
Deriving natural deduction rules from truth tables
Herman Geuvers1 and Tonny Hurkens2

1 Radboud University & Technical University Eindhoven, The Netherlands
herman@cs.ru.nl

Abstract
We develop a general method for deriving natural deduction rules from the truth table for a
connective. The method applies to both constructive and classical logic. This implies we can
derive “constructively valid” rules for any (classical) connective. We show this constructive
validity by giving a general Kripke semantics, that is shown to be sound and complete for the
constructive rules. For the well-known connectives, like ∨, ∧,→, the constructive rules we derive
are equivalent to the natural deduction rules we know from Gentzen and Prawitz. However, they
have a different shape, because we want all our rules to have a standard “format”, to make it
easier to define the notions of cut and to study proof reductions. In style they are close to the
“general elimination rules” by Von Plato [10]. The rules also shed some new light on the classical
connectives: e.g. the classical rules we derive for→ allow to prove Peirce’s law. Our method also
allows to derive rules for connectives that are usually not treated in natural deduction textbooks,
like the “if-then-else”, whose truth table is clear but whose constructive deduction rules are not.
We prove that ”if-then-else”, in combination with ⊥ and >, is functionally complete (all other
constructive connectives can be defined from it). We define the notion of cut, generally for any
constructive connective and we describe the process of “cut-elimination”. Following the Curry-
Howard isomorphism, we can give terms to deductions and we study cut-elimination as term
reduction. We prove that reduction is strongly normalizing for constructive if-then-else logic.

Keywords and phrases constructive logic, natural deduction, cut-elimination, Kripke semantics,
Curry-Howard isomorphism

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Natural deduction rules come in various forms, where the tree format is the most well-known,
where one either puts formulas A as the nodes and leaves of the tree, or sequents Γ ` A,
where Γ is a sequence or a finite set of formulas. Other formalisms use a linear format, using
flags or boxes to explicitly manage the open and discharged assumptions.

We use a tree format with sequents in the nodes and leaves, where all rules have a special
form:

Γ ` Φ1 . . . Γ ` Φn Γ,Ψ1 ` D . . . Γ,Ψm ` D

Γ ` D
So if the conclusion of a rule is Γ ` D, then the hypotheses of the rule can be of one of two
forms:
1. Γ,Ψ ` D: we still need to prove D from Γ, but we are now also allowed to use Ψ as

additional assumption. We call Ψ a Casus.
2. Γ ` Φ: in stead of proving D from Γ, we now need to prove Φ from Γ. We call Φ a

Lemma.

One obvious advantage is that we don’t have to give the Γ explicitly, as it can be retrieved
from the other information in a deduction. So, we will present the deduction rules without

© Herman Geuvers and Tonny Hurkens;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Deriving natural deduction rules from truth tables

the Γ in the format
` Φ1 . . . ` Φn Ψ1 ` D . . . Ψm ` D

` D
For every connective we have elimination rules and introduction rules, where the introduction
rules come in a intuitionistic and a classical variant. The elimination rules have the following
form, where we indicate occurrences of Casus by C and occurrences of Lemma by L. One of
the occurrences of a Lemma is the formula we eliminate, which we indicate by E. (So ΦE

below is a special case of a Lemma.)

` ΦE ` ΦL
1 . . . ` ΦL

n ΨC
1 ` D . . . ΨC

m ` D
el

` D

The introduction rules have a classical and an intuitionistic form; the following form
is the classical one, where we again indicate occurrences of Casus by C and occurrences of
Lemma by L. One of the occurrences of a Casus is the formula we “introduce”, which we
indicate by I. (So ΦI below is a special case of a Casus.) The duality between elimination
and introduction is clearly visible from these rules.

ΦI ` D ` ΦL
1 . . . ` ΦL

n ΨC
1 ` D . . . ΨC

m ` D
inc

` D

The intuitionistic introduction rules have the following form

` ΦL
1 . . . ` ΦL

n ΨC
1 ` Φ . . . ΨC

m ` Φ
ini

` Φ

We see that, compared to the classical rule, the D has been replaced by Φ, the formula we
introduce, and we have omitted the first premise, which is ΦI ` Φ, because it is trivial. We
extract these rules from a truth table as described in the following Definition.

I Definition 1. Suppose we have an n-ary connective c with a truth table tc (with 2n
rows). We write ϕ = c(p1, . . . , pn), where p1, . . . , pn are proposition letters and we write
Φ = c(A1, . . . , An), where A1, . . . , An are arbitrary propositions. Each row of tc gives rise to
an elimination rule or an introduction rule for c in the following way.

p1 . . . pn ϕ

a1 . . . an 0 7→
` Φ . . . ` Aj (if aj = 1) Ai ` D (if ai = 0) . . .

el
` D

p1 . . . pn ϕ

b1 . . . bn 1 7→
. . . ` Aj (if bj = 1) Ai ` Φ (if bi = 0) . . .

ini
` Φ

p1 . . . pn ϕ

c1 . . . cn 1 7→
Φ ` D . . . ` Aj (if cj = 1) Ai ` D (if ci = 0) . . .

inc
` D

If aj = 1 in tc, then Aj occurs as a Lemma in the rule; if ai = 0 in tc, then Ai occurs
as a Casus. The rules are given in abbreviated form and it should be understood that all
judgments can be used with an extended hypotheses set Γ. So the elimination rule in full
reads as follows (where Γ is a set of propositions).

Γ ` Φ . . .Γ ` Aj (if aj = 1)Γ, Ai ` D (if ai = 0) . . .
el

Γ ` D

I Definition 2. Given a set of connectives C := {c1, . . . , cn}, we define the intuitionistic and
classical natural deduction systems for C, IPCC and CPCC as follows.

H. Geuvers and T. Hurkens XX:3

Both IPCC and CPCC have an axiom rule

axiom(if A ∈ Γ)
Γ ` A

IPCC has the elimination rules for the connectives in C and the intuitionistic introduction
rules for the connectives in C, as defined in Definition 1.
CPCC has the elimination rules for the connectives in C and the classical introduction
rules for the connectives in C, as defined in Definition 1.

We write Γ `i A if Γ ` A is derivable using the derivation rules of IPCC . We write Γ `c A if
Γ ` A is derivable using the derivation rules of CPCC .

I Example 3. From the truth table we derive the following intuitionistic rules for ∧, 3
elimination rules and one introduction rule:

` A ∧B A ` D B ` D
∧-ela

` D

` A ∧B A ` D ` B
∧-elb

` D

` A ∧B ` A B ` D
∧-elc

` D

` A ` B
∧-in

` A ∧B

These rules are all intuitionistically correct, as one can observe by inspection. We will
show that these are equivalent to the well-known intuitionistic rules. We will also show how
these rules can be optimized and be reduced to 2 elimination rules and 1 introduction rule.

From the truth table we also derive the following rules for ¬, 1 elimination rule and 1
introduction rule, a classical and an intuitionistic one.

` ¬A ` A
¬-el

` D

A ` ¬A
¬-ini

` ¬A

¬A ` D A ` D
¬-inc

` D

As an example of the classical derivation rules we show that ¬¬A ` A is derivable:

¬¬A,¬A ` ¬¬A ¬¬A,¬A ` ¬A
¬-el

¬¬A,¬A ` A ¬¬A,A ` A
¬-inc

¬¬A ` A

It can be proven that ¬¬A ` A is not derivable with the intuitionistic rules. As an example
of the intuitionistic derivation rules we show that A ` ¬¬A is derivable:

A,¬A ` ¬A A,¬A ` A
¬-el

A,¬A ` ¬¬A
¬-ini

A ` ¬¬A

In the intuitionistic case, there is an obvious notion of cut that we study: an intro of Φ
immediately followed by an elimination of Φ. In such case there is at least one k for which
ak 6= bk. In case ak = 0, bk = 1, we have a sub-derivation Σ of ` Φk and a sub-derivation
Θ of Φk ` D and we can “plug” Σ on top of Θ to obtain a derivation of ` D. In case
ak = 1, bk = 0, we have a sub-derivation Σ of Φk ` Φ and a sub-derivation Θ of ` Φk and we
can “plug” Θ on top of Σ to obtain a derivation of ` Φ. This is then used as a hypothesis
for the elimination rule (that remains in this case) in stead of the original one that was a
consequence of the introduction rule (that now disappears). Note that in general there are
more such k, so the general cut-elimination procedure is non-deterministic. We view this
non-determinism as a natural feature in natural deduction; the fact that for some connectives
(or combination of connectives), cut-elimination is deterministic is an “emerging” property.

XX:4 Deriving natural deduction rules from truth tables

1.1 Contribution of the paper and related work
Natural deduction has been studied extensively, since the original work by Gentzen, both for
classical and intuitionistic logic. Overviews can be found in [9] and [5]. Also the generalization
of natural deduction to include other connectives or allow different derivation rules has been
studied by various researchers. Notably, there is the work of Schroeder-Heister [7] and
Von Plato [10] is related to ours. Schroeder-Heister studies general formats of natural
deduction where also rules may be discharged (as opposed to the normal situation where
only formulas may be discharged). He also studies a general rule format for intuitionistic
logic and shows that the connectives ∧,∨,→,⊥ are complete for it. Von Plato discusses
“generalized elimination rules”, which also appear naturally as a consequence of our approach
of deriving the rules from the truth table.

However, we focus not so much on the rules but on the fact that we can define different
and new connectives constructively. In our work, we derive the rules directly from the truth
table and in Section 3 we give a complete Kripke semantics for the constructive connectives.
This also allows us to prove some meta properties about the rules. For example, we give a
generalization of the disjunction property in intuitionistic logic. In Section 4 we define and
study cuts precisely, for the intuitionistic case. We look more in detail into the logic with
just if-then-else and we prove that cut-elimination is strongly normalizing by studying the
reduction of proof terms.

2 Simple properties and examples

We first define precisely how the “plugging one derivation in another” works.

I Lemma 4. If Γ ` ϕ and ∆, ϕ ` ψ, then Γ,∆ ` ψ

Proof. By a simple induction on the derivation of ∆, ϕ ` ψ, using the fact that, in general
(for all Γ, Γ′ and ϕ): If Γ ` ϕ and Γ ⊆ Γ′, then Γ′ ` ϕ. J

We can be a bit more precise about what is happening in the proof of Lemma 4. If Π is
the derivation of ∆, ϕ ` ψ, due to the format of our rules, the only place in Π where the
hypothesis ϕ can be used is at a leaf of Π, in an instance of the (axiom) rule. These leaves
are of the shape ∆′, ϕ ` ϕ for some ∆′ ⊇ ∆.

If Σ is the derivation of Γ ` ϕ, then Σ is also a derivation of ∆′,Γ ` ϕ (for any ∆). So,
we can replace each leaf of Π that is an instance of an axiom ∆′, ϕ ` ϕ by a derivation Σ of
∆′,Γ ` ϕ, to obtain a derivation of Γ,∆ ` ψ. We introduce some notation to support this.
I Notation 5. If Σ is a derivation of Γ ` ϕ and Π is a derivation of ∆, ϕ ` ψ, then we have a
derivation of Γ,∆ ` ψ that looks like this:

····
Σ

Γ ` ϕ . . .

····
Σ

Γ ` ϕ
····

Π
∆ ` ψ

So in Π, every application of an (axiom) rule at a leaf, deriving ∆′ ` ϕ for some ∆′ ⊇ ∆ is
replaced by a copy of a derivation Σ, which is also a derivation of ∆′,Γ ` ϕ.

In Definitions 1 and 2, we have given the precise rules for our logic, in intuitionistic and
classical format. We can freely reuse formulas and weaken the context, so the structural
rules of contraction and weakening are wired into the system. In examples, to simplify

H. Geuvers and T. Hurkens XX:5

derivations we will often use the following format for an elimination rule (and equivalently
for an introduction rule).

Γ0 ` Φ . . .Γj ` Aj (if aj = 1)Γi, Ai ` D (if ai = 0) . . .
el

∪nk=0Γk ` D
To reduce the number of rules, we can take a number of rules together and drop one or

more hypotheses. We show this by again looking at the example of the rules for ∧ (Example
3).

I Example 6. From the truth table we have derived the following 3 intuitionistic elimination
rules:

` A ∧B A ` D B ` D
∧-ela

` D

` A ∧B A ` D ` B
∧-elb

` D

` A ∧B ` A B ` D
∧-elc

` D

These rules can be reduced to the following 2 equivalent elimination rules:

` A ∧B A ` D
∧-el1

` D

` A ∧B B ` D
∧-el2

` D

It can be shown that these sets of rules are equivalent (and equivalent again to the more
standard ∧-elimination rules that are known as “first and second projection”). Here we only
show the derivability of the new rules from the standard ones (the ones we have derived
from the truth table), by giving a derivation for the ∧-el1 rule. (The ∧-el2 rule is similar.)
Suppose we have derivations of Γ ` A ∧ B and of Γ, A ` D. Then we have the following
derivation, using the rules ∧-ela, ∧-elb and ∧-elc:

Γ ` A ∧B Γ, A ` D
Γ, B ` A ∧B Γ, B,A ` D Γ, B ` B

Γ, B ` D
Γ ` D

The general method here is that we can replace two rules that only differ in one hypothesis,
which in one rule occurs as a Lemma and in the other as a Casus, by one rule where the
hypothesis is removed. It will be clear that the Γ’s above are not relevant for the argument,
so we will not write these.

I Lemma 7. A system with two derivation rules of the form

` Φ1 . . . ` Φn Ψ1 ` D . . . Ψm ` D A ` D

` D

` Φ1 . . . ` Φn ` A Ψ1 ` D . . . Ψm ` D

` D

is equivalent to the system with these two rules replaced by

` Φ1 . . . ` Φn Ψ1 ` D . . . Ψm ` D

` D

Proof. The implication from bottom to top is immediate. From top to bottom, suppose we
have the two given rules. We now derive the bottom one. Assume we have derivations of
` Φ1, . . . ,` Φn,Ψ1 ` D, . . . ,Ψm ` D. We now have the following derivation of ` D.

` Φ1 . . . ` Φn Ψ1 ` D . . . Ψm ` D

A ` Φ1 . . . A ` Φn A ` A A,Ψ1 ` D . . . A,Ψm ` D

A ` D

` D
J

XX:6 Deriving natural deduction rules from truth tables

Similarly, we can replace a rule which has only one Casus by a rule where the Casus is
the conclusion. We observe that in the simplified elimination rules for ∧, ∧-el1 and ∧-el2,
which have only one Casus. The rule ∧-el1 (left) can be replaced by the rule ∧-el′1 (right),
which is the usual projection rule.

` A ∧B A ` D
∧-el1

` D

` A ∧B
∧-el′1` A

There is a general Lemma stating this simplification is correct.

I Lemma 8. A system with a derivation rule of the form to the left is equivalent to the
system with this rule replaced by the rule on the right.

` Φ1 . . . ` Φn Ψ ` D
` D

` Φ1 . . . ` Φn
` Ψ

Proof. The implication from left to right is immediate. From right to left, assume we have
derivations of ` Φ1, . . . ,` Φn. Then, by the rule to the right, we have Γ ` Ψ. Now assume
we also have a derivation of Ψ ` D. By Lemma 4, we also have a derivation of Γ ` D.

J

I Example 9. If we look at if-then-else, which has the obvious (classical) truth table semantics
as a ternary connective, and we apply the optimizations of Lemmas 7 and 8 we obtain the
following intuitionistic rules, where we write A→B/C for if A thenB elseC.
` A→B/C ` A

then-el
` B

` A→B/C A ` D C ` D
else-el

` D

` A ` B
then-in

` A→B/C
A ` A→B/C ` C

else-in
` A→B/C

Basically, A→B/C is equivalent to (A→ B)∧ (A∨C). It can be shown that A→B/C is
“in between” other constructive renderings of if-then-else:

(A ∧B) ∨ (¬A ∧ C)
6a
` A→B/C

6a
` (A→ B) ∧ (¬A→ C)

The left-to-right can easily be derived, for the non-derivability of the reverse, we need a
Kripke model (see Section 3).

If we compare with well-known classical rules for if-then-else, we observe that one of them
holds, while the other fails.
I Fact 10. 1. if A thenB elseB ` B and B ` if A thenB elseB,
2. if (if A thenB elseC) thenD elseE 6` if A then (if B thenD elseE) else (if C thenD elseE)
3. if A then (if B thenD elseE) else (if C thenD elseE) 6` if (if A thenB elseC) thenD elseE.

As a matter of fact, either one of the last two rules renders the connective if-then-else
classical. This can be observed by taking in (2) B = ⊥, C = >, D = ⊥, E = >. Then the
left-hand-side is equivalent with ¬¬A and the right-hand-side is equivalent with A. In (3),
take B = ⊥, C = >, D = >, E = A. Then the left-hand-side is equivalent with > and the
right-hand-side with ¬A ∨ A. So, the addition of either one of these judgments as a rule
renders the system classical.

An important property is that (just as in classical logic), the constructive if-then-else,
together with > and ⊥ is functionally complete: all other connectives can be defined in terms
of it. We prove this for ∧, ∨, → and ¬. A result from Schroeder-Heister [7] implies that all
constructive connectives can be defined in terms of if-then-else.

H. Geuvers and T. Hurkens XX:7

I Definition 11. The derivation rules for the standard intuitionistic connectives are the
following. These rules are derived from the truth tables and optimized following Lemmas 7
and 8. The rules for ∧ are the intro rule of Example 3 and the elimination rules of Example
6. The rules for ¬ are given in Example 3. The rules for ∨ and → and > and ⊥ are:

` A ∨B A ` D B ` D
∨-el

` D

` A
∨-in1

` A ∨B

` B
∨-in2

` A ∨B
>-in

` >

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A ` A→ B
→ -in2

` A→ B

` ⊥
⊥-el

` D
I Example 12. As our only example for classical logic, we give the classical rules for implica-
tion. The elimination is rule is the same, → -el above, and we also have the first introduction
rule → -in1, but in addition we have the rule on the right. We observe that this rule is
classical in the sense that one can derive Peirce’s law, without using negation. See the
derivation below, of Peirce’s law.

A ` D A→ B ` D
→ -inc2` D

A ` A

A ` ((A→ B)→ A)→ A

(A→ B)→ A ` (A→ B)→ A A→ B ` A→ B

A→ B, (A→ B)→ A ` A

A→ B, (A→ B)→ A ` ((A→ B)→ A)→ A

A→ B ` ((A→ B)→ A)→ A
→ -inc

2
` ((A→ B)→ A)→ A

I Definition 13. We define the usual intuitionistic connectives in terms of if-then-else, >
and ⊥ as follows.

A ∨̇ B := A→A/B A ∧̇ B := A→B/A A →̇ B := A→B/> ¬̇A := A→⊥/>

The following is now a routine check.

I Lemma 14. The defined connectives in Definition 13 satisfy the derivation rules for these
same connectives as given in Definition 11

I Corollary 15. The intuitionistic connective if-then-else, together with > and ⊥, is func-
tionally complete.

Proof. Lemma 11 shows that the well-known intuitionistic connectives can all be defined
in terms of if-then-else, > and ⊥. In [7], it is shown that all connectives can be defined in
terms of ∨, ∧, → and ¬. J

3 Kripke semantics

We now define a Kripke semantics for the intuitionistic rules and prove that it is complete.
Formulas are built from atoms using existing or defined connectives of any arity, so for each
n-ary connective c, we assume a truth table tc : {0, 1}n → {0, 1} and we have inductively
defined derivability ` as a relation between a sets of formulas and a formula above.

I Definition 16. We define a Kripke model as a triple (W,≤, at) where W is a set of
worlds with a reflexive, transitive relation ≤ on it and a function at : W → ℘(At) satisfying
w ≤ w′ ⇒ at(w) ⊆ at(w′).

In a Kripke model we want to define the relation w
 ϕ between worlds and formulas (ϕ
is true in world w). We do this by defining [[ϕ]]w ∈ {0, 1}, with the meaning that [[ϕ]]w = 1 if
w
 ϕ and [[ϕ]]w = 0 if w 6
 ϕ.

XX:8 Deriving natural deduction rules from truth tables

I Definition 17. Given a Kripke model (W,≤, at) we define [[ϕ]]w ∈ {0, 1}, by induction on
ϕ as follows.

(atom) if ϕ is atomic, [[ϕ]]w = 1 iff ϕ ∈ at(w).
(connective) for ϕ = c(ϕ1, . . . , ϕn), [[ϕ]]w = 1 iff for each w′ ≥ w, tc([[ϕ1]]w′ , . . . , [[ϕ1]]w′) =
1 where tc is the truth table of c.

We define Γ |= ψ (ψ is a consequence of Γ) as: for each Kripke model and each world w, if
for each ϕ in Γ, [[ϕ]]w = 1, then [[ψ]]w = 1.

I Lemma 18 (Soundness). If Γ ` ψ, then Γ |= ψ

Proof. Induction on Γ ` ψ. J

Now we prove completeness: if Γ |= ψ, then Γ ` ψ. We prove this by constructing a
special, universal Kripke model.

I Definition 19. For ψ a formula and Γ a set of formulas, we say that Γ is a ψ-maximal set
of formulas if Γ 6` ψ and for every formula ϕ /∈ Γ we have: Γ, ϕ ` ψ.

Given a formula ψ and a set of formulas Γ such that Γ 6` ψ, we can extend Γ to a
ψ-maximal set Γ′ that contains Γ as follows. Take an enumeration of the formulas as
ϕ1, ϕ2, . . . and define recursively Γ0 := Γ and Γi+1 := Γi if Γi, ϕi+1 ` ψ and Γi+1 := Γi, ϕi+1
if Γi, ϕi+1 6` ψ. Then take Γ′ :=

⋃
i∈N Γi. (NB. as always, Γi, ϕi+1 denotes Γi ∪ {ϕi+1}.)

I Fact 20. We list a couple of simple important facts about ψ-maximal sets Γ.
1. For every ϕ, we have ϕ ∈ Γ or Γ, ϕ ` ψ.
2. So, for every ϕ, if ϕ /∈ Γ then Γ, ϕ ` ψ.
3. For every ϕ, if Γ ` ϕ, then ϕ ∈ Γ. (This follows by Lemma 4, taking ∆ = Γ. If ϕ /∈ Γ,

then Γ, ϕ ` ψ which together with Γ ` ϕ yields Γ ` ψ).

I Definition 21. We define the Kripke model U = (W,≤, at) as follows:
A world w ∈W is a pair (Γ, ψ) where Γ is a ψ-maximal set of formulas.
(Γ, ψ) ≤ (Γ′, ψ′) := Γ ⊆ Γ′.
at(Γ, ψ) := Γ ∩ At.

I Lemma 22. In the model U we have, for all worlds (Γ, ψ) ∈W :

∀ϕ,ϕ ∈ Γ⇔ [[ϕ]](Γ,ψ) = 1.

Proof. The proof is by induction on ϕ. If ϕ ∈ At, the result is immediate, so suppose that
ϕ = c(ϕ, . . . , ϕn where c has truth table tc. We prove the two directions separately.

(⇒): Assume ϕ ∈ Γ.
We have [[ϕ]](Γ,ψ) = 1 iff for all Γ′ ⊇ Γ and for all ψ′, writing w′ = (Γ′, ψ′), we have

tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1.
So let Γ′ ⊇ Γ and let ψ′ be a formula such that Γ′ is ψ′-maximal. For the sub-formulas

of ϕ we have the following possibilities
[[ϕj]]w′ = 1, and then by induction hypothesis: ϕj ∈ Γ′ and so Γ′ ` ϕj .
[[ϕi]]w′ = 0, and then by induction hypothesis: ϕi /∈ Γ′ and so Γ′, ϕi ` ψ′.

This corresponds to an entry in the truth table tc for the connective c.
Suppose tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 0. Then this row in the truth table yields an elimination

rule that allows us to prove ψ:

Γ′ ` ϕ . . .Γ′ ` ϕj (for ϕj with [[ϕj]]w′ = 1)Γ′, ϕi ` ψ′ (for ϕi with [[ϕi]]w′ = 0) . . .
el

Γ′ ` ψ

H. Geuvers and T. Hurkens XX:9

Note that all hypotheses of the rule are derivable, because ϕ ∈ Γ′ and the other hypotheses
are derivable by induction. So we have Γ′ ` ψ′. Contradiction! So: tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1,
what we needed to prove.

(⇐): Assume [[ϕ]](Γ,ψ) = 1 and suppose (towards a contradiction) ϕ /∈ Γ.
Then Γ 6` ϕ (because if Γ ` ϕ, then ϕ ∈ Γ by the facts we remarked about Kripke model

U .) So there is a ϕ-maximal theory Γ′ ⊇ Γ with Γ′ 6` ϕ. So (Γ,′ ϕ) is a world in U with
(Γ, ψ) ≤ (Γ′, ϕ). We write w′ := (Γ′, ϕ) and we have

tc([[ϕ1]]w′ , . . . , [[ϕn]]w′) = 1.

We consider the different sub-formulas of ϕ:
the ϕj with [[ϕj]]w′ = 1, and so (by induction hypothesis) ϕj ∈ Γ′ and so Γ′ ` ϕj ;
the ϕi with [[ϕi]]w′ = 0, and so (by induction hypothesis) ϕi /∈ Γ′ and so Γ′, ϕi ` ϕ.

Now, using an introduction rule for connective c, we can derive ϕ:

Γ′ ` ϕj (for ϕj with [[ϕj]]w′ = 1)Γ′, ϕi ` ϕ (for ϕi with [[ϕi]]w′ = 0) . . .
in

Γ′ ` ϕ

So we have Γ′ ` ϕ, because the hypotheses of the rule are all derivable. Contradiction! So
ϕ ∈ Γ′. J

I Theorem 23. If Γ |= ψ, then Γ ` ψ.

Proof. Suppose Γ |= ψ and Γ 6` ψ. Then we can find a ψ-maximal superset Γ′ of Γ such that
Γ′ 6` ψ. In particular: ψ is not in Γ′. So (Γ′, ψ) is a world in the Kripke model U in which
each member of Γ is true: [[ϕ]](Γ,ψ) = 1 for all ϕ ∈ Γ, by Lemma 22. However, ψ is not true
in (Γ′, ψ): [[ϕ]](Γ,ψ) = 0. So Γ 6|= ψ. Contradiction, so Γ ` ψ. J

In intuitionistic logic, the disjunction connective has a special property that does not
hold for classical logic, called the disjunction property: If ` A ∨B, then ` A or ` B. This
implies that the disjunction is “strong”: if one has a proof of a disjunction, one has a proof
of one of the disjoints. (Which is classically not the case, viz. ` A ∨ ¬A.) The disjunction
property can easily be proved using Kripke semantics, relying on the completeness theorem.
We want to generalize this to our new connectives and we introduce the notion of a splitting
connective.

I Definition 24. Let c be an n-ary connective, 1 ≤ i, j ≤ n. We say that c is i, j-splitting
in case the truth table for c has the following shape

p1 . . . pi . . . pj . . . pn c(p1, . . . , pn)
− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0
...

...
...

...
...

...
...

...
− . . . 0 . . . 0 . . . − 0
− . . . 0 . . . 0 . . . − 0

So, in all rows where pi = pj = 0 we have c(p1, . . . , pn) = 0. Phrased purely in terms of tc,
that is:

tc(p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . . , pn) = 0

for all p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn ∈ {0, 1}.

XX:10 Deriving natural deduction rules from truth tables

Note that a connective can be i, j-splitting for more than one i, j-pair. Examples are the
ternary connectives most and if-then-else. See Appendix 8.

In [8] and [9], the completeness of Kripke semantics is proved using prime theories (which
in [8] are called saturated theories.) A theory is a set of formulas Γ that is closed under `
and a prime theory is defined as a theory that satisfies the disjunction property: if Γ ` A∨B,
then Γ ` A or Γ ` B. (This is equivalent to A ∨ B ∈ Γ implies A ∈ Γ or B ∈ Γ.) We
generalize the disjunction property to arbitrary n-ary intuitionistic connectives.

I Definition 25. A theory is a set of formulas Γ that is closed under `. We say that Γ is a
prime theory if for all i, j-splitting connectives c, in case c(A1, . . . , An) ∈ Γ, then Ai ∈ Γ or
Aj ∈ Γ.

I Lemma 26. If Γ is ψ-maximal then Γ is a prime theory.

Proof. Let Γ be a ψ-maximal set of formulas. Obviously, Γ is closed under derivability, so
it is a theory. Let c be an i, j-splitting connective and let ϕ = c(A1, . . . , An) ∈ Γ. Suppose
Ai /∈ Γ and Aj /∈ Γ. Because Γ is ψ-maximal, this means that Γ, Ai ` ψ and Γ, Aj ` ψ. For
the other formulas Ak ∈ {A1, . . . , Ai−1, Ai+1, . . . , Aj , Aj+1, . . . , An} we don’t know whether
Ak ∈ Γ (and then Γ ` A) or Ak /∈ Γ (and then Γ, Ak ` ψ), but for each Ak either one of the
two is the case. Because c is i, j-splitting, we have an elimination rule

Γ ` ϕ . . . Γ, Ai ` ϕ . . . Γ, Aj ` ϕ . . .
el

Γ ` ψ

All hypotheses are derivable, so the conclusion is derivable. Contradiction! So Ai ∈ Γ or
Aj ∈ Γ. J

We now prove our generalization of the disjunction property.

I Lemma 27. Let c be an i, j-splitting connective and suppose ` c(A1, . . . , An). Then ` Ai
or ` Aj.

Proof. Let c be an i, j-splitting connective and let ϕ = c(A1, . . . , An) be a formula with ` ϕ.
Suppose 6` Ai and 6` Aj . Then there are Kripke models K1 and K2 such that K1 6
 Ai

and K2 6
 Aj . We may assume that the sets of worlds of K1 and K2 are disjoint so we
can construct a Kripke model K as the union of K1 and K2 where we add a special “root
world” w0 that is below all worlds of K1 and K2, with at(w0) = ∅. It is easily verified
that K is a Kripke model and we have w0 6
 Ai, because w0 is below some world w in K1
with w 6
 Ai; similarly w0 6
 Aj . So, [[Ai]]w0 = [[Aj]]w0 = 0. But then w0 6
 ϕ, because
[[ϕ]]w0 = [[c(A1, . . . , An)]]w0 = 1 iff for all w ≥ w0: tc([[A1]]w, . . . , [[An]]w) = 1. However, for
w := w0, whatever the values of [[Ak]]w are for k 6= i, j, tc([[A1]]w, . . . , [[An]]w) = 0. On the
other hand, w0
 ϕ, because ` ϕ, so we have a contradiction. We conclude that ` Ai or
` Aj .

J

4 Cuts and cut-elimination

The idea of a cut in intuitionistic logic is an introduction of a formula Φ immediately followed
by an elimination of Φ. We will call this a direct intuitionistic cut. In general in between the
intro rule for Φ and the elim rule for Φ, there may be other auxiliary rules, so occasionally
we may have to first permute the elim rule with these auxiliary rules to obtain a direct cut
that can be contracted. We leave that for future research and now just define the notion of
direct cut and contraction of a direct cut.

H. Geuvers and T. Hurkens XX:11

I Definition 28. Let c be a connective of arity n, with an elim rule and an intuitionistic
intro rule derived from the truth table, as in Definition 1. So suppose we have the following
rules in the truth table tc.

p1 . . . pn c(p1, . . . , pn)
a1 . . . an 0
b1 . . . bn 1

An intuitionistic direct cut in a derivation is a pattern of the following form, where
Φ = c(A1, . . . , An).

. . .

····
Σj

Γ ` Aj

····
Σi

Γ, Ai ` Φ . . .

Γ ` Φ . . .

····
Πk

Γ ` Ak

····
Π`

Γ, A` ` D . . .

Γ ` D

Aj ranges over all propositions where bj = 1; Ai ranges over all propositions where bi = 0,
Ak ranges over all propositions where ak = 1; A` over all propositions where a` = 0,

The elimination of a direct cut is defined by replacing the derivation pattern above by

1. If ` = j (for some `, j):
····

Σj

Γ ` Aj . . .

····
Σj

Γ ` Aj
····

Π`

Γ ` D
2. If k = i (for some k, i):

····
Πk

Γ ` Ai . . .

····
Πk

Γ ` Ai····
Σi

Γ ` Φ . . .

····
Πk

Γ ` Ai

····
Π`

Γ, A` ` D . . .

Γ ` D

There may be several choices for the i and j in the previous definition, so cut-elimination
is non-deterministic in general. We study the example of if-then-else in more detail.

I Example 29. The intuitionistic cut-elimination rules for if-then-else are the following.

(then-then)

Γ ` A

····
Σ

Γ ` B

Γ ` A→B/C Γ ` A

Γ ` B

7→
····

Σ
Γ ` B

(else-then)
····

Σ
Γ, A ` A→B/C Γ ` C

Γ ` A→B/C

····
Π

Γ ` A

Γ ` B

7→

····
Π

Γ ` A . . .

····
Π

Γ ` A····
Σ

Γ ` A→B/C

····
Π

Γ ` A

Γ ` B

XX:12 Deriving natural deduction rules from truth tables

(then-else)
····

Σ
Γ ` A Γ ` B

Γ ` A→B/C

····
Π

Γ, A ` D Γ, C ` D

Γ ` D

7→

····
Σ

Γ ` A . . .

····
Σ

Γ ` A····
Π

Γ ` D

(else-else)

Γ, A ` A→B/C

····
Σ

Γ ` C

Γ ` A→B/C Γ, A ` D

····
Π

Γ, C ` D

Γ ` D

7→

····
Σ

Γ ` C . . .

····
Σ

Γ ` C····
Π

Γ ` D

5 A Curry-Howard isomorphism

We now define types terms for derivations, which enables the study of “proofs as terms”
and emphasizes the computational interpretation of proofs. Here, we only define terms for
derivations in the inituitionistic logic, which can be extended to the classical logic in an
obvious way. We first define terms associated with connectives in general. Then, to show the
usefulness of our approach to logical connectives, we will focus on the if-then-else connective.

I Definition 30. Suppose we have a logic with intuitionistic derivation rules, as derived
from truth tables for a set of connectives C, as in Definition 1. We define rules for the
judgment Γ ` t : A, where A is a formula, Γ is a set of declarations {x1 : A1, . . . , xm : Am},
where the Ai are formulas and the xi are term-variables such that every xi occurs at most
once in Γ, and t is a proof-term as follows. For every connective c ∈ C of arity n, we have
an introduction term ι(t1, . . . , tn) and an elimination term ε(t0, t1, . . . , tn), where the ti are
again terms of the shape λx.t′, where x is a term-variable and t′ is a term. The terms are
typed using the following derivation rules.

xi : Ai ∈ Γ
Γ ` xi : Ai

. . .Γ ` tj : AjΓ, yi : Ai ` qi : Φ . . .
in

Γ ` ι(−→t ,
−−→
λy.q) : Φ

Γ ` t0 : ΦΓ ` tk : AkΓ, y` : A` ` q` : D
el

Γ ` ε(t0,
−→
t ,
−−→
λy.q) : D

Here, −→t is the sequence of terms t1, . . . , tp for all the 1-entries in the truth table, and
−−→
λy.q

is the sequence of terms λy1.q1, . . . , λyr.qr for all the 0-entries in the truth table.

One may think of the λ-abstracted variables as being typed so then one could write−−−−−→
λy : A.q and λy1 : A1.q1, . . . , λyr : Ar.qr. However, this clutters up the syntax considerably,
so we will leave these types implicit. Moreover, decidability of typing, or a typing algorithm
for (untyped) terms of the calculus is not our concern here.

There are term reduction rules that correspond to the elimination of direct cuts.

H. Geuvers and T. Hurkens XX:13

I Definition 31. Given a direct cut as defined in Definition 28, we add reduction rules for
the associated terms as follows. (For simplicity of presentation we write the “matching cases”
in Definition 28 as last term of the sequence.)

For the ` = j case:
ε(ι(−→t , tj ,

−−→
λy.q),−→s ,

−−→
λy.r, λy`.r`) −→ r`[y` := tj]

For the k = i case:
ε(ι(−→t ,

−−→
λy.q, λyi.qi),−→s , sk,

−−→
λy.r) −→ ε(qi[yi := sk],−→s , sk,

−−→
λy.r)

The reduction is extended in the straightforward way to sub-terms, by defining it as a
congruence with respect to the term constructions.

This Definition gives a reduction rule for every combination of an elimination and an
introduction. For an n-ary connective, there are 2n rules in the truth table, and therefore
2n constructors (introduction plus elimination constructors). Often, we will want to just
look at the optimized rules, following Lemmas 7 and 8. For these optimized rules, there
is also a straightforward definition of proof-terms and of the reduction relation associated
with cut-elimination. The Lemmas 7 and 8 can be extended to terms and reductions: the
proof-terms for the optimized rules can be defined in terms of the terms for the original
calculus, and the reduction rules for the optimized proof terms are an instance of reductions
in the original calculus (often multi-step).

We now focus on the logic with just if-then-else. We define a calculus λif-then-else for
proof terms for this logic.

I Definition 32. We define the calculus λif-then-else as a calculus for terms and reductions
for the if-then-else logic as follows. (To understand the reduction rules, also look at Example
9.)
Γ ` t0 : A→B/C Γ ` a : A

then-el
Γ ` ε1(t0, a) : B

Γ ` t0 : A→B/C Γ, x : A ` t : D Γ, y : C ` q : D
else-el

Γ ` ε2(t0, λx.t, λy.q) : D

Γ ` a : A Γ ` b : B
then-in

Γ ` ι1(a, b) : A→B/C

Γ, x : A ` t : A→B/C Γ ` c : C
else-in

Γ ` ι2(λx.t, c) : A→B/C

The reduction rules are

ε1(ι1(a, b), a′) −→ b ε1(ι2(λx.t, c), a) −→ ε1(t[x := a], a)
ε2(ι1(a, b), λx.t, λy.q) −→ t[x := a] ε2(ι2(λx.t, c), λz.d, λy.q) −→ q[y := c]

Here t[x := a] denotes the substitution of a for x in t.

The interpretation of intuitionistic proposition logic can be extended to include proof
terms. These are well-known for proposition logic. e.g. see [9]. The interpretation of
Definition 13 can be extended to the proof terms. If we denote this translation by a (−̇), we
find that, if Γ ` t : A in intuitionistic proposition logic with proof terms, then Γ̇ ` ṫ : Ȧ in the
calculus λif-then-else of Definition 32. Lemma 14 also extend to term reductions: If t −→ q

for the proof terms t and q in intuitionistic proposition logic, then ṫ −→+ q̇ in λif-then-else
(where −→+ denotes the transitive closure of −→).

We do not define the (−̇) function precisely, nor do we prove the mentioned properties
about it here. The reason is that we merely want to use it as one of the motivations for studying
strong normalization of reduction of proof terms of λif-then-else. Strong normalization is the
property that a term has no infinite reduction starting from it. Strong normalization for
λif-then-else implies (using the properties of the (−̇) function) strong normalization of proof
term reduction in intuitionistic proposition logic.

XX:14 Deriving natural deduction rules from truth tables

5.1 Strong Normalization

We prove SN by adapting the well-known saturated sets method of Tait to our calculus. We
write SN for the set of strongly normalizing (untyped) terms and we write Term for the set
of all untyped terms and Var for the set of variables.

I Definition 33. 1. The set Neut of neutral terms is defined by (a) Var ⊆ Neut, (b)
ε1(t0, a) ∈ Neut for all t0 ∈ Neut and a ∈ SN, (c) ε2(t0, λx.t, λy.q) ∈ Neut for all
t0 ∈ Neut, t, q ∈ SN.

2. The term t does a key reduction to q, notation t −→k q, in case (i) t is a redex itself
(according to Definition 32) and q is its reduct, or (ii) t = ε1(t0, a), q = ε1(q0, a) and
t0 −→k q0, or (iii) t = ε2(t0, λx.r, λy.s), q = ε2(q0, λx.r, λy.s) and t0 −→k q0.

3. A set X ⊆ Term is saturated if it satisfies the following properties (i) X ⊆ SN, (ii)
Neut ⊆ X and (iii) X is closed under key-redex expansion: if q ∈ X, t ∈ SN and t −→k q,
then t ∈ X.

4. Given X,Y, Z ∈ SAT we define the set X→Y/Z by

X→Y/Z := {M | ∀a ∈ X(ε1(M,a) ∈ Y) ∧ ∀D ∈ SAT,∀t, q ∈ Term,
∀a ∈ X(t[x := a] ∈ D) ∧ ∀c ∈ Z(q[y := c] ∈ D)

=⇒ ε2(M,λx.t, λy.q) ∈ D }

I Lemma 34. If X,Y, Z ∈ SAT, then X→Y/Z ∈ SAT.

See Appendix 8 for a proof.
We use the saturated sets as a semantics for types: if A is a type, 〈A〉 will be a saturated

set. The simplest way to do this is to interpret all type variables (proposition letters) as the
set SN (which is indeed a saturated set) and interpret A→B/C as 〈A〉→〈B〉/〈C〉, where this
definition is from Definition 33.

I Definition 35. Given a context Γ, a map (valuation) ρ : Var→ Term satisfies Γ, notation
ρ |= Γ, in case ρ(x) ∈ 〈A〉 for all x : A ∈ Γ.

If t ∈ Term and ρ : Var → Term, we write 〈t〉ρ for t where ρ has been carried out as a
substitution on t.

A valuation ρ : Var→ Term is only relevant for a finite number of variables: those that
are declared in the context Γ under consideration. So we will always assume that ρ(x) 6= x

only for a finite number of x ∈ Var. Those x we call the support of ρ. When applying ρ as a
substitution to a term t we may need to “go under a λ”, e.g. when applying ρ to ι2(λx.t, c)
In this case we always assume that the bound variable is not in the support of ρ. (We can
always rename it.) This allows us to just write 〈ι2(λx.t, c)〉ρ = ι2(λx.〈t〉ρ, 〈c〉ρ).

I Lemma 36. If Γ ` t : A, and ρ |= Γ, then 〈t〉ρ ∈ 〈A〉.

For a proof, see Appendix 8
The following is now immediate by taking ρ(x) := x for all x ∈ Var. Because Var ⊆

Neut ⊆ 〈A〉, we know that ρ |= Γ. So, if Γ ` t : A, then 〈t〉ρ = t ∈ 〈A〉 ⊆ SN.

I Corollary 37. The system λif-then-else is strongly normalizing: all reductions on proof
terms are finite.

H. Geuvers and T. Hurkens XX:15

6 Conclusion and Further work

We have introduced a general procedure for deriving natural deduction rules from truth
tables that applies both to classical and intuitionistic logic. Our deduction rules obey a
specific format, making it easier to study. To show that the intuitionistic rules are truly
constructive we have defined a complete Kripke semantics for the intuitionistic rules. We
have defined cut-elimination for intuitionistic logic in general and given a Curry-Howard
proofs-as-terms isomorphism for it. We have studied it in more detail for if-then-else and
proved the reduction on proof-terms to be strongly normalizing.

The work described here raises very many new research questions: Is cut-elimination
normalizing in general for an arbitrary set of connectives? How to define cut-elimination for
the classical case, and what is its connection with a term calculus, for example calculi for
classical logic studied in [1] and [6]? Also [3] defines a whole series of systems and connectives,
of which the − of [2] is just one. How do the computation rules compare with ours?

On a more technical note: In λif-then-else, a cut can be “hidden” in case the second or
third sub-derivation of an else-elrule ends with an introduction of a formula D := E→F/G
which is eliminated after the else-el. The idea is to permute the elimination over the
application of the else-elrule. This can be achieved by the following permuting reduction
rules:

ε1(ε2(t0, λx.t, λy.q), e) −→ ε2(t0, λx.ε1(t, e), λy.ε1(q, e))
ε2(ε2(t0, λx.t, λy.q), λv.r, λz.s) −→ ε2(t0, λx.ε2(t, λv.r, λz.s), λy.ε2(q, λv.r, λz.s))

These reduction rules correspond to obvious transformations of derivations, permuting one
elimination over another. The normal forms t for this combined reduction are such that
all sub-terms of t have types that are sub-types of the type of t or sub-types of types of
free variables in t. We leave it for future research to prove that λif-then-else with these
permuting reductions is normalizing. Techniques as in [4], where a similar property is proved
for intuitionistic logic with permuting cuts, may be useful.

7 References

References
1 Z. Ariola and H. Herbelin. Minimal classical logic and control operators. In ICALP, volume

2719 of LNCS, pages 871–885. Springer, 2003.
2 Tristan Crolard. A formulae-as-types interpretation of subtractive logic. J. Log. Comput.,

14(4):529–570, 2004.
3 P.-L. Curien and H. Herbelin. The duality of computation. In ICFP, pages 233–243, 2000.
4 F. Joachimski and R. Matthes. Short proofs of normalization for the simply- typed lambda-

calculus, permutative conversions and Gödel’s T. Arch. Math. Log., 42(1):59–87, 2003.
5 S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press, 2001.
6 M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In

LPAR, volume 624 of LNCS, pages 190–201. Springer, 1992.
7 P. Schroeder-Heister. A natural extension of natural deduction. J. Symb. Log., 49(4):1284–

1300, 1984.
8 A.S. Troelstra and D. van Dalen. Constructivism in Mathematics Vol.1. Elsevier, 1988.
9 Dirk van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994.

10 Jan von Plato. Natural deduction with general elimination rules. Arch. Math. Log.,
40(7):541–567, 2001.

XX:16 Deriving natural deduction rules from truth tables

8 Appendix

Truth tables of most and if-then-else
p q r most(p, q, r) p→q/r
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

We see that most is i, j-splitting for every i, j. Indeed, if ` most(p, q, r), we can derive ` p or
` q but also ` p or ` r and also ` q or ` r.

if-then-else is 1, 3-splitting and 2, 3-splitting (but not 1, 2-splitting): if ` p→q/r, then we
have ` p or ` r and also ` q or ` r.

Truth tables and rules for substraction and bi-implication
We now treat substraction of [2] and bi-implication. The classical reading of A−B is A∧¬B,
so we have the truth table below.

p q p− q p↔ q

0 0 0 1
0 1 0 0
1 0 1 0
1 1 0 1

This yields the following derivation rules. For subtraction, these are the same as [2].

` A B ` A−B
−in

` A−B

` A−B A ` D
−el1

` D

` A−B ` B
−el2

` D

` A ` B
↔ in1

` A↔ B

A ` A↔ B B ` A↔ B
↔ in2

` A↔ B

` A↔ B A ` D ` B
↔ el1

` D

` A↔ B ` A B ` D
↔ el2

` D

Proof of Lemma 34
If X,Y, Z ∈ SAT, then X→Y/Z ∈ SAT.

Proof. We check the 3 conditions for X→Y/Z ∈ SAT.
(i) X→Y/Z ⊆ SN follows directly from the fact that if M ∈ X→Y/Z, then ε1(M,x) ∈ Y

and Y ⊆ SN, so ε1(M,x) ∈ SN, so M ∈ SN.
(ii) We check the inductive cases for Neut:

(a) Var ⊆ X→Y/Z because for z ∈ Var and a ∈ X, ε1(z, a) ∈ Neut ⊆ Y and for D ∈ SAT
and t, q ∈ SN, ε2(z, λx.t, λy.q) ∈ Neut ⊆ D.

(b) if M = ε1(t0, a), then for all a′ ∈ X, ε1(ε1(t0, a), a′) ∈ Neut ⊆ Y and for all D ∈ SAT
and t, q ∈ SN, we have ε2(ε1(t0, a), λx.t, λy.q) ∈ Neut ⊆ D.

H. Geuvers and T. Hurkens XX:17

(c) if M = ε2(t0, λx.t, λy.q) then for all a′ ∈ X, ε1(ε2(t0, a), λx.t, λy.q), a′) ∈ Neut ⊆ Y .
For D ∈ SAT and t′, q′ ∈ SN we have ε2(ε2(t0, λx.t, λy.q), λx′.t′, λy′.q′) ∈ Neut ⊆ D.

(iii) Suppose M ′ −→k M with M ∈ X→Y/Z. Then for all a ∈ X, ε1(M ′, a) −→k ε1(M,a)
and ε1(M,a) ∈ Y , so ε1(M ′, a). Similarly, M ′ satisfies the second condition in the
definition of X→Y/Z, so M ′ ∈ X→Y/Z.

J

Proof of Lemma 36
If Γ ` t : A, and ρ |= Γ, then 〈t〉ρ ∈ 〈A〉.

Proof. By induction on the derivation of Γ ` t : A. Suppose ρ |= Γ. For the (axiom) case, it
is trivial.

Suppose
Γ ` t0 : A→B/C Γ ` a : A

then-el
Γ ` ε1(t0, a) : B

Then 〈ε1(t0, a)〉ρ = ε1(〈t0〉ρ, 〈a〉ρ) ∈ 〈B〉 by 〈t0〉ρ ∈ 〈A→B/C〉 and the definition of
〈A→B/C〉.
Suppose

Γ ` t0 : A→B/C Γ, x : A ` t : D Γ, y : C ` q : D
else-el

Γ ` ε2(t0, λx.t, λy.q) : D
Then 〈ε2(t0, λx.t, λy.q)〉ρ = ε2(〈t0〉ρ, λx.〈t〉ρ, λy.〈q〉ρ) ∈ 〈D〉 by 〈t0〉ρ ∈ 〈A→B/C〉 and
the definition of 〈A→B/C〉.
Suppose

Γ ` a : A Γ ` b : B
then-in

Γ ` ι1(a, b) : A→B/C
Let a′ ∈ 〈A〉. Then ε1(ι1(〈a〉, 〈b〉ρ), a′) −→k 〈b〉ρ ∈ B, so ε1(ι1(〈a〉, 〈b〉ρ), a′) ∈ B, because
ε1(ι1(〈a〉, 〈b〉ρ), a′) ∈ SN.
Let D ∈ SAT and let t and q satisfy ∀a′ ∈ X(t[x := a′] ∈ D) and ∀c ∈ Z(q[y := c] ∈ D).
We have ε2(ι1(〈a〉ρ, 〈b〉ρ), λx.t, λy.q) −→k t[x := 〈a〉ρ] ∈ D, because ε2(ι1(〈a〉ρ, 〈b〉ρ), λx.t, λy.q) ∈
SN.
So 〈ι1(a, b)〉ρ = ι1(〈a〉ρ, 〈b〉ρ) ∈ 〈A→B/C〉.
Suppose

Γ, z : A ` s : A→B/C Γ ` c : C
else-in

Γ ` ι1(λz.s, c) : A→B/C
Let a′ ∈ 〈A〉. Then ε1(ι1(λz.〈s〉ρ, 〈c〉ρ), a′) −→k ε1(〈s〉ρ[z := a′], a′). The induction
hypothesis says that 〈s〉ρ[z := a′] = 〈s〉ρ[z:=a′] ∈ 〈A→B/C〉, so ε1(〈s〉ρ[z := a′], a′) ∈ 〈B〉
and so ε1(ι1(λz.〈s〉ρ, 〈c〉ρ), a′) ∈ 〈B〉, because ε1(ι1(λz.〈s〉ρ, 〈c〉ρ), a′) ∈ SN
Let D ∈ SAT and let t and q satisfy ∀a′ ∈ X(t[x := a′] ∈ D) and ∀c ∈ Z(q[y := c] ∈ D).
We have ε2(ι1(λz.〈s〉ρ, 〈c〉ρ), λx.t, λy.q) −→k q[y := 〈c〉ρ] ∈ D, so
ε2(ι1(λz.〈s〉ρ, 〈c〉ρ), λx.t, λy.q) ∈ D, because ε2(ι1(λz.〈s〉ρ, 〈c〉ρ), λx.t, λy.q) ∈ SN.

J

	Introduction
	Contribution of the paper and related work

	Simple properties and examples
	Kripke semantics
	Cuts and cut-elimination
	A Curry-Howard isomorphism
	Strong Normalization

	Conclusion and Further work
	References
	Appendix

