC, so for a monotone connective, IPC and CPC

are equivalent. This is also true for a set of monotone connectives, since rules can only be optimized

when they are derived from the same connective. This yields the following corollary.

Corollary 2.2.19. Let C be a set of monotone connectives. Then IPCC and CPCC are equivalent.

Proof. Follows from Proposition 2.2.17 with I = ∅ and Lemma 2.2.14 together with the remark of

above.

2.3 A few examples

This section gives insights in how to use the truth table system by presenting examples of derivations.

The goal of presenting these examples is to get a feeling of how to use the (optimized) derivation rules.

It is in particular not our aim to explain difficult examples, because big examples do not contribute

to the understanding of the rules.

First we look at examples with →. The two optimized introduction rules

` B →-ini
1` A→ B

and
A ` A→ B →-ini

2` A→ B

are equivalent to the more common introduction rule of Prawitz, which is

Γ, A ` B
Γ ` A→ B

.

This is shown in the following lemma.

Lemma 2.3.1 (Deduction Theorem). Let C be a set of connectives containing →. For IPCC and

CPCC we have

Γ ` A→ B if and only if Γ, A ` B.

Proof. First suppose Γ ` A→ B, then

Γ ` A→ B
Γ, A ` A→ B

axiom
Γ, A ` A

→-el
Γ, A ` B

Now suppose Γ, A ` B. It suffices to show the intuitionistic case:

Γ, A ` B
→-ini

1Γ, A ` A→ B
→-ini

2Γ ` A→ B
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The following example states more common properties of →.

Example 2.3.2. Intuitionistically, we give derivations of A → B,B → C ` A → B and also of

A→ (B → C), B ` A→ C. Let Γ := {A→ B,B → C} and ∆ := {A→ (B → C), B}. See Appendix

A for the labels of the rules.

ax
Γ, A ` B → C

ax
Γ, A ` A→ B

ax
Γ, A ` A

→-el
Γ, A ` B

→-el
Γ, A ` C

Lemma 2.3.1
Γ ` A→ C

ax
∆, A ` A→ (B → C)

ax
∆, A ` A

→-el
∆, A ` B → C

ax
∆, A ` A→ B

ax
∆, A ` A

→-el
∆, A ` B

→-el
∆, A ` C

Lemma 2.3.1
∆ ` A→ C

We have seen that the optimized truth tables rules for→ are equivalent to the Prawitz rules. This

is also the case for ∨ and ∧. There is one big difference between both systems. In the Prawitz system,

negation is abbreviated as ¬A ≡ A →⊥, whereas in the truth table system, ¬ is considered as an

apart connective. The following example presents this difference.

Example 2.3.3. Here we give a proof of ¬¬¬A `IPC ¬A in the truth table system. Compare this

proof with the proof in the Prawitz system in Example 1.1.7.

ax
¬¬¬A,A ` ¬¬¬A

ax
¬¬¬A,A,¬A ` ¬A

ax
¬¬¬A,A,¬A ` A

¬-el¬¬¬A,A,¬A ` ¬¬A
¬-ini

¬¬¬A,A ` ¬¬A
¬-el¬¬¬A,A ` ¬A

¬-in¬¬¬A ` A

So far, we have considered a few examples of the well-known connectives. The following example

focuses on the connective if-then-else.

Example 2.3.4. We show A → B/C `IPC (A → B) ∧ (¬A → C). Later, in Example 2.4.7, we will
see that the reverse is not true. Note that the reverse is true in classical logic. We only show necessary
formulas of contexts for readability.

ax
` A→ B/C

ax
` A

then-el
A→ B/C,A ` B

Lemma 2.3.1
A→ B/C ` (A→ B)

ax
` A→ B/C

ax
` ¬A

ax
` A ¬-el¬A,A ` C

ax
C ` C

else-el
A→ B/C,¬A ` C

Lemma 2.3.1
A→ B/C ` ¬A→ C

∧-ini

A→ B/C ` (A→ B) ∧ (¬A→ C)

It is also possible to prove (A ∧ B) ∨ (¬A ∧ C) `IPC A → B/C, where again the reverse is only true

in classical logic.

Lastly, we give two examples of classical derivations. The first is rather short, the second involves

rules of most. More examples in classical logic can be found in Section 2.5, such as Peirce’s law.
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Example 2.3.5. This is the derivation of `CPC A ∨ ¬A.

ax
¬A ` ¬A ∨-in2¬A ` A ∨ ¬A

ax
A ` A ∨-in1

A ` A ∨ ¬A ¬-inc

`CPC A ∨ ¬A

Example 2.3.6. Here we prove `CPC most(A → B,B → C,C → A). See the rules in Appendix A.

In the derivation below we write M = most(A→ B,B → C,C → A) and abbreviate most-in to m-in.

Due to lack of space we omit the premises of the introduction rules of most, where we sometimes need

the rule

` P →-in1` Q→ P
.

m-in2
A→ B,C → A `M

m-in1
A→ B,C `M

→-inc
2

A→ B `M

m-in3
A,B → C `M

m-in2
A,B `M

→-inc
2

A `M →-inc
2`M

2.4 Intuitionistic semantics

The difference between the classical and intuitionistic rules is established in the introduction rules.

But why do we call them classical or intuitionistic? At this point, it is not clear why the rules

correspond to intuitionistic and classical logic. In this and the following section we will justify the

terminology by defining a Kripke semantics. In the next section we will examine classical logic, here

we will focus on intuitionistic logic.

In [4], a general Kripke semantics is defined and proved that it is complete for the intuitionistic

rules. We will shortly state these results and present some examples. After that, we will look at a

generalization of the disjunction property, which is also an important property of intuitionistic logic.

Definition 2.4.1. A Kripke model is a triple (W,≤, at), where W is a set of worlds with a reflexive,

transitive relation ≤ and a function at : W → P(At) from the set of worlds to the powerset of atoms

such that w ≤ w′ ⇒ at(w) ⊆ at(w′).

When defining the semantics, we want to define a forcing relation w  A saying that formula A is

true in world w. We adopt the notation as in [4], where JAKw = 1 means w  A and JAKw = 0 means

w 6 A.

Definition 2.4.2. For a Kripke model (W,≤, at) we define JAKw ∈ {0, 1}, by induction on A as

follows.

- (Atom) If A is a proposition letter, then JAKw = 1 iff A ∈ at(w).

- (Connective) For A = c(A1, . . . , An), then JAKw = 1 iff for each w′ ≥ w, we have that

tc(JA1Kw′ , . . . , JAnKw′) = 1, with tc the truth table for c.

This forcing definition is the general notion of the forcing relation on well-known Kripke models.

Definition 2.4.3. We define Γ |=IPC B as: for each Kripke model and each world w, if for each A ∈ Γ

we have JAKw = 1, then JBKw = 1.

Soundness and completeness are proved in [4] using B-maximal sets. Here we only state both

statements. In the next section, we will see how B-maximal sets are defined and how they can also

be used in order to show soundness and completeness of 1-point Kripke models for the classical rules.
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Lemma 2.4.4 (Soundness). If Γ `IPCC B, then Γ |=IPCC B.

Theorem 2.4.5 (Completeness). If Γ |=IPCC B, then Γ `IPCC B.

Kripke models can be used to prove non-derivability of certain formulas. We give three examples,

of which the first one is a well-known example. The latter two are examples of if-then-else.

Example 2.4.6. This is the well-known example that p ∨ ¬p is not derivable for intuitionistic logic.

This example also applies to the truth table system.

p

Let w0 be the world at the bottom. We have Jp ∨ ¬pKw0
= 0.

Example 2.4.7. In Example 2.3.4, we saw that A → B/C `IPC (A → B) ∧ (¬A → C). Now we

show that the reverse is not true by giving a Kripke model such that for some world w we have

J(a→ b) ∧ (¬a→ c)Kw = 1 and Ja→ b/cKw = 0, where a, b, c are proposition letters.

a, b c

Let w0 be the world at the bottom. It can be verified that J(a → b) ∧ (¬a → c)Kw0
= 1. But

Ja→ b/cKw0
= 0, since t(JaKw0

, JbKw0
, JcKw0

) = t(0, 0, 0) = 0, where t is the truth table for if-then-else

(see Appendix A). Therefore (a→ b) ∧ (¬a→ c) 6|= a→ b/c, so (a→ b) ∧ (¬a→ c) 0 a→ b/c.

Example 2.4.8. In Example 2.3.4, we said that (A ∧B) ∨ (¬A ∧ C) `IPC A→ B/C. The reverse is

not true. Consider the following Kripke model, where w0 is the world at the bottom.

a, b

c

c

See Appendix A for the truth tables. We have Ja→ b/cKw0 = 1. But J(a∧b)∨(¬a∧c)Kw0 = 0, because

J¬aKw0 = 0. So we can conclude that a→ b/c 6|= (a∧b)∨(¬a∧c). Therefore a→ b/c 0 (a∧b)∨(¬a∧c).

The Prawitz intuitionistic logic is characterized by the disjunction property, that is, if Γ ` A ∨B,

then Γ ` A or Γ ` B. This suggests that disjunction is a strong concept in intuitionistic logic. This is

not the case for classical logic, since `CPC A∨¬A. It is possible to generalize the notion for arbitrary

connectives in the truth table system by introducing the concept of splitting connectives [4].

Definition 2.4.9. Let c be an n-ary connective and 1 ≤ i � j ≤ n. We say that c is an i, j-splitting

connective if the truth table for c has the following form, with ϕ = c(p1, . . . , pn).

. . . pi . . . pj . . . ϕ

. . . 0 . . . 0 . . . 0

. . . 0 . . . 0 . . . 0
...

...
...

...
...

...

. . . 0 . . . 0 . . . 0

In short, for each row in tc where pi = pj = 0 we have tc(p1, . . . , pn) = 0.
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Connective ∨ is 1, 2-splitting. Connective if-then-else is 1,3-splitting and 2,3 splitting. Connective

most is i, j-splitting for each 1 ≤ i � j ≤ 3.

The following propostion gives the generalization of the disjunction property. It is proved in [4]

using the completeness of the Kripke semantics.

Proposition 2.4.10. Let c be an i, j-splitting connective. If Γ `IPC c(A1, . . . , An), then Γ `IPC Ai
or Γ `IPC Aj.

2.5 Classical semantics

Analogous to the previous section, we define a semantics for the classical rules in order to justify

the terminology of ‘classical’ rules. But before we give this semantics, we first examine the syntax

of the classical rules. We compare it with the classical natural deduction of Prawitz. In the natural

deduction of Prawitz, the classical property is determined by the proof of contradiction, also known

as Reductio ad absurdum (RAA). That is the following rule:

¬A
...
⊥ ⊥c, RAA
A

If this rule is added to the other (intuitionistic) rules of the Prawitz system, one gets classical logic.

A big difference between the Prawitz system and the truth table system is that the classical aspect

of the latter system lies in the rules themselves. We say that, for each connective, the rules are self-

contained. We do not need to explain one classical rule in terms of another. This means that it is not

necessary to add a deduction rule, such as RAA. Therefore, whereas one need RAA in the Prawitz

system in the proof of the classical statement Peirce’s Law, ((A→ B)→ A)→ A , in the truth table

system it suffices to only use rules of →.

Example 2.5.1. We give a proof of Peirce’s Law in system CPC→. Write P = ((A→ B)→ A)→ A.

With the optimized rules of → we have the following derivation, see Appendix A for the rules.

ax
A→ B,P ` P

ax
(A→ B)→ A ` (A→ B)→ A

ax
A→ B ` A→ B

→-el
A→ B, (A→ B)→ A ` A

→-inc
1

A→ B, (A→ B)→ A ` P
→-inc

2
A→ B ` P

ax
A ` A →-inc

1
A ` P →-inc

2` P

Other typical classical statements are `CPC A ∨ ¬A and ¬¬A `CPC A. We proved the first one in

Example 2.3.5. Below we prove the second.

Example 2.5.2. For every formula A we have ¬¬A `CPCC A.

ax
¬¬A ` ¬¬A

ax
¬A ` ¬A ¬-el¬¬A,¬A ` A

ax
¬¬A,A ` A

¬-inc

¬¬A ` A

From the examples above we see that we can prove typical classical statements using the classical

deduction rules. In the following we justify the name of ‘classical’ by defining a 1-point Kripke
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semantics for the classical rules and prove that it is complete. Note that 1-point Kripke models

correspond to truth tables. In [4], only a semantics was given for the intuitionistic rules. Here we

present how it works in the classical case.

Recall that PROPC is the set of all formulas containing connectives from set C.

Definition 2.5.3. A mapping v : PROPC → {0, 1} is a valuation if for each c ∈ C we have

v(c(A1, . . . , An)) = tc(v(A1), . . . , v(An)), with tc the truth table of c.

We see that each row of the truth table of c corresponds to a valuation. Note that a valuation v

is uniquely determined by its values on the atoms. Using a similar notation as in [4], we write JAKv
to mean v(A).

Definition 2.5.4. We define Γ |=CPC B as: for each valuation v, if for each A ∈ Γ we have JAKv = 1,

then JBKv = 1.

We can prove soundness and completeness.

Lemma 2.5.5 (Soundness). If Γ `CPCC B, then Γ |=CPCC B.

Proof. Proof by induction on the derivation of Γ `CPCC B. Here we write Γ ` B instead of Γ `CPCC B

for simplicity. Since the axiom rule and the elimination rule are the same for IPC and CPC and

soundness of all Kripke models for IPC is shown, we only have to check the classical introduction rule.

However, we present all cases to see how the proof works for all cases.

(Axiom) First suppose that Γ ` B is derived from the axiom rule. Then if JAKv = 1 for each

A ∈ Γ, then always JBKv = 1 since B ∈ Γ by the axiom rule.

(Elimination) Let Γ ` B be the conclusion of an elimination rule of some connective c such that

tc(p1, . . . , pm) = 0, write A = c(A1, . . . , An):

Γ ` A . . .Γ ` Aj (pj = 1) . . . . . .Γ, Ai ` B (pi = 0) . . .
el

Γ ` B

From the induction hypothesis we know Γ |= A, Γ |= Aj (pj = 1) and Γ, Ai |= B (pi = 0). Let v be a

valuation such that JCKv = 1 for all C ∈ Γ. We distinguish two cases:

- JAiKv = 1 for some i with pi = 0. Then with Γ, Ai |= B, we know JBKv = 1.

- JAiKv = 0 for all i with pi = 0. From Γ |= Aj for all j with pj = 1 it follows that JAjKv = 1.

Hence JAKv = tc(JA1Kv, . . . , JAnKv) = 0. But Γ |= A gives us JAKv = 1. This leads to a

contradiction, so this case is not possible.

Therefore JBKv = 1.

(Introduction) Now let Γ ` B be the conclusion of an introduction rule of some connective c such

that tc(p1, . . . , pm) = 1, write A = c(A1, . . . , An):

Γ, A ` B . . .Γ ` Aj (pj = 1) . . . . . .Γ, Ai ` B (pi = 0) . . .
inc

Γ ` B

From the induction hypothesis we know Γ, A |= B, Γ |= Aj (pj = 1) and Γ, Ai |= B (pi = 0). Let v be

a valuation such that JCKv = 1 for all C ∈ Γ. Again we have two cases:

- JAiKv = 1 for some i with pi = 0. Then with Γ, Ai |= B, we know JBKv = 1.

- JAiKv = 0 for all i with pi = 0. By induction hypothesis: JAjKv = 1 for all j. So from truth

table tc we know JAKv = tc(JA1Kv, . . . , JAnKv) = 1. Then by Γ, A |= B we have JBKv = 1.

This completes the proof of soundness.
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In order to show completeness, the following definition and facts are useful. These are also used

in the proof of completeness for the Kripke semantics for intuitionistic logic in [4].

Definition 2.5.6. A set of formulas Γ is called B-maximal if Γ 0 B and for each formula A /∈ Γ we

have Γ, A ` B.

For a formula B and a set of formulas Γ such that Γ 0 B, we can construct a B-maximal set

Γ′ such that Γ′ ⊇ Γ. This can be done in the following way. Take an enumeration of all formulas

A1, A2, . . . . Define recursively Γ0 := Γ and Γi+1 := Γi if Γi, Ai+1 ` B and Γi+1 := Γi ∪ {Ai+1} if

Γi, Ai+1 0 B. Then take Γ′ :=
⋃
i∈N Γi. Note that this B-maximal set Γ′ depends on the enumeration

of the formulas.

Lemma 2.5.7. Let Γ be a B-maximal set of formulas. Then

(i) for every A we have A ∈ Γ or Γ, A ` B
(ii) and for each A, if Γ ` A, then A ∈ Γ. (Thus if A /∈ Γ, then Γ 0 A.)

Proof. Statement (i) is an elementary verification from the definition of B-maximal sets. For statement

(ii) suppose that Γ ` A. For a contradiction assume that A /∈ Γ, then Γ, A ` B. By Lemma 2.2.2 we

conclude that Γ ` B, which contradicts the fact that Γ is a B-maximal set.

Theorem 2.5.8 (Completeness). If Γ |=CPCC B, then Γ `CPCC B.

Proof. The proof follows the method of Van Dalen [1] and Milne [7]. Here we write Γ |= B instead of

Γ |=CPCC B for simplicity. Suppose Γ |= B. Assume for a contradiction that Γ 0 B. Take a B-maximal

superset Γ′ ⊇ Γ, that is, Γ′ 0 B and for each formula A /∈ Γ′ we have Γ′, A ` B.

Consider the valuation v such that v(p) = 1 for all atoms p ∈ Γ′ and v(p) = 0 otherwise. Note

that this valuation is unique. Now we claim:

JAKv = 1 if and only if A ∈ Γ′.

The claim is proven below. First assume this claim holds. From Γ′ 0 B we have B /∈ Γ′. So by the

claim we have JBKv = 0. But since Γ ⊆ Γ′ we have JAKv = 1 for all A ∈ Γ by the claim. This means

that Γ 6|= B, which contradicts the assumption. Therefore we conclude that Γ ` B.

Now we prove the claim by induction on A. If A is atomic, the claim follows immediately by the

assumption on v. So suppose A = c(A1, . . . , An) for some connective c. We split the proof in two

directions.

(⇒) Suppose JAKv = 1 and assume A /∈ Γ′. Consider the subformulas of A = c(A1, . . . , An):

- Aj with JAjKv = 1. Then by induction hypothesis: Aj ∈ Γ′, so Γ′ ` Aj .
- Ai with JAiKv = 0. Then by induction hypothesis: Ai /∈ Γ′, so Γ′, Ai ` B, since Γ′ is

B-maximal.

The assumption JAKv = 1 is the same as tc(JA1Kv, . . . , JAnKv) = 1. Then this row in the truth

table yields an introduction rule which allows us to prove A. Note that Γ′, A ` B, since A /∈ Γ′.

Γ′, A ` B . . .Γ′ ` Aj (JAjKv = 1) . . . . . .Γ′, Ai ` B (JAiKv = 0) . . .
inc.

Γ′ ` B
But we already had Γ′ 0 B, so we have a contradiction. Hence A ∈ Γ′.

(⇐) Suppose A ∈ Γ′. Keep in mind that Γ′ is a B-maximal set. Consider subformulas of A:

- Aj with JAjKv = 1. Then by induction hypothesis: Aj ∈ Γ′, so Γ′ ` Aj .
- Ai with JAiKv = 0. Then by induction hypothesis: Aj /∈ Γ′, so Γ′, Ai ` B.

We also have Γ′ ` A, since A ∈ Γ′.

Suppose JAKv = 0, or equally, tc(JA1Kv, . . . , JAnKv = 0. Then the elimination rule concludes:
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Γ′ ` A . . .Γ′ ` Aj (JAjKv = 1) . . . . . .Γ′, Ai ` B (JAiKv = 0) . . .
el.

Γ′ ` B

This cannot be the case, because Γ′ is a B-maximal set. So we have JAKv = 1.

This finishes the proof of the claim.

Corollary 2.5.9. For any set of connectives C, CPCC is decidable, that is, there is an effective way

to determine whether Γ `CPCC A or not.

Proof. In order to check whether Γ ` A or not, it is sufficient to determine whether Γ |= A or not.

Here we will give an effective procedure to determine the latter. For each B ∈ Γ, it is possible to make

a truth table. This can be done in finitely many steps, since there is a finite number of subformulas

of B. It is also possible to make a truth table for A. Now we have to check for each valuation v, if

JBKv = 1 for each B ∈ Γ whether JAKv = 1. If this is the case for each v, then Γ ` A. We have Γ 0 A
otherwise.

2.6 Glivenko’s translation

We have seen that Γ `IPCC A implies Γ `CPCC A. An interesting question is how to transfer from

classical logic to intuitionistic logic. Well-known methods are the translations of Gödel and Glivenko.

These translations are applied to the Prawitz natural deduction system containing formulas with

negation ¬. In the truth table systems CPCC and IPCC it is not guaranteed that C contains ¬.

Therefore a new kind of translation has to be found. Unfortunately, this goal is not reached yet.

Here we consider Glivenko’s translation applied to CPCC and IPCC for a set of connectives C which

contains negation ¬.

Proposition 2.6.1 (Glivenko’s Theorem). Let C be a set of connectives such that ¬ ∈ C. Then

Γ `CPCC A if and only if ¬¬Γ `IPCC ¬¬A,

where ¬¬Γ is the set containing ¬¬B for all B ∈ Γ.

The proof is based on the following two lemmas.

Lemma 2.6.2. In CPCC and IPCC we have the following facts.

(i) A ` ¬¬A,

(ii) ¬¬¬A a` ¬A,

(iii)
Γ, A ` B

Γ,¬B ` ¬A
.

Proof. See for the rules Appendix A. All statements follow from ¬-el and ¬-ini. Case (i) is used in

the proof of (ii).

Lemma 2.6.3. In CPCC and IPCC we have
Γ ` ¬¬D
¬¬Γ ` ¬¬D .

Proof. Write Γ = {B1, . . . , Bn}. Then
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Γ ` ¬¬D
B1, . . . , Bn,¬¬Γ ` ¬¬D

Lemma 2.6.2 (ii) and (iii)
B2, . . . , Bn,¬¬Γ,¬D ` ¬B1

axiom
B2, . . . , Bn,¬¬Γ,¬D ` ¬¬B1 ¬-el

B2, . . . , Bn,¬¬Γ,¬D ` ¬¬D
¬-ini

B2, . . . , Bn,¬¬Γ ` ¬¬D
...

etc
...

¬¬Γ ` ¬¬D

The combination of this lemma with Lemma 2.2.2 makes it possible to have deductions that look

like

∆ ` ¬¬Γ Γ ` ¬¬D
∆ ` ¬¬D ,

where we write ∆ ` ¬¬Γ to mean ∆ ` ¬¬A for every A ∈ Γ.

Now we are able to prove Proposition 2.6.1 (Glivenko’s Theorem), that is, Γ `CPCC A if and only

if ¬¬Γ `IPCC ¬¬A, for C containing ¬.

Proof of Proposition 2.6.1. (⇐) ¬¬Γ `IPCC ¬¬A implies ¬¬Γ `CPCC ¬¬A, which implies Γ `CPCC A

since ¬¬A `CPCC A for all formulas A.

(⇒) By induction on the derivation of Γ `CPCC A. The atomic case is clear.

(Elimination) Suppose

Γ `CPCC B . . .Γ `CPCC Bj (pj = 1) . . . . . .Γ, Bi `CPCC A (pi = 0) . . .
el

Γ `CPCC A

for some B = c(B1, . . . , Bn) with tc(p1, . . . pn) = 0. The induction hypothesis gives us

(1) ¬¬Γ `IPCC ¬¬B,

(2) ¬¬Γ `IPCC ¬¬Bj (pj = 1),

(3) ¬¬Γ,¬¬Bi `IPCC ¬¬A (pi = 0).

Writing ∆ = {Bj | pj = 1} we obtain the following derivation. For readability we omit ¬¬Γ in
this tree.

(1)

` ¬¬B
(2)

` ¬¬∆

ax
B,∆ ` B

ax
B,∆ ` Bj

Lemma 2.6.2
Bi ` ¬¬Bi

(3)

¬¬Bi ` ¬¬A
2.2.2

Bi ` ¬¬A
el

B,∆ ` ¬¬A
Lemmas 2.2.2 and 2.6.3` ¬¬A

This gives the desired result ¬¬Γ `IPCC ¬¬A.

(Introduction) Suppose

Γ, B ` A . . .Γ ` Bj (pj = 1) . . . . . .Γ, Bi ` A (pi = 0) . . .
inc

Γ ` A
for some B = c(B1, . . . , Bn) with tc(p1, . . . pn) = 1. The induction hypothesis gives us

(1) ¬¬Γ,¬¬B `IPCC ¬¬A,

(2) ¬¬Γ `IPCC ¬¬Bj (pj = 1),

(3) ¬¬Γ,¬¬Bi `IPCC ¬¬A (pi = 0).
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This leads to the proof in similar notation as above.

(2)

` ¬¬∆

(1) + Lemma 2.6.2

¬A ` ¬B

ax
∆ ` Bj

(3) + Lemma 2.6.2

¬A ` ¬Bi
ax

Bi ` Bi ¬-el¬A,Bi ` B
ini

∆,¬A ` B
¬-el

∆,¬A ` ¬¬A
¬-ini

∆ ` ¬¬A
Lemmas 2.2.2 and 2.6.3` ¬¬A

Hence ¬¬Γ `IPCC ¬¬A. This concludes the proof of Glivenko’s Theorem.
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This chapter covers an elaborated study of normalization of the intuitionistic truth table system. We

look at so-called detour and permutation conversions of intuitionistic derivations which have already

been defined in [5]. In [5], normalization properties have been established, such as weak normalization

with regard to detour and permutation conversions. In this section we also prove weak normalization,

but now using the method of Prawitz, which we have presented in Chapter 1. This leads to a study

of the form of normal derivations in Section 3.3.

A main contribution of this chapter is the strong normalization of the intuitionistic truth table

system. The proof is based on the work of De Groote who proved strong normalization for proof

reduction in the Prawitz system. His idea is based on a translation from the Prawitz system to simply

typed lambda calculus, which is strongly normalizing. For the truth table system, the simply typed

lambda calculus is not sufficient enough. Therefore we introduce in Section 3.4 an extended variant,

which we call parallel simply typed lambda calculus. This makes it possible to apply proof techniques

of the De Groote in order to prove strong normalization for the intuitionistic truth table system in

Section 3.6.

3.1 Cut elimination

In this section we look at cut elimination of IPCC . This forms the preliminary work for the weak and

strong normalization of intuitionistic logic which will be examined in Section 3.2 and Section 3.6. In a

normal derivation all major premises of elimination rules are assumptions. In short, cuts are patterns

in a derivation for which a major premise of an elimination rule is not an assumption. There are two

different cuts, which we call detour convertibilities and permutation convertibilities. In [4], they are

called direct cuts and indirect cuts respectively, but we prefer to stick to a more common terminology.

A detour convertibility is an introduction rule of a formula Φ immediately followed by an elimina-

tion rule of Φ. We will see that there are two possibilities circumventing such patterns.

Definition 3.1.1. Let c be an n-ary connective with an elimination rule and an intuitionistic intro-

duction rule derived from truth table tc. So we have the following truth table.

p1 . . . pn c(p1, . . . , pn)

a1 . . . an 0

b1 . . . bn 1

A detour convertibility is an intuitionistic introduction rule followed by an elimination rule, where

Φ = c(A1, . . . , An). This has the following form with subtrees Σj , Σi, Πk and Πl.

Σj

. . .Γ ` Aj . . .
Σi

. . .Γ, Ai ` Φ . . .
in

Γ ` Φ

Πk

. . .Γ ` Ak . . .
Πl

. . .Γ, Al ` D . . .
el

Γ ` D
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Here, Aj ranges over all formulas where bj = 1 and Ai ranges over all formulas where bi = 0 in the

truth table. Similarly, Ak ranges over all formulas where ak = 1 and Al ranges over all formulas where

al = 0.

Example 3.1.2. Consider the following detour convertibility for most. For simplicity, we use the

optimized rules (see Appendix A).

Σ1

Γ ` A
Σ2

Γ ` B most-in1
Γ ` most(A,B,C)

Π1

Γ, A ` D
Π2

Γ, B ` D
most-el3Γ ` D

Definition 3.1.3. A detour conversion is defined by replacing a detour convertibility from Definition

3.1.1 in a derivation by one of the following derivations. As we will see, there are several ways to

eliminate a detour convertibility. This depends on the columns from the truth table in which the

entries of the introduction and elimination rule differ. The two general possibilities result in the

following detour conversions.

(1) l′ = j′ for some l′, j′ which means Al′ = Aj′ :

Σj′

Γ ` Aj′ . . .
Σj′

Γ ` Aj′
Πl′

Γ ` D
(2) k′ = i′ for some k′, i′ which means Ak′ = Ai′ :

Πk′

Γ ` Ai′ . . .
Πk′

Γ ` Ai′
Σi′

Γ ` Φ

Πk

. . .Γ ` Ak . . .
Πl

. . .Γ, Al ` D . . .

Γ ` D

Both diagrams yield correct derivations because of Lemma 2.2.2. In a detour convertibility, there

could be several columns in the truth table in which the entries of the elimination and introduction

rule differ. So there could be several ‘matching cases’ l′ = j′ or k′ = i′. This means that detour

conversion is non-deterministic. We will illustrate this with the following example of most.

Example 3.1.4. This example continues from Example 3.1.2. The detour convertibility represented

in that example can be reduced to one of the following derivations, using matching case l′ = j′ of

Definition 3.1.3.

Σ1

Γ ` A . . .

Σ1

Γ ` A
Π1

Γ ` D

Σ2

Γ ` B . . .

Σ2

Γ ` B
Π2

Γ ` D

We see that in this example there are two possibilities to eliminate the detour convertibility of Example

3.1.2. This means that detour conversion is non-deterministic.

Now we can turn to the permutation convertibilities. A permutation convertibility is a pattern

in which an elimination rule is applied to the major premise of an elimination rule. It is interesting

to look at such patterns, because indirect cuts may block a detour convertibility in a way that an

introduction of a formula Φ = c(A1, . . . , An) is not directly followed by an elimination rule for c, but
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first by other elimination rules where Φ is a minor premise of those elimination rules. To solve this

blockage, we can permute one elimination rule over another. This justifies the name of permutation

convertibility.

Definition 3.1.5. Let c be an n-ary connective and let c′ be an n′-ary connective with elimination

rules r and r′ respectively. So we have the following rows in truth tables tc and tc′ :

p1 . . . pn c(p1, . . . , pn)

b1 . . . bn 0

p1 . . . pn′ c′(p1, . . . , pn′)

a1 . . . an′ 0

A permutation convertibility is a pattern of the following form, in which Φ = c(B1, . . . Bn) and

Ψ = c′(A1, . . . , An′).

Γ ` Ψ

Σj

. . .Γ ` Aj . . .
Σi

. . .Γ, Ai ` Φ . . .
elr′Γ ` Φ

Πk

. . .Γ ` Bk . . .
Πl

. . .Γ, Bl ` D . . .
elrΓ ` D

Here, Aj ranges over all formulas where aj = 1 and Ai ranges over all formulas where ai = 0. Similarly,

Bk ranges over all formulas where bk = 1 and Bl ranges over all formulas where bl = 0.

Example 3.1.6. This example with optimized rules is also stated in [5]. For optimized rules, permu-

tation convertibilities are defined in a similar way.

Γ ` A ∨B
Γ, A,C ` C → D

→-ini
2Γ, A ` C → D Γ, B ` C → D

∨-el
Γ ` C → D Γ ` C →-el

Γ ` D

In this example we have a permutation convertibility where the conclusion of ∨-el is the major premise

of →-el. In this derivation, this permutation convertibility blocks the detour convertibility of the

combination of →-ini
2 and →-el.

Definition 3.1.7. A permutation conversion is defined by replacing a permutation convertibility

from Definition 3.1.5 in a derivation by the following derivation, where the two elimination rules are

permuted.

Γ ` Ψ

Σj

. . .Γ ` Aj . . .

Σi
Γ, Ai ` Φ

Πk

. . .Γ, Ai ` Bk . . .
Πl

. . .Γ, Ai, Bl ` D . . .. . . elr . . .Γ, Ai ` D
elr′Γ ` D

This is a correct derivation, because of the weakening property, that is, Πk is a derivation of Γ, Ai ` Bk
since Γ ` Bk. Similarly, Πl derivation for Γ, Ai, Bl ` D.

Example 3.1.8. Now we look at the permutation conversion of the derivation of Example 3.1.6. We

get the following derivation.

Γ ` A ∨B

Γ, A, C ` C → D
→-ini

2Γ, A ` C → D Γ, A ` C
→-el

Γ, A ` D

Γ, B ` C → D Γ, B ` C
→-el

Γ, B ` D
∨-el

Γ ` D

We observe that now we have created a detour convertibility of the combination of →-ini
2 and →-el.

Consequently, this can be reduced with a detour conversion of case k′ = i′ of Definition 3.1.1.
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Detour conversion and permutation conversion are also known under the term cut elimination.

Such as in the Prawitz system, detour and permutation conversions are related to normal derivations.

Definition 3.1.9. A derivation in IPCC is normal if every major premise of an elimination rule is an

assumption.

Note that a derivation is normal iff it does not contain any detour or permutation convertibilities.

The definitions of detour and permutation convertibilities can be compared with the definitions of

those in the Prawitz system, Definition 1.2.7 and Definition 1.2.8. There is one difference when we

look at normal forms. In the Prawitz system, a derivation is normal iff it contains no detour and no

permutation convertibilities and no cut formula derived from the ⊥i-rule. The difference is that in

the truth table system the ⊥-rule is considered as an elimination rule, whereas in the Prawitz system

the ⊥i-rule is taken as an apart rule. This means that in the truth table system a reduction with ⊥
is considered as a permutation conversion.

Example 3.1.10. We consider permutation conversion with ⊥-el and →-el ánd ¬-el and ⊥-el. We

see that some subderivations are deleted when permuting the rules. This is due to the fact that ⊥-el

contains no case. In this example we also see that ⊥-el is rarely necessary in a derivation, where

it would be essential in a proof in the Prawitz system. This is because the rules in the truth table

system are self-contained. Note that ¬-el also contains no case. A two step reduction is shown below,

first permuting the ⊥-el – →-el pattern and then the ¬-el – ⊥-el pattern. We write −→P for a

permutation conversion.

A ∧ ¬A ` A ∧ ¬A ∧-el2A ∧ ¬A ` ¬A
A ∧ ¬A ` A ∧ ¬A ∧-el1A ∧ ¬A ` A ¬-el

A ∧ ¬A `⊥ ⊥-el
A ∧ ¬A ` A→ D

A ∧ ¬A ` A ∧ ¬A ∧-el1A ∧ ¬A ` A →-el
A ∧ ¬A ` D

−→P

A ∧ ¬A ` A ∧ ¬A ∧-el2A ∧ ¬A ` ¬A
A ∧ ¬A ` A ∧ ¬A ∧-el1A ∧ ¬A ` A ¬-el

A ∧ ¬A `⊥ ⊥-el
A ∧ ¬A ` D

−→P

A ∧ ¬A ` A ∧ ¬A ∧-el2A ∧ ¬A ` ¬A
A ∧ ¬A ` A ∧ ¬A ∧-el1A ∧ ¬A ` A ¬-el

A ∧ ¬A ` D

Note that the two step reduction of permuting the ¬-el – ⊥-el pattern before the ⊥-el – →-el pattern

yields the same result.

We have defined the detour and permutation conversions for non-optimized rules. It is also possible

to define those conversions for the optimized rules, which is done in [5].

In Example 3.1.4, we saw that detour conversion is non-deterministic. This means that IPCC
cannot satisfy the Church-Rosser property. The Church-Rosser property says that if derivation Σ

reduces to Π1 and Σ also reduces to Π2, then there is a Π3, such that there are conversions from both

Π1 and Π2 resulting in Π3. Informally speaking, the Church-Rosser property says that the order of

the conversions does not make a difference to the eventual result. This is also known under the name

confluence.
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Proposition 3.1.11. The intuitionistic truth table system does not satisfy the Church-Rosser prop-

erty.

Proof. We give an example in which different conversions result in different normal derivations. This

means that conversion does not always lead to a unique normal form. Let Γ = {A,B,B → A}.
Derivation

Γ ` A Γ ` B ∧-in
Γ ` A ∧B Γ, A ` A

Γ, B ` B → A Γ, B ` B
→-el

Γ ` A
∧-el00Γ ` A

contains a detour convertibility, which reduces to two different normal derivations using matching case

l′ = j′ of Definition 3.1.3.

Γ ` A and Γ ` B → A Γ ` B →-el
Γ, B ` A

Both derivations are normal, so the intuitionistic truth table system cannot satisfy the Church-Rosser

property.

3.2 Weak normalization

In this section, we give a proof for the weak normalization of the non-optimized intuitionistic natural

deduction rules derived from truth tables. Weak normalization is already proven with the use of proof

terms by Geuvers and Hurkens [5]. Here we follow a same strategy as Prawitz used in his proof of

weak normalization mentioned in Section 1.2.

Definition 3.2.1. Let R = {−→1, . . . ,−→n} be a set of reduction relations. A derivation Π is weakly

normalizing with regard to R if there is a finite reduction sequence of reductions from R starting

from Π. We say that a logical system has the weak normalization property with regard to R if every

derivation is weakly normalizing with regard to R.

In the truth table system we set R = { −→D , −→P }, where −→D stands for the detour

conversions and −→P for the permutation conversions.

In order to prove weak normalization, it is more practical to use another notation for the deduc-

tion rules. The new notation is also used in Prawitz [11] and Von Plato [9]. This notation shows

more explicitly at which rules in a tree the discharges of assumptions take place. In the case of the

elimination rule the new notation would be:

Φ . . . Aj . . .

[Ai]
1

...
. . . D . . .

el,1
D

In this notation we call Φ the major premise of the elimination rule, Aj a lemma and we say that the D

above the line is derived from case Ai. If a rule uses such a D, then we say that the rule contains a case

or that it is a rule with a case. The same holds for lemmas. Assumptions written between brackets [·]
are discharged assumptions. Discharged assumptions [A] are labelled with a natural number k, that

is [A]k, indicating at which rule the assumption is discharged. Open assumptions are those which are
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not discharged. Context Γ is hidden in this notation, where all open assumptions of the derivation

form the context Γ. In the rest of this section we use this notation.

Now we introduce the definition of a segment. In natural deduction derived from truth tables, a

segment is slightly different in comparison to a segment defined by Prawitz (Definition 1.2.1). This is

due to the form of the introduction rules.

Definition 3.2.2. A segment in a derivation is a sequence D1, . . . , Dn of formulas such that Di stand

immediately above Di+1 and

(1) D1 is not the conclusion of a deduction rule that contains a case,

(2) for i < n, Di is derived from a case of a deduction rule (elimination or introduction),

(3) Dn is not a minor premise of a deduction rule where Dn is derived from a case.

A segment ends in a lemma or in a major premise. Note that in a segment D1, . . . , Dn it holds

that Di = Dj for all i and j. Therefore, we define the rank of a segment by the rank of the formula

in that segment. Recall Definition 2.1.4 of the rank of a formula. Number n represents the length of

the segment.

Example 3.2.3. In this example we can identify (at least) two segments with formula C ∧D and (at

least) two segments containing formula E. Numbers 1, 2, 3 indicate the places where corresponding

assumptions are discharged.

A ∧B

[A]1

...
C ∧D

B → (C ∧D) [B]1 [C ∧D]2
→-el, 2

C ∧D ∧-el00, 1
C ∧D

[C]3

...
E

[D]3

...
E ∧-el00, 3

E

In contrast to the Prawitz system, segments can also occur in the introduction rules. This is

necessary, because of the detour reductions of kind k′ = i′. This is illustrated by the following

example.

Example 3.2.4. This example has two segments with the formula A→ B and (at least) one segment

with formula D. One segment with A→ B has length 2 and the other has length 3.

[A]1 B
→-in11A→ B

[A]2 [B]1
→-in11A→ B [B]1

→-in01, 2
A→ B →-in00, 1

A→ B A

[B]3

...
D →-el, 3

D

We reintroduce the definition of a cut formula, now for the intuitionistic truth table deduction

system.

Definition 3.2.5. A cut formula is a formula which

(1) is the major premise of an elimination rule,

(2) and the conclusion of a derivation rule, that is, the formula is not an axiom.

A segment that contains a cut formula is called a cut segment.

A cut formula appears only in a detour convertibility or a permutation convertibility. This means

that a normal derivation is free of cut segments.
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Example 3.2.6. In Example 3.2.3 the segments containing C∧D are cut segments, but the segments

containing E are not. In Example 3.2.4 the segments containing A → B are cut segments, but the

segment containing D is not.

Before we turn to the weak normalization of detour and permutation conversion, we consider

an illustrative example of how the lengths of segments reduce. These segments can occur both in

introduction rules and in elimination rules.

Example 3.2.7. Consider the following reductions of a proof of A,¬A ` D.

[¬A]1 A
¬-el¬¬A ¬-in,1

¬¬A ¬A ¬-el
D

−→D(k′=i′)

¬A A ¬-el¬¬A ¬A ¬-el
D

−→P
¬A A ¬-el

D

In the first derivation there is one cut segment of length 2 containing formula ¬¬A. After detour

reduction, the length is decreased to 1. After permutation there are no cut segments anymore.

The proof of the next theorem follows the same method as the proof of Prawitz (Theorem 1.2.10).

Theorem 3.2.8 (Weak normalization). There is an effective procedure for transforming a deduction

Γ ` A in IPCC into a normal derivation of Γ ` A.

Proof. This is proved by induction. Let Π be a derivation of Γ ` A. A deduction is normal if it

contains no cut segments. Let pair 〈d, l〉 be the induction value with

- d the highest rank of a cut formula in Π,

- l the sum of the lengths of segments containing a cut formula of rank d.

Let σ be a cut segment of highest rank d such that:

(a) there is no cut segment of rank d above σ,

(b) no cut segment of rank d stands above a formula side-connected with the last formula in σ,

(c) no cut segment of rank d contains a formula side-connected with the last formula in σ.

It is important to mention that such a cut segment σ exists if derivation Π is not normal. This is

proved in the following way, such as in [11]. Consider the finite set of cut segments of rank d that

satisfy clause (a). If σ1 from this set does not satisfy (b) or (c), then there is a segment σ2 that makes

clause (b) or (c) fail for σ2. If (b) or (c) also fail for σ2, then there is a segment σ3 6= σ1 in the set

that makes (b) or (c) fail for σ2. Now we get a sequence of segments σ1, σ2, σ3, . . . with σi 6= σj if

i 6= j. Since the set is finite, we must find a segment that satisfies clauses (b) and (c). Therefore we

can find segment σ which satisfies (a), (b) and (c).

Now let Φ be the cut formula in σ. We treat different cases for σ.

(1) Length(σ) = 1

(2) Length(σ) > 1

Both cases can be divided into two subcases: either Φ is in a detour convertibility or Φ is in a

permutation convertibility.

In case 1, σ consists of one formula, which is Φ. This formula is then the consequence of a rule

without any case. This can be an introduction rule or an elimination rule. This correspond to a

detour convertibility and a permutation convertibility.

- Detour : Normally, there are two possibilities for a detour conversion, but since in this case we

do not have any case for the introduction rule, we only have to examine the case that l′ = j′ for

some l′ and j′. The reduction goes as follows, with cut formula Φ:
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Σj

. . . Aj . . .
in

Φ

Πk

. . . Ak . . .

[Al]
2

Πl

. . . D . . .
el,2

D
Π

−→D

Σj′

Aj′ . . .

Σj′

Aj′

Πl′

D
Π

In this reduction there can be multiple subderivations containing Σj′ . This is not a problem for

the induction value, because of clause (a) in the assumption on σ. So either d is lowered or d

remains the same and l is lowered.

- Permutation: Cut formula Φ is the conclusion of an elimination rule without a case, so the

reduction is as follows:

Σ

Ψ

Σj

. . . Aj . . .
el

Φ

Πk

. . . Bk . . .

[Bl]
2

Πl

. . . D . . .
el,2

D
Π

−→P

Σ

Ψ

Σj

. . . Aj . . .
el

D
Π

In this case it is clear that the induction value is decreased.

For case 2 we have Length(σ) > 1. This means that cut formula Φ in σ is derived from a rule

including a case. Again, this can be a detour convertibility or a permutation convertibility.

- Detour : We have to consider two cases. In the case that l′ = j′ for some l′ and j′ the reduction

is the same as above, so we only do the case that k′ = i′ for some k′ and i′. The reduction is as

follows, with cut formula Φ:

Σj

. . . Aj . . .

[Ai]
1

Σi
. . .Φ . . .

in,1
Φ

Πk

. . . Ak . . .

[Al]
2

Πl

. . . D . . .
el,2

D
Π

−→D

Πk′

Ai′ . . .

Πk′

Ai′

Σi′

Φ

Πk

. . . Ak . . .

[Al]
1

Πl

. . . D . . .
el,1

D
Π

In this reduction there could be multiple subderivations containing Πk′ . This is not a problem

for the induction value, because of clause (b) in the assumption on σ. So again, either d is

decreased or d remains the same and l is lowered.

- permutation: The reduction with cut formula Φ in σ:

Σ

Ψ

Σj

. . . Aj . . .

[Ai]
1

Σi
. . .Φ . . .

el,1
Φ

Πk

. . . Bk . . .

[Bl]
2

Πl

. . . D . . .
el,2

D
Π
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−→P
Σ

Ψ

Σj

. . . Aj . . .

[Ai]
1

Σi
Φ

Πk

. . . Bk . . .

[Bl]
2

Πl

. . . D . . .. . . el,2 . . .
D

el,1
D
Π

Now there can be two problems. First, subderivations Πk and Πl could be duplicated. But

because of clause (c) and (b), there will be no extra cut segment of rank d. Secondly, there

could be more cut segments containing formula D. In order to conclude that the induction

value decreases, we have to check that, in the case D would be in a cut segment, D has a lower

rank than Φ. This is precisely because of clause (c) in the assumption on σ. Hence the induction

value 〈d, l〉 decreases.

We have shown for all different possibilities for σ that the induction value becomes lower after reduc-

tion. This makes sure that after repeated applications of those reductions we end up with a normal

derivation.

Example 3.2.9. In this example we consider detour conversions. This is the reduction of the deriva-

tion of Example 3.2.4. We see that the lengths of cut segments with A→ B decreases.

[A]1 B
→-in11A→ B

[A]2 [B]1
→-in11A→ B [B]1

→-in01, 2
A→ B →-in00, 1

A→ B A

[B]3

...
D →-el, 3

D

−→D (k′=i′) A B →-in11A→ B A

[B]3

...
D →-el, 3

D

−→D (l′=j′)

B . . . B
...
D

3.3 Subformula property, consistency and decidability

In this section we prove the subformula property using the same ideas of Prawitz, which we have

examined in Section 1.3. In [5], the subformula property, consistency and decidability are already

proven for the truth table system using proof terms. Here we will focus on proof trees using terminology

of Prawitz [11] and Van Dalen [1]. First we will look at the form of normal deductions in the truth

table system. This differs slightly from the form of a normal proof in the Prawitz system.

Definition 3.3.1. A path in a deduction Π is a sequence of formulas D1, . . . , Dn such that

(1) D1 is an assumption not discharged by an elimination rule,

(2) Di with i < n is not a lemma of an elimination rule and either

- Di is not a major premise of an elimination rule with a case and Di+1 stands immediately

below Di or

- Di is the major premise of an elimination rule with a case and Di+1 is a discharged as-

sumption in this elimination rule,

(3) Dn is either

- a lemma of an elimination rule, or

- the conclusion of Π.
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Recall that we do not allow redundant applications of the rules (see Example 2.1.8). Consequently,

if Di is the major premise of an elimination rule with k cases, then there are k possibilities to continue

the path.

Also note that segments are included as a whole in paths. So a segment cannot be ‘cut’ by a path.

Definition 3.3.2. A path containing the conclusion is called a main path.

Example 3.3.3. In this example we give a normal derivation of A∧B ` B ∧A. We use the notation

introduced in previous section.

A ∧B

A ∧B [A]1 [B]2
∧-el10,2

B [B]1
∧-el00,1

B

A ∧B [A]3
A ∧B [A]4 [B]3

∧-el01,4
A
∧-el00, 3

A ∧-in
B ∧A

This derivation adopts the following tree form

1

2

4 5

10 11 12

6

3

7 8 9

13 14 15

The derivation contains the following paths: (4,11) (4,6,2,1), (10,12,5,2,1), (7,8,3,1), (7,15) and

(13,14,9,3,1). The dashed edges indicate the lemmas of elimination rules, which are the end-formulas

of paths.

Now we can look at the form of a normal derivation in the truth table system. Note that each

formula in a deduction tree belongs to at least one path. Compare the following proposition with

Proposition 1.3.4. In this system we also have three parts, where the middle part does not has to

contain the ⊥-rule. For example, the ¬-el does also belong the the middle part, which is illustrated

in Example 3.3.6.

Proposition 3.3.4. A path π in a normal derivation in the truth table system is divided into at most

three parts: an E-part, followed by an M-part, followed by an I-part, such that

(1) the E-part consists of formulas that are a major premise of an elimination rule with a case except

for the possible last formulas which form a segment ending in the end-formula of π,

(2) the M-part (middle part) contains at most one formula which is the major premise of an elimi-

nation rule without a case,

(3) for each segment σ in the I-part, the last formula is a premise of an I-rule or the end-formula

of path π.

Each of the parts may be empty.

Proof. Let Π be a normal deduction and π = (D1, . . . , Dn) a path in Π. Since Π is normal, every

major premise of an elimination rule is an assumption. For the E-part, suppose that the first formula

D1 in π is a premise of an elimination rule which contains a case. Note that D1 is an assumption

of Π. There are three cases: D1 is the major premise, a lemma or a case of that rule. It cannot be

a case, since that case would be directly discharged by the elimination rule and paths cannot start

in discharged assumption by an elimination rule. If D1 is a lemma, then D1 is the end-formula of

path π. If D1 is the major premise, then D2 is a case of that elimination rule. Let σ be the segment

containing D2, then one of the following five is true.
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(i) D2 is a major premise of an elimination rule which contains a case, which repeats the process

for the E-part.

(ii) D2 is a major premise of an elimination rule without a case.

(iii) The last formula of σ is a lemma of an elimination rule. This is the end of path π.

(iv) The last formula of σ is the conclusion of Π. This is the end of path π.

(v) The last formula of σ is a premise of an introduction rule.

Number (ii) is the M-part and we show that (v) begins the I-part. For the M-part, we have to show

that in π there is one formula that ends in a major premise of an elimination rule without a case.

Consider the segment σ′ that starts with the elimination rule without a case. The last formula in σ′

cannot be a major premise of an elimination rule, since Π is normal. Now we can show that σ′ belongs

to the I-part, because the last formula in σ′ is either a lemma of an elimination rule, the conclusion

of Π or a premise of an introduction rule.

If σ ends in the premise of an introduction rule we have to prove that the next formulas in the

path belong to the I-part. Consider the next segment σ′ which starts from an introduction rule. σ′

cannot end in a major premise of an elimination rule, since Π is normal. Therefore, σ′ ends in the

end-formula of π or an introduction rule. This yields the I-part.

Note that the E-part consists of segments of length 1 except for the possible last segment, and

that the possible M-part also has 1 formula. This is due to the fact that major premises of elimination

rules are assumption in normal proofs.

Example 3.3.5. Here we identify the parts in the paths of Example 3.3.3. We write | to switch to

the next part, that is (E-part | M-part | I-part). Some parts may be empty. We write ; between

segments. We have (4; 11 | | ), (4 | | 6,2; 1), (10 | | 12,5,2; 1), (7 | | 8,3; 1), (7; 15 | | ) and

(13| | 14,9,3; 1).

Example 3.3.6. We consider the normal derivation of ¬¬¬A `IPC ¬A and its tree structure, which

is an example of paths including the M-part.

¬¬¬A

[¬A]1 [A]2
¬-el¬¬A ¬-in,1¬¬A ¬-el¬A ¬-in,2¬A

1

2

3 4

5

6 7

The deduction has the following paths: (3,2,1), (6,5,4), (7). These can be divided as follows,

( | 3 | 2,1), ( | 6 | 5,4) and (7 | | ).

We define the order of a path in the same way as in Definition 1.3.6. This makes it possible to

prove the subformula property.

Definition 3.3.7. Let π be a path in a normal derivation. Define the order o of π inductively as

follows.

- o(π) = 0 for a main path.

- If π ends in a lemma of an elimination rule, then

o(π) = 1 + min{o(π′) | π′ contains corresponding major premise}.
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Example 3.3.8. Consider again the derivation of Example 3.3.6. We have the following orders:

o(3, 2, 1) = 0, o(6, 5, 4) = 1 and o(7) = 2.

Now let us prove the subformula property, consistency and decidability. The proof of the subfor-

mula property which we present here is by induction on the order of paths, just as in the proof of

Theorem 1.3.9. The subformula property is also proved in [5] using induction on the typing derivation

rules. The following results can be compared to results in the Prawitz system of Section 1.3.

Lemma 3.3.9. Let π = (A1, . . . , An) be a path. Each formula in the E-part or M-part is a subformula

of A1. Each formula in the I-part is subformula of An.

Proof. For formula B in the E-part, we prove that Aj = B is a subformula of Aj−1. There are two

possibilities, B is the major premise of an elimination rule with a case or it is contained in a segment

which starts with an assumption. In the first case, B is an assumption, since Π is a normal derivation.

In the second case, B is the same formula as the assumption. For both possibilities we have either

B ≡ A1 or B = Aj for some case Aj where Aj−1 = c(B1, . . . , Bm) is the corresponding major premise

with Aj = Bi for some i. This means that B = Aj is subformula of Aj−1. Repeating this process in

the E-part, we see that B = Aj is subformula of A1.

If B is the formula of the M-part, then B is an assumption, since Π is normal. B can be an open

assumption, that is B ∈ Γ, or a case of an elimination rule. For the second we have that B is a

subformula of a formula in the E-part. Hence, B is subformula of A1.

If B is contained in the I-part of π, then B = Aj is a subformula of Aj+1, because of the form of

the intuitionistic introduction rules. Therefore, B is a subformula of An.

If we look closer at the proof of Lemma 3.3.9, we see that for a path (A1, . . . , An) we have the

following: for E-part and M-part (A1, . . . , Aj) we have that Ai+1 is subformula of Ai and for I-part

(Aj+1, . . . , An) we have that Ai is subformula of Ai+1.

Theorem 3.3.10 (Subformula property). Let Π be a normal derivation of Γ ` A. Then each formula

B in Π is a subformula of the conclusion A or of a formula in Γ.

Proof. Let Π be a normal deduction of Γ ` A. We proceed by induction on the order of paths.

Consider a formula B in Π in a path π = (A1, . . . , An). By Proposition 3.3.4, B can occur in the

E-part, M-part or I-part of π.

If B = An, then B is either the conclusion or a lemma of an elimination rule. If B is the conclusion,

then B = A. If B is a lemma of an elimination rule, then the major premise of that rule is of the form

c(B1, . . . , Bm) where Bi = B for some i. This means that B is a subformula of the major premise

which is contained in a path π′ with o(π′) < o(π). Applying the induction hypothesis we find that B

is a subformula of a formula in Γ or the conclusion.

Now, if B is contained in the I-part of π, then B is a subformula of the end-formula An, by Lemma

3.3.9. So together with the previous, B is a subformula of A or a subformula of a formula in Γ.

If B = A1, then either B ∈ Γ or B is used as a case in an introduction rule, which is discharged by

that introduction rule. If B is a discharged assumption, then B is a subformula of the corresponding

introduced formula c(B1, . . . , Bm) with Bi = B for some i. Formula c(B1, . . . , Bm) is contained in

the I-part of π, or in a path π′ with o(π′) < o(π). So we can conclude that B is a subformula of A or

subformula of a formula in Γ.

If B is a formula in the E-part or the formula of the M-part, then B is a subformula of A1 by

Lemma 3.3.9. This finishes the proof.
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Now we consider consistency and decidability. Compare it to the end of Section 1.3.

Corollary 3.3.11 (Consistency). For any set of connectives C, IPCC is consistent, that is, there are

formulas D such that 6`IPCC D.

Proof. Let D be an atom and suppose ` D. Then there is a normal deduction of D without any

open assumptions. There is a main path which contains the conclusion D. Formula D is an atom,

so it cannot be derived from an introduction rule. Because of the structure of a path, there are no

introduction rules in the main path. This means that the first formula of the path is not discharged.

This is a contradiction.

Corollary 3.3.12 (Decidability). For any set of connectives C, IPCC is decidable, that is, there is an

effective way to determine whether Γ `IPCC A or not.

Proof. This can be done in the same strategy as the proof of Corollary 1.3.11. See [5] for a proof.

3.4 Parallel simply typed λ-calculus

In Section 3.6, we prove strong normalization of IPCC . First we have to examine the parallel simply

typed λ-calculus in this section and the Curry Howard isomorphism for proof terms of the truth table

system in the next section.

Type systems are used in proof theory and in studying the foundations of mathematics. There

are many type systems. One of the easiest type systems is the simply typed λ-calculus, denoted by

λ→. This system consists of types that only contain the connective → and terms can be reduced via

β-reduction. This system adopts very nice properties such as the substitution Lemma, confluence,

subject reduction property and strong normalization. See [8] for an extensive introduction on λ→.

In this section we extend λ→ with an extra typing rule. This makes it possible to combine different

proofs of a formula. These proofs will stand parallel to each other, which justifies the name. We add

a new term and one typing rule to λ→ in order to get the parallel simply typed λ-calculus, denoted

by pλ→, which results in the following definitions.

Definition 3.4.1 (Parallel simply typed λ-calculus). The types in the parallel simply typed λ-calculus

are of the form

A ::= a | A→ A,

where a is an atomic type. The abstract syntax for proof terms in the parallel simply typed λ-calculus

is

M ::= x | (MM) | λx.M | [M1, . . . ,Mn] for (n > 1)

where x ranges over variables. The terms are typed using the following derivation rules with context

Γ.

if xi : Ai ∈ Γ, axiom
Γ ` xi : Ai

Γ `M : A→ B Γ ` N : A application
Γ `MN : B

Γ, x : A `M : B
abstraction

λx.M : A→ B

Γ `M1 : A . . . Γ `Mn : A
n > 1, parallel

Γ ` [M1, . . . ,Mn] : A

We use the following terminology and notations. We use capital letters A,B,C to represent types.

We reserve capital letters M,N,O, P,Q for terms in pλ→. When M is of the form [M1, . . . ,Mn], we

call M a parallel term.
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Parallel terms can be applied when one want to store all information of a proof. For instance, it

may be the case that a formula can be proved in several ways, and you want to have the different

proofs.

Example 3.4.2. In the proof of A→ B → (A→ C)→ (B → C)→ C you can apply the information

from A or the information from B. A parallel proof becomes

[A→ C] [A]

C

[B → C] [B]

C
C

4 abstractions
A→ B → (A→ C)→ (B → C)→ C

The proof term that corresponds to this tree is λx.λy.λz.λw.[zx,wy].

Such as in λ→, we can define substitutions and we can show that the substitution lemma holds in

pλ→. The substitution lemma is proved by induction on derivations, such as many other lemmas in

this section. When proving with induction we only show the statement for the parallel rule, since the

lemmas are already proved for the axiom, abstraction and application rule [8].

Definition 3.4.3 (Substitution).

(1) (a) x[x := N ] ≡ N ,

(b) x[y := N ] ≡ N if x 6≡ y,

(2) (PQ)[x := N ] ≡ (P [x := N ]Q[x := N ]),

(3) Rename variables in N , such that y is not a free variable in N ,

then (λy.P )[x := N ] ≡ λy.(P [x := N ]),

(4) [P1, . . . Pn][x := N ] ≡ [P1[x := N ], . . . , Pn[x := N ]].

Lemma 3.4.4 (Substitution lemma). Assume that Γ, x : B,∆ ` M : A and Γ ` N : B, then

Γ,∆ `M [x := N ] : A.

Proof. We use induction on the derivation of M in Γ, x : B,∆ ` M : A. There are different possibil-

ities: M can be a variable, an application, an abstraction or a parallel term. See for the first three

cases the proof of Lemma 2.11.1 in [8]. Now suppose M is a parallel term, say M ≡ [M1, . . . ,Mn].

Then Γ, x : B,∆ `Mi : A for all i. The induction hypothesis gives us Γ,∆ `Mi[x := N ] : A for all i.

Therefore Γ,∆ ` [M1, . . . ,Mn][x := N ] : A.

A central point in λ→ is the β-reduction. This makes it possible to avoid unnecessary combinations

of an abstraction and an application. We get an altered definition of β-reduction, since we add a

parallel typing rule for each n > 1.

Definition 3.4.5 (β-reduction). The β-reduction is defined as follows.

(1) (λx.M)N →β M [x := N ],

(2) [M1, . . . ,Mn]N →β [M1N, . . . ,MnN ],

(3) If M →β N , then

(a) MP →β NP ,

(b) PM →β PN ,

(c) λx.M →β λx.N ,

(d) [P1, . . . ,M, . . . , Pn]→β [P1, . . . , N, . . . , Pn].
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The terms (λx.M)N →β M [x := N ] and [M1, . . . ,Mn]N →β [M1N, . . . ,MnN ] are called β-redexes.

If M reduces in zero, one or more steps to N , we write M �β N . This means that�β is the reflexive

and transitive closure of →β . If M reduces in one or more steps we write M
+→β N , which is the

transitive closure of →β .

Definition 3.4.6. Let R = {−→1, . . . ,−→n} be a set of reduction relations. Well-formed term M is

strongly normalizing with regard to R if there is no infinite reduction sequence of reductions from R

starting from M . We say that a logical system has the strong normalization property with regard to

R if every well-formed term is strongly normalizing with regard to R.

Here we have R = {→β}. Strong normalization of pλ→ is proved by constructing a model using

the well-known saturated sets method of Tait [13]. We write SN for the set of strongly normalizing

terms.

Definition 3.4.7. The interpretation of parallel simply typed terms is defined by

- JaK := SN for atomic type a,

- JA→ BK := {M | ∀N ∈ JAK (MN ∈ JBK)}.

We have the following standard closure properties for JAK. We write P to mean a sequence of

terms P1P2 . . . Pn.

Lemma 3.4.8. For all types A, terms M,M1, . . . ,Mn and list of terms P we have

(1) JAK ⊆ SN,

(2) xN1 . . . Nk ∈ JAK for all x and N1, . . . , Nk ∈ SN,

(3) if M [x := N ]P ∈ JAK and N ∈ SN, then (λx.M)NP ∈ JAK,

(4) if [M1N, . . . ,MnN ]P ∈ JAK, then [M1, . . . ,Mn]NP ∈ JAK.

Proof. All parts are proceeded by induction on the structure of type A. The first two are proved

simultaneously. Here we prove point (4) by induction on type A. For atomic type a, we have JaK = SN,

so suppose [M1N, . . . ,MnN ]P ∈ SN. Because there are no infinite reductions in N , P and Mi for all

i, a reduction from [M1, · · ·Mn]NP will reduce to [M ′1N
′, . . . ,M ′nN

′]P ′ for M ′i , N
′ and P ′ such that

Mi �β M
′
i for all i, N �β N

′ and P �β P ′. By assumption we have [M ′1N
′, . . . ,M ′nN

′]P ′ ∈ SN, so

[M1, . . . ,Mn]NP ∈ SN. This completes the start of the induction. For the induction step, suppose

[M1N, . . . ,MnN ]P ∈ JA → BK. Let O ∈ JAK, then [M1N, . . . ,MnN ]PO ∈ JBK and with induction

we have [M1, . . . ,Mn]NPO ∈ JBK. Therefore [M1, . . . ,Mn]NP ∈ JA→ BK.

Lemma 3.4.9. For all types A, terms M1, . . . ,Mn and list of terms P we have

[M1, . . . ,Mn]P ∈ JAK if and only if MiP ∈ JAK for all i.

Proof. Proof by induction on the structure of A.

(⇒): For atomic type a, we have JaK = SN, so suppose [M1, . . . ,Mn]P ∈ SN. This β-reduces in

several steps to [M1P , . . . ,MnP ]. Hence the subterms MiP are SN. Now suppose [M1, . . . ,Mn]P ∈
JA → BK and N ∈ JAK. By definition, [M1, . . . ,Mn]PN ∈ JBK. By induction hypothesis, MiPN ∈
JBK for all i. Hence MiP ∈ JA→ BK for all i.

(⇐): For atomic type a, suppose MiP ∈ SN for all i. Because there are no infinite reductions in Mi

for all i and P , a reduction from [M1, . . . ,Mn]P reduces to [Q1, . . . Qn] for Qi such that MiP �β Qi.

Since Qi is SN and [Q1, . . . , Qn] does not add a new redex, we have that [Q1, . . . , Qn] ∈ SN. So

[M1, . . . ,Mn]P is SN. The induction step is analogous to the induction step of (⇒).
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Proposition 3.4.10. If y1 : B1, . . . , ym : Bm ` M : A and N1 ∈ JB1K, . . . , Nm ∈ JBmK, then

M [y1 := N1, . . . , ym := Nm] ∈ JAK.

Proof. By induction on the derivation of Γ ` M : A. See Definition 3.4.1 for the rules. For the

abstraction rule, that is M = λx.M ′, we have to use property (3) of Lemma 3.4.8. Here we only prove

the statement for the parallel rule. Suppose for this case y1 : B1, . . . , ym : Bm ` [M1, . . . ,Mn] : A and

N1 ∈ JB1K, . . . , Nm ∈ JBmK. The induction hypothesis gives us Mi[y1 := N1, . . . , ym := Nm] ∈ JAK for

all i. With Lemma 3.4.9 we conclude [M1, . . . ,Mn][y1 := N1, . . . , ym := Nm] ∈ JAK.

Theorem 3.4.11 (Strong normalization). Parallel simply typed λ-calculus is strongly normalizing.

Proof. By taking Ni := yi in Proposition 3.4.10. (Note that yi ∈ JBiK by Lemma 3.4.8.) Then

M ∈ JAK ⊆ SN.

Proposition 3.4.12 (Subject reduction property). Parallel simple typed λ-calculus satisfies the sub-

ject reduction property. That is, if Γ `M : A and M →β N , then Γ ` N : A.

Proof. We do induction on the generation of M →β N . Definition 3.4.5 gives the different cases. See

for case (1), (3a), (3b) and (3c) the proof of Lemma 2.11.5 in [8]. For case (1) we need the substitution

lemma (Lemma 3.4.4).

For case (2), assume that Γ ` [M1, . . . ,Mn]N : A. We want Γ ` [M1N, . . . ,MnN ] : A. By

Γ ` [M1, . . . ,Mn]N : A, there must be a type B such that Γ ` [M1, . . . ,Mn] : B → A and Γ ` N : B.

Then Γ `Mi : B → A for all i, so Γ `MiN : A for all i. Therefore Γ ` [M1N, . . . ,MnN ] : A.

For (3d), suppose that Γ ` [P1, . . . ,M, . . . , Pn] : A and M →β N . We have to prove that Γ `
[P1, . . . , N, . . . , Pn] : A. We have that Γ ` M : A, so by induction we have also Γ ` N : A. Since

Γ ` Pi : A for all i we conclude Γ ` [P1, . . . , N, . . . , Pn] : A.

Proposition 3.4.13 (Church-Rosser property). Suppose that for a given pλ→-term M , we have

M �β N1 and M �β N2. Then there is a pλ→-term N3 such that N1 �β N3 and N2 �β N3.

Takahashi developed a short proof method for the Church-Rosser property in λ→ [14]. We are

going to apply her method to pλ→. Before we can actually prove the statement, we have to introduce

some terminology, analogously to Takahashi’s method. She introduces a parallel β-reduction. Note

that this has nothing to do with the parallel system pλ→ we defined. Parallel β-reduction means that

β-redexes are contracted simultaneously.

Definition 3.4.14. The parallel β-reduction, which is denoted by⇒β , is defined inductively as follows.

(1) x⇒β x,

(2) λx.M ⇒β λx.M
′ if M ⇒β M

′,

(3) MN ⇒β M
′N ′ if M ⇒β M

′ and N ⇒β N
′,

(4) [M1, . . . ,Mn]⇒β [M ′1, . . . ,M
′
n] if Mi ⇒β M

′
i for all i,

(5) (λx.M)N ⇒β M
′[x := N ′] if M ⇒β M

′ and N ⇒β N
′,

(6) [M1, . . . ,Mn]N ⇒β [M ′1N
′, . . . ,M ′nN

′] if Mi ⇒β M
′
i for all i and N ⇒β N

′.

Based on the inductive definition of ⇒β , we have the following facts.

Lemma 3.4.15.

(1) M →β M
′ implies M ⇒β M

′,

(2) M ⇒β M
′ implies M �β M

′,

(3) M ⇒β M
′, N ⇒β N

′ implies M [x := N ]⇒β M
′[x := N ′].
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Proof. Properties (2) and (3) can be verified by a straightforward induction on the structure of M .

We have already seen several proofs by induction on the structure of a proof term, therefore we will

skip the proof here for (2) and (3).

Statement (1) is proved by induction on the generation of M →β M
′, see Definition 3.4.5. Case

(1), (3a), (3b) and (3c) of Definition 3.4.5 are already verified by Takahashi [14]. For the second

case, we have to prove that [M1, . . . ,Mn]N ⇒β [M1N, . . . ,MnN ]. Point (1) and (6) of Definition

3.4.14 gives immediately the desired result. For case (3d) of Definition 3.4.5, assume that M →β N

and we want to prove [P1, . . . ,M, . . . , Pn]⇒β [P1, . . . , N, . . . , Pn]. With induction hypothesis we have

M ⇒β N . Since Pi ⇒β Pi for all i, we conclude [P1, . . . ,M, . . . , Pn]⇒β [P1, . . . , N, . . . , Pn].

Property (1) and (2) of Lemma 3.4.15 induce that �β is the reflexive and transitive closure of

⇒β . This means that when proving the Church-Rosser property, it is sufficient to show the ‘diamond

property’ of ⇒β , that is,

if N1 β ⇐M ⇒β N2, then N1 ⇒β N3 β ⇐ N2 for some N3.

But it is possible to prove even a stronger statement,

if M ⇒β N, then N ⇒β M
∗ for some M∗. (∗)

At this point we have enough information to prove the Church-Rosser property.

Proof of Proposition 3.4.13. We prove statement (∗). We are going to define M∗ by induction on

term M . Term M∗ does not depend on the form of N .

(1*) x∗ = x,

(2*) (λx.M)∗ = λx.M∗,

(3*) (M1M2)∗ = M∗1M
∗
1 if M1M2 is not a β-redex.

(4*) [M1, . . . ,Mn]∗ = [M∗1 , . . . ,M
∗
n],

(5*) ((λx.M1)M2)∗ = M∗1 [x := M∗2 ],

(6*) ([M1, . . . ,Mn]P )∗ = [M∗1P
∗, . . . ,M∗nP

∗].

Property (∗) can be verified by induction on M . Proofs of (1*), (2*), (3*) and (5*) are written

down in [14]. For case (4*), suppose that [M1, . . . ,Mn] ⇒β N . We have N = [N1, . . . , Nn] with

Mi ⇒β Ni for all i. By the induction hypothesis we know Ni ⇒β M∗i for all i, therefore N =

[N1, . . . , Nn] ⇒β [M∗1 , . . . ,M
∗
n] = M∗. Now we prove case (5*). If M = [M1, . . . ,Mn]P ⇒β N , then

either N = [N1, . . . , Nn]Q or N = [N1Q, . . . , NnQ] with in both cases Mi ⇒β Ni for all i and P ⇒β Q.

By induction hypothesis, Ni ⇒β M
∗
i for all i and Q⇒β P

∗.

- If N = [N1, . . . , Nn]Q: We have [N1, . . . , Nn] ⇒β [M∗1 , . . . ,M
∗
n] = [M1, . . . ,Mn]∗. Then

[N1, . . . , Nn]Q⇒β [M∗1P
∗, . . . ,M∗nP

∗] = M∗.

- If N = [N1Q, . . . , NnQ]: We have NiQ⇒β M
∗
i P
∗, so [N1Q, . . .NnQ]⇒β [M∗1P

∗, . . . ,M∗nP
∗].

This completes the proof of (∗), and hence we have proved the Church-Rosser property for pλ→.

We have shown that pλ→ satisfies the same important properties as λ→, such as the substitution

lemma, strong normalization and the Church-Rosser property. The advantage of pλ→ is that the

parallel terms are proofs which stores several possible (normal) derivations. In the proof of strong

normalization of the natural deduction derived from truth tables in Chapter 3.6, we will see that it is

useful to choose a possible derivation in a parallel term.
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Definition 3.4.16. We give an inductive definition of the notion of parallel subterm. We write

M ′ vM for M ′ is parallel subterm of M . Relation v is defined by the following rules.

- M vM ,

- If N vMi for some i, then N v [M1, . . . ,Mn],

- If Ni vMi for all i, then [N1, . . . , Nn] v [M1, . . . ,Mn],

- If P v Q, then λx.P v λx.Q,

- If P v Q and M v N , then PM v QN .

Example 3.4.17. Recall the proof term λx.λy.λz.λw.[zx,wy] in Example 3.4.2. It has the following

subterms: the term itself, λx.λy.λz.λw.zx and λx.λy.λz.λw.wy.

Lemma 3.4.18. The relation v is a partial order, that is, v is reflexive, antisymmetric and transitive.

Proof. Reflexivity follows directly from the definition. For antisymmetry suppose M v N and N vM
and suppose M 6= N . By inspection of the definition of v, we know that M is derived from less or

the same amount of typing rules as N , because M v N . If M and N consists of the same number of

typing rules, then M = N . This is guaranteed by the fact that components in a parallel term cannot

be swapped by the subterm relation. But we assumed that M 6= N . So M is derived from less rules

then N , but then N 6vM which leads to a contradiction.

For transitivity suppose M v N and N v P . We prove this by induction on the generation of

N v P . If N = P then indeed M v P . Now let N 6= P .

- If N v [P1, . . . , Pn], then N v Pi for some i, or N = [N1, . . . , Nn] with Ni v Pi for all i. For

the first case we have immediately M v N v Pi, so M v [P1, . . . , Pn]. For the second, the

induction hypothesis gives M v [N1, . . . , Nn]. Again there are two possibilities. If M v Nj
for some j, then M v Nj v Pj and therefore M v [P1, . . . , Pn]. If M = [M1, . . . ,Mn] with

Mi v Ni for all i (it may me the case that Mi = Ni for all i), then Mi v Pi for all i and hence

M = [M1, . . . ,Mn] v [P1, . . . , Pn].

- If N v λx.P ′, then N of the form λx.N ′ with N ′ v P ′. But then M = λx.M ′ for some M ′ with

M ′ v N ′ (it may be the case that M ′ = N ′). Applying the induction hypothesis to P ′ we have

M ′ v P ′, so M v P .

- If N v P1P2, then N = N1N2 for some N1 and N2 such that N1 v P1 and N2 v P2. This

implies that M is also of the form M1M2 with M1 v N1 and M2 v N2 (it may be the case that

M = N). With induction hypothesis we conclude M1M2 v P1P2.

We have treated all cases for N v P , hence v is transitive.

Lemma 3.4.19. Let M , N and P be pλ→-terms such that M →β N and M v P , then there is a

pλ→-term Q such that P
+→β Q and N v Q.

Proof. We proceed by induction on the generation of M v P . We look at two interesting cases with

redex M = M1M2 = (λx.M ′)M2. Let P = P1P2 with M1 v P1, M2 v P2 and M = (λx.M ′)M2 →β

M ′[x := M2] = N. There are two possibilities for M1 v P1.

- If P1 = λx.P ′ for some P ′, define Q = P ′[x := P2]. Then we have P = (λx.P ′)P2 →β Q and

N = M ′[x := M2] v Q, because M ′ v P ′ and M2 v P2.

- If P1 = [P ′1, . . . , P
′
n] such that M1 v P ′i for some i. Again there are two cases. If P ′i is a parallel

term, then repeat the process. If P ′i = λx.P ′′ with M ′ v P ′′, then define

Q = [P ′1P2, . . . , P
′′[x := P2], . . . , P ′nP2].

We have P = [P ′1, . . . , P
′
n]P2 →β [P ′1P2, . . . , (λx.P

′′)P2, . . . , P
′
nP2] →β Q. And we also have

N = M ′[x := M2] v Q, because M ′ v P ′′ and M2 v P2.

– 51 –



3.5 The Curry-Howard isomorphism

3.5 The Curry-Howard isomorphism

The Curry-Howard isomorphism is a general notion to define a direct relationship between proof

theory and type theory. Proof theory is in the field of mathematics, whereas type theory is a subject

of computer science. In short, due to the Curry-Howard isomorphism, formulas correspond to types

and derivations correspond to proof terms. So far, we considered the truth table system in a proof

theoretical context. The short notation of proof terms forms a great advantage of studying proof

terms over derivation trees. In addition, detour and permutation conversions correspond to certain

reductions in the type sytem. This makes it easier to prove strong normalization in Section 3.6.

The type system that we define is based on the λ-calculus. For each C we define a system λC , where

for each derivation rule in IPCC , we give a typing rule in λC . The types in λC are exactly the formulas.

In addition, we define reductions in λC that correspond to detour and permutation conversions. [5]

Definition 3.5.1. Let C be a set of connectives. The types in λC are the formulas involving connectives

from C. The abstract syntax for proof terms in λC is

M ::= x |M ·r [M ;λx.M ] | {M ;λx.M}r

where x ranges over variables and r ranges over the rules of all connectives in C. We write M to

mean a finite sequence of terms. Let Γ be a set of type declarations of the form x : A. Γ is called the

context. The terms are typed using the derivation rules of IPCC .

axiom, if x : A ∈ Γ
Γ ` x : A

Γ `M : Φ . . .Γ ` Nk : Ak . . . . . .Γ, xl : Al ` Ol : D . . .
r, el

`M ·r [N ;λx.O] : D

. . .Γ ` Nj : Aj . . . . . .Γ, yi : Ai `Mi : Φ . . .
r, ini

` {N ;λy.M}r : Φ

Both in the elimination and introduction rules, we prefer to use capital letter M for terms of type Φ,

where Φ = c(A1, . . . , An) for the concerned connective c. In the elimination rules, N is the sequence

of terms Nk for the 1-entries in the truth table tc and λx.O is the sequence of the λxl.Ol’s for the

0-entries. Identically, for the introduction rules, N is a sequence containing Nj for 1-entries and λy.M

contains terms λyi.Mi for 0-entries.

If it is clear from the context which rule is applied, we omit r in the elimination and introduction

term. The method of Definition 3.5.1 can also applied to the optimized rules in a straightforward way.

Example 3.5.2. The typing rules of disjunction are as follows, with their corresponding terms.

`M : A ∨B x : A ` O1 : D y : B ` O2 : D
∨-el`M · [ ;λx.O1, λy.O2] : D

` NA : A y : B `M : A ∨B ∨-in10` {NA ; λy.M} : A ∨B

x : A `M : A ∨B ` NB : B ∨-in01` {NB ; λx.M} : A ∨B
` NA : A ` NB : B ∨-in11` {NA, NB ; } : A ∨B

With Definition 3.5.1, we see that derivations in IPCC directly correspond to proof terms in λC .

Now we define term reduction rules that correspond to detour and permutation conversion. Just as

in [5], we write N,Nj′ to mean the sequence N1, . . . , Nj′ , . . . , Nm. We use this notation if Nj′ plays
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a role in a matching case of a detour convertibility. In the definition of the detour reduction we use

the notion of substituting term N into λx.M , writing M [x := N ]. Substitution in λC is defined in

a similar way as for simply typed lambda calculus (see Definition 3.4.3), so we leave out the formal

definition and turn directly to the definition of detour reduction.

Definition 3.5.3 (Detour reduction). Consider a term of a detour convertibility as defined in Defi-

nition 3.1.1. Define detour reduction in λC as follows.

(1) l′ = j′ for some l′, j′, that is, xl′ : Al′ and Nj′ : Aj′ with Al′ = Aj′ :

{N,Nj′ ; λy.M} · [P ; λx.Q, λxl′ .Ql′ ] −→D Ql′ [xl′ := Nj′ ]

(2) k′ = i′ for some k′, i′, that is, yi′ : Ai′ and Pk′ : Ak′ with Ak′ = Ai′ :

{N ; λy.M, λyi′ .Mi′} · [P, Pk′ ; λx.Q] −→D Mi′ [yi′ := Pk′ ] · [P, Pk′ ; λx.Q]

(3) and if P −→D Q, then

(a) P · [N ; λx.O] −→D Q · [N ; λx.O]

(b) M · [N,P,N ′ ; λx.O] −→D M · [N,Q,N ′ ; λx.O]

(c) M · [N ; λx.O, λx.P, λx′.O′] −→D M · [N ; λx.O, λx.Q, λx′.O′]

(d) {N,P,N ′ ; λy.M} −→D {N,Q,N ′ ; λy.M}

(e) {N ; λy.M, λy.P, λy′.M ′} −→D {N ; λy.M, λy.Q, λy.M ′}

Numbers (1) and (2) are base cases of the detour reduction. In these cases, the left term is called a

redex. Number (3) represents the extension of the reduction to subterms. Points (a)-(c) are concerned

with the elimination term, and points (d) and (e) are concerned with the introduction term.

Example 3.5.4. There are four detour reductions of terms with disjunction from Example 3.5.2,

namely

{NB ; λx.M}01 ·∨ [ ;λx.O1, λy.O2] −→D O2[y := NB ]

{NA ; λy.M}10 ·∨ [ ;λx.O1, λy.O2] −→D O1[y := NA]

{NA, NB ; }11 ·∨ [ ;λx.O1, λy.O2] −→D O1[y := NA]

{NA, NB ; }11 ·∨ [ ;λx.O1, λy.O2] −→D O2[y := NB ]

We see that there are two possible reductions starting from {NA, NB ; }3 in two different terms, which

means that the detour reduction is non-deterministic. We already saw this in Section 3.1.

Now we define the permutation reductions.

Definition 3.5.5. Consider a term of a permutation convertibility as defined in Definition 3.1.5.

Define permutation reduction in λC as follows.

(1) (M · [N ;λx.O]) · [P ;λy.Q] −→P M · [N ;λx.(O · [P ;λy.Q])]

(2) Extend the definition on subterms in the same way as in Definition 3.5.3 (3) with −→D replaced

by −→P .

Number (1) is the base case, where we call the left term a redex.

Definition 3.5.6. A term is in normal form if it contains no redex.

Due to the Curry-Howard isomorphism, normal derivations in IPCC correspond to normal forms in

λC . Since an introduction followed by an elimination is always a redex, we have the following lemma

about normal forms [5].
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Lemma 3.5.7. Term P is in normal form if one of the following holds.

- P = x, where x is a variable,

- P = x · [N ;λx.O] with all Nk and Ol in normal form and x a variable,

- P = {N ;λy.M} with all Nj and Mi in normal form.

3.6 Strong normalization

There are several proofs for weak normalization of IPCC with permutation and detour conversions,

but proving strong normalization is rather difficult. In [5], strong normalization of detour conversion

is proven. Also strong normalization for permutation conversion. Here we present a detailed proof

of strong normalization of the union of detour and permutation conversion. We recall the general

definition of strong normalization.

Definition 3.6.1. Let R = {−→1, . . . ,−→n} be a set of reduction relations. Well-formed term M is

strongly normalizing with regard to R if there is no infinite reduction sequence of reductions from R

starting from M . We say that a logical system has the strong normalization property with regard to

R if every well-formed term is strongly normalizing with regard to R.

So in this section we have R = { −→D , −→P }.

Our proof is based on the work of Philippe de Groote [6] who gives an extensive proof for strong

normalization of the Prawitz natural deduction (Chapter 1). His proof is based on a translation from

natural deduction to simply typed λ-calculus, which is strongly normalizing. The clue of the proof

is that permutation conversions in the Prawitz system (Definition 1.2.8) correspond to syntactic β-

equivalence in simply typed λ-calculus and that detour conversions (Definition 1.2.7) correspond to

β-reduction in simply typed λ-calculus. In [6], it is not always made explicit how the definitions arise.

This makes it difficult to generalize for arbitrary connectives. Another difficulty is that De Groote

excludes the conversion of a cut formula of ⊥i-rule. However, we have created a method to apply his

approach to IPCC .

Analoguous to De Groote, we define a translation from the truth table system to parallel simply

typed lambda calculus, pλ→. Since De Groote does not encounter conversions of the ⊥i-rule, this

approach only leads to strong normalization for certain permutation conversions in the truth table

system. But this is enough to show strong normalization for all conversions. Recall the definitions of

detour and permutation conversions from Definition 3.5.3 and Definition 3.5.5. We now distinguish

between two base cases for permutation conversions.

Permutation reductions:

(1) ‘Positive permutation’: assume there is a case λxl.Ol.

(M · [N ;λx.O]) ·rs [P ;λy.Q] −→Ppos M · [N ;λx.(O ·rs [P ;λy.Q])]

(2) ‘Negative permutation’:

(M · [N ; ]) ·rs [P ;λy.Q] −→Pneg M · [N ; ]

Detour reductions:

(1) l′ = j′ : {N,Nj′ ;λy.M} ·rs [P ;λx.Q, λxl′ .Ql′ ] −→D Ql[xl′ := Nj′ ]

(2) k′ = i′ : {N ;λy.M, λyi′ .Mi′} ·rs [P, Pk′ ;λx.Q] −→D Mi′ [yi′ := Pk′ ] · [P, Pk′ ;λx.Q]
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We will see that the approach of De Groote proves strong normalization for detour and positive

permutation conversions of the truth table system. Theorem 3.6.23 shows that this leads to strong

normalization for detour and all permutation conversions.

We make a translation for each type (formula) of the truth table system and we define a corre-

sponding translation of terms. First we translate formulas. We use a negative translation of formulas.

De Groote bases his negative translation on the translation induced by Plotkin’s call-by-name CPS-

translation [10]. In [6], it is not made explicit how the translation arises. However, after a close

reading one can observe that the translation can be derived from the elimination rules of the con-

cerned connective. We generalizes this strategy and it turns out to be effective in order to prove strong

normalization.

Definition 3.6.2 (Type translation). Let o be a distinguished atomic proposition in pλ→ and for

every type A in pλ→, denote ∼A := A→ o. The negative translation Φ of any formula Φ of IPCC is

defined inductively as follows.

- For Φ = A a proposition letter, A := ∼∼A.

- For Φ = c(A1, . . . , An) for some connective c ∈ C, with elimination rules r1, . . . , rt,

Φ := ∼(E1 → · · · → Et → o),

with elimination pattern for rule rs

Es = Ak1 → · · · → Akm → ∼Al1 → · · · → ∼Aln−m → o,

where the Ak’s are the formulas where ak = 1 and the Al’s are the formulas where al = 0 in the

row of the truth table tc that corresponds with elimination rule rs.

There are two special cases. If there is no elimination rule for c, then Φ := ∼o. If c is a 0-ary

connective with an elimination rule, then Φ := ∼∼o. Note that ⊥ is the only connective with

this property.

If we look at the definition, Φ is of the form ∼Φ◦, where Φ◦ = ∼Φ if Φ is a propostion letter and

Φ◦ = E1 → · · · → Et → o if Φ = c(A1, . . . , An) for some connective c.

It is possible to apply this translation to the optimized rules defined in Section 2.2. To do this,

we only consider rules optimized by Lemma 2.2.3. In Appendix A, the optimized rules are presented

for both Lemma 2.2.3 and Lemma 2.2.4. When an elimination rule is optimized by Lemma 2.2.4, the

conclusion of that rule is not an arbitrary formula D, but a subformula of the major premise. We

must rewrite those rules using Lemma 2.2.4 by replacing the conclusion A by an arbitrary formula D

and adding the case A ` D. We give an example of ∧ and see how the translation works.

Example 3.6.3. Conjunction ∧ has the following two optimized elimination rules, as denoted in

Appendix A.

A ∧B ∧-el1` A and
A ∧B ∧-el2` B

First we rewrite those rules with Lemma 2.2.4 to the following.

A ∧B A ` D ∧-el1` D and
A ∧B B ` D ∧-el2` D

We have that E1 = ∼A→ o = ∼∼A and E2 = ∼B → o = ∼∼B. So

A ∧B = ∼(∼∼A→ ∼∼B → o).

This is almost similar to the definition of De Groote. He defines a translation A = ∼∼A◦ with

(A ∧B)◦ = ∼(A→ B → o).
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Example 3.6.4. Here we state the negative translation of the optimized formulas with connectives

∨, →, ¬, ⊥ and >. See Appendix A for the optimized elimination rules. Note that some rules have

to be rewritten with Lemma 2.2.4 before translating to pλ→.

- Disjunction: A ∨B = ∼((∼A→ ∼B → o)→ o)

- Implication: A→ B = ∼((A→ ∼B → o)→ o)

- Negation: ¬A = ∼(∼A→ o) = ∼∼∼A
- Bottom: ⊥ = (o→ o)→ o = ∼∼o
- Top: > = o→ o

In [6], the term translation is established in two steps. First a translation M and then refining

this definition to M . We proceed in the same way of translating a term M in the truth table system

to terms M and M in pλ→. We prefer to write indices i, j, k, l in the sequences of terms, for example,

we write Nj instead of N , to make clear that it is a sequences of Nj ’s.

Definition 3.6.5 (Term translation M). For c an n-ary connective with t elimination rules r1, . . . , rt
we define M inductively.

(1) (Axiom)

x := λh.xh

(2) (Elimination) We distinguish between elimination terms with case or without any case.

M ·rs [Nk;λxl.Ol] := λh.M(λg1 . . . λgt.gsNk(λxl.Olh)) if there is a case λxl.Ol

M ·rs [Nk; ] := λh.M
(
λp.(λg1, . . . , λgt.gsNk)h

)
(3) (Introduction)

{Nj ;λyi.Mi} := λh.
(
(λqj . λqi .h)Nj (λyi.Mih)

)
eh1 . . . e

h
t ,

where λqj should be understood as a sequences of lambda abstractions corresponding to Nj ’s

and λqi correspond to (λyi.Mih)’s. Term ehs is the possibly parallel term [. . . ] defined as follows:

If Es = Ak1 → · · · → Akm → ∼Al1 → · · · → ∼Aln−m
→ o is the elimination pattern for rs,

then ehs contains

- λhk . λhl .hl′N j′ for all j′ and l′ in rs such that j′ = l′,

- and λhk . λhl .(λyi′ .M i′h)hk′ for all i′ and k′ in rs such that i′ = k′.

Here, λhk quantifies over all Ak in Es and λhl over all ∼Al. In the proof of Proposition 3.6.8,

we see that the terms ehs are well-defined of type Es, by checking the types of its components.

In the definition we see that there are a lot of redexes, which we call dummy redexes. In the

elimination term M ·rs [Nk; ] redex (λp. . . . )h is a dummy redex. In the introduction term we have

for each Nj and Mi a dummy redex (λpj . . . )Nj and (λpi . . . )(λyi.Mih). These are necessary in

order to not lose any information. In the elimination term we preserve h in this manner. For the

introduction rule we make sure that each subterm appears in the translation.

In this definition, we use parallel terms in the introduction term. This is a new idea which is not

present in the approach of De Groote. This modification of the term translation is essential, because

detour conversion in the truth table system is non-deterministic. With this solution, we see that term

ehs in the translation of an introduction term stores each possible combination of a detour conversion.

This makes it possible to identify each possible detour conversion with a β-reduction in the translated

pλ→-term.

Just like the type translation, the term translation can also be applied to the optimized rules.

This can be done for terms which are optimized by both Lemma 2.2.3 and Lemma 2.2.4. When an
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elimination term is optimized by Lemma 2.2.4, the term translation has to be slightly modified which

proceeds in the following way. A rule can be optimized by Lemma 2.2.4, only when it has exactly one

case, say x : A ` O : D. Then the term (λx.Oh) in the elimination translation is replaced by (λf.fh)

with f : A.

Example 3.6.6. In this example, we give the term translations of the optimized rules for conjunction,

∧. We already gave the type translation in Example 3.6.3. We have the following optimized rules

from Appendix A with the corresponding terms.

M : A ∧B ∧-el1`M ·el1 [ ] : A
,

M : A ∧B ∧-el2`M ·el2 [ ] : B
and

` NA : A ` NB : B
∧-in` {NA, NB ; }in : A ∧B

The pλ→-terms after term translation are as follows. We omit the dummy redexes in the introduction

term, because each subterm is already translated by a matching case j′ = l′.

- M ·el1 [ ] = λh.M(λg1.λg2.g1(λf.fh)),

- M ·el2 [ ] = λh.M(λg1.λg2.g2(λf.fh)),

- {NA, NB ; }in = λh.h(λh1.h1NA)(λh2.h2NB).

The detour conversions for the optimized rules for ∧ are deterministic, so there is no parallel term in

the introduction rule. With the following derivations, we show that the type and term translations

for ∧ commute with the typing relation. That is, if M : A in the truth table system, then M : A in

pλ→. We represent the derivations for ∧-el1 and ∧-in,

M : A ∧B

[g1 : ∼∼A]

[f : A] [h : A◦]

fh : o

λf.fh : ∼A
g1(λf.fh) : o

λg2.g1(λf.fh) : ∼∼B → o

λg1.λg2.g1(λf.fh) : ∼∼A→ ∼∼B → o

M(λg1.λg2.g1(λf.fh)) : o

λh.M(λg1.λg2.g1(λf.fh)) : A

and

[h : ∼∼A→ ∼∼B → o]

[h1 : ∼A] NA : A

h1NA : o

λh1.h1NA : ∼∼A
h(λh1.h1NA) : ∼∼B → o

h2 : ∼B NB : B

h2NB : o

λh2.h2NB : ∼∼B
h(λh1.h1NA)(λh2.h2NB) : o

λh.h(λh1.h1NA)(λh2.h2NB) : A ∧B

Example 3.6.7. We continue from Example 3.6.4. We give the term translations of the connectives

∨,→, ¬, ⊥ and > with the optimized rules. See Appendix A for the rules. In each introduction rule

we can omit the dummy redexes.

- Disjunction: Let M : A ∨B, Mi : A ∨B, NA : A and NB : B. Then

M ·el [ ;λxA.O1, λxB .O2] = λh.M(λg1.g1(λxA.O1h)(λxB .O2h)),

{NA; }in1 = λh.h(λh1λh2.h1NA),

{NB ; }in2 = λh.h(λh1λh2.h2NB).
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- Implication: Let M : A→ B, NA : A and NB : B. Then

M ·el [NA; ] = λh.M(λg1.g1NA(λf.fh)),

{NB ; }in1 = λh.h(λh1λh2.h2NB),

{ ;λyA.M}in2 = λh.h(λh1λh2.(λyA.Mh)h1).

- Negation: Let M : ¬A and NA : A. Then

M ·el [NA; ] = λh.M
(
λp.(λg1.g1NA)h

)
,

{ ;λyA.M}in = λh.h(λh1.(λyA.Mh)h1).

- Bottom: Let M :⊥. Then

M ·el [ ; ] = λh.M
(
λp.(λg1.g1)h

)
- Top:

{ ; }in = λh.h

For the optimized rules, the detour conversion is deterministic. This means that there is no parallel

term in each of the introduction terms.

The following proposition shows that the translations from Definition 3.6.2 and Definition 3.6.5

commute with the typing relation.

Proposition 3.6.8. If Γ `M : A in IPCC, then Γ `M : A in parallel simply typed λ-calculus, where

B ∈ Γ iff B ∈ Γ.

Proof. We proceed by induction on the derivation of Γ `M : A.

1. (Axiom)
x : A [h : ∼A◦]

xh : o

λh.xh : A

2. (Elimination) Let Φ = c(A1, . . . An) with t elimination rules. The added dummy redex in a term

M · [Nk; ] does not influence the type, so we can prove without such a redex. We look at the

s-th elimination rule. Induction hypotheses are ` M : Φ, ` Nk : Ak and xl : Al ` Ol : D if the

elimination contains a case. For every u ≤ t, let

Eu = Ak1 → · · · → Akm → ∼Al1 → · · · → ∼Aln−m → o,

where the Ak’s are the formulas where ak = 1 and the Al’s are the formulas where al = 0 in the

truth table tc of the corresponding elimination rule ru. Then

M : Φ

[gs : Es] . . . Nk : Ak . . .

xl : Al ` Ol : D [h : D◦]
o. . . . . .

λxl.Olh : ∼Al
o

Et → o

...
E1 → · · · → Et → o

o

D

We conclude that indeed λh.M(λg1 . . . λgt.gsNk(λxl.Olh)) has type D.

3. (Introduction) Dummy redexes do not influence the type, so we prove without these redexes.

Let Φ = c(A1, . . . An) with t elimination rules. Induction gives ` Nj : Aj and xi : Ai ` Mi : Φ.
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We have to prove λh.heh1 . . . e
h
t : Φ. But first we prove for every s ≤ t that

Es = Ak1 → · · · → Akm → ∼Al1 → · · · → ∼Aln−m
→ o,

is inhabited by the term ehs with h : Φ◦. Term ehs could be a parallel term [. . . ] with elements

that belong to one of the following cases. Note that ehs always exists, since there is at least one

matching case.

- j′ = l′ for some j′ and some l′ in rs:

[hl′ : ∼Al′ ] N j′ : Aj′
o

λhk . λhl .hl′N j′ : Ak1 → · · · → Akm → ∼Al1 → · · · → ∼Aln−m
→ o

So we conclude that such an element in ehs has type Es.

- i′ = k′ for some i′ and some k′ in rs:

yi′ : Ai′ `M i′ : Φ h : Φ◦

M i′h : o

λyi′ .M i′h : ∼Ai′ [hk′ : Ak′ ]
o

λhk . λhl .(λyi′ .M i′h)hk′ : Ak1 → · · · → Akm → ∼Al1 → · · · → ∼Aln−m
→ o

We conclude that in this matching case also the element in ehs has type Es.

Each element in parallel term ehs has type Es, so ehs is well-defined and has type Es. Now we

conclude that λh.heh1 , . . . , e
h
t has type Φ, since h has type Φ◦ = E1 → · · · → Et → o.

Just as in [6], this translation M does not suffices, but we have to modify it to a translation

M . Definition 3.6.5 does not suffice, since permutation conversions do not correspond to the right

β-reductions. It would be sufficient if we would have a scheme of the following shape:

M //

P

��

M

+β
��

N // N

But this is not always the case. Take for instance

M = (M ′ ·∨-el [λxA.P1, λxB .P2]) ·∨-el [λyA.Q1, λyB .Q2],

which is a permutation convertibility with two times the ∨-el rule. This term permutation reduces to

N = M ′ ·∨-el
[
λxA.(P1 ·∨-el [λyA.Q1, λyB .Q2]), λxB .(P2 · [λyA.Q1, λyB .Q2])

]
.

The term translations of both, with

L = λg1.g1(λyA.Q1h))(λyB .Q2h)) and L′ = λg1.g1(λyA.Q1h
′))(λyB .Q2h

′))

are

M = λh.
(
λh′.M(λg1.g1(λxA.P1h

′)(λxB .P2h
′))
)
L

N = λh.M
(
λg1.g1

(
λxA.((λh

′.P1L
′)h
)(
λxB .((λh

′.P2L
′)h
))
.
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We do not have the situation that M
+→β N , but both do reduce to a third term R, where

R = λh.M
(
λg1.g1(λxA.P1L)(λxB .P2L)

)
.

This means that, instead, we have the following diagram:

M //

P

��

M

+

β   
R

N // N

+

β

>>

This is not a commuting diagram, therefore, we make a modified translation such that M translates

to R and N translates to R. This translation does not avoid all such diagrams, but later we will show

that for positive permutation conversions we have indeed that if M −→P N , then M ≡ R ≡ N in

the modified translation. In short, following De Groote [6], the modified translation performs certain

β-reductions in order to circumvent the wrong diagram for positive permutation conversions.

Definition 3.6.9 (Modified term translation M). For every term M in IPCC , we define term M in

parallel simply typed λ-calculus by

M = λh.(M : h),

where h is a fresh variable and where the operator : is defined as follows (do not confuse it with the

typing relation).

1. (Axiom)

x : H := xH

2. (Elimination) For connective c, let r1, . . . , rt be its elimination rules. We distinguish between

elimination terms with case or without any case.

M ·rs [Nk;λxl.Ol] : H := M :
(
λg1 . . . λgt.gsNk(λxl.(Ol : H))

)
if there is a case λxl.Ol

M ·rs [Nk; ] : H := M :
(
λp.(λg1, . . . , λgt.gsNk)H

)
3. (Introduction) For connective c, let r1, . . . , rt be its elimination rules.

{Nj ;λyi.Mi} : H :=
(
(λqj . λqi .H)Nj (λyi.(Mi : H))

)
eH1 . . . eHt ,

where λqj should be understood as a sequences of dummy lambda abstractions corresponding to

Nj ’s and λqi correspond to λyi.(Mi : H)’s. Term eHs is the possibly parallel term [. . . ] defined

as follows:

If Es = Ak1 → · · · → Akm → ∼Al1 → · · · → ∼Aln−m
→ o is the elimination pattern for rs,

then eHs contains

- λhk . λhl .hl′N j′ for all j′ and l′ in rs such that j′ = l′,

- and λhk . λhl .(λyi′ .(Mi′ : H))hk′ for all i′ and k′ in rs such that i′ = k′.

Here, λhk quantifies over all Ak in Es and λhl over all ∼Al.

Up to this point, we have defined the type translation in Definition 3.6.2 and the right modified

term translation in Definition 3.6.9. We also showed that the type translation and the first term

translation commute with the typing relation. Now we have to show that this is also the case for the

modified term translation. This can be shown using the following lemma.
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Lemma 3.6.10. Let M be a term in IPCC and let H be a pλ→-term, then:

1. M �β M,

2. MH �β M : H.

Proof. These statements are proved simultaneously by induction on the structure of M . Here, we

only look at the introduction case {Nj ;λyi.Mi}. The other cases are proved in a similar way. Let c

be a connective with introduction rule r
in

and elimination rules r1, . . . , rt. In this proof we use the

following induction hypotheses for all j and i:

Nj �β Nj and MiH �β Mi : H.

First we look at the pλ→-terms ehs = [. . . ] and ehs = [. . . ] in the definitions of the normal term

translation (Definition 3.6.5) and the modified translation (Definition 3.6.9) for an introduction term.

If λhk . λhl .hl′N j′ is in the parallel term ehs , then

λhk . λhl .hl′N j′ �β λhk . λhl .hl′N j′

is in the parallel term ehs . And if λhk . λhl .(λyi′ .Mi′h)hk′ is included in ehs , then

λhk . λhl .(λyi′ .Mi′h)hk′ �β λhk . λhl .(λyi′ .(Mi′ : h))hk′

is in the parallel term ehs . This means that ehs �β ehs for all s. Now we can conclude that

{Nj ;λyi.Mi} = λh.
(
(λqj . λqi .h)Nj (λyi.Mih)

)
eh1 . . . e

h
t

�β λh.
(
(λqj . λqi .h)Nj (λyi.(Mi : h))

)
eh1 . . . e

h
t = {Nj ;λyi.Mi}

and

{Nj ;λyi.Mi}H �β {Nj ;λyi.Mi} : H.

Proposition 3.6.11. If Γ ` M : A in IPCC, then Γ ` M : A in parallel simply typed λ-calculus,

where B ∈ Γ iff B ∈ Γ.

Proof. This follows from Proposition 3.6.8, Lemma 3.6.10, and the subject reduction property of the

parallel simply typed λ-calculus (Proposition 3.4.12).

Now we see that positive permutation reductions correspond to syntactic equality.

Proposition 3.6.12. Let M and N be terms in IPCC such that M −→Ppos N . Then

1. M : H = N : H, for any parallel simple term H,

2. M = N .

Proof. Statement (2.) is a direct consequence of (1.). For (1.), we proceed by induction on the

generation of M −→Ppos N . We only treat the base case, since the induction steps are easily

verified.

We consider the permutation convertibility

(M · [N ;λx.O]) ·rs [P ;λy.Q] −→Ppos M · [N ;λx.(O ·rs [P ;λy.Q])],
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where there is at least one case of the form λx.O. Write L =
(
λg1 . . . λgt.gs P k(λx.(Ql : H))

)
, then

(M ·[N ;λx.O]) ·rs [P ;λy.Q] : H

= (M · [N ;λx.O]) : L

= M :
(
λg1 . . . λgt.gsN(λx.(O : L))

)
= M :

(
λg1 . . . λgt.gsN(λx.((O ·rs [P ;λy.Q]) : H))

)
= (M · [N ;λx.(O ·rs [P ;λy.Q])]) : H

The following lemmas are useful to prove that detour conversion steps in the truth table system

correspond to β-reduction in pλ→ which we establish in Proposition 3.6.17.

Lemma 3.6.13. Let M and P be terms in IPCC and H be a pλ→-term in which there is no free

occurrence of z, then:

1. (M : H)[z := P ]�β (M [z := P ]) : H,

2. M [z := P ]�β M [z := P ].

Proof. Property (2.) is a direct consequence of (1.). For (1.) we proceed by induction on the structure

of M . We only look at the elimination case R ·rs [Nk;λxl.Ol] for an elimination term which contains

a case λxl.Ol. The other cases can be proved in a similar way. For simplicity, we assume that c has

one elimination rule. In general, for arbitrary pλ→-term H and every M we have

(M : H)[z := P ] = (M : H[z := P ])[z := P ]

assuming that z does not occur in P (which can be reached by renaming variables). When applying

this to the elimination term we get

(R ·rs [Nk;λx.Ol] : H)[z := P ] =
(
R :

(
λg1.g1Nk[z := P ] (λx.(Ol : H)[z := P ])

))
[z := P ].

Now it is possible to apply the induction hypothesis to R, because z does not occur as a free variable

in the term after R anymore. Before we do the induction for R, we look at Nk and Ol. When applying

the induction hypothesis to Nk[z := P ] we get

Nk[z := P ] = (λh.(Nk : h)[z := P ])�β (λh.(Nk[z := P ]) : h) = Nk[z := P ].

When applying the induction hypothesis to λx.(Ol : H)[z := P ] we get

λx.(Ol : H)[z := P ]�β λx.((Ol[z := P ]) : H).

Now we derive

(R ·rs [Nk;λx.Ol] : H)[z := P ] =
(
M :

(
λg1.g1Nk[z := P ] (λx.(Ol : H)[z := P ])

))
[z := P ]

�β

(
R :

(
λg1.g1Nk[z := P ] (λx.((Ol[z := P ]) : H))

))
[z := P ]

�β R[z := P ] :
(
λg1.g1Nk[z := P ] (λx.((Ol[z := P ]) : H))

)
=
(
R[z := P ] ·rs [Nk[z := P ];λx.Ol[z := P ]]

)
: H

=
(
R ·rs [Nk;λx.Ol]

)
[z := P ] : H
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Next lemma is based on Lemma 14 of De Groote [6].

Lemma 3.6.14. Let H and L be pλ→-terms such that H
+→β L. Then, for any term M in IPCC, we

have M : H
+→β M : L.

Proof. By induction on M . Here we show it for an elimination term R ·rs [Nk;λxl.Ol] containing

a case λxl.Ol. Suppose H
+→β L. By induction hypothesis we have that Ol : H

+→β Ol : L, so(
λg1 . . . λgt.gsNk(λx.(Ol : H))

) +→β

(
λg1 . . . λgt.gsNk(λx.(Ol : L))

)
. Now, by induction hypothesis,

R ·rs [Nk;λx.Ol] : H := R :
(
λg1 . . . λgt.gsNk (λx.(Ol : H))

)
+→β R :

(
λg1 . . . λgt.gsNk (λx.(Ol : L))

)
= R ·rs [Nk;λx.Ol] : L.

Other cases of M are proved in a similar way. It is important to mention that H is always present in

any modified translation of Definition 3.6.9, which makes sure that we always have a
+→β step and we

never get β-equivalence.

Recall the definition of parallel subterm of Definition 3.4.16, K v L. Since we are working in the

parallel simply typed λ-calculus, we need the following lemma.

Lemma 3.6.15. Let H and L be pλ→-terms, such that H v L. Then, for any term M in IPCC, we

have (M : H) v (M : L).

Proof. This is proved by induction on the structure of M . The axiom rule is easily verified.

For an elimination term with at least one case λxl.Ol we have

(M ·rs [Nk;λx.Ol]) : H = M :
(
λg1 . . . λgt.gsNk (λx.(Ol : H))

)
.

By induction hypothesis we have Ol : H v Ol : L for each l. By definition and transitivity of v, we

see that

λg1 . . . λgt.gsNk (λx.(Ol : H)) v λg1 . . . λgt.gsNk (λx.(Ol : L)) .

Now we can apply the induction hypothesis to M to conclude

M :
(
λg1 . . . λgt.gsNk (λx.(Ol : H))

)
vM :

(
λg1 . . . λgt.gsNk (λx.(Ol : L))

)
.

Note that the lemma also holds for elimination rules without a case.

Now we consider a introduction term. From definition we have

{Nj ;λyi.Mi} : H =
(
(λqj . λqi .H)Nj (λyi.(Mi : H))

)
eH1 . . . eHt ,

where parallel term eHs contains components of the form

λhk . λhl .hl′N j′ or λhk . λhl .(λyi′ .(Mi′ : H))hk′ .

With the induction hypothesis we obtain for eHs that (Mi′ : H) v (Mi′ : L) for each i′. This means

that

λhk . λhl .(λyi′ .(Mi′ : H))hk′ v λhk . λhl .(λyi′ .(Mi′ : L))hk′

for each i′. From the definition of v we have eHs v eLs for each s. Also H v L so(
(λqj . λqi .H)Nj (λyi.(Mi : H))

)
eH1 . . . eHt v

(
(λqj . λqi .L)Nj (λyi.(Mi : L))

)
eL1 . . . e

L
t .
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Proposition 3.6.16. Let M and N be terms in IPCC such that M −→D N . Then

1. for every pλ→-term H there exists a pλ→-term K such that (M : H)
+→β K and (N : H) v K,

2. there exists a pλ→-term K such that M
+→β K and N v K.

Proof. We prove (1.) by induction on the generation of M −→D N . See Definition 3.5.3 for all

possible detour reductions. The induction steps are proven in Appendix B. Here we focus on the base

cases of the detour reductions. We adopt the numbering of Definition 3.5.3.

(1) j′ = l′ :

We consider {N,Nj′ ;λy.M} ·rs [P ;λx.Q, λxl′ .Ql′ ] −→D Ql′ [xl′ := Nj′ ].

In this case we should have a case in the elimination term of the form λxl.Ql.

Write L =
(
λg1 . . . gt.gs P k(λx.(Ql : H))

)
, then

{N,Nj′ ;λy.M} ·rs [P ;λx.Q, λxl′ .Ql′ ] : H

= {N,Nj′ ;λy.M} : L

=
(
(λqj . λqi L)Nj λyi.(Mi : L)

)
eL1 . . . e

L
t

+→β LeL1 , . . . , e
L
t (Delete dummy redexes)

+→β eLs P (λx.(Q : H))

= [. . . , (λhk . λhl .hl′N j′), . . . ]P (λx.(Q : H)) (Definition of eLs )

→β [. . . , (λhk . λhl .hl′N j′)P (λx.(Q : H)), . . . ]

+→β [. . . , (λxl′ .(Ql′ : H))N j′ , . . . ]

+→β [. . . , (Ql′ : H)[xl′ := N j′ ], . . . ]

�β [. . . , (Ql′ [xl′ := Nj′ ]) : H, . . . ] (Lemma 3.6.13)

Define K = [. . . , (Ql′ [xl′ := Nj′ ]) : H, . . . ], then we can conclude that (Ql[xl′ := Nj′ ] : H) v K.

(2) i′ = k′ :

We consider {N ;λy.M, λyi.Mi} ·rs [P, Pk′ ;λx.Q] −→D Mi′ [yi′ := Pk′ ] · [P, Pk′ ;λx.Q].

Now there are two possibilities for the elimination term. There is a case λxl.Ql or there is not.

First suppose we have such a case.

Write L =
(
λg1 . . . gt.gs P k(λx.(Ql : H))

)
, then

{N ;λy.M, λyi′ .Mi′} ·rs [P, Pk′ ;λx.Q] : H

= {N ;λy.M, λyi′ .Mi′} : L

=
(
(λqj . λqi L)Nj λyi.(Mi : L)

)
eL1 . . . e

L
t

+→β LeL1 , . . . , e
L
t (Delete dummy redexes)

+→β eLs P (λx.(Q : H))

= [. . . , (λhk . λhl .(λyi′ .(Mi′ : L))hk′), . . . ]P (λx.(Q : H))

→β [. . . , (λhk . λhl .(λyi′ .(Mi′ : L))hk′)P (λx.(Q : H)), . . . ]

+→β [. . . , (λyi′ .(Mi′ : L))P k′ , . . . ]

+→β [. . . , (Mi′ : L)[yi′ := P k′ ], . . . ]

�β [. . . , (Mi′ [yi′ := Pk′ ]) : L, . . . ] (Lemma 3.6.13)

= [. . . ,Mi′ [yi′ := Pk′ ] · [P, Pk′ ;λx.Q] : H, . . . ]
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Define K = [. . . ,Mi′ [yi′ := Pk′ ] · [P, Pk′ ;λx.Q] : H, . . . ], then we can conclude that indeed

(Mi′ [yi′ := Pk′ ] · [P, Pk′ ;λx.Q] : H) v K.

Now suppose that we do not have a case λxl.Ol. Write L =
(
λp.(λg1 . . . gt.gs P )H

)
, then

{N ;λy.M, λyi′ .Mi′} ·rs [P, Pk′ ; ] : H

= {N ;λy.M, λyi′ .Mi′} : L

=
(
(λqj . λqi L)Nj λyi.(Mi : L)

)
eL1 . . . e

L
t

+→β LeL1 , . . . , e
L
t (Delete dummy redexes)

=
(
λp.(λg1 . . . gt.gs P )H

)
eL1 , . . . , e

L
t

�β (λg1 . . . gt.gs P )eL1 , . . . , e
L
t (Delete dummy redex)

+→β eLs P (λx.(Q : H))

= [. . . , (λhk . λhl .(λyi′ .(Mi′ : L))hk′), . . . ]P (λx.(Q : H))

→β [. . . , (λhk . λhl .(λyi′ .(Mi′ : L))hk′)P (λx.(Q : H)), . . . ]

+→β [. . . , (λyi′ .(Mi′ : L))P k′ , . . . ]

+→β [. . . , (Mi′ : L)[yi′ := P k′ ], . . . ]

�β [. . . , (Mi′ [yi′ := Pk′ ]) : L, . . . ] (Lemma 3.6.13)

= [. . . ,Mi′ [yi′ := Pk′ ] · [P, Pk′ ; ] : H, . . . ]

Define K = [. . . ,Mi′ [yi′ := Pk′ ] · [P, Pk′ ; ] : H, . . . ], then we can conclude that indeed (Mi′ [yi′ :=

Pk′ ] · [P, Pk′ ; ] : H) v K.

This completes the proof of (1.).

For the proof of (2.), we need (1.). M = λh.(M : h). By (1.) we know that there exists a

K ′, such that (M : h)
+→β K ′ and (N : h) v K ′. Define K = λh.K ′. Then M

+→β K and

N = λh.(N : h) v K.

Proposition 3.6.17. Let M and N be terms in IPCC such that M −→D N and M v K for a

pλ→-term K. Then there exists a K ′ such that K
+→β K

′ and N v K ′. This statement is shown in

the following diagram.

M //

D

��

M v K

+β

��
N // N v ∃K ′

Proof. From Proposition 3.6.16, we know that there exists a term L such that M
+→β L and N v L.

By Lemma 3.4.19 we know that we can reduce K to some term K ′ such that L v K ′, because M v K.

Since relation v is transitive we conclude N v K ′.

Now we look at an example on how the parallel terms are used in a detour reduction.

Example 3.6.18. Consider the following detour convertibility with non-optimized rules of conjunc-

tion with corresponding proof terms.
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3.6 Strong normalization

Σ1

Γ ` NA : A

Σ2

Γ ` NB : B
∧-in

Γ ` {NA, NB} : A ∧B
Π1

Γ, xA : A ` O1 : D

Π2

Γ, xB : B ` O2 : D
∧-el

Γ ` {NA, NB} · [λxA.O1, λxB .O1] : D

There are two possibilities to reduce this derivation.

(1) {NA, NB} · [λxA.O1, λxB .O1] −→D O1[xA := NA]

(2) {NA, NB} · [λxA.O1, λxB .O1] −→D O2[xB := NB ]

The term translation is as follows. Note that ∧ has three elimination rules

{NA, NB} · [λxA.O1, λxB .O1] = λh.
((
λg1, g2, g3.g1(λxA.(O1 : h))(λxB .(O2 : h)

)
e1 e2 e3

)
with

e1 =
[
λh1, h2.h1NA, λh1, h2.h2NB

]
e2 = λh2, h1.h1NA

e3 = λh1, h2.h2NB

The translated term β-reduces to

K = λh.
[
(O1[xA := NA]) : h , (O2[xB := NB ]) : h

]
.

If we chose to do the first detour reduction, then indeed

O1[xA := NA] = λh.(O1[xA := NA]) : h) v K.

When we would have picked the second possibility, then

O2[xB := NB ] = λh.(O2[xB := NB ]) : h) v K.

Up to this point, we have shown that detour conversion corresponds to one or more β-reduction

steps in a parallel term. This means that an infinite detour reduction in the truth tables system

leads to an infinite β-reduction sequence in pλ→, which is not possible. We also have seen that

positive permutation conversion corresponds to syntactic equality. Now we can prove the following

important theorem, which proves strong normalization with regard to { −→D , −→Ppos }. This is the

generalization of Theorem 18 of De Groote [6].

Theorem 3.6.19. For any set of connectives C, IPCC is strongly normalizing with regard to detour

and positive permutation conversions { −→D , −→Ppos }.

Proof. Suppose there is an infinite sequence of detour and positive permutation conversions starting

from term M in IPCC . We draw the following picture.

M1

D

��
M2

Ppos // M3
Ppos // M4

D

��
M5

...

translates to K1 wM1

+β
��

K2 wM2 = M3 = M4 v K2

+β
��

M5 v K3

...
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If the sequence contains infinitely many detour steps, then there must be an infinite sequenceK1,K2, . . .

of β-reduction steps, by Proposition 3.6.17 and Proposition 3.6.12. But this is in contradiction with

the strong normalization property of pλ→. This means that the sequence may only contain a finite

number of detour reductions. But in that case it would contain an infinite sequence of consecutive

permutation conversions, which contradicts the fact that our system is strongly normalizing with

regard to permutation reductions (which is shown in [5]).

This is the end of the proof strategy of De Groote in [6]. We have now strong normalization of

IPCC for { −→D , −→Ppos }. Mention that if each connective c ∈ C has the following row in its

truth table, tc(1, . . . , 1) = 1, then each elimination rule has at least one case. This means that there

are no negative permutations. So for these connectives we already have strong normalization for all

reductions.

For arbitrary connectives we also have strong normalization for all conversions { −→D , −→P }
which is the same as { −→D , −→Ppos , −→Pneg }. This follows from Theorem 3.6.19. We need two

more lemmas.

Lemma 3.6.20. Let M1,M2,M3 be terms in IPCC such that M1 −→Pneg M2 −→D M3. Then

there is a term F in IPCC such that M1 −→D F −−−�Pneg M3. This statement can be illustrated

by the following diagram.

M1
D
//

Pneg

��

∃F

Pneg
����

M2
D
// M3

Proof. Proceed by induction on the generation of M1 −→Pneg M2. See Appendix B for a detailed

proof.

For positive permutations we want to prove a similar statement. We define the following special

positive permutation steps.

Definition 3.6.21. We define a relation =⇒n
Ppos in the following way. Consider permutation con-

vertibility of the form

M = T · [R;λy.S] · [U1;λw.V1] · · · · · [Un;λw.Vn],

with at least one case of the form λy.S. This convertibility reduces with n positive permutations to

N = T · [R;λy.(S · [U1;λw.V1] · · · · · [Un;λw.Vn])].

Then we say that M =⇒n
Ppos N .

Note that =⇒1
Ppos is the same as −→Ppos .

Lemma 3.6.22. Let M1,M2,M3 be terms in IPCC such that M1 −→Pneg M2 =⇒n
Ppos M3. Then

there is a term F in IPCC such that M1 =⇒m
Ppos F −−−�Pneg M3 with m = n or m = n + 1. This

statement can be illustrated by the following diagram.

M1
Ppos

m +3

Pneg

��

∃F

Pneg
����

M2
Ppos

n +3 M3
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Proof. Proceed by induction on the generation of M1 −→Pneg M2. See Appendix B for a detailed

proof.

Finally, we conclude with our main theorem.

Theorem 3.6.23 (Strong normalization). For any set of connectives C, IPCC is strongly normalizing

with regard to detour and permutation conversions { −→D , −→P }.

Proof. Suppose there is an infinite sequence of detour and permutation conversions starting from term

M in IPCC . Distinguish between negative and positive permutation conversions. There cannot be an

infinite sequence of consecutive negative permutation conversions, because permutation conversion is

strongly normalizing. So we have a following diagram where the vertical direction indicates negative

permutation conversions and the horizontal direction the other conversions, where each vertical part

consists of finitely many reductions. We show that the dashed arrows exist such that we get an

infinite sequence on top of the figure of only detour and positive permutation conversions. This, then,

contradicts Theorem 3.6.19.

M1

Pneg

��

D // F1

k1

����

k1+1 +3 F2

k2

����

D // F3

k3

����

...

M2

Pneg

��
M3

D // M4
Ppos // M5

Pneg

��
M6

D // M7
...

From Lemma 3.6.20 we can immediately conclude that if P1 −→k
Pneg P2 in k steps and P2 −→D P3,

then there exists a F such that P1 −→D F −−−�Pneg P3. For positive permutations we have a similar

claim. From Lemma 3.6.22 we can conclude that if P1 −→k
Pneg P2 in k steps and P2 −→Ppos P3,

then there exists a F such that P1 =⇒m
Ppos F −−−�Pneg P3, with 1 ≤ m ≤ k + 1. Both are shown in

following diagrams.

P1

Pneg

��

D // F

����
Q2

...

D // F2

...

Qk

Pneg

��

D // Fk

����
P2

D // P3

P1

Pneg

��

1≤m≤k+1+3 F

����
Q2

...

1≤m≤k+3 F2

...

Qk

Pneg

��

1≤m≤2+3 Fk

����
P2

Ppos // P3

So we can construct an infinite sequence of detour and positive permutation conversions, which is

impossible. Therefore IPCC is strongly normalizing with regard to detour and permutation conversions

{ −→D , −→P }.
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Chapter 4 | Discussion

We have studied the truth table system, a natural deduction system for which the derivation rules

follow from the truth table as defined in [4]. The truth table system is a manner to define natural

deduction rules for arbitrary connectives using a standard format. There are other ways to generalize

standard natural deduction. Studies of these other approaches could be a source of inspiration for

further research on the truth table system.

4.1 Related work

Closely related to the truth table system is the work of Milne [7], but his strategy is slightly different.

He starts from the introduction rules which define a certain truth table. From these truth tables, the

elimination rules are derived. Milne defines his method for classical logic.

The idea that introduction rules are the basis for the definition of the elimination rules is rooted in

the inversion principle of Gentzen and Prawitz: ‘the introductions represent, as it were, the ‘definitions’

of the symbols concerned, and the eliminations are no more, in the final analysis, than the consequences

of these definitions.’ [3] This idea can be generalized to so-called ‘general elimination rules’. This

is studied by various researchers, such as Von Plato, Read, Francez and Dyckhoff [9, 12, 2]. The

idea is that elimination rules are naturally determined by the introduction rules. The method with

general elimination rules makes it possible to define deduction rules for arbitrary connectives, where

the meaning of the connective lies in the introduction rules. Compare this to the truth table system

where connectives arise from truth tables.

The elimination rules that arise from the ‘general elimination’ method have a similar shape as the

elimination rules we derive from truth tables. They look the same in the sense that the conclusion of

an elimination rule is an arbitrary formula D instead of a subformula of the major premise. In this

way, the standard ∨-E rule in the Prawitz system is a general elimination rule. However, the general

elimination rules differ from our elimination rules for some connectives, such as for ∧ [5].

Von Plato focuses on general elimination rules for the well-known connectives [9]. He studies

normalization of intuitionistic logic where he also uses a form of segments, which he calls threads. He

defines classical logic by adding a rule of excluded middle. This is a big difference to the truth table

system where the classical property lies in the rules of the connectives.

Frances, Dyckhoff and Read [2, 12] study the rules on a more philosophical level. They study

notions of harmony of general natural deduction systems. The inversion principle can be seen as a

form of harmony, but it can be reversed. Frances and Dyckhoff suggest a harmony based on the

elimination rules, where the introduction rules arise from the elimination rules. In addition, they try

to define harmony on a local and a global level.

Read shows that without any constraints on the introduction rules, weird connectives can be

defined using ‘general elimination rules’. He illustrates it with a zero placed connective • with one

introduction rule. He shows that the derived elimination rule together with the introduction rule yield
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an inconsistent system. But the system is harmonious! Read claims that the notion of harmony is not

the problem, but the definition of the introduction rule causes the problem. Fortunately, this cannot

happen in the truth table system, since we proved consistency.

4.2 Future research

We examined the truth table system. A lot of results were already established in [4, 5]. In this

thesis we proved two new results on the relation between IPC and CPC. We showed that IPC and

CPC are equivalent for monotone connectives and we showed Glivenko’s theorem. In our study on

normalization we gave a new proof of weak normalization based on ideas of Prawitz, which enabled

us to study the form of normal derivations. At the end, we established our main result, the strong

normalization for intuitionistic propositional logic with regard to detour and permutation conversions.

The work done in this thesis does not complete the whole study of the truth table system. There

are some open questions. For example, is the reverse statement about monotone connectives true? In

other words, if IPC and CPC are equivalent for some connective, must this connective be monotone?

We would believe so, but it is hard to find a strategy to prove it. Another challenge is to find a

‘general’ Glivenko’s translation from IPC to CPC for arbitrary connectives.

Another technical open problem is how to define detour conversion for the classical rules. There

is no intuitive notion of reducing an introduction followed by an elimination due to the format of

the classical introduction rules. The conclusion of a classical introduction of connective c can be an

arbitrary formula D which has no relation with the elimination rules of c.

Finally, we can examine the concept of harmony in the truth table system. We may wonder

how we should interpret harmony, since there is no preference for the elimination or the introduction

rules. This would be interesting to study in order to get more insights in the relationship between

introduction and elimination rules.
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Appendix A | Rules from Truth Tables

We represent the truth table rules for the well-known connectives ∧,¬,→,∨,⊥ and >. Both in plain

form from the definition (left column) and in optimized form by Lemmas 2.2.3 and 2.2.4 (right col-

umn). We present both the intuitionistic rules and the classical rules. The rules derived from the

definition are labeled by the corresponding entries in the truth table. The intuitionistic optimized

rules for the connectives ∧ and ∨ are the same as the classical rules, because those are monotone

connectives. We also present the intuitionistic rules for if-then-else and most.

A B A ∨B A ∧B A→ B ¬A
0 0 0 0 1 1

0 1 1 0 1

1 0 1 0 0 0

1 1 1 1 1

⊥ >
0 1

Disjunction ∨

∨ From definition Optimized rules

Elim
` A ∨B A ` D B ` D ∨-el` D

` A ∨B A ` D B ` D ∨-el` D

Intro
` A B ` A ∨B ∨-ini

10` A ∨B
` A ∨-in1` A ∨B

` A ` B ∨-ini
11` A ∨B

` B ∨-in2` A ∨B
A ` A ∨B ` B ∨-ini

01` A ∨B

A ∨B ` D ` A B ` D ∨-inc
10` D

A ∨B ` D ` A ` B ∨-inc
11` D

A ∨B ` D A ` D ` B ∨-inc
01` D
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Conjunction ∧

∧ From definition Optimized rules

Elim
` A ∧B A ` D B ` D ∧-el00` D

` A ∧B ∧-el1` A
` A ∧B A ` D ` B ∧-el01` D

` A ∧B ∧-el2` B
` A ∧B ` A B ` D ∧-el10` D

Intro
` A ` B ∧-in` A ∧B

` A ` B ∧-in` A ∧B

A ∧B ` D ` A ` B ∧-inc

` D

Implication →

→ From definition Optimized rules

Elim
` A→ B ` A B ` D →-el` D

` A→ B ` A →-el` B

Intro
A ` A→ B B ` A→ B →-ini

00` A→ B
` B →-ini

1` A→ B

` A ` B →-ini
11` A→ B

A ` A→ B →-ini
2` A→ B

A ` A→ B ` B →-ini
01` A→ B

A→ B ` D A ` D B ` D →-inc
00` D

` B →-inc
1` A→ B

A→ B ` D ` A ` B →-inc
11` D

A→ B ` D A ` D →-inc
2` D

A→ B ` D A ` D ` B →-inc
01` D
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Negation ¬

¬ From definition = optimized

Elim
` ¬A ` A ¬-el` D

Intro
A ` ¬A ¬-ini
` ¬A

¬A ` D A ` D ¬-inc

` D

Bottom ⊥ Top >

⊥ From definition

Elim
`⊥ ⊥-el` D

> From definition Optimized rules

Intro >-ini
` > >-in` >

> ` D >-inc

` D

Now we present intuitionistic optimized rules for if-then-else and most. For the rules directly de-

rived from the truth tables see [4]. Note that there are more possible optimized rules reduced with

Lemma 2.2.3 and Lemma 2.2.4. First we state the truth tables of if-then-else and most. We use the

notation A→ B/C to mean ‘if A then B else C’.

A B C A→ B/C most(A,B,C)

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 1

1 1 1 1 1
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If-then-else A→ B/C

if-then-else From definition Optimized rules

Elim
` A→ B/C A ` D B ` D C ` D

el000` D

` A→ B/C A ` D C ` D
else-el` D

` A→ B/C A ` D ` B C ` D
el010` D

` A→ B/C ` A
then-el` B

` A→ B/C ` A B ` D C ` D
el100` D

` A→ B/C ` A B ` D ` C
el101` D

Intro
A ` A→ B/C B ` A→ B/C ` C

in001` A→ B/C

A ` A→ B/C ` C
else-in` A→ B/C

A ` A→ B/C ` B ` C
in011` A→ B/C

` A ` B
then-in` A→ B/C

` A ` B C ` A→ B/C
in110` A→ B/C

` A ` B ` C
in111` A→ B/C

Most most(A,B,C)

We only state the optimized rules. These are the same for the classical and intuitionistic rules.

Elim Intro

` most(A,B,C) B ` D C ` D
most-el1` D

` A ` B most-in1` most(A,B,C)

` most(A,B,C) A ` D C ` D
most-el2` D

` A ` C most-in2` most(A,B,C)

` most(A,B,C) A ` D B ` D
most-el3` D

` B ` C most-in3` most(A,B,C)
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Appendix B | Induction Proofs

Proof of Proposition 3.6.16: Let M and N be terms in IPCC such that M −→D N . Then

1. for every pλ→-term H there exists a pλ→-term K such that (M : H)
+→β K and (N : H) v K,

2. there exists a pλ→-term K such that M
+→β K and N v K.

Proof. Statement (1.) is proved by induction on the generation of M −→D N . Here we show

induction steps using Lemma 3.6.14 and 3.6.15 at some places. Let H be a pλ→-term and suppose

P −→D Q. Numbering corresponds to Definition 3.5.3.

(3a) P ·rs [Nk;λxl.Ol] −→D Q ·rs [Nk;λxl.Ol]:

By induction hypothesis on P −→D Q, we immediately can find a K such that

P :
(
λg1 . . . λgt.gsNk (λxl.(Ol : H))

) +→β K

with Q :
(
λg1 . . . λgt.gsNk (λxl.(Ol : H))

)
v K. This is also true for an elimination term

without any case λxl.Ol.

(3b) M ·rs [Nk, P,Nk;λxl.Ol] −→D M ·rs [Nk, Q,Nk;λxl.Ol]: First we assume that the elimination

term contains a case λxl.Ol.

(M ·rs [Nk, P,Nk;λxl.Ol]) : H = M :
(
λg1 . . . λgt.gsNk P Nk (λxl.(Ol : H))

)
= M :

(
λg1 . . . λgt.gsNk(λh.(P : h))Nk (λxl.(Ol : H))

)
.

By induction hypothesis, there is a K ′ such that (P : h)
+→β K

′ and (Q : h) v K ′. Now(
λg1 . . . λgt.gsNk(λh.(P : h))Nk (λxl.(Ol : H))

)
+→β

(
λg1 . . . λgt.gsNk(λh.K ′)Nk (λxl.(Ol : H))

)
and (

λg1 . . . λgt.gsNk(λh.(Q : h))Nk (λxl.(Ol : H))
)

v
(
λg1 . . . λgt.gsNk(λh.K ′)Nk (λxl.(Ol : H))

)
.

Define K = M :
(
λg1 . . . λgt.gsNk(λh.K ′)Nk (λxl.(Ol : H))

)
. Applying Lemma 3.6.14 and

Lemma 3.6.15 results in

(M ·rs [Nk, P,Nk;λxl.Ol]) : H �β K

with

(M ·rs [Nk, Q,Nk;λxl.Ol]) : H v K.

If there is no case λxl.Ol, then we have

(M ·rs [Nk, P,Nk; ]) : H = M :
(
λp.(λg1 . . . λgt.gsNk P Nk)H

)
= M :

(
λp.(λg1 . . . λgt.gsNk(λh.(P : h))Nk)H

)
.
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Apply the same strategy to obtain the desired result.

(3c) M ·rs [Nk;λxl.Ol, λx.P, λxl.Ol] −→D M ·rs [Nk;λxl.Ol, λx.Q, λxl.Ol]:

Use the same strategy as the previous case. Note that the elimination term has at least one

case, namely λx.P .

(3d) {Nj , P,Nj ;λyi.Mi} −→D {Nj , Q,Nj ;λyi.Mi}:

{Nj , P,Nj ;λyi.Mi} : H =
(
(λqj . λqi .H)Nj P Nj (λyi.(Mi : H))

)
eH1 . . . eHt ,

where parallel term eHs may contain subterms of the form

λhk . λhl .hl′N j′ or λhk . λhl .hl′P or λhk . λhl .(λyi′ .(Mi′ : H))hk′ .

Note that the middle one does not have to be present, since it is not necessary that P belongs to a

matching case with some l′. But P is always present in the whole translation of the introduction

term due to the dummy redexes. By induction hypothesis, there is a K ′ such that (P : h)
+→β K

′

and (Q : h) v K ′. If the middle one exists then

λhk . λhl .hl′(λh.(P : h))
+→β λhk . λhl .hl′(λh.K

′)

and

λhk . λhl .hl′(λh.(Q : h)) v λhk . λhl .hl′(λh.K ′).

Therefore eHs �β e′s
H , where e′s

H is parallel term eHs where (P : h) is replaced by K ′. This

holds for all s. Define K =
(
(λqj . λqi .H)Nj(λh.K

′)Nj (λyi.(Mi : H))
)
e′1
H . . . e′t

H , then

{Nj , P,Nj ;λyi.Mi} : H =
(
(λqj . λqi .H)Nj P Nj (λyi.(Mi : H))

)
eH1 . . . eHt

+→β K

and

{Nj , Q,Nj ;λyi.Mi} : H v K.

Note that it indeed amounts to a
+→β step to K and not a β-equivalence, because P is present

in the translation due to the dummy redex.

(3e) {Nj ;λyi.Mi, λy.P, λyi.Mi} −→D {Nj ;λyi.Mi, λy.Q, λyi.Mi}:
Use the same strategy as the previous case.

Proof of Proposition 3.6.20: Let M1,M2,M3 be terms in IPCC with M1 −→Pneg M2 −→D M3.

Then there is a term F in IPCC such that M1 −→D F −−−�Pneg M3.

Proof. We use induction on the generation of M1 −→Pneg M2. We show some cases in detail. First

we look at the base case.

(1) (M · [Nk]) · [P ;λx.Q] −→Pneg M · [Nk]:

There are several possibilities of a detour reduction starting from M · [Nk].

- If the detour reduction is in the subterm M −→D M ′, define F = (M ′ · [Nk]) · [P ;λx.Q]

to get the desired result. Idem for detour reductions in Nk’s.

- If direct detour on M · [Nk], then M of the form {R, λyi.Si}. The only matching case is

k′ = i′, so then M · [N ] −→D Si′ [yi′ := Nk′ ] · [Nk] = M3. Define

F = (Si′ [yi′ := Nk′ ] · [Nk]) · [P, λx.Q],

then M1 = (M · [Nk]) · [P ;λx.Q] −→D F −→Pneg Si′ [yi′ := Nk′ ] · [Nk] = M3.
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For the induction steps we assume P −→Pneg Q.

(2a) P ·rs [Nk;λxl.Ol] −→Pneg Q ·rs [Nk;λxl.Ol]:

- For detour in terms Nk or Ol, it is easily verified.

- If detour on Q, say Q −→D R. With the induction hypothesis we can find an F ′ such

that P −→D F ′ −−−�Pneg R. Define F = F ′ · [Nk;λxl.Ol]. Then we have

M1 = P ·rs [Nk;λxl.Ol] −→D F −−−�Pneg R · [Nk;λxl.Ol] = M3.

- If direct detour in Q ·rs [Nk;λxl.Ol], then Q of the form {Rj , λyi.Si}. We treat both

matching cases.

If l′ = j′, then {Rj , λyi.Si} · [Nk;λxl.Ol] −→D Ol′ [xl′ := Rj′ ] = M3. We had a neg-

ative permutation from P to Q = {Rj , λyi.Si}, which means that P is also of the form

{R′j , λy′i.S′i} with R′j −→Pneg Rj or S′i −→Pneg Si for some j or i and R′j = Rj , S
′
i = Si

for all other j and i. Define F = Ol′ [xl′ := R′j′ ]. Then we have

M1 = {R′j , λy′i.S′i} ·rs [Nk;λxl.Ol] −→D F −−−�Pneg Ol′ [xl′ := Rj ] = M3.

Note that there may be zero negative permutation steps.

If k′ = i′, then {Rj , λyi.Si} · [Nk;λxl.Ol] −→D Si′ [yi′ := Nk′ ] · [Nk;λxl.Ol]. Again

we have P of the form {R′j , λy′i.S′i} with the same conditions as in case l′ = j′. Define

F = S′i′ [yi′ := Nk′ ] · [Nk;λxl.Ol], then

M1 = {R′j , λy′i.S′i} ·rs [Nk;λxl.Ol] −→D F −−−�Pneg Si′ [yi′ := Nk′ ] · [Nk;λxl.Ol] = M3.

(2b) M ·rs [Nk, P,Nk;λxl.Ol] −→Pneg M ·rs [Nk, Q,Nk;λxl.Ol]:

- For detour in terms M , Nk or Ol, it is easily verified.

- If detour in Q, use the same induction strategy as in (2a).

- If direct detour on M ·rs [Nk, Q,Nk;λxl.Ol], then M of the form {Rj , λyi.Si}.
If l′ = j′, then M ·rs [Nk, Q,Nk;λxl.Ol] −→D Ol′ [xl′ := Rj′ ] = M3. Defining F = M3

gives the desired result with zero negative permutation steps.

If k′ = i′, then

M ·rs [Nk, Q,Nk;λxl.Ol] −→D Si′ [yi′ := Nk′ ] · [Nk, Q,Nk;λxl.Ol] = M3

or

M ·rs [Nk, Q,Nk;λxl.Ol] −→D Si′ [yi′ := Q] · [Nk, Q,Nk;λxl.Ol] = M3.

Define F = Si′ [yi′ := Nk′ ] · [Nk, P,Nk;λxl.Ol] and F = Si′ [yi′ := P ] · [Nk, P,Nk;λxl.Ol]

respectively, then for both cases

M1 = M ·rs [Nk, P,Nk;λxl.Ol] −→D F −→Pneg M3.

(2c) M ·rs [Nk;λxl.Ol, λx.P, λxl.Ol] −→Pneg M ·rs [Nk;λxl.Ol, λx.Q, λxl.Ol]:

Use the same strategy as the previous case.

(2d) {Nj , P,Nj ;λyi.Mi} −→Pneg {Nj , Q,Nj ;λyi.Mi}:
- For detour in terms Nj and Mi it is easily verified.

- If detour in Q, use same induction strategy as in (2a).

- There are no more possibilities for a detour reduction from {Nj , Q,Nj ;λyi.Mi}.

(2e) {Nj ;λyi.Mi, λy.P, λyi.Mi} −→Pneg {Nj ;λyi.Mi, λy.Q, λyi.Mi}:
Use same strategy as previous case.
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Proof of Proposition 3.6.22: Let M1,M2,M3 be terms in IPCC with M1 −→Pneg M2 =⇒n
Ppos M3.

Then there is a term F in IPCC such that M1 =⇒m
Ppos F −−−�Pneg M3 with m = n or m = n+ 1.

Proof. We use induction on the generation of M1 −→Pneg M2. We present some cases in detail. We

start with the base case.

(1) (M · [Nk]) · [P ;λx.Q] −→Pneg M · [Nk]:

- If =⇒n
Ppos in the subterm M =⇒n

Ppos M
′, define F = (M ′ · [Nk]) · [P ;λx.Q] to get the

desired result. Same strategy for reductions in Nk’s.

- If =⇒n
Ppos on M · [Nk], then M = T · [R;λy.S] · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] with

positive reductions

M · [Nk] =⇒n
Ppos T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] · [Nk])] = M3.

Now define F = T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] · [Nk] · [P ;λx.Q])]. Then

M1 = T · [R;λy.(S)] · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] · [Nk] · [P ;λx.Q]

=⇒n+1
Ppos T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] · [Nk] · [P ;λx.Q])] = F

−−−�Pneg T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] · [Nk])] = M3.

In short notation we have M1 =⇒n+1
Ppos F −−−�Pneg M3. This completes the base case.

Now we turn to the induction step. Assume P −→Pneg Q.

(2a) P ·rs [Nk;λxl.Ol] −→Pneg Q ·rs [Nk;λxl.Ol]:

- For =⇒n
Ppos in terms Nk or Ol, it is easily verified.

- If =⇒n
Ppos in Q, say Q =⇒n

Ppos R. With the induction hypothesis we can find an F ′ such

that P =⇒m
Ppos F

′ −−−�Pneg R with m = n or m = n + 1. Define F = F ′ · [Nk;λxl.Ol].

Then we have

M1 = P ·rs [Nk;λxl.Ol] =⇒m
Ppos F −−−�Pneg R · [Nk;λxl.Ol] = M3.

- If =⇒n
Ppos direct on Q ·rs [Nk;λxl.Ol], then Q of the form

T · [R;λy.S] · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1],

with

Q·rs [Nk;λxl.Ol] =⇒n
Ppos T ·[R;λy.(S · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] · [Nk;λxl.Ol])] = M3.

There are two possibilities: there is a case of the form λw.Vn−1 or not.

In the first case we have P = T ′ · [R′;λy′.S′] · [U ′1;λw.V ′1 ] · · · · · [U ′n−1;λw.V ′n−1] with for

some subterm W ′ of P we have W ′ −→Pneg W for W in Q, for all others W ′ = W . Define

F = T ′ · [R′;λy′.(S′ · [U ′1;λw.V ′1 ] · · · · · [U ′n−1;λw.V ′n−1] · [Nk;λxl.Ol])].

Then

M1 = T ′ · [R′;λy′.S′] · [U ′1;λw.V ′1 ] · · · · · [U ′n−1;λw.V ′n−1] · [Nk;λxl.Ol]

=⇒n
Ppos T

′ · [R′;λy′.(S′ · [U ′1;λw.V ′1 ] · · · · · [U ′n−1;λw.V ′n−1] · [Nk;λxl.Ol])] = F

−−−�Pneg T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1;λw.Vn−1] · [Nk;λxl.Ol])] = M3.
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APPENDIX B. INDUCTION PROOFS

In the second case, P can have the same form or

P = T · [R;λy.S] · [U1;λw.V1] · · · · · [Un−1; ] · [X;λz.Z],

with P −→Pneg Q. Define

F = T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1; ] · [X;λz.Z] · [Nk;λxl.Ol])].

Then

M1 = T · [R;λy.S] · [U1;λw.V1] · · · · · [Un−1; ] · [X;λz.Z] · [Nk;λxl.Ol]

=⇒n+1
Ppos T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1; ] · [X;λz.Z] · [Nk;λxl.Ol])] = F

−−−�Pneg T · [R;λy.(S · [U1;λw.V1] · · · · · [Un−1; ] · [Nk;λxl.Ol])] = M3.

(2b) M ·rs [Nk, P,Nk;λxl.Ol] −→Pneg M ·rs [Nk, Q,Nk;λxl.Ol]:

- For =⇒n
Ppos in terms M , Nk or Ol, it is easily verified.

- If =⇒n
Ppos in Q, use the same induction strategy as in (2a).

- If =⇒n
Ppos direct on M ·rs [Nk, Q,Nk;λxl.Ol], proceed in the same way as in case (2a).

(2c) M ·rs [Nk;λxl.Ol, λx.P, λxl.Ol] −→Pneg M ·rs [Nk;λxl.Ol, λx.Q, λxl.Ol]:

Use the same strategy as the previous case.

(2d) {Nj , P,Nj ;λyi.Mi} −→Pneg {Nj , Q,Nj ;λyi.Mi}:
- For =⇒n

Ppos in terms Nj and Mi it is easily verified.

- If =⇒n
Ppos in Q, use same induction strategy as in (2a).

- There are no more possibilities for a =⇒n
Ppos reduction from {Nj , Q,Nj ;λyi.Mi}.

(2e) {Nj ;λyi.Mi, λy.P, λyi.Mi} −→Pneg {Nj ;λyi.Mi, λy.Q, λyi.Mi}:
Use same strategy as previous case.
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