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Foreword

This document is the preliminary proceedings of the workshop of the Esprit Basic Research

Project 6453 \Types for Proofs and Programs" held at the University of Nijmegen, the Nether-

lands, from May 24th until May 28th 1993. The workshop was organised by Henk Barendregt

and Herman Geuvers.

Local arrangements were made by Mari�elle van der Zandt, Erik Barendsen, Herman Geuvers

and Mark Ruys.

These proceedings have been collected from L

a

T

E

X sources, using e-mail. It contains 22

papers from the 35 talks that were presented at the workshop. Very useful support in solving

the L

a

T

E

X puzzles was provided by Erik Barendsen.

This document can be obtained by anonymous ftp from the University of Nijmegen: Type

ftp ftp.cs.kun.nl

anonymous (as login)

[your e-mail address] (as password)

cd /pub/csi/CompMath/Types

bin

get NijmegenTypes.ps.Z

bye
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Proving Strong Normalization of CC

by Modifying Realizability Semantics

(Extended Abstract)

Thorsten Altenkirch

Department of Computer Sciences

Chalmers University of Technology

412 96 Gothenburg, Sweden

email: alti@cs.chalmers.se

14 September 1993

1 Introduction

We will outline a strong normalization argument for the Calculus of Constructions (CC) which

is obtained by modifying a Realizability interpretation (the D-set or !-set model). By doing so

we pursue two goals:

� We want to illustrate how semantics can be used to prove properties of syntax.

� We present a simple and extensible SN proof for CC. An example of such an extension is

a system with inductive types and large eliminations.

This presentation is a condensed version of a part of the author's PhD thesis [Alt93a], a pre-

liminary version has been presented in [Alt93b]. We will omit most of the proofs here, if not

noted otherwise they can be found in [Alt93a].

The proof that every term typable in the calculus of constructions is strongly normalizing is

known to be notoriously di�cult. The original proof in Coquand's PhD thesis [2] contained a

bug which was �xed in [CG90] by using a Kripke-style interpretation of contexts. Although this

solves the original problem the proof remains quite intricate due to the use of typed terms and

contexts. Another construction is due to Geuvers and Nederhof (see [8], p. 168), who de�ne

a forgetful, reduction-preserving map from CC to F

!

. Thereby, they reduce the problem to

strong normalization for F

!

, which can be shown using the usual Girad-Tait method. The main

problem with this construction is that it is not all clear, how this argument can be extended to

a system with large eliminations (e.g. see [Wer92]), this is a system which allows the de�nition

of a dependent type by primitive recursion. As an example consider the recursive de�nition of

a type T : Nat! Set:

T0 = A

T (n+ 1) = Tn! Tn

1



where A : Set is arbitrary. The problem is to �nd a non-dependent type which approximates

T . The obvious choice seems to be a recursive type which solves the equation A = A! A but

such a calculus would not be strongly normalizing.

Our construction avoids the use of Kripke-structures and can be understood as a generalization

of the concept of saturated sets to dependent types. We only show strong normalization for

Curry terms obtained by stripping the type information, but the general strong normalization

result allowing reductions in type-annotations can be recovered by a simple syntactic argument.

Moreover our construction also works for inductive types with large eliminations and allows to

interpret types like T .

The rest of the paper is organized as follows: We review the judgement presentation of CC;

then we develop a semantic framework to present interpretations of CC, which we call CC-

structures. A particular example of CC-structures are saturated �-sets and from the soundness

of this interpretation together with an additional lemma we directly derive strong normalization

for Curry terms. Finally we sketch how decidability of equality can be derived. We will also

discuss some problems with the �-rule in this presentation.

2 The judgement presentation of CC

CC is usually presented in the equality-as-conversion style [CH88, Bar92], i.e. the equality

is just the untyped �-conversion between preterms. When we are interested in a semantical

analysis of the system it seems easier to use the equality-as-judgement presentation, as it is

usual for Martin-L�of Type Theory. The reason is that it is not clear how untyped conversion

can be interpreted semantically. Not surprisingly this presentation is used in [Str91] who studies

the categorical semantics of CC.

We will also follow [Str91] in that we use a very explicit notation: we di�erentiate between oper-

ations on Set (usually called Prop) and types; we annotate applications and �-abstractions with

types and in one place we go even further and also annotate the codomain of a �-abstraction.

Essentially our terms are a linear notation for derivations where the applications of the conver-

sion rule are omitted. The more implicit notation can be justi�ed (e.g. see [Str91, Alt93a]),

but semantically it seems to be more appropriate to consider the explicit presentation as the

fundamental one.

We introduce precontexts �, pretypes � and preterms M

1

by the following grammar.

� ::= � j �:�

� ::= ��:� j Set j El(M)

M ::= ! j ��(M)

�

j app

�:�

(M;M) j 8�:M

We use de-Bruijn-indices (!) to represent variables but in the presentation of the syntax we

may use explicit names with the obvious translation.

Using names as a shorthand we denote substitution by M [x := N ]; �[x := M ]. We also have

an operation of weakening M

+x

; �

+x

which corresponds to the usual side condition that x may

1

Note that we use the names of the syntactic classes and the alphabetically following letters also as generic

names for metavariables.

2



not appear free in M . For a precise de�nition of these operations using de-Bruijn-indices see

[Alt93a].

We de�ne the following judgements: ` � (context validity), � ` � (type validity), � ` M : �

(typing), � ` � ' � (type equality) and � ` M ' N : � (equality). The derivable judgements

are given as the least relations closed under the following rules | note that we have omitted

the obvious congruence rules to save space.

` � (Empty)

` � � ` �

` �:x : �

(Compr)

�:x : � ` �

� ` �x : �:�

(Pi)

` �

� ` Set

(Set)

� ` A : Set

� ` El(A)

(El)

�:x : � ` A : Set

� ` El(8x : �:A) ' �x : �:El(A)

(All-Elim)

� `M : � � ` � ' �

� `M : �

(conv)

` � i � j�j

� ` i : �(i)

(var)

�:x : � `M : �

� ` �x : �(M)

�

: �x : �:�

(lam)

� `M : ��:� � ` N : �

� ` app

�:�

(M;N) : � [N ]

(app)

�:x : � ` A : Set

� ` 8x : �:A : Set

(all)

�:x : � `M : � � ` N : �

� ` app

x:�:�

(�x : �(M)

�

; N) 'M [x := N ] : � [x := N ]

(beta-eq)

We can easily establish a number of rather trivial properties of this presentation such that all

judgements are consistent with weakening and substitution - see [Alt93a] for details.

3



3 CC-structures and sound interpretations

We will now de�ne a class of semantic structures which provide sound interpretations of CC.

This can be seen as an set-theoretic | i.e. element-based | alternative to the categorical model

constructions as presented in [Str91, Jac91] and is clearly inuenced by them. We do this in

two steps: we �rst de�ne LF-structures (which correspond to a logical framework) and then

CC-structures based on LF-structures.

Let's start with some preliminary de�nitions:

De�nition 1 Assuming some encoding of pairing (x; y) and projections �

1

; �

2

we have the

usual set-theoretic counterparts of the basic type-theoretic operations (assume A is a set and B

a

a family of sets indexed by A):

�a 2 A:B

a

= f(a; b) j a 2 A; b 2 B

a

g

�a 2 A:B

a

= ff � �a 2 A:B

a

j 8

a2A

9!

b2B

a

(a; b) 2 fg

We consider application f(x) as a partial operation which is de�ned if there is an (x; y) 2 f

and then f(x) = y.

We also introduce the following notations for dependent composition and currying:

composition Assume f 2 �a 2 A:�b 2 B

a

:C

(a;b)

and g 2 �a 2 A:B

a

then

f [g] = a 2 A 7! f(a)(g(a))

2 �a 2 A:C

(a;g(a))

currying Assume f 2 �p 2 (�a 2 A:B

a

):C

p

:

�(f) = a 2 A 7! b 2 B

a

7! f(a; b)

2 �a 2 A:�b 2 B

a

:C

(a;b)

De�nition 2 A universe U is a class (of sets) together with an operation which assigns to every

X 2 U a set X which we call the extension of X.

We are now ready to de�ne LF-structures, which can be used to assign meaning to a logical

framework, i.e. a basic Type Theory which contains only �-types.

De�nition 3 (LF-structure)

L = (U

Co

;U

Ty

; 1;�; Sect;�)

with

� U

Co

;U

Ty

are universes.

� 1 2 U

Co

.

� �(X 2 U

Co

; fY

x

2 U

Ty

g

x2X

) 2 U

Co

s.t. �(X; fY

x

g

x

) = �x 2 X:Y

x

4



� Sect(X 2 U

Co

; fY

x

2 U

Ty

g

x2X

) � �x 2 X:Y

x

.

� �(X 2 U

Ty

; fY

x

2 U

Ty

g

x2X

) 2 U

Ty

s.t. �(X; fY

x

g

x

) � �x 2 X:Y

x

is an LF-structure if the following conditions are satis�ed:

Unit 1 is a one-element set.

Var-0 p 2 �p 2 (�x 2 X:Y

x

):Y

�1(p)

7! �

2

(p) 2 Sect(�(X; fY

x

g

x

); fY

�1(p)

g

p

)

Var-succ

f 2 Sect(X; fZ

x

g

x

)

p 2 (�a 2 X:Y

x

) 7! f(�

1

(p)) 2 Sect(�(X; fY

x

g

x

); fZ

�1(p)

g

p

)

app

f 2 Sect(X; f�(Y

x

; fZ

(x;y)

g

y2Y

x

)g

x

) g 2 Sect(X; fY

x

g

x

)

f [g] 2 Sect(X;Z

(x;g(x))

)

lambda

f 2 Sect(�(X; fY

x

g

x

); fZ

p

g

p

)

�(f) 2 Sect(X; f�(Y

x

; fZ

(x;y)

g

y2Y

x

)g

x

)

To interpret CC we need some additional structure to interpret Set;El and in particular (All-Elim);

this is reected by the following de�nition:

De�nition 4 (CC-structures)

C = (L;M; SET;EL;EL

�1

; #)

with

� L = (U

Co

;U

Ty

; 1;�; Sect;�) is an LF-structure.

� M � U

Ty

is the subclass of modest sets.

� SET 2 U

Ty

.

� EL(A 2 SET) 2M and EL

�1

(A 2M) 2 SET.

� #

X2M

2 X ! EL(EL

�1

(X)).

is a CC-structure if the following conditions are satis�ed:

1. Sect(X; SET) = X ! SET.

2. EL

�1

(EL(A)) = A.

3. �(X; fY

x

2Mg

x

2M) 2M.

4. #

X

is a bijection and

f 2 Sect(X; fY

x

2Mg)

==========================

# � f 2 Sect(X; fEL(EL

�1

(Y

x

))g)

5



Given a CC-structure C we can de�ne a partial interpretation:

De�nition 5 (Interpretation in CC-Structures)

Let:

�(X 2 U) =

(

EL(EL

�1

(X) if X 2M

X otherwise

~

#

X2U

(x 2 X) =

(

#

X

(x) if X 2M

x otherwise

2 �(X)

We de�ne partial interpretation functions [[` �]]

2

�

U

Co

, f[[� ` �]]

C



2

�

U

Ty

g



2

�

[[`�]]

C

and

f[[� `M ]]

C

g



2

�

[[`�]]

C

by induction over the structure of the syntax:

2

[[` �]]

C

:

�

=

1

[[` �:�]]

C

:

�

=

�([[` �]]

C

; [[� ` �]]

C

)

[[� ` ��:� ]]

C

:

�

=

f�(�([[� ` �]]

C

; f[[�:� ` � ]]

C

(; x)g

x

))g

2[[`�]]

C

[[� ` Set]]

C

:

�

=

fSETg

2[[`�]]

C

[[� ` El(A)]]

C

:

�

=

fEL([[� ` A]]

C

)g

2[[̀ �]]

C

[[� ` i]]

C

:

�

=

 2 [[` �]]

C

7! �

2

(�

i

1

())

[[� ` ��(M)

�

]]

C

:

�

=

~

#

[[�`��:� ]]

C



� �([[�:� `M ]]

C

)

[[� ` app

�:�

(M;N)]]

C

:

�

=

(

~

#

�1

[[�`��:� ]]

C



� [[� `M ]]

C

)[[[� ` N ]]

C

]

[[� ` 8

�

:A]]

C

:

�

=

fEL

�1

(�([[� ` �]]; fEL([[�:� ` A]]

C

(; x))g

x

))g



Note that we use # and � to coerce the interpretation of Sets to tehir canonical meanings. This

technique is already used in [Str91] to give an interpretation of CC up-to-equality instead of

merely up-to-isomorphism (which would impose a coherence problem).

We have the following core theorem about CC-structures:

Theorem 1 (Soundness) [[` �]]

C

, [[� ` �]]

C

and [[� `M ]]

C

de�nes a sound interpretation of

the calculus. I.e.:

` �

[[` �]]

C

2 U

Co

� ` �  2 [[` �]]

C

[[� ` �]]

C

 2 U

Ty

� `M : �

[[� `M ]]

C

2 Sect([[` �]]

C

; [[� ` �]]

C

)

� ` � ' �

[[� ` �]]

C

= [[� ` � ]]

C

2

Read :

�

=

as: the left hand side is de�ned if the right hand side is de�ned.

6



� `M ' N : �

[[� `M ]]

C

= [[� ` N ]]

C

As a simple example for a CC-structure we consider the proof-irrelevance semantics of CC:

Theorem 2

1. Let S by the universe of sets with X = X and:

� 1

S

= f�g.

� �

S

(A; fB

a

g

a

) = �a 2 A:B

a

.

� �

S

(A; fB

a

g

a

) = �a 2 A:B

a

.

S = (S;S; 1

S

;�

S

;�

S

;�

S

) is an LF-structure.

2. Let SGL denote the class of sets with at most one element and:

EL

�1

S

(X) =

(

; if X = ;

f;g otherwise

and #

S

X

(x) = ; 2 f;g (Note that #

S

will be never applied if X is empty.).

S

+

= (S;SGL; f;; f;gg; X 7! X;EL

�1

S

; #

S

)

is a CC-structure.

Note that this simple minded model already gives us logical consistency simply by observing

that [[` 8x : Set:El(X)]]

S

+

= ;.

4 Saturated �-sets and strong normalization

For any Partial Combinatory Algebra (PCA) D we can de�ne the D-set model of CC. This has

been studied in great detail in [Str91]. Streicher uses a categorical notion of model but it is

straightforward to de�ne an appropriate CC-structure ([Alt93a], section 3.4.).

[HO92] describe a general categorical SN proof which is based on the idea to de�ne a PCA from

the strongly normalizing terms of �-calculus, actually they �nd that they have to use a weaker

concept conditionally partial combinatory algebra.

Our approach di�ers in that we do not try to de�ne a PCA at all but we present another

CC-structure | saturated �-sets | which is motivated by D-sets and by the conventional

strong normalization arguments for non-dependent calculi using saturated sets. It should be

also noted that our development is completely elementary whereas [HO92] use a number of

abstract topos-theoretic results.

De�nition 6 We denote the set of untyped �-terms by �, > � � � � is the usual one-step

�-reduction and SN � � is the set of strongly normalizing (w.r.t. >) �-terms. >

whd

� > is

weak head-reduction, i.e. only a left-most redex not inside a �-abstraction is reduced. Void � SN

is the set of strongly normalizing weak-head normal forms which are not �-abstractions. This

set can be inductively de�ned as:

7



1. i 2 Void.

2.

M 2 Void N 2 SN

MN 2 Void

3.

M 2 SN

8M 2 Void

We note the following essential properties of SN:

Lemma 1 (Properties of SN)

1.

M;N;M [N ] 2 SN

(�M)N 2 SN

2.

M

0

>

whd

M MN 2 SN

M

0

N 2 SN

We will now de�ne �-sets completely analogous to !-sets or D-sets.

De�nition 7 (�-sets)

A �-set X is a pair (X;

X

) with X is a set and 

X

� � � X s.t. 8

x2X

9

i2�

i 

X

x. �-sets

together with X constitute the universe LAM . LAM

�

is de�ned analogous by relpacing � by

�

�

, i.e. sequences of �-terms.

We call X modest, i�

8

x;y2X

8

i2�

i 

X

x ^ i 

X

y ! x = y;

De�nition 8 Assume G 2 LAM

�

, fY



2 LAMg

2G

, X 2 LAM , fZ

x

2 LAMg

x2X

and let:

1

�

= (f�g;�� f�g)

2 LAM

�

�

�

(G; fY



g

2G

) = (�

2G

Y



; f(

~

MN; (; y)) j

~

M 

G

 ^N 

Y



yg)

2 �

Sect

�

(G; fY



g

2G

) = ff 2 �

2G

Y



j 9

M2�

M 

Sect

�

(G;fY



g



)

fg

where 

Sect

�

(G;fY



g



)

= f(M; f) j 8

2G

8

~

N2�

~

N 

G

 ! M [

~

N ] 

Y



f()g

�

�

(X; fZ

x

g

x2X

) = (ff 2 �

x2X

Z

x

j 9

M2�

M 

�

�

(X;fZ

x

g

x

)

fg;

�

�

(X;fZ

x

g

x

)

)

2 LAM

where 

�

�

(X;fZ

x

g

x

)

= f(M; f) j 8

x2X

8

N2�

M 

X

x!MN 

Z

x

f(x)g

If we quotient � by �-conversion then the previous construction gives directly rise to a CC-

structure, which is consequence of the fact that �= �

�

is a PCA. Here we will refrain from

doing so and instead identify a substructure of �-sets:

De�nition 9 We call a �-set X saturated | X 2 SAT | i� the following conditions hold:

SAT1 Every realizer is strongly normalizing.

8

M

X

x

M 2 SN

8



SAT2 There is a ?

X

2 X which is realized by every void term.

SAT3 The set of realizers for a certain element x is closed under weak head expansion inside

SN:

8

M

X

x

8

M

0

2SN

(M

0

>

whd

M)! (M

0



X

x)

This can be extended to LAM

�

-sets by the following inductive de�nition:

1. 1

�

2 SAT

�

.

2.

G 2 SAT

�

fX



2 SATg

2G

�

�

(G; fX



g

2G

) 2 SAT

�

Note that for any saturated �-set (X;

X

) the set of realizers fM j 9

x2XM

X

x

g is saturated in

the conventional sense.

1

�

and �

�

are operations on saturated �-sets by de�nition but it remains to show that this is

also true for �

�

:

Lemma 2 Assume X 2 SAT , fY

x

2 SATg

x2X

then �

�

(X; fY

x

g

x

) 2 SAT .

Proof:

SAT1 Assume M 

�

�

(X;fY

x

g

x

)

f , certainly 0 

X

?

X

(SAT2 for X). Now we know that

M0 

Y

?

X

f(?

X

), therefore M0 2 SN (SAT1 for Y

x

), which implies M 2 SN.

SAT2 Assume M 2 Void, now for every N 

X

x we have that MN 2 Void (SAT1 for X and

de�nition of Void) and thereforeMN 

Y

x

?

Y

x

. This implies M 

�

�

(X;fY

x

g

x

)

x 7! ?

Y

x

, so

we just set ?

�

�

(X;fY

x

g

x

)

= x 7! ?

Y

x

.

SAT3 Assume M 

�

�

(X;fY

x

g

x

)

f , M

0

2 SN and M

0

>

whd

M . For any N 

X

x we have

that MN 

Y

x

f(x). By (App-l) M

0

N >

whd

MN and by lemma 1 (3.) M

0

N 2 SN.

Using SAT3 for Y

x

we have that M

0

N 

Y

x

f(x). Therefore we have established that

M

0



�

�

(X;fY

x

g

x

)

f .

The essential idea of saturated �-sets is that we can prove closure under the �-introduction rule.

This is precisely the point where we need the weak �-equality in the usual D-set semantics.

Lemma 3 Let G 2 SAT

�

; fX



2 SATg

2G

; fZ

�

2 SATg

�2�

�

(G;fX



g



)

then

M 

Sect

�

(�

�

(G;fX



g



);fZ

�

g

�

)

f

�M 

Sect

�

(G;f�

�

(X



;fZ

(;x)

g

x

)g



)

�(f)

Proof: For any  2 G and

~

N 

G

 we have that

M [

~

N ]

1

=M [

~

N0] 

Z

;?

f(;?)

9



(using SAT2) and therefore M [

~

N ]

1

2 SN (by SAT1).

Furthermore assume x 2 X



and N

0



X



x. We have that

M [

~

N ]

1

[N

0

] =M [

~

NN

0

] 

Z

(;x)

f(; x)

KnowingM [

~

N ]

1

; N

0

;M [

~

N ]

1

[N

0

] 2 SN we can apply lemma 1 (2.) to conclude that (�M [

~

N]

1

)N

0

2

SN. We can now apply SAT3 because (�M)[

~

N]N

0

= �M [

~

N ]

1

)N

0

>

whd

M [

~

N ]

1

[N

0

] to see that

(�M)[

~

N]N 

Z

(;x)

f(; x) = �(f)()(x)

Therefore (by discharging the assumptions) we have that

�M 

Sect

�

(G;f�

�

(X



;fZ

(;x)

g

x

)g



)

�(f):

The following theorem summarizes that saturated �-sets constitute a CC-structure and that

every typing derivation � `M : � is realized by its underlying Curry-term jM j:

Theorem 3

1. SAT = (SAT

�

;SAT; 1

�

;�

�

; Sect

�

;�

�

) is an LF-structure.

2. Let M

�

be the universe of saturated modest �-sets, assume R 2 PER(�) and let:

EL

�

(R) = (�=R;2)

EL

�1

�

(X) = f(M;N) j 9

x2X

M 

X

x ^N 

X

xg

#

�

X

(x 2 X) = fM jM 

X

xg

SET

�

= fR 2 PER(�) j EL(R) 2 SATg

SET

�

= (SET

�

; SN� SET

�

)

we have that

SAT

+

= (SAT ;M

�

; SET

�

;EL

�

;EL

�1

�

; #

�

)

is a CC-structure.

3. For any � `M : � we have that

jM j 

Sect

�

([[�]]

SAT

+

;[[�`�]]

SAT

+

)

[[� `M ]]

SAT

+

We need the previous two lemmas only to verify that SAT is an LF-structure ful�lling the self-

realizing property (3.). The extension to CC-structure proceeds analogous to the development

for D-sets.

We can now pick the fruits:

Corollary 1 (Strong normalization)

If � `M : � then jM j 2 SN.

10



Proof: By SAT2 we have

0; 1; : : : j�j 

[[�]]

SAT

+ ?;? : : :? =

~

?

and by Theorem 3 (3.) we can conclude:

jM j = jM j[0; 1; : : : j�j] 

[[�`�]]

SAT

+

~

?

[[� `M ]]

SAT

+

~

?

and therefore M 2 SN by SAT1.

5 Decidability

We have only shown SN for Curry terms, it is not immediately obvious that this implies SN for

a system with Church terms and reductions in type annotations.

3

We are also interested to

establish decidability of the equality judgement with the view towards type checking.

Our approach to solve the �rst problem is to de�ne a type-preserving map which blows up terms

such that every reduction in a Church term can be mirrored by a reduction in a Curry term:

De�nition 10 Let

? = 8x : Set:x

M(�;N) = app

x:Set:�

+

(�x : Set(M

+x

)

�

+x

; N)

We now de�ne blow 2 (M ] �)! (M ] �):

blow(��:�) = blow(�)(Set; blow(�))

blow(Set) = ?

blow(El(A)) = blow(A)

blow(i) = i

blow(app

�:�

(M;N)) = app

�:�

(blow(M); blow(N))(� [N ]; blow(�))(� [N ];blow(�))

blow(��(M)

�

) = ��(blow(M))

�

(��:�; blow(�))(��:�; blow(�))

blow(8�:A) = 8�:blow(A)(Set; blow(�))

We have the following properties:

Lemma 4

1.

� ` �

� ` blow(�) : Set

2.

� `M : �

� ` blow(M) : �

3. If C >D then jblow(C)j >

+

jblow(D)j.

3

We will denote reduction on Church-terms and -types by > as well.

11



From this it should be obvious how to derive the following (using Corollary 1):

Corollary 2

1.

� ` �

� 2 SN

2.

� `M : �

M 2 SN

In the conversion presentation the previous result would su�ce to establish decidability because

conversion is just de�ned as the transitive symmetric closure of >. In our presentation the

reasoning is a bit more intricate, because we would have to establish a subject reduction property,

which is a non-trivial property of the system.

To avoid this we de�ne another notion of reduction | tight reduction:

app

�:�

(��(M)

�

; N) >

t

M [N ] (beta-red)

For >

t

the subject reduction property can be easily established. We can also show the weak

Church Rosser property and it is easy to see that >

t

is strongly normalizing for derivable terms

and types because >

t

� >.

Alas, this approach does not solve the problem with the �-rule. Although the strong normal-

ization result can be easily extended to �-reduction and we also have weak Church Rosser for

tight � reduction, we cannot establish subject reduction even for tight �-reduction. This result

seems to depend on the strengthening property | i.e. that we can omit variables which do not

occur in the term and type from the context | and it is not clear how to establish this property

without showing subject reduction �rst.

6 Discussion

The essential problem in extending our strong normalization argument to a system with in-

ductive types which allows the de�nition of Sets by recursion is to extend the Realizability

interpretation. This corresponds to showing that initial T-algebras exist in D-set for functors

given by reasonable signatures and that they are modest. Although at least the �rst part of

this proposition seems to be folklore we could not �nd a satisfying presentation. In [Alt93a]

we show how the D-set and the saturated �-set semantics can be extended to a non-algebraic

inductive type with large eliminations. We claim that the same argument works for a general

class of inductive de�nitions.
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Abstract

We follow an original idea suggested by Constable and Smith [6, 7] providing a way for

reasoning about non terminating computations in a typed framework. A former study has

been worked out within NuPrl by Smith [21]. We investigate how these ideas can be devel-

oped within the Calculus of Constructions (CC). The adaptation provides an conservative

extension, denoted CC

+

. Strong normalisation for �-reductions is preserved. We recover the

alternate \recursive" coding for integers introduced in AF2 by Parigot [12, 13]. Thus, the

computational behaviour for terms coding integers is improved. Moreover, as expected, all

partial recursive functions are now de�nable. Relationships with primitive coding through

\Church" integers within the pure Calculus is studied, giving some insights into logical

expressiveness issue. All these results easily generalize to all the usual data structures.

1 Motivations

The initial Curry-Howard isomorphism has been greatly extended in the past decade, leading to

powerful typed systems. The correspondence between logic and functional programming within

a typed framework forces both proofs and programs to be identi�ed with strongly normalizing

lambda-terms. Even if we may content ourselves with such a strong result from a pure logical

point of view, it seems clear enough that typed systems miss the point if they are intended to be

considered as development systems for correct programs. For instance, treatment of exceptions,

unbounded loops or recursive de�nitions are widely used in all programming languages.

So, connections between logic and programming need to be re�ned, maybe even beyond

the Curry-Howard correspondence. Gri�n's paper [10] emphasized the interactions between

continuations (in Scheme) and classical reasoning. This starting point led to a convincing typed

system, recently introduced by Parigot [14], which showed how Curry-Howard correspondence

could be extrapolated to capture more programming constructs. Thus, we are suggested to

approach the relations between reasoning and programming in a di�erent way.

Same kind of connections have to be found with regard to such programming tools as

unbounded loops, recursive de�nitions. Since we intent to study these features from a logical

x

Invited talk at the 1992 Workshop on Types for Proofs and Programs. B�astad, June 1992
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point of view, it is a natural approach to place ourselves in a typed framework. Previous studies

have been presented in [11] where Mendler gave a strongly normalizing extension of polymorphic

second order typed calculus, in [9] by Crole and Pitts, based on Moggi's categorical monads.

However, our approach is quite di�erent, since the kind of extension we are about to work with,

requires the consideration of lambda-terms no longer normalisable. Therefore, it is much like

to be compared with Constable and Mendler [8] or Parigot [13].

The starting point is the thesis that recursive structures can be coded by �xpoints. So,

this paper is concerned with the study of an extension of a typed framework with a �xpoint

constructor, allowing us to reason with non terminating programs or other recursive program

schemes. Our study, restricted to the Calculus of Constructions (CC), actually develops in a

similar way as Parigot's study of recusive integers in the AF2 framework. However, it has been

initiated with Constable and Smith papers [6, 7] and Paulin-Mohring's thesis [17]. From the

former, we got an original way to introduce smoothly non terminating computations in a typed

framework. The last one showed how connections with primitive codings for data structures

are to be understood.

This paper develops as follows. The �rst part gives a short overview of di�erent possible

solutions for the introduction of partial (i.e. possibly non terminating) terms and we describe

how to make the last of these solution �t with the Calculus of Constructions. Then, the extension

CC

+

is presented with its main metamathematical properties. The second part is devoted to

the study of di�erent internal codings for integers in our framework. Computational and logical

expressiveness are emphasized throughout this presentation. A last section will be concerned

with a synthesis and suggestions for further improvements.

2 Partial objects in a typed framework

From now on, we rely on the thesis that \recursive" structures can be coded through �xpoint

constructs. Let T be any typed system ; we at least assume the ! constructor is available in

T . The main property we should expect from a typed system is that there exists at least one

type inhabited by no term. This property insures its consistency, as a logical framework: there

exists at least a proposition which is not provable.

2.1 A �rst attempt

Let P be any type and 0 an empty type. Given a term f : P ! P and a �xpoint constructor,

say fix(), let us allow the formation for a new term fix(f) : P . One step of computation

obviously consists in an unfolding step

[��x] fix(f) �! f(fix(f))

Now, observe that, we can always form the term �x:x of type P ! P ; hence fix(�x:x) : P .

Hence, type 0 can no longer remains a empty type. Consistency is lost.

2.2 A re�nement

We may wonder whether it is possible to avoid this phenomenon by allowing such a new term

to be formed only in case P is already an inhabited type. Although there is no general answer

to such a question, this re�nement fails, for example in the Intuitionnistic Type Theories (ITT).

Martin-L�of observed that the base type N is now provided with a �xpoint for the successor

function. But then, axiom 8n n 6= n + 1 is no longer valid.
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2.3 A general solution

In [6, 7], Constable and Smith suggested a simple and elegant solution which avoids the di�-

culties encountered. Moreover, it seems to �t with most of the typed systems.

New type constructor Starting from a typed system T , we build an extension T

+

where

the same rules are allowed at the level of types and terms. However, a new feature is now

available. To each type P is associated a new bar type : P . This type is intended to be the

type of the computations over terms belonging to P ; these computations, when converging

(having a value), denote terms from P . Thus the fundamental rule, from the authors' point of

view, is :

a 2 A () (a#) a 2 A)

where t# is an internal predicate asserting the convergence of term t.

This rule actually splits into several derivation rules added to the typed system:

[bar]

A type

A type

t : A

t : A

t : A t#

t : A

Let us give some examples for the formation of types in the extended typed system T

+

:

A! A the type for partial functions over A.

A! A the type for terms which, if they converge, are total functions, which can be given type

A! A.

A! A which corresponds to the type of all partial functions over A in a lazy programming

language.

They suggest that we can expect to work in a very expressive type theory, from the point

of view of the degrees of partiality that can be expressed.

Introduction of �xpoints As expected, the introduction of �xpoints is now allowed over

bar types only:

[�x] If f 2 A! A then fix(f) 2 A

Some examples are provided in [6, 7] and in [21] where a consequent study of this kind of

extended typed system is done in the NuPrl framework.

2.4 Application for these ideas within NuPrl

We give a brief overview for the main results and problems encountered in the adaptation

of the general idea in NuPrl type system. We expect the following lines to be not too much

reducing with respect to [21]. NuPrl is a computational typed theory, where pure terms are

given types using a Damas-Milner like algorithm. Therefore, extending such a framework to

deal with �xpoints is easy a priori. The approach is twofold. First, pure term is considered, and

its possible convergence is checked. It is even possible to develop a theory of convergence [2],

based on evaluation trees and extending B�ohm trees model of solvable terms presented in [3].

The key point is a continuity property required for linking computational behavior of a �xpoint

to that of its approximations.
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The second step is thus expected to provide a type for the eventually convergent term. This

point appears to raise serious di�culties. The same kind of property is required, but now over

type expressions. We need the fact the type given to a �xpoint can be continuously connected

to types progressively given to the approximations. The problem is briey explained in [2].

However no serious e�ort have been made to give a solution. A severe restriction is imposed

in [21], which mainly relies on the presence of propositional assertions in NuPrl.

Therefore, we devote our attention to the adaptation of this idea to a somewhat di�erent

typed system. The choice of the Calculus of Constructions comes from the fact none of the

problems encountered within NuPrl appear; mainly, terms are strongly typed and there is no

propositional assertions since the Curry-Howard isomorphism is not taken as an identity.

2.5 Adaptation to the Calculus of Constructions

We �rst provide a very short review of the Calculus of Constructions. Thus main notations and

the basic inference system is introduced, together with some important aspects from the point

of view of the discussion for the way we dealt with the adaptation for Constable and Smith'

ideas in this quite di�erent framework.

A recap on the Calculus of Constructions

The Calculus of Constructions CC is a higher order lambda-typed calculus which allows, through

the Curry-Howard isomorphism, the representation of proofs form the higher order Intuitionistic

logic. However, the isomorphism between propositions and types is not taken as an identi�ca-

tion. Thus one �nds a type of \propositions", noted Prop, and itself a type of type Type. The

di�erent kinds of data types are coded owing to the system impredicativity. Type dependency,

coming form Martin-L�of Intuitionistic Type Theory, allows the coding for re�ned logical propo-

sitions. Concretely, terms and types are mixed in the syntax, using (M M) for application,

[x :M ]M for lambda-abstraction and (x :M)M as a notation for dependent type. The calculus

enjoys conuence and strong normalization for the usual �-reduction. The rules of inference are

given in table 1.

Owing to these inference rules, it is possible to de�ne invariants on well formed terms in

CC. The distinction between terms and types lies on the following invariants. A well formed

term M is a propositional type if M : Type and propositional schema if M : A, with

A a propositional type; M is a proposition if M : Prop and a proof if M : A with A a

proposition. Notice a proposition is a propositional schema, since Prop : Type. These notions

are well de�ned since they are actually invariant under type conversion. A type is then either

a propositional type or a proposition. An object is any well formed term which is not a

propositional type. See [4, 17] for a complete presentation.

Some informal hints

Although the adaptation from NuPrl to CC followed a somewhat sinuous way, it is possible to

explain the translation shortly. We are about to work with terms for which termination can

no longer be guaranteed. This is what we want at the level of programs. Nevertheless, logical

proofs and programs are both represented by the same objects, the same typed terms in the

system. But we do want to consider that a logical proof must be \complete" in some sense.

So, from the logical point of view, strong normalisation should be a important property to be

preserved as far as possible.
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Thus, it seems clear logical proofs and programs can no longer be identi�ed. The notion of

\value" is di�erent from the two points of view. It is actually the case that the introduction of

bar types proceeds from this analysis, even though the justi�cation has not be given this way by

Constable and Smith. So, we have to �nd the right way to split the system into two parts. The

�rst part being semantically taken as the logical system, and the second one as the programming

language. Now, we already know how to do the job. In [17], Paulin-Mohring introduced a new

constant Spec (Set elsewhere) in order to distinguish between terms with or without any

informative content. The purpose is there to separate pure logical proofs from proofs having

some computational content, and thus providing programs through extraction process. And

such a trick works, since then, terms are in an unambiguous correspondence with exactly one

of the two constants Prop and Spec. Our solution follows the same idea. We introduce a new

constant, denoted Prop, in order to mark terms to be considered as partial terms. This is for

the construction of bar types in the Calculus of Constructions. Partial programs and partial

schemes are easily formed through a single new constructor, in the CC-like style.

At least, we can accept a logical proof as soon as there is a proof for its termination. This

is taken into account through the predicate of convergence within NuPrl. We consider that

this predicate cannot be put in the system ; but rather belongs to a metalevel with respect

to CC system. Actually, either t diverges and so predicate t # cannot answer, or t converges

and t# terminates with true. Hence this predicate carries a useless information. Moreover, the

logical information contained in t# cannot be taken as an object on which we are able to reason

with, since we do not want to introduce propositional assertions: the problems raised in such a

situation have been invoked above. So this part will be dropped out from our extension.

3 Presentation of CC

+

and main results

This section gives a short overview of CC

+

. We refer to [1, 2] for a complete presentation.

3.1 Preterms, reductions, rules

Although we need only the new constant Prop, the use of the additional symbol Type will

ease presentation. However, Type and Type can be identi�ed in any implementation of this

extension.

The set of preterms of CC

+

, is the least set of terms containing the constants Prop and

Prop, a denumerable set V of variables, and generated by the following grammar:

M ::= x j s j (M M) j [x :M ]M j (x :M)M j hx :MiM

where x 2 V , s 2 fProp;Propg and the new notation hx :MiM is introduced to denote a

�xpoint.

The de�nition of substitution is straightforward. Besides the usual �-reduction, a new

reduction is introduced, which deals with �xpoint unfolding:

��x hx :MiN �!

�fix

([x :M ]N hx :MiN)

where M ,N , L are preterms, and x 2 V . Let !

�

+

for the reexive and transitive closure of

+ � � [ �fix and ' the congruence generated by it.

Our choice for �fix comes from the fact that if ! is a �xpoint for the function f then we

do have ! = f(!). Choosing �fix as hx :MiN �!

�fix

N [x=hx :M iN ] would have hidden
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the fact that, in the Calculus of Constructions, all the �xpoints we may construct are actually

�xpoints of functional terms. Moreover, it would have led to a bad reduction behavior. Because

we deal with �xpoint computations we must take head reductions as meaningful.

Table 2 gives the additional rules required for the extension CC

+

. Letter s stands for one or

other of the constants Prop, Type, Prop and Type. As already pointed out, �xpoints can be

introduced at both proof and schema level. Table 2 shows a distinction between the two kinds

of introductions. At the level of proofs, we get recursive programs, as desired. Fixpoints at the

schema level makes it possible to extend the type system with respect to speci�cations allowed

to be built. To some extent, this feature is more than want we wanted initially. Section 4 will

provide a illustration for this part of the extension. We now explain why it has been necessary

to restrict seriously the recursive schemas allowed to be introduced via �xpoints.

3.2 Positive occurrences of a variable

Let us consider the schema X : Prop ` X ! X : Prop. With no restriction, it is possible to

consider the proposition � � hX : PropiX ! X : Prop. Then we get the equality � ' �! �.

Thus we can form the terms � � [x : �](x x) : � and 
 � (� �) : �. Clearly normalization with

respect to � -reductions is de�nitely lost. Therefore, a necessary condition is that X appears

with \positive" occurrences in the schema. This is a quite usual condition which moreover

reveals to be su�cient to keep the calculus strongly normalizing under �-reductions. And this

is the best property we could expect in presence of �xpoints. Now, let us give the formal

de�nition for this syntactic restriction on terms.

For that purpose, let us introduce new de�nitions for preterms. The sets of positive and

negative preterms with respect to a �xed variable X are de�ned by the following grammar:

Pos ::= M j X j (Pos m) j [x :M ]Pos j (x : Neg)Pos

Neg ::= M j (Neg m) j [x :M ]Neg j (x : Pos)Neg

with the restriction that X does not occur free in M or m. The notation Pos

X

(T ) (resp.

Neg

X

(T )) indicates T is positive (resp. negative) with respect to X .

It is impossible to assume the previous de�nitions to be given on normal terms, for instance,

since properties such as normalization relies on this restriction scheme. This is the reason why

they appear to be so drastic, in contrast to the solution proposed in [8]. For the same reason, we

have to provide a de�nition for which the predicates Pos andNeg are invariant under conversion.

Therefore, the positivity condition for a �xpoint results from the cases for the application

and the abstraction, due to the ��x-reduction rule. We must require Pos

X

(hx : P iM) (resp.

Neg

X

(hx : P iM)) i� X 62 FV (hx : P iM).

3.3 Main metaresults

It is interesting to note the introduction of �xpoints does not introduce too much trouble in the

properties one expects from a typed system. Actually, we get the best we can expect:

conservativity CC

+

is a conservative extension of CC, hence is consistent. (Hint : there is an

obvious extraction function from CC

+

tot

, presented above, to CC.)

uniform properties The following properties are satis�ed over the set of well typed terms :

� Conuence for the reduction + = � [ �fix ;
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� Strong normalisation for � reduction ;

� Finiteness of developments and standardisation theorems.

For hints see [1] ; for a complete treatment see [2].

Now let us make precise how there could exist a \canonical" marking among terms and how

the property for a term to be in normal form can be extended in a reasonable way.

Partial and total terms Let M be a well typed term with type N . We shall say that M

is total if either N � Type or N is of type Type or Prop. Otherwise such a term

is said to be partial. We respectively denote CC

+

tot

and CC

+

par

the two parts of the

partition of well-typed terms in CC

+

. It is easily checked that this de�nition does not

depend on N , hence providing a new invariant for the (well-typed) terms, as expected

from the section 2.5.

\Almost in normal form" terms The set of normal forms (NF) is too restrictive. For exam-

ple, the term [x : P ]x where P � hX : Propi(C : Prop)(X ! C)! C has no derivation

to a normal form. However, the type information provided by the \abstraction" part of

a term has no computational meaning ; it is forgotten in the pure lambda-term obtained

through the erasure function.

Thus we have to propose a set of terms weaker than NF (normal forms). Briey sketched,

it su�ces to de�ne a term M to be in ANF (almost normal forms) if the term E(M)

obtained form M by through E(fx : PgM) = E(M) and E(M N) = (E(M) E(N)) is in

normal form. Clearly, NF � ANF � HNF, where HNF stands for the set of head normal

forms.

4 Internal codings for integers

This part is devoted to the question how both computational and logical expressiveness are

possibly improved in CC

+

. The main originality of this extension is the ability to give alternative

codings for integers. A complete treatment is already given in [1, 2] for CC

+

, and in [12, 13]

for AF2. So we would rather like giving a somewhat informal presentation for to major codings

: integers as iterators and as selectors. We emphasize our presentation does not claim to be

rigorous. However, we expect this approach to give some intuitive understanding for problems

encountered when trying to translate mathematical notions such as di�erent forms of equality,

equivalences or isomorphisms.

4.1 Primitive recursion over integers

Given a 2 A and h 2 N�A! A, the primitive recursion schema says there exists a (unique)

solution g 2 N! A such that:

g(0) = a and 8n 2 N g(n+ 1) = h(n; g(n))

Informally :
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a

@

@

@R

1

0

�

�

��

?

hf; gi

N�A N�A

-

hs � �

1

; hi

N N

-

s

?

hf; gi

As a consequence, f :N! N must satisfy :

f(0) = 0 and f � s = s � f

Thus, in any cartesian closed category with N as a natural number object (nno), we can

conclude f = id

N

. It works since N is precisely an initial object 1

0

! N

s

! N in the category

of diagrams 1

x

! C

f

! C.

4.2 Integers as iterators

In CC (and system F already), integers are internally coded in such a way that we collect

Church's integers as normal forms through the proposition:

Nat

i

� (C : Prop)C ! (C ! C)! C : Prop

Thus this representation mimics as well as possible the position of Nat

i

as a nno in the

typed system. Let O

i

and S

i

be the closed terms which code zero and the successor function,

respectively. We get:

O

i

� [C : Prop][x : C][f : C ! C]x

S

i

� [n : Nat

i

][C : Prop][x : C][f : C ! C](f (n C x f))

Then the \regular integers" are coded through the set f((S

i

)

k

O

i

) j k 2 Ng. Let us have a

look at expressiveness issues.

Logical expressiveness

The induction predicate is:

Ind

i

� [n : Nat

i

](P :Nat

i

! Prop)(P O

i

)! ((n :Nat

i

)(P n)! (P (S

i

n)))! (P n)

This principle expresses that any property is true for an integer, as soon as it is true on the set of

codes of regular integers. No proof exists for (n : Nat

i

)(Ind

i

n). As noticed in [15, 17], we need

the fact that (n Nat

i

O

i

S

i

) equals n. But this property means precisely that every n :Nat

i

is

actually the code for a regular integer. n being a variable, this is obviously impossible to know.

However this equality holds for closed terms, as proved as meta result.
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Computational expressiveness

A solution to primitive recursion schema is provided in CC by g � [n : Nat

i

](Rec

i

n A a h),

where Rec

i

is the recursor term, and is de�ned as follows:

Rec

i

� [n : Nat

i

][C : Prop][x : C][h :Nat

i

� C ! C]

(snd (n Nat

i

� C (pair O

i

x) [y : Nat

i

� C](pair (S

i

(fst y)) (h y))))

: Nat

i

! (C : Prop)C ! (Nat

i

� C ! C)! C

This coding leads to the following computations [16]:

(Rec

i

O

i

C x h) ' x

(Rec

i

(S

i

n) C x h) ' (h (pair (Rec

i

n C x h) f

n

))

with f

O

i
' O

i

and f

(S

i

n)

' (S

i

f

n

).

Nevertheless the equality f = id

Nat

i
can be proved only for terms satisfying the induction

principle. We need the same property : \n is zero or the successor of another term", but at

the level of programs now ; this is a non dependent version for the former problem [17, section

4.4.1].

Assume we are dealing with those terms representing regular integers, and let us give a

more concrete illustration for this problem, by considering the simplest of all primitive recursion

schema

p(0) = 0 and p(n+ 1) = n

giving the predecessor function. From the computational point of view, we get the following

diagram

hf(n); p(n)i hf(n+ 1); ni

-

n n+ 1

-

? ?

Hence computation of p(n + 1) forces that of f � s(n), so the computation of s � f(n) too.

Eventually, the e�ective computation of that term will have force that of s � f(n); : : : ; s

n

� f(0),

even though we already know the result will be n. Thus this computation takes a number of

�-r�eductions in (n). This simple example makes it apparent the evaluation mecanism linked

to the very nature of Church's integers : they are iterators. And, at the level of programs, their

imperfection lies in that character.

How far is it possible to improve these two points? In [5, 20, 19] a solution is given, through

an extension of CC with inductive types. Our solution is similar to recursive coding introduced

in [12, 13] through an extension of AF2, called TTR.

4.3 Integers as selectors

In a cartesian closed category, any nno N satis�es another diagram :

C

x

@

@

@

@R

1 N

-

0

?

[x; f ]

N N

�

s

f

�

�

�

�	
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Let us consider the predecessor function. Then C � N, f � id

N

and x � 0 in that case. We

get:

[id; 0](0) = 0 and [id; 0](n+ 1) = n

Clearly, [id; 0] is the predecessor function over N. Moreover its computation is now immediate.

Actually Nat

i

satis�es this kind of diagram too, at least when we restrict ourselves to the

set of codes for regular integers. But then, we rather get a weak form of equivalence through

the existence of two terms such that :

Nat

i

out




in

(C : Prop)C ! (Nat

i

! C)! C

such that in � out = id and out � in = id.

However, using �xpoint at the level of schemas, we are actually able to de�ne Nat

r

such

that

Nat

r

= (C : Prop)C ! (Nat

r

! C)! C : Prop

It su�ces to de�ne

Nat

r

� hN : Propi(C : Prop)C ! (N ! C)! C

Then we get

O

r

� [C : Prop][x : C][f : Nat

r

! C]x

S

r

� [n : Nat

r

][C : Prop][x : C][f : Nat

r

! C](f n)

P

r

� [n : Nat

r

](n Nat

r

O

r

id

Nat

r

)

where P

r

is a term for the predecessor function.

Although, the case of the predecessor does not use the primitive recursion schema in its

generality, we are able to give a solution to any primitive recursion schema, using �xpoint at

the level of programs :

g = hx :Nat

r

! Ai[n :Nat

r

](n A a [p :Nat

r

](h p (x p)))

This point clearly shows that introduction of �xpoints is a good way to improve the computa-

tional behaviour of integers. Moreover �xpoints provide more programs, that is more realiza-

tions for speci�cations of programs. It is also possible to give a solution for �-recursion schema

: given � : N ! N represented by the term f : Nat

r

! Nat

r

, �nd the least integer n such

that �(n) = 0. If we did not know there is such an integer, no solution exists in CC, since any

computation terminates. In CC

+

the solution is obvious : take (G O

r

) where

G � hH :Nat

r

! Nat

r

i[k :Nat

r

](f k Nat

r

k [p :Nat

r

](H (S

r

k))

Main results Let us the give here the main results about the \recursive" solution Nat

r

.

In the following lines, n is for the code of the nth integer.

� 8n 2 N (P

r

(S

r

n))!

�

n (in a �xed number of step indeed);

� The set of closed ANF terms of type Nat

r

is the set fn j n 2 Ng;

� All partial recursive functions over integers are de�nable in CC

+

. (Hint : the proof follows

the same lines as Barendregt's in [3])
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Logical expressiveness

We pointed out Nat

i

behaves as well as a nno provided it is restricted to the subset of codes for

regular integers. Since thenNat

i

satis�es the second diagram, there must exist a correspondence

between Nat

i

and Nat

r

. And it is actually the case through the terms :

i � [n :Nat

i

](n Nat

r

O

r

S

r

) :Nat

i

! Nat

r

r � [n :Nat

r

](n Nat

i

O

i

[p :Nat

r

](S

i

(r p))) :Nat

r

! Nat

i

Precisely, these two terms give a one-to-one correspondence between codes of regular integers

in both types. But the fact Nat

i

satis�es the same diagram as Nat

r

carries more information.

If it were to exist a proof for (n :Nat

r

)(Ind

r

n) then, inevitably, (n :Nat

i

)(Ind

i

n) would be

provable too. The converse is true of course. And indeed we can prove :

(i) (n :Nat

i

)(Ind

i

n)! (Ind

r

(i n)) and (n : Nat

i

)(Ind

i

n)! n = (r � i n).

(ii) (n :Nat

r

)(Ind

r

n)! (Ind

i

(r n)) and (n : Nat

r

)(Ind

r

n)! n = (i � r n).

Of course, the very reason why it works is easy to understand. The induction principle,

when satis�ed, �lls the gap between the subset of regular integers and all integers. so there is

no reason why CC

+

should give us a way to prove all Peano axioms.

4.4 Yet another coding

As already shown in [12], it is possible to give an alternate coding for integers, mixing both

iterative and selective feature in a unique recursive de�nition:

Nat

�

� hX : Propi(C : Prop)C ! (C ! X ! C)! C : Prop

For this coding, we get:

O

�

� [C : Prop][x : C][f : C ! Nat

�

! C]x

S

�

� [n :Nat

�

][C : Prop][x : C][f : C ! Nat

�

! C](f (n C x f) n)

P

�

� [n :Nat

�

](n Nat

�

O

�

snd)

Now the primitive recursion schema can be given a solution with no need for a �xpoint. Actually,

it su�ces to write:

Rec

�

� [n :Nat

�

][C : Prop][x : C][h : C ! Nat

�

! C](n C x h) � id

Nat

�

Since, then, the equations

(O

�

C x h) ' x

((S

�

n) C x h) ' (h (n C x h) n)

are trivially satis�ed. The solution is quite the same as the recursor introduced in [17] or in [19]

when translating a fraction of the Calculus of Constructions with Inductive de�nitions into CC

+

.

Notice, however, this coding fails to allow proving principle of induction.
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5 Conclusion and further developments

We restricted our study to the data type of integers through di�erent internal codings. However,

the example is su�ciently representative for all the enhancements and limitations we can expect

form the extension of CC with �xpoints, as presented in [1, 2].

Owing to the very nature of the Calculus of Constructions, the introduction for recursive

features has shown to be more uniform than in the AF2 framework [13]: in CC, we have only to

consider �xpoint for a functional term, as well for proof-terms as for schema-terms. However,

it seems hard to pursue the comparison longer, since the former develops through semantic

arguments, where CC and CC

+

are very syntactic in nature.

The introduction of recursive schemas appears as the most interesting part of the extension,

since then we are able to propose alternative codings for data structures and logical speci�-

cations, thus providing (extracted) programs with better intentional behavior, although the

extensional expressiveness of the system was not expected to be increased. Actually, prov-

ably total numerical functions are already represented in CC. Morever, through correspondence

between the di�erent codings, we showed how logical expressiveness cannot be improved, for

the consideration of the induction principle, for instance. However, this point is not the only

valuable criteria, if we address logical expressiveness issue. Remind, our initial motivation was

to add �xpoint constructs into a typed framework in order to understand how it is possible to

reason about them, hence giving a logical validation for programs allowing recursive features.

The relationship between inductive and recursive coding for integers gives a quite interesting,

although partial, answer to that question. Actually the question is that of founding a valuable

methodology for programs development.

The methodology can be explained in the schematic form which follows: let T

i

be a inductive

speci�cation formalized in pure Calculus of Constructions and T

r

for the corresponding recursive

speci�cation written with the help of �xpoint(s). Then it is possible to translate a proof-term

m

i

for T

i

into a (recursive) proof-term m

r

for T

r

. This method respects our initial motivation

for introduction of �xpoints, and insures the (head) computation of m

r

with terminates. And

indeed, this is all we need. Notice this argument makes sense for data types. However, in case

the speci�cation is too involved, this methodology applies as soon we consider the extracted

programs. See introduction of [2], Paulin and Werner [18].

Hence, we are suggested to investigate the study of recursivity form the opposite way round.

Starting from a logical basis, where recursivity is introduced through logical justi�cation and

understanding. Thus, recursive proof-terms should be considered only in the programming part

of the system, either in the extraction process, or as an extended feature of F! component in

the same way as in [17]. To this respect, Paulin's suggestion for considering a weaker extension

than CC

+

where �xpoints are removed at the level of proofs, preserved at the level of schemas

deserves further attention.
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empty

[] `

val-intro

� ` P : s x 2 V x 62 �

�; x : P `

hypo

� ` x : P 2 �

� ` x : P

Prop-intro

� `

� ` Prop : Type

prod-intro

�; x : P ` Q : s

� ` (x : P )Q : s

abs-intro

�; x : P `M : Q

� ` [x : P ]M : (x : P )Q

apply

� `M : (x : P )Q � ` N : P

� ` (M N) : Q[x=N ]

type-conv

� `M : P P ' Q

� `M : Q

Table 1: Rules of inference for CC
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Prop-intro

� `

� ` Prop : Type

�x-in-Prop

� ` P : Prop �; x : P `M : P

� ` hx : P iM : P

�x-in-Type

� ` P : Type �; x : P `M : P Pos

x

(M)

� ` hx : P iM : P

eq-�-�x

� ` hx : P iM : P

� ` hx : P iM = ([x : P ]M hx : P iM)

Table 2: Additional rules for CC

+
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Abstract

In the present paper we introduce a �-calculus with symmetric reduction rules and

\classical" types, i.e. types corresponding to formulas of classical propositional logic. Strong

normalization property is proved to hold for such a calculus. We then extend this calculus

in order to get a system equivalent to Peano Arithmetic and show, by means of a theorem

on the shape of terms in normal form, how to get recursive functions out of proofs of �

0

2

formulas, i.e. the ones corresponding to program speci�cations.

1 Introduction

The possibility of extracting recursive functions out of intuitionistic proofs expressing their spec-

i�cations, i.e., in general, the e�ective features of constructive mathematics, has had a leading

rôle in the development of computer science. This rôle, not limited only to foundational aspects,

has been played in a wide �eld of research, with the aim of supporting the working computer

scientist. In particular, the correspondence between logical constructive systems and several

�-calculi, known as the Curry-Howard analogy, has been used to develop prototypes of systems

for the design and development of provably correct programs [Con 86] [NPS 90] [PN 90].

Classical logics was always left out of the particular �eld of research relating logics and type-

theories. This, however, has not to be imputed to its complete lack of e�ective features. Indeed,

as far as the part of logics relevant for computer science is concerned, this is absolutely not the

case. Quite old and well known theoretical results (for instance [Kre 58]) makes it sure that

it is possible to transform a classical proof of 8x9y:P (x; y) (with P decidable) into a recursive

function f such that, for any x, P (x; f(x)) holds. This means that it has been for long time

possible to syntesize, out of a classical proof that a speci�cation is satis�able, a program that

satis�es this speci�cation. What was still preventing classical logics to have a more relevant rôle

in computer science, was instead the lack of clear and practical methods to extract construc-

tive content from classical proofs, and systems which helped to understand their constructive

features.

Lots of e�orts have begun to be made, in the last few years, in this direction. Among them it has
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to be mentioned the interpretation of classical logics into calculi with continuations ([Gri 90],

[Mur 90]), originating from Friedman's A-translation ([Fri 78]). An investigation of Prawitz's

set of reductions for classical logic ([Pra 65], [Pra 81]) was instead the starting point of a method

to extract constructive content from classical proofs devised in [BB 91], which has an interpre-

tation in terms of a valuation semantics [BB 92].

All the above mentioned methods have natural deduction versions of classical logics at their

roots. On the \sequent calculus-side" reseach e�orts have led to the ��-calculus of Parigot

[Par 92] and to Coquand's game-theoretical interpretation [Coq 92].

These preliminary results, at least the ones on the \natural deduction-side", share a common

problem: that of complex sintax. This, of course, represents a serious obstacle towards a neat

and full understanding of classical logics from a computational point of view.

Our main aim in the present paper is then that of de�ning a system for \classical program ex-

traction" which is simple enough. Our starting point, in Section 2, will be de�ning a \classical"

simply typed �-calculus (�

Sym

Prop

), i.e. a �-calculus which is in a Formulas-as-Types correspon-

dence with propositional classical logics. In this system negation is not a primitive connective,

and we manage to identify a type (formula) A with its double negation A

??

. This enables to get

a system where we have a symmetric application, such that either component of an application

can be virtually looked at, indi�erently, as function or argument. Because of this symmetry all

the reductions of the calculus have a dual version. It is relevant to stress that the reductions

we de�ne are simple and natural ones, and, di�erently from what was done in other systems for

\classical program extraction", no particular reduction is introduced because of the particular

use we intend to make with such a system. Our system �

Sym

Prop

is then proved in Section 5 to

be strongly normalizable using a non trivial version of Tait-Girard's computability method:

symmetric candidates. In Section 3 system �

Sym

Prop

is extended with �rst order features in order

to obtain a system corresponding to Peano Arithmetic (�

Sym

PA

). By means of a Shape of Normal

Forms Theorem, proved in Section 4, it is then possible to extract the constructive content of

terms corresponding to proofs of formulas of the form 8x9y:P (x; y) with P decidable.

2 �

Sym

Prop

: A Symmetric Simply Typed \Classical" �-calculus

In this section we introduce the system �

Sym

Prop

. In such a system types correspond to formulas

and terms to proofs of propositional classical logic. We shall then often use indi�erently the

words type, formula, proposition and term, proof.

The basis to build the types of our system consists in two sets of base types: A = fa; b; : : :g

(atomic types) and A

?

= fa

?

; b

?

; : : :g (negated atomic types). Out of these two sets we build,

as shown below, minimal-types and types.

De�nition 2.1 (i) The set of minimal-types (m-types for short) is de�ned by the following

grammar:

A ::= � j �

?

j A ^A j A _A

where � ranges over A and �

?

over A

?

.

(ii) The set of types is de�ned by the following grammar.

C ::= A j ?
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We need to de�ne �rst the m-types since we wish to have a calculus where formulas does not

contain the absurdity proposition as proper subtype. Such a choice is motivated by technical

reasons, as it will be clearer in Section 5. It is easy to check however that this is no restriction

at all (a formula A ^ ? can always be identi�ed with ?, and A _ ? with A).

In the following we shall denote types by A;B;C;D;A

1

; A

2

; C

1

; C

2

: : :.

By having a set of atomic types and a set of negated atomic types, it is easy to see that we

have a propositional calculus where negation is neither primitive nor de�ned in terms of ?.

De�nition 2.2 We de�ne the negation A

?

of a type A as follows:

1. (�)

?

= �

?

2. (�

?

)

?

= �

3. (A^ B)

?

= A

?

_ B

?

4. (A _B)

?

= A

?

^ B

?

We get then a calculus with involutive negation.

Lemma 2.1

A

??

= A:

Proof. By induction on A, using Def. 2.2.2

De�nition 2.3 (�

Sym

Prop

-rules) The terms of the system �

Sym

Prop

are de�ned by the following rules :

var)

x

A

: A

h; i)

P

1

: A

1

P

2

: A

2

hP

1

; P

2

i : A

1

^A

2

�

i

)

P

i

: A

i

�

A

1

;A

2

i

(P

i

) : A

1

_A

2

(i = 1; 2)

[x : A]

.

.

.

�)

P : ?

�x:P : A

?

?)

P

1

: A

?

P

2

: A

(P

1

?P

2

) : ?

In the following the type of a term will be often denoted by superscripts while the superscripts

A

1

; A

2

in terms like �

A

1

;A

2

i

(P

i

) will be often omitted.

Remark 2.1 The propositional classical logic associated to our system is complete. Rules and

connectives not given above can be derived as it is usual in classical logic. We show below the

(type part) of the derivation of the conjunction-elimination rule and the implication-elimination

rule.

[A

?

i

]

A

1

^A

2

� (A

?

1

_ A

?

2

)

?

A

?

1

_ A

?

2

?

A

i

A! B =

Def

A

?

_B
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A [B

?

]

A! B � A

?

_B (A

?

_ B)

?

� A ^ B

?

?

B

We call the operator

00

?

00

symmetric application

1

, since, given the terms P

A

?

and Q

A

, both

P

A

?

?Q

A

and Q

A

?P

A

?

are correct �

Sym

Prop

-terms. This symmetry is reected by the (pairwise

dual, but rule (Triv)) reductions rules de�ned below.

De�nition 2.4 (�

Sym

Prop

-reduction rules)

(

�) �x:P ?Q !

�

P [Q=x]

�

?

) Q?�x:P !

�

?

P [Q=x]

(

�) �x:(P ?x) !

�

P (

1

)

�

?

) �x:(x?P ) !

�

?

P (

1

)

(

�) hP

1

; P

2

i?�

i

(Q

i

) !

�

P

i

?Q

i

(i = 1; 2)

�

?

) �

i

(Q

i

)?hP

1

; P

2

i !

�

?

Q

i

?P

i

(i = 1; 2)

Triv) E[P ] !

Triv

P (

2

)

(

1

) if x 62 FV (P ):

(

2

) if E[�] is a context 6= [�] with type ?, P has type ? and FV (P ) � FV (E[P ])

In the following !

1

will denote the union of the reduction relations de�ned above. ! will

denote the reexive and transitive closure of !

1

.

Remark 2.2 Rule (�), which is inspired by the sequent calculus, looks as follows in terms of

derivations:

A

1

A

2

A

1

^ A

2

A

?

i

A

?

1

_A

?

2

?

;

A

i

A

?

i

?

This rule in our system plays the rôle of the usual reduction rule for getting rid, in natural

deduction, of an introduction of a conjuction followed by its elimination. As we have seen in

remark 2.1, the elimination of conjunction can be derived in our system. It is then easy to see

that, by using that derived rule, the usual reduction rule can be de�ned in terms of one reduction

(�) and one (�).

Notice that, by de�ning the (�) rule as we have done, we manage easily to dualize it.

De�nition 2.5 Let k be an integer and P a term.

(i) k is a bound for P if the reduction tree of P has a �nite height � k.

(ii) P strongly normalizes if it has a bound.

1

Note that instead of de�ning a symmetric application, a possibility could have been that of de�ning a calculus

where the terms P ?Q and Q?P are identi�ed, i.e. a calculus where terms are indeed equivalence classes. This

however, besides being less intuitive, would have led outside the notion of formal system.
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Then a term strongly normalizes i� its reduction tree is �nite.

This de�nition has to be preferred to the usual one, i.e. "each reduction sequence out of P

is �nite", because the latter is intuitionistically weaker than the former (classically, they are

equivalent through K�onig's Lemma).

Notation. The following notations will be used.

V ar

C

= fvariables of type Cg

Term

C

= fterms of type Cg

SN

C

= fP 2 Term

C

j P strongly normalizesg

One of the main properties enjoyed by system �

Sym

Prop

which will be essential for its application

is that of strong normalization.

Theorem 2.1 (Strong Normalization for �

Sym

Prop

) Let C be a type.

Term

C

= SN

C

:

The proof of this theorem will be the argument of Section 5.

It is no surprise that , as many proposed calculi dealing for classical logic, �

Sym

Prop

does not

have the Church-Rosser property. This it is easy to check by considering that we can have

terms of the form (�x:P )?(�y:Q) which can lead, by means of reductions (�) and (�

?

), to two

di�erent normal forms.

3 �

Sym

PA

: A Calculus for Peano Arithmetic

In Section 2 we have de�ned a calculus based on a version of propositional classical logic. This

logic, even if it can be considered as a possible basis for a (simply) typed �-calculus with sym-

metric application and classical types, is however too poor for our present purposes, i.e. the

investigation of the computational content of classical reasoning. In fact we de�ned it only as

starting point.

We wish a logic in which it is possible to express and prove speci�cations of programs and

therefore a �rst order logic. We make then the choice of Peano Arithmetic. In the following we

shall de�ne a calculus corresponding to a natural deduction version of Peano Arithmetic and

based on system �

Sym

Prop

. We shall call such a calculus �

Sym

PA

.

We begin by de�ning Peano Arithmetic terms (PA-terms) in our context. They denote inte-

gers and (possibly higher order) functions, and are built out of numerical and function variables,

the constant 0, the successor function s, primitive recursion, abstraction and application.

De�nition 3.1 (PA-terms) (i) PA-terms are all the terms which it is possible to build using

the following term-formation rules.

Let g be a numerical or function variable, G;G

1

; G

2

types built out of the type constant Int

35



using the arrow constructor.

g : G 0 : Int

[g : G

1

]

.

.

.

p : G

2

�g:p : G

1

! G

2

p

1

: G

1

! G

2

p

2

: G

1

(p

1

p

2

) : G

2

u : Int

su : Int

u : Int p : G f : Int! G! G

Rec(u; p; f) : G

(ii) On PA-terms the following and well known notions of reductions are de�ned:

�

PA

) (�g:p)q !

�PA

p[q=g]

Rec

0

) Rec(0; p; f) !

Rec

0

p

Rec

s

) Rec(su; p; f) !

Rec

s

f(u)Rec(u; p; f)

We denote by !

1PA

the union of all the above notions of reductions, and by !

PA

its

reexive and transitive closure.

(iii) We denote by ' the least congruence obtained out of !

PA

In what follows, numerical variables (i.e. of type Int) will be denoted by n;m; : : :, while

generic PA-terms will be denoted by u; v; t; : : :.

Lemma 3.1 ([Tait 67]) PA-terms strongly normalizes.

The types of system �

Sym

PA

will be like the types of system �

Sym

Prop

, considering also types

corresponding to existential and universal quanti�cation and with the sets of atomic and negated

atomic types de�ned as follows:

A = fu = v j u; v PA-terms of type Int g A

?

= fu 6= v j u; v PA-terms of type Int g:

De�nition 3.2 (�

Sym

PA

-rules) - Atomic rules

PA

id

)

PA

id

: (n = n)

PA

sym

)

P : (u = t)

PA

sym

(P ) : (t = u)

PA

trans

)

P : (u = v) Q : (v = t)

PA

trans

(P;Q) : (u = t)

PA

bot

)

P : (s0 = 0)

PA

bot

(P ) : ?

We shall denote by r) a generic atomic rule.

- Logical rules
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var)

x

A

: A

h; i)

P

1

: A

1

P

2

: A

2

hP

1

; P

2

i : A

1

^ A

2

�

i

)

P

i

: A

i

�

A

1

;A

2

i

(P

i

) : A

1

_A

2

(i = 1; 2)

[x : A]

.

.

.

�)

P : ?

�x:P : A

?

?)

P

1

: A

?

P

2

: A

P

1

?P

2

: ?

�

8

)

P : A

�

8

n:P : 8n:A

(

�

) �

t

)

P : A(t)

�

t

(P ) : 9n:A(n)

Ind)

u : Int P : A(0) F : 8n:A(n)! A(sn))

Ind(u; P; F ) : A(u)

(

�

�

)

Conv)

P : A(u)

P : A(u

0

)

if u ' u

0

(

�

) for all x

B

2 FV (P ) it has to be n 62 FV (B).

(

�

�

) here and in the following the implication connective is, as said before, a derived one.

Rules (h; i), (�

i

), (�

t

) and (�

8

) will be called in the following introduction rules.

We shall say that a term P represents the proof of a formula A (is a term of type A) if it is

possible to derive P : A.

The set of all terms of system �

Sym

PA

will be denoted by Terms(�

Sym

PA

).

We shall denote by � `

�

Sym

PA

P : A the fact that P : A is derivable in �

Sym

PA

from the set of

assumptions �.

We shall call atomic a term formed only by atomic rules.

It is easy to show that all other rules of �rst order logic natural deduction can be derived

from the ones given above.

By PA-closed term we shall mean a term with no free numerical variables in the type of its

free variables.

De�nition 3.3 (�

Sym

PA

-reduction rules) We add to the reduction rules of De�nition 2.4 the

following reductions.

(

�

8

) (�

8

n:P )?�

t

(Q) !

�

8

P [t=n]?Q

�

?

8

) �

t

(Q)?(�

8

n:P ) !

�

?

8

Q?P [t=n]

Ind

0

) Ind(0; P; F ) !

Ind

0

P

Ind

s

) Ind(su; P; F ) !

Ind

s

F (u)(Ind(u; P; F )) (

�

)

Comp) u!

cmp

u

0

if u and u

0

are PA-terms and u!

PA

u

0

(

�

�

)
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(

�

) Here the application of F to u and the application of F (u) to Ind(u; P; F ), corresponding respectively

to the rules of elimination of universal quanti�cation and implication, are to be thought as de�ned in

terms of the rules of our system.

(

�

�

) We have this rule in order to be able to reduce PA-terms when they are inside �

Sym

PA

-terms.

The property of strong normalization holds for �

Sym

PA

-terms.

Theorem 3.1 (Strong Normalization for �

Sym

PA

) Terms of �

Sym

PA

are strongly normalizable.

The proof of this theorem can be obtained by an extension of the proof of strong normal-

ization for system �

Sym

Prop

.

4 Shape of Normal Forms in �

Sym

PA

and Extraction of Construc-

tive Content

We introduce now two sets of types. From terms whose types are in one of these sets, namely

�

0

1

, it will be possible to extract the constructive content expressed by the types, seen as

speci�cations.

De�nition 4.1 (i) The set of �

0

1

types (formulas) is composed by PA-closed m-types not

containing base element of the set A

?

and no universal quanti�cation, i.e. it is the subset

of the PA-closed types of the set de�ned by the following grammar:

S ::= A j S ^ S j S _ S j 9n:S

where n ranges over the category of numerical variables.

(ii) The set of �

0

1

types (formulas) is composed by the types D such that D

?

2 �

0

1

, i.e. the

subset of the PA-closed types of the set de�ned by the following grammar:

P ::= A

?

j P ^ P j P _ P j 8n:P

where n ranges over the category of the numerical variables.

It is worthwhile to outline that all the results of the previous and the present sections

hold also in case we consider any (consistent) set � of atomic rules instead of those for Peano

Arithmetic. We call �

Sym

�

the calculus obtained out of �

Sym

PA

replacing its set of atomic rules by

a set of atomic rules �.

De�nition 4.2 (i) A set � of atomic rules is consistent if there exists no atomic and closed

proof of ?.

(ii) A system �

Sym

�

is consistent if there exists no closed proof of ?.

Lemma 4.1 The set of atomic rules PA is consistent.

We state now the main theorem of this section.

Theorem 4.1 (Main Theorem) Let P be a closed �

0

1

-term with type C. Then

(i) C is atomic ) P is atomic.
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(ii) C is not atomic ) P ends with an introduction (i.e. (h; i), (�

i

), (�

t

) or (�

8

)).

The statement of the above theorem is clearly analogous to well known properties of sim-

ply typed �-calculus (it says that the results of a computation over a �

0

1

-type has a concrete

meaning). Its proof however is not at all trivial, since here we are dealing with classical logics.

It is worth remarking that the restriction to �

0

1

-types in the main theorem is essential . For

instance, there are closed normal proofs of (� _ �

?

) which are not of the form �

i

(P ), because

we can classically prove (�_�

?

) without proving neither � nor �

?

, as the following traditional

example shows.

[x : �]

�

1

(x) : � _ �

?

[y : (�

?

^ �)]

�

1

(x)?y : ?

�x:(�

1

(x)?y) : �

?

�

2

(�x:(�

1

(x)?y)) : (� _ �

?

)

[y : (�

?

^ �)]

�

2

(�x:(�

1

(x)?y)?y) : ?

�y:(�

2

(�x:(�

1

(x)?y)?y) : (� _ �

?

)

From the main theorem, to whose proof next subsection will be devoted, it descends easily

the consistency of any system �

Sym

�

, in case the set � of atomic rules is consistent.

Corollary 4.1

� consistent ) �

Sym

�

consistent

It is easy to see that Theorem 4.1 shows an easy and clear way to get what Kreisel obtaind in

his [Kre 58], i.e. the extraction of computational content. By Theorem 4.1, from a normalized

proof of a disjunction we can get a proof of one of the disjuncts, and from a proof of an

existentially quanti�ed formula, a witness of it. More in general, given a closed proof of a

�

0

1

formula in �

Sym

PA

, it is possible to get, by a simple inspection of the normalized proof, the

witnesses of all the subformulas of the form 9n:A(n). This means also that, if we have a formula

corresponding to a program speci�cation, i.e. of the form 8m:9n:A(m;n), we can get, out of a

proof P of 8m:9n:A(m;n), a recursive function f : IN ! IN such that for all k 2 IN A(k; f(k))

holds. Fixed k 2 IN , to get f(k) we have simply to normalize the proof �x

8n:A

?

(k;n)

:(�

k

(x)?P ).

We outline once more that the reduction rules of our calculus are quite simple and natural, and

not ad-hoc devised for constructive content extraction purposes.

4.1 Proof of the Main Theorem

This section will be devoted to the proof of Theorem 4.1. First of all we introduce the class of

minimal proofs. Our proof will then proceed by �rst showing, after a series of technical lemmas,

that the statement of Theorem 4.1 holds for minimal proofs and then that indeed each closed

proof of a sentence in �

0

1

is minimal.

De�nition 4.3 A term (proof) of �

Sym

PA

is minimal if it is built out only of rules (h; i), (�

i

),

(�

t

) and of atomic rules.

Lemma 4.2 Let u be a PA-term in normal form. Then either u ends with an introduction (0,

s or �) or it is formed only by eliminations (Rec or application) followed by a variable.

Proof. By induction un u.

� u is a variable.

Immediate.
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� u ends with an introduction rule.

Immediate.

� u ends with an elimination rule.

The thesis follows by the induction hypothesis, since if the leftmost immediate subterm

of u ended with an introduction rule u would not be in normal form. 2

Lemma 4.3 (i) Let P be a PA-closed normal term. Then P does not begin with Ind (even

if Ind can occur inside P ).

(ii) Let P

1

?P

2

be a PA-closed term in normal form. Then either P

1

or P

2

is a variable.

Proof. (i) Let us assume, by contradiction, that P is of the form Ind(u;Q; F ). By Lemma

4.2 it follows that either u is of the form sv or is 0. In both cases we get a contradiction since

reduction (Ind

s

) or (Ind

0

), respectively, could be applied.

(ii) Let us assume, by contradiction, that neither P

1

, of type, say, A

?

, nor P

2

, of type A, is a

variable. First of all we notice that neither P

1

nor P

2

can be of the form �x:Q, Ind(u; P; F ) or

be applications. The �rst case is excluded since, otherwise, P

1

?P

2

would not be normal. The

second one by (i), while the third case would imply A � ?, which is impossible. Therefore

both P

1

and P

2

end either with an introduction or with an atomic rule. We can show that even

the latter of these cases is to be escluded since, if one of the two terms ends with an atomic

rule, the other one would have a negated atomic type and hence could not end neither with an

introduction nor with an atomic rule, contradicting what we have just proved. Thus both P

1

and P

2

end with an introduction. It is easy to check that if one ends with (h; i) the other has

to end with (�

i

) or, alternatively, if one ends with (�

8

) the other has to end with (�

t

). In both

cases, however, we get a contradiction, i.e. P

1

?P

2

would not be normal, being possible to apply

reduction �(�

?

) or �

8

(�

?

8

), respectively. We then conclude that one of P

1

, P

2

is necessarily a

variable. 2

To continue now toward the complete proof of the Main Theorem we need to introduce one

more notion: that of �

0

1

-term.

De�nition 4.4 Let P be a term and C its type. P is a �

0

1

-term if:

1. is PA-closed.

2. C 2 �

0

1

or C � ?.

3. For all x 2 FV (P ), if D is the type of x then D 2 �

0

1

.

Lemma 4.4 Let P be a �

0

1

-term in normal form, and Q a subterm of its. Then:

1. Q is a variable x i� it has type in �

0

1

and

2. Q is not a variable i� it is a �

0

1

-term.

Moreover, if Q is a variable x then it is on one side of some application x?Q

0

or Q

0

?x occurring

in P .

Proof. By induction over the structure of P .

� P � x.

This case can never occur, since, by de�nition of �

0

1

-term, P has to have type in �

0

1

and

to have the types of its free variables in �

0

1

, and this is impossible.

40



� P � hP

1

; P

2

i.

In such a case P : A

1

^A

2

with A

1

and A

2

both in �

0

1

. Moreover the free variables of P

1

and P

2

have types in �

0

1

. Thus P

1

and P

2

are �

0

1

-terms. Since the strict subterms of P

are all the subterms of P

1

and P

2

, we get the thesis by the induction hypothesis.

� P � �

i

(P

i

).

As in the previous case, we deduce that P

i

is a �

0

1

-term and hence we can obtain the

thesis by invoking the induction hypothesis.

� P � �x:P

0

.

Since �x:P

0

is a �

0

1

-term, we get that the type of x is in �

0

1

. Moreover P

0

has type ? and

FV (P

0

) � FV (P ) [ fxg. We then infer that P

0

is a �

0

1

-term on which it is possible to

apply the induction hypothesis to get the thesis.

� P � P

1

?P

2

.

By Lemma 4.3 (ii), since P is in normal form and �

0

1

-terms are PA-closed by de�nition, it

follows that P

1

or P

2

, say P

1

, is a variable x. Then we have that the type of x is in �

0

1

and

therefore P

2

has type in �

0

1

and FV (P

2

) � FV (P ). This means that P

2

is a �

0

1

-term. By

applying the induction hypothesis on P

2

we get the thesis for P since the strict subterms

of P are x or subterms of P

2

.

� P � �

8

n:P

0

.

This can never be the case since the type of P would be of the form 8n:A and hence P

would not be a �

0

1

-term.

� P � �

t

(P

0

).

In this case the type of P is of the form 9n:A(n) with A(t) type of P

0

and FV (P

0

) �

FV (P ). It is easy then to check that P

0

is a �

0

1

-term. By applying the induction hypothesis

on P

0

we get the thesis for P since the strict subterms of P are the subterms of P

0

.

� P � r(P

1

; : : : ; P

n

). The thesis follows immediately from the induction hypothesis on

P

1

; : : : ; P

n

which have necessarily atomic types and free variables all in FV (P ).

� P � Ind(u;Q; F ).

Such a case can never occur, otherwise we would get a contradiction with Lemma 4.3 (i),

since a �

0

1

-term is PA-closed by de�nition. 2

Corollary 4.2 Let P be a normal �

0

1

-term. Then

(i) P does not contain Ind symbols.

(ii) P does not contain �

8

symbols.

Proof. (i) If there were a term of the form Ind(u; P; F ) then F should have type of the form

8n:(A(n)

?

_ A(sn)) which, by not being �

0

1

, would lead to a contradiction with Lemma 4.4.

(ii) If there were a term of the form �

8

n:P , it would have type of the form 8n:A(n) which, by

not being �

0

1

, would lead to a contradiction with Lemma 4.4. 2

We can now prove the statement of the main theorem restricted to minimal terms.
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Lemma 4.5 Let P be a minimal, PA-closed, term and let � be ? or an element in A.

(i) P : � ) P is atomic.

(ii) P : A

1

^A

2

) P is of the form hP

1

; P

2

i with P

1

and P

2

minimal.

(iii) P : A

1

_A

2

) P is of the form �

i

(P

i

) with P

i

minimal.

(iv) P : 9n:A ) P is of the form �

t

(P

0

) with P

0

minimal.

Proof. (i) By induction on the structure of P . Since P contains only atomic rules and intro-

ductions and has an atomic type, it has necessarily the form r(P

1

; : : : ; P

n

) with r atomic rule.

Since the P

i

's are minimal, we get the thesis by applying the induction hypothesis to them all.

(ii) (iii) (iv) Since P contains only atomic rules and introductions and has a non-atomic type,

we have necessarily that it has the form hP

1

; P

2

i, �

i

(P

i

), �

t

(P

0

), respectively. P

1

, P

2

, P

i

and P

0

are minimal because P is so. 2

As last step we prove now that closed normal �

0

1

-terms are minimal. The main theorem will

then follows by Lemma 4.5.

Lemma 4.6 Let P be a closed normal �

0

1

-term.

(i) If P contains no � symbol then it is minimal.

(ii) P contains no � symbol.

Proof. (i) Let P be a closed �

0

1

-term with no � symbol in it. By de�nition, to prove that it

is minimal, we have to prove that it does not contain free or bound term variables, symmetric

applications and Ind or �

8

symbols. Since it is closed and variables are bound only by �'s, P

cannot contain variables. If P contained an application then, by Lemma 4.3 (ii), it would con-

tain a variable, contradicting what we have just proved. Corollary 4.2 can instead be invoked

to make sure that no Ind or �

8

symbol is present in P .

(ii) We begin by �rst proving that there exist no subterms of P of the form �x:Q with

x 2 FV (Q). In order to do that, let us assume, by contradiction that there exist some subterms

of the form �x:Q with x 2 FV (Q), and let us take a minimal one (w.r.t. the subterm inclusion),

say �x

0

:Q

0

. Since x

0

2 FV (Q

0

) and P is a normal �

0

1

-term, by Lemma 4.4 x

0

occurs necessarily

in a subterm x

0

?Q

00

or Q

00

?x

0

. Let us now consider the minimal among such terms, in such a way

that x 62 FV (Q

00

). Thus Q

0

� C[x

0

?Q

00

] (or C[Q

00

?x

0

]) for a context C[ ]. Since �x

0

:Q

0

is minimal

among the subterms with this form and with x

0

2 FV (Q

0

), we get that FV (x

0

?Q

00

) (FV (Q

00

?x

0

))

� FV (Q

0

). It follows that Q

0

� x?Q

00

(Q

00

?x), i.e. C[ ] � [ ], otherwise Q!

Triv

x

0

?Q

00

(Q

00

?x

0

),

contradicting the hypothesis of normality of P . Even in such a case however we get a contra-

diction since, by the fact that x

0

62 FV (Q

00

), we could apply a �-(�

?

-) reduction on �x

0

:x

0

?Q

00

(�x

0

:Q

00

?x

0

). Therefore we can infer that there exist no subterms of P of the form �x:Q with

x 2 FV (Q). From this fact it follows that no variables are discharged in P and hence, since P

is closed, all subterms of its are so.

We can now proceed to prove that there exist no subterms of P of the form �x:Q at all. By

contradiction, let us assume that there exist subterms �x

0

:Q

0

and take a minimal one, in such

a way that no � occurs in Q

0

. Since Q

0

: ?, Q

0

is not a variable and, by Lemma 4.4, it is a

closed normal �

0

1

-term. By point (i)

2

it follows that Q

0

is a closed minimal proof of ?, and, by

Lemma 4.5(i) an atomic one. This contradicts the consistency of the set of atomic rules. 2

Lemma 4.7 Let P be a closed normal �

0

1

-term. Then P is minimal.

2

The need of this result here explains why, in this lemma, the statement of point (i) precedes the one of point

(ii).
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Proof. Immediate from Lemma 4.6 (ii) and (i). 2

We can now give the proof of Theorem 4.1.

Proof of Theorem 4.1. Immediate from Lemmas 4.5 and 4.7.

4.2 A further improvement

From the Lemmas proved above it is possible to derive a further lemma which is quite interesting

both from a theoretical and applicative point of view.

Lemma 4.8 Let P (x

N

1

1

; : : : ; x

N

k

k

) be a normal �

0

1

-term. Then either it is minimal (and hence

closed) or it contains a subterm x

i

?Q

i

(or Q

i

?x

i

) where Q

N

?

i

i

is minimal.

Proof. If P is closed (k = 0) apply Lemma 4.7. Otherwise, any x

i

has necessarily to occur,

by Lemma 4.4, in subterms of the form x

i

?Q

i

(or Q

i

?x

i

). Let us take a minimal one among

such terms. We get that, for such minimal term, Q

i

is closed and, by Lemma 4.4, is a �

0

1

-term.

Lemma 4.7 enables now us to get the thesis. 2

From a theoretical point of view the above lemma states that for any x

N

1

1

; : : : ; x

N

k

k

`

�

Sym

�

P : A with A 2 �

0

1

and N

i

2 �

0

1

, P contains either an example for A or a counterexample for

some of N

i

. This agrees with the Curry-Howard interpretation of P .

P can be seen as a classical proof of

\If N

1

; : : :N

k

then P"

and the classical meaning of this is

\Either N

?

1

or N

?

k

or P"

From an applicative point of view, Lemma 4.8 can be used to speed up the process of

extraction of constructive content. If a �

0

1

-proof P [R

1

=x

1

; : : : ; R

k

=x

k

] contains closed terms

R

1

; : : : ; R

k

having �

0

1

-types, we do not need to consider them during the normalization process .

We can instead replace them by fresh variables, since any normal form of P is indeed a normal

form of P [R

1

=x

1

; : : : ; R

k

=x

k

]

3

.

To prove this fact it is enough to observe that if the normal form of P is minimal then it is

closed, and hence is is also a normal proof of P [R

1

=x

1

; : : : ; R

k

=x

k

]. Otherwise, by Lemma 4.8,

the normal form of P should have some subterms x

i

?Q

i

(or Q

i

?x

i

) with Q

i

minimal. This

however leads to a contradiction since, by replacing x

i

by R

i

, we would get a closed proof of ?,

which is impossible.

Informally speaking, as G. Kreisel often said, when we have a proof P of a �

0

1

type N , we

only know that N is inhabited, and nothing else. We can use a fresh variable x

N

to build an

inhabitant of N , being sure that x will disappear during the normalization process.

3

We do not know if the converse holds. It would imply that by normalizing P (x

1

; : : : ; x

k

) we can get all the

possible constructive content of P [R

1

=x

1

; : : : ; R

k

=x

k

].
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5 Strong Normalization for �

Sym

Prop

This section will be devoted to the proof of Theorem 2.1. We shall use a non trivial variant of the

well known Tait's computability method. We �rst assign to each type C a set [[C]] (symmetric

candidate) of computable terms of type C and show that for all P 2 [[C]], P strongly normalizes.

Then we prove that for each type C, if P has type C then P 2 [[C]].

The main property the candidate assignment has to enjoy, in order to make the proof work,

consists in the fact that the set of computable terms of a m-type A reects the way these terms

are built. In the present case these properties are the ones stated in the following claim.

Claim 5.1 There exists an assignment [[�]] : A 7! [[A]] � Term

A

such that [[?]] = SN

?

and

(i) V ar

A

� [[A]].

(ii) hP

1

; P

2

i 2 [[A

1

^ A

2

]] , P

1

2 [[A

1

]] and P

2

2 [[A

2

]].

(iii) �

i

(P

i

) 2 [[A

1

_A

2

]] , P

i

2 [[A

i

]] (i = 1; 2).

(iv) �x:P 2 [[A]] , 8Q 2 [[A

?

]]:P [Q=x] 2 [[?]].

For simply typed �-calculi the properties required for the candidate assignment can be also

considered as inductive de�nition of the sets [[A]]. Unfortunately this is not the case for our

system. The properties stated above cannot be considered as a de�nition of [[A]], since clause

(iv) would cause a circularity ([[A

?

]] would be de�ned in terms of [[A]] which, since A � A

??

would be de�ned in terms of [[A

?

]] itself). We have therefore to de�ne candidates with a di�erent

method. This will be done in Subsection 5.1 where, besides, properties (i)-(iv) will be proved.

Up to then we shall assume Claim 5.1 to hold, i.e. the candidates already well de�ned for all

m-types and properties (i)-(iv) already proved.

Lemma 5.1 Let A be a type. Then

[[A]] � SN

A

:

Proof. By induction on the structure of A, considering the di�erent forms of P 2 [[A]].

� P � x

A

.

Trivially, x

A

2 SN

A

.

� P � hP

1

; P

2

i.

Then A � A

1

^ A

2

. By Claim 5.1(ii) it follows that P

i

2 [[A

i

]] (i = 1; 2). Now, by the

induction hypothesis on [[A

i

]] we get P

i

2 SN

A

i

. Since each reduction on hP

1

; P

2

i is a

reduction on P

1

or P

2

, we get hP

1

; P

2

i 2 SN

A

1

^A

2

.

� P � �

i

(P

i

).

Then A � A

1

_ A

2

. By Claim 5.1(iii) it follows that P

i

2 [[A

i

]]. Now, by the induction

hypothesis and the fact each reduction on �

i

(P

i

) is indeed a reduction on P

i

we get

�

i

(P

i

) 2 SN

A

1

_A

2

.

� P � �x:P

0

.

Since, by Claim 5.1(i), x 2 [[A

?

]], it follows, by Claim 5.1(iv), that P

0

2 SN

?

. Each

reduction on �x:P

0

is indeed either a reduction on P

0

or a �(�

?

)-reduction and P

0

�

P

0

1

?x(P

0

� x?P

1

). Therefore �x:P has a bound which is at most one more then the bound

of P .

� P � P

1

?P

2

.

In such a case P 2 [[?]] � SN

?

. 2
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Lemma 5.2 Let P 2 Term

A

. Then

(i) 8Q 2 [[A

?

]]:(P ?Q 2 SN

?

) ) P 2 [[A]].

(ii) 8Q 2 [[A

?

]]:(Q?P 2 SN

?

) ) P 2 [[A]].

Proof. Because of the symmetry of the application, it is enough to prove just one of (i) and

(ii), say (i).

Assume 8Q 2 [[A

?

]]:(P ?Q 2 SN

?

). We shall prove P 2 [[A]] by induction on the structure of

A. We distinguish now di�erent cases according to the form of P . Note that, since A cannot

be ?, the case P � P

1

?P

2

cannot occur.

� P � x

A

.

Then P 2 [[A]] by Claim 5.1(i).

� P � hP

1

; P

2

i.

Then A � A

1

^ A

2

. By Claim 5.1(ii), it su�ces to prove that P

i

2 [[A

i

]] (i = 1; 2). By

the induction hypothesis this can in turn be proved by showing that for all Q

i

2 [[A

i

]]

we have that P

i

?Q

i

2 SN

?

. Since hP

1

; P

2

i?�

i

(Q

i

) !

1

P

i

?Q

i

, it would be enough to

prove hP

1

; P

2

i?�

i

(Q

i

) 2 SN

?

. By the assumption 8Q 2 [[A

?

]]:(P ?Q 2 SN

?

), this fact

descends from �

i

(Q

i

) 2 [[A

?

1

_A

?

2

]] which, in turn, is a consequence of Claim 5.1(iii) and

of Q

i

2 [[A

i

]].

� P � �

i

(P

i

).

This case can be treated similarly to the previous one.

� P � �x:P

1

.

By hypothesis we have that 8Q 2 [[A

?

]]:((�x:P

1

)?Q 2 SN

?

), from which it immediately

follows that 8Q 2 [[A

?

]]:P

1

[Q=x] 2 SN

?

. Hence, by Claim 5.1(iv), we get �x:P

1

2 [[A]]. 2

Lemma 5.3

P 2 [[A]]; P !

1

P

0

) P

0

2 [[A]]:

Proof. By induction on A considering the di�erent forms of P 2 [[A]].

� P � x

A

.

It can never be the case that x

A

!

1

P

0

.

� P � hP

1

; P

2

i.

In such a case P � hP

1

; P

2

i, A � A

1

^ A

2

and either P

1

!

1

P

0

1

or P

2

!

1

P

0

2

. In either

cases we get the thesis by the induction hypothesis and Claim 5.1(ii).

� P � �

i

(P

i

).

This case is similar to the previous one.

� P � �x:P

1

.

In such a case we have two possibilities: either P

0

� �x:P

0

1

and P

1

!

1

P

0

1

or P

1

�

Q

1

?x(P

1

� x?Q

1

) and P

0

� Q

1

(we performed an �(�

?

)-reduction).

In the �rst case, by Claim 5.1(iv), to check that �x:P

0

1

2 [[A]], it su�ces to show, by Claim

5.1, that 8Q 2 [[A]]:P

0

1

[Q=x] 2 SN

?

. This fact follows immediately from P

0

1

[Q=x] 2 SN

?

which in turn follows from the hypothesis and Claim 5.1(iv).

In the second case, by Lemma 5.2, it su�ces to show that 8S 2 [[A

?

]]:Q

1

?S 2 SN

?

(or

equivalently 8S 2 [[A

?

]]:S?Q

1

2 SN

?

). This follows by the fact P � �x:Q

1

?x(�x:x?Q

1

) 2

[[A]] and Claim 5.1(iv), since x 62 FV (Q

1

) and therefore P

1

[S=x] � Q

1

?S.
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� P � P

1

?P

2

.

Then P 2 [[?]] � SN

?

and P !

1

P

0

implies P

0

2 SN

?

� [[?]]. 2

Lemma 5.4

P 2 [[A]]; Q 2 [[A

?

]] ) P ?Q 2 SN

?

Proof. By Lemma 5.1, there exist n and m bounds for P and Q, respectively. We prove

P ?Q 2 SN

?

by double induction: primary induction on the structure of A and secondary

induction on n +m.

It is easy to see that proving the thesis is equivalent to proving that

8S:(P ?Q!

1

S ) S 2 SN

?

)

We have eight cases, pairwise symmetric, to consider.

1.

(

P � �x:P

1

; S � P

1

[Q=x]

Q � �x:Q

1

; S � Q

1

[P=x]

2.

(

P !

1

P

0

; S � P

0

?Q

Q!

1

Q

0

; S � P ?Q

0

3.

(

P ?Q!

Triv

S; S subterm of P

P ?Q!

Triv

S; S subterm of Q

4.

(

P � hP

1

; P

2

i; Q � �

i

(Q

i

); S � P

i

?Q

i

P � �

i

(P

i

); Q � hQ

1

; Q

2

i; S � P

i

?Q

i

1. For these cases the thesis follows immediately from Claim 5.1(iv).

2. By Lemma 5.3 we have that P

0

2 [[A]] or Q

0

2 [[A]]. We then get P

0

?Q 2 SN

?

or

P?Q

0

2 SN

?

by the induction hypothesis, since in both cases the sum of the two bounds

decreased.

3. Since S is a subterm of P or Q, the thesis follows immediately from the hypothesis and

Lemma 5.1.

4. Immediate by primary induction. 2

We now need a last lemma in order to prove strong normalization.

Lemma 5.5 Let C be any type and P 2 Term

C

with FV (P ) � fx

A

1

1

; : : : ; x

A

n

n

g. Then

8P

1

2 [[A

1

]] : : :P

n

2 [[A

n

]]:P [P

1

=x

1

; : : : ; P

n

=x

n

] 2 [[C]]

Proof. By induction on P .

� P � x

In such a case P � x

i

and C � A

i

for some i by hypothesis.

Hence P [P

1

=x

1

; : : : ; P

n

=x

n

] � P

i

2 [[A

i

]] � [[C]]

� P � hP

1

; P

2

i; �

i

(P

i

); P

1

?P

2

In all these cases the thesis follows by the induction hypothesis on P

1

, P

2

and P

i

, and

Claim 5.1(ii), 5.1(iii) and 5.4, respectively.
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� �x:P

0

.

Since we can rename bound variables, it is not restrictive to assume x 62 fx

A

1

1

; : : : ; x

A

n

n

g.

Now, by Claim 5.1(iv), to prove that

(�x:P

0

)[P

1

=x

1

; : : : ; P

n

=x

n

] � �x:P

0

[P

1

=x

1

; : : : ; P

n

=x

n

] 2 [[C]]

it is enough to prove that for all Q 2 [[A

0

]], with A

0

type of x, P

0

[Q=x; P

1

=x

1

; : : : ; P

n

=x

n

] 2

[[C]]. This last fact follows by the induction hypothesis. 2

We can now present the proof of Theorem 2.1.

Proof of Theorem 2.1. One inclusion is immediate by de�nition. For the other one, let

P 2 Term

C

with FV (P ) = fx

A

1

1

; : : : ; x

A

n

n

g. By Claim 5.1(i) we get x

i

2 [[A

i

]] (i = 1; : : : ; n)

and therefore, by Lemma 5.5 P � P [x

1

=x

1

; : : : ; x

n

=x

n

] 2 [[C]]. Lemma 5.1 allows now to infer

P 2 SN

C

. 2

5.1 Symmetric Candidates: De�nition and Main Properties

This subsection will be devoted to the de�nition of the sets of computable terms, which we shall

call symmetric candidates. We have spoken before about the impossibility of considering the

properties of Claim 5.1 as an inductive de�nition for the symmetric candidates.

We �rst de�ne an operator on sets of terms of a given type for each term constructor but

the symmetric application (Pair(�), Sigma(�), Lambda(�)). Out of these operators we then

de�ne an operator for the negation (Neg(�)), reecting the possible way of obtaining terms

whose type can be seen as a negation. Since we wish the involutive property of negation to be

reected in the symmetric candidates, we de�ne a candidate as a �x point of the composition

of Neg with itself. Since these composition turns out to be an increasing operator, the �x point

exists by Tarsky Theorem. The de�nition of Neg use the notion of symmetric candidate. This

is why the de�nitions of Neg and of symmetric candidate will have to be given simultaneously

on the structure of the type.

De�nition 5.1 Let A;A

1

; A

2

be types. We de�ne the operators

Pair

A

1

;A

2

: P(Term

A

1

)�P(Term

A

2

)! P(Term

A

1

^A

2

)

Sigma

i

A

1

;A

2

: P(Term

A

i

)! P(Term

A

1

_A

2

)

Lambda

A

: P(Term

A

?

)! P(Term

A

)

as follows.

Pair

A

1

;A

2

(X

1

; X

2

) =

Def

fhP

1

; P

2

i 2 Term

A

1

^A

2

j P

1

2 Term

A

1

and P

2

2 Term

A

2

g:

Sigma

i

A

1

;A

2

(X

i

) =

Def

f�

i

(P

i

) 2 Term

A

1

_A

2

j P

i

2 X

i

g (i = 1; 2)

Lambda

A

(X) =

Def

f�x:P 2 Term

A

j 8Q 2 X:P [Q=x] 2 SN

?

g

De�nition 5.2 Let A be a m-type. By induction on the structure of A we simultaneously de�ne

(a) The operators:

(

Neg

A

: P(Terms

A

?
)! P(Terms

A

)

Neg

A

?

: P(Terms

A

)! P(Terms

A

?

)

(b) The sets [[A]] and [[A

?

]].

as follows.
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(a) Let X � Term

A

and Y � Term

A

?
. By the involutive property of negation in our system

it is not restrictive to consider only the cases A atomic and A conjunction.

{ A � �.

(

Neg

�

(Y ) =

Def

V ar

�

[ Lambda

�

(Y )

Neg

�

?

=

Def

V ar

�

?

[ Lambda

�

?

(X)

{ A � A

1

^ A

2

(A

?

� A

?

1

_ A

?

2

).

(

Neg

A

1

^A

2

(Y ) =

Def

V ar

A

1

^A

2

[ Pair([[A

1

]]; [[A

2

]])[ Lambda

A

1

^A

2

(Y )

Neg

A

?

1

_A

?

2

(X) =

Def

V ar

A

?

1

_A

?

2

[ (

S

2

i=1

Sigma

i

([[A

i

]]))[ Lambda

A

?

1

_A

?

2

(X):

(b) For all A, Neg

A

is a decreasing operator (w.r.t. set theoretical inclusion), since Lambda

A

is so. Then, once one has de�ned Neg

A

for some A, it is possible to get, by Tarsky's

Fixed Point Theorem, the smallest �xpoint of the (increasing ) operator Neg

A

�Neg

A

?
.

Let us call it X

0

. We then de�ne:

(

[[A

?

]] =

Def

X

0

[[A

?

]] =

Def

Neg

A

?
(X

0

)

We extend the de�nition of computable set of terms to all types by de�ning [[?]] =

Def

SN

?

.

Note that, for our strong normalization proof, the use of the smallest �xpoint in the above

de�nition is irrilevant.

Since [[A]] is a �xed point ofNeg

A

�Neg

A

?

we get what we where looking for, i.e. an operator

with the property [[A]] � Neg

A

([[A

?

]]).

Given a m-type A, from the fact [[A]] � Neg

A

([[A

?

]]) and the de�nition of Neg

A

, the prop-

erties (i)� (iv) of Claim 5.1 descend easily.
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It is a common practice in software engineering to use one's own tools. For instance, compil-

ers for programming languages are usually written in a compiled programming language. The

past thirty years has seen the construction of many proof development systems, which in some

cases permit one to develop a program together with a proof of its correctness with respect

to some speci�cation. The methodology of developing proved programs is intended to become

a standard way of programming computers, so proof development systems themselves ought

ultimately to be developed using these techniques. A novel issue that arises with proving the

correctness of proof development systems is cross-veri�cation, i.e., proving the correctness of

one system with another. In this way, if one trusts one system, one may trust the other. In

this paper we describe an implementation of the Calculus of Constructions [2, 10] in the logic of

Nqthm, also known as the Boyer-Moore system [5], and we describe an initial foray into proving

theorems about this implementation. Our work is complementary to the deep work described

in [3] [2] [13] as our goal is not to prove meta-theoretical properties of the Calculus of Con-

structions (normalization, conuence, etc.), but rather use these meta-theoretical properties to

prove the correctness of an actual implementation of a type-checker, one that can run under

any LISP interpretor.

1 Double Checkers and Proof-objects

Less complex by far than a whole proof development system is a proof-checker, a program that

takes as an input a proposition P and a proof p and checks that the proof p is indeed a proof

of P . Formal proofs are typically tedious to write, so proof development systems are often

much more complex than mere proof-checkers, and are thus much more di�cult to specify and

prove correct. Nevertheless, the correctness of a proof is independent of the proof development

process used to build it and once obtained such a proof can always be re-checked by a mere

proof-checker. Thus, in order to construct a safe proof development system, we do not need to

prove the correctness of the entire proof development system but merely that of a proof-checker

for the same logic.

x

boyer@cli.com

{

Gilles.Dowek@inria.fr
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We get the following schema:

Yes

Proof
Definitions
Axioms
StatementHints

Definitions
Axioms
Statement

Re-checker
System

Proof verification

To following such a schema, we need to have a well-de�ned proof-language, which is used as

output by the proof development system and as input by the proof-checker. For these purposes,

languages based on Heyting semantics and the Curry-Howard isomorphism, such as the Calculus

of Constructions, are good candidates.

As we will not necessarily check the correctness of the whole proof development system,

but only the proof-checker, we have to make sure that the re-checked proof is indeed a proof

of the proposition P . So we have to be able to read the statement (as well as the axioms,

de�nitions, etc.) produced by the proof development system and used by the proof-checker. We

need therefore to write a pretty-printer for the intermediate language.

In the investigations discussed in this paper, we have used the system COQ [11] as our proof

development system, and we have speci�ed and implemented a proof-checker for the Calculus

of Constructions (the logic of COQ) in Nqthm.

2 The Calculus of Constructions

2.1 Basic Formalism

The basic idea underlying systems based on Heyting semantics and the Curry-Howard isomor-

phism (such as the Calculus of Constructions) is that a proof of a proposition is a functional

object. For instance a proof of a proposition of the form A) B is a function that maps every

proof of A to a proof of B. The type of this function is isomorphic to the proved proposition,

so types and proposition are identi�ed, as are objects and proofs. In order to express all the

proofs, the term language has to be an extension of typed lambda-calculus supporting functions

from terms to types (dependent types), functions from types to terms (polymorphic types) and

functions from types to types (type constructors). A smooth presentation is obtained when we

take only one syntactical category for terms and types.

The basic judgement in this formalism is written � ` t : T which is read t has type T in

the context �. The context � contains the types of the free variables of t and T . An additional

judgement, written � is well-formed, indicates that the context � is valid, i.e., the type of each

variable x declared in � is a term well-typed in the part of the context declared in the left of x.

This calculus is de�ned in the following way.

De�nition: Term

The set of terms is the smallest set such that:

� Prop is a term,

� Kind is a term,

� if x is an identi�er then x is a term,
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� if t and t

0

are terms then (t t

0

) is a term,

� if t and t

0

are terms and x is an identi�er then [x : t]t

0

is a term,

� if t and t

0

are terms and x is an identi�er then (x : t)t

0

is a term.

The terms Prop and Kind are two prede�ned types, Prop is the type of the types (and of

the propositions) and Kind is the type of the term Prop. The terms (t t

0

) are applications, the

terms [x : t]t

0

are �-abstractions, and the terms (x : t)t

0

are products. The product (x : t)t

0

is

a generalization of the type t ! t

0

. The notation t ! t

0

is used for (x : t)t

0

when x does not

occur free in t

0

.

At �rst in this presentation, we shall ignore variable renaming problems. We subsequently

treat this matter precisely, after we introduce the de Bruijn notation for bound variables.

De�nition: Context

A context � is a list of pairs (written x : T ) where x is an identi�er and T a term, i.e., the

set of contexts is the smallest set such that:

� [ ] is a context,

� if � is a context, x an identi�er and T a term then �[x : T ] is a context.

The term T is called the type of the variable x.

De�nition: Substitution

Let t and u be terms and x an identi�er. The term t[x  u] is de�ned by induction over

the structure of t as:

� Prop[x u] = Prop,

� Kind[x u] = Kind,

� x[x u] = u,

� y[x u] = y, when y is an identi�er di�erent from x,

� (t t

0

)[x u] = (t[x u] t

0

[x u]),

� ([y : t] t

0

)[x u] = ([y : t[x u]]t

0

[x u]),

� ((y : t) t

0

)[x u] = ((y : t[x u])t

0

[x u]).

Note that the de�nition of the substitution function is e�ective. This function is simple

enough that no non-e�ective de�nition seems more intuitive than this one. Let us reiterate that

we are ignoring variable renaming problems at this point.

De�nition: �-reduction

The �-reduction relation > is the smallest relation such that ([x : T ]t u) > t[x  u] and

that is reexive and transitive and is also a congruence with respect to term structure, i.e., the

smallest relation such that:

� ([x : T ]t u) > t[x u],
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� t > t,

� if t > u and u > v then t > v,

� if t > u and t

0

> u

0

then (t t

0

) > (u u

0

),

� if t > u and t

0

> u

0

then [x : t]t

0

> [x : u]u

0

,

� if t > u and t

0

> u

0

then (x : t)t

0

> (x : u)u

0

.

De�nition: �-convertibility

The relation � is the smallest equivalence relation that contains �-reduction, i.e., the small-

est relation such that:

� if t > u then t � u,

� if t � u then u � t,

� if t � u and u � v then t � v.

De�nition: Typing rules

The relations � is well-formed and t has type T in � (for which we use the notation � ` t : T )

are the smallest relations such that:

� [ ] is well-formed,

� if � ` T : s and s 2 fProp;Kindg then �[x : T ] is well-formed,

� if � is well-formed then � ` Prop : Kind,

� if � is well-formed and x : T 2 � then � ` x : T ,

� if � ` T : s, �[x : T ] ` U : s

0

, s 2 fProp;Kindg and s

0

2 fProp;Kindg then � ` (x :

T )U : s

0

,

� if � ` T : s1, �[x : T ] ` U : s2, �[x : T ] ` t : U , s1 2 fProp;Kindg and s2 2 fProp;Kindg

then � ` [x : T ]t : (x : T )U ,

� if � ` t : (x : T )U and � ` u : T then � ` (t u) : U [x u],

� if � ` t : T , � ` U : s and T � U and s 2 fProp;Kindg then � ` t : U .

2.2 Proof-checker

A proof-checker is a program that takes a context �, and two terms t and T and gives back the

boolean value true if � ` t : T and false otherwise. The claim that a proof-checker exists, is

constructively speaking, the claim that the ternary predicate � ` t : T is decidable.
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2.3 Example

Let us consider a type T , three elements of type T : a, b, and c, a relation R over the elements

of type T , an axiom trans stating that the relation R is transitive, and two axioms ax1 (resp.

ax2) stating that the elements a and b (resp. b and c) are related by R, i.e., the context

� = [T : Prop; a : T ; b : T ; c : T ;R : T ! T ! Prop;

trans : (x : T )(y : T )(z : T )((R x y)! (R y z)! (R x z)); ax1 : (R a b); ax2 : (R b c)]

In this context the term (trans a b c ax1 ax2) has type (R a c) (i.e., the term (trans a b c ax1 ax2)

is a proof of the proposition (R a c)).

2.4 De�nitions and Lemmas

In mathematical developments, de�nitions are useful; they permit us to associate a name x with

a term t of type T and then to use x in place of t. When the term t is seen as a proof, its type,

the de�nition x := t : T , is called a lemma.

The Calculus of Constructions can be enhanced with de�nitions and lemmas in the following

way.

In the de�nition of the notion of context we add the rule:

� if � is a context, x an identi�er and t and T terms then �[x := t : T ] is a context.

�-reduction and �-convertibility are replaced by ��-reduction and ��-convertibility. These

relations are now parameterized by a context.

De�nition: ��-reduction

The ��-reduction relation >

�

is the smallest relation such that:

� ([x : T ]t u) >

�

t[x u],

� if x := t : T 2 � then x >

�

t,

� t >

�

t,

� if t >

�

u and u >

�

v then t >

�

v,

� if t >

�

u and t

0

>

�

u

0

then (t t

0

) >

�

(u u

0

),

� if t >

�

u and t

0

>

�

u

0

then [x : t]t

0

>

�

[x : u]u

0

,

� if t >

�

u and t

0

>

�

u

0

then (x : t)t

0

>

�

(x : u)u

0

.

De�nition: ��-convertibility

The ��-convertibility relation �

�

is the smallest equivalence relation that contains ��-

reduction, i.e., the smallest relation such that:

� if t >

�

u then t �

�

u,

� if t �

�

u then u �

�

t,

� if t �

�

u and u �

�

v then t �

�

v.
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De�nition: Typing rules

Finally, we modify the last typing rule in:

� if � ` t : T , � ` U : s, T �

�

U and s 2 fProp;Kindg then � ` t : U ,

and we add two typing rules

� if � ` t : T then �[x := t : T ] is well-formed,

� if � is well-formed and x := t : T 2 � then � ` x : T .

In this enhanced formalism, we can add to the context � above the lemma (R a c) and get

the well-formed context �[lem := (trans a b c ax1 ax2) : (R a c)].

In this formalism a proof-checker can be merely a program that takes a context � as input

and answers whether this context is well-formed or not; indeed, we have � ` t : T if and only if

the context �[x := t : T ] is well-formed.

3 A Cursory Overview of the Logic of Nqthm

For a complete description of the Nqthm logic, we refer the reader to Chapter 4 of [5]. We now

make a few vague remarks that we hope will permit those unfamiliar with this logic to read the

subsequent formulas written in the logic. The logic of Nqthm is a quanti�er-free �rst order logic

with equality. The syntax is Lisp-like. The basic theory includes axioms de�ning the following:

� the Boolean constants t and f, corresponding to the true and false truth values.

� equality. (equal x y) is t or f according to whether x is equal to y.

� an if-then-else function. (if x y z) is z if x is f and y otherwise.

The logic of Nqthm contains two `extension' principles under which the user can introduce

new concepts into the logic with the guarantee of consistency.

� The Shell Principle allows the user to add axioms introducing `new' inductively de�ned

`abstract data types.' Natural numbers, ordered pairs, and symbols are axiomatized in

the logic by adding shells:

{ Natural Numbers. The nonnegative integers are built from the constant 0 by succes-

sive applications of the constructor function add1. The function numberp recognizes

natural numbers. The function sub1 returns the predecessor of a non-0 natural

number.

{ Symbols. The data type of symbols, e.g., 'kind, is built using the primitive construc-

tor pack and 0-terminated lists of ASCII codes. The symbol 'nil, also abbreviated

nil, is used to represent the empty list.

{ Ordered Pairs. Given two arbitrary objects, the function cons builds an ordered pair

of these two objects. The function listp recognizes ordered pairs. The functions

car and cdr return the �rst and second component of such an ordered pair. Lists of

arbitrary length are constructed with nested pairs. Thus (list arg

1

: : : arg

n

) is an

abbreviation for (cons arg

1

::: (cons arg

n

nil)).
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� The De�nitional Principle allows the user to de�ne new functions in the logic. For recur-

sive functions, there must be an ordinal measure of the arguments that can be proved to

decrease in each recursion, which, intuitively, guarantees that one and only one function

satis�es the de�nition. Many functions are added as part of the basic theory by this

de�nitional principle.

The rules of inference of the logic are those of propositional logic and equality with the

addition of mathematical induction.

Commands to the theorem prover include

� (dcl fn (x y)), which declares fn to be an unde�ned function of two arguments.

� (defn fn (x y) body), which de�nes the function fn to take two arguments, x and y,

and to return body as the value of (fn x y).

� (add-axiom name (types : : :) formula), which adds formula as an axiom, storing it

under name and suggesting how best to use the formula in proofs with the hints types

: : : .

� (prove-lemma name (types : : :) formula), which adds formula as a proved lemma after

proving it, storing it under name and suggesting how best to use the formula in proofs

with the hints types : : : .

4 Inductive De�nitions

4.1 Inductive De�nitions

Most of the de�nitions of section 2 are inductive de�nitions, i.e., de�nitions of sets (or predicates)

of the following form:

A is the smallest subset of B such that, if x

1

; :::; x

n

1

are element of A then f

1

(x

1

; :::; x

n

1

) is an

element of A, ... and if x

1

; :::; x

n

p

are elements of A then f

p

(x

1

; :::; x

n

p

) is an element of A.

The existence of such a set is given by Tarski's �xed-point theorem, by considering the function

from P(B) to P(B) that associates to the set X the set

F (X) = ff

i

(a

1

; :::; a

n

i

) j 1 � i � p ^ a

1

; :::; a

n

i

2 Xg:

This function is obviously increasing for the order � in P(B). The set A is de�ned as its least

�xed point. This least �xed-point is the set

A =

\

X2C

X

Where C = fX 2 P(B) j 81 � j � p 8x

1

; :::; x

n

j

2 X(f

j

(x

1

; :::; x

n

j

) 2 X)g.

It is also the case that

A =

[

i2N

F

i

(;)

Finally, an element a is in A if and only if there exists a sequence a

1

; :::; a

k

such that a

k

= a and

for each i there exists an f

j

and elements b

1

; :::; b

n

j

of fa

1

; :::; a

i�1

g such that a

i

= f

j

(b

1

; :::; b

n

j

)

[2].
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Even if the functions f

1

; :::; f

p

are recursive, the de�ned set A may not be recursive (e.g.,

the set of theorems of arithmetic can be inductively de�ned, although it is not recursive), but

it is recursively enumerable.

4.2 Inductive De�nitions as Speci�cations

The inductive de�nition given above is a quite natural speci�cation for the predicate well-

formed. But, of course, since inductive de�nitions are not e�ective, it is not an implementation.

(More generally, de�ning a predicate using quanti�cation over an in�nite domain may lead to

a clear speci�cation but not necessarily to an obvious implementation.) We want to give an

e�ective de�nition of a predicate check (as a LISP program) and prove that check implements

the predicate well-formed, i.e., that these two predicates are extentionally equivalent. More

precisely we wish to prove the soundness of the implementation:

8� ((check �)) (well-formed �))

and its completeness:

8� ((well-formed �)) (check �))

4.3 An example of a Speci�cation and a Program

Before we continue with the implementation of the Calculus of Constructions, let us give as

an illustration a tiny example of a predicate, de�ned both as an inductive predicate and as a

program.

De�nition The predicate even is the smallest predicate that contains 0 and n+2 if it contains

n.

De�nition The predicate ev is de�ned by the following algorithm in the Lisp-like logic of

Nqthm:

(defn ev (x)

(if (numberp x)

(if (equal x 0) t (if (equal x 1) f (ev (sub1 (sub1 x)))))

f))

The soundness of the implementation is:

8x ((ev x)) (even x))

and the completeness is:

8x ((even x)) (ev x))

4.4 Inductive De�nitions in a First Order Setting

Inductive de�nitions in the foregoing style (the least set such that ...) are typically expressed

either within a �rst order logic containing axioms for set theory or in a high-order logic. One

might be attempted to express the inductive de�nition of even in the �rst-order logic of Nqthm

thus:
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(add-axiom even0 () (even 0))

(add-axiom even_plus_two () (implies (even x) (even (add1 (add1 x)))))

But these axioms only express that the set of even numbers contains 0 and n + 2 if it contains

n (positive part of the de�nition), but not the fact that it is the smallest set verifying these

properties (negative part). So, for instance the statement (not (even 1)) is not provable from

these axioms. Roughly speaking the positive part of an inductive de�nition (the fact that the

de�ned set veri�es the given properties) is useful to prove the soundness of an implementation

and the negative part (the fact that it is the smallest among these sets) is useful to prove

its completeness. For instance with the two axioms above we can prove the soundness of the

implementation:

8x ((ev x)) (even x))

but not its completeness:

8x ((even x)) (ev x))

An approach to handling completeness in the Nqthm logic is to de�ne the predicate ev as

above and then prove that it veri�es the two conditions:

(prove-lemma corr ()

(and (ev 0)

(implies (ev x) (ev (add1 (add1 x))))))

and then that every predicate fn that veri�es these two properties contains the predicate ev.

We �rst declare fn to be an unde�ned function of one argument:

(dcl fn (x))

(add-axiom fn-prop ()

(and (fn 0) (implies (fn x) (fn (add1 (add1 x))))))

(prove-lemma comp () (implies (ev x) (fn x)))

The second order quanti�cation every predicate fn is simulated in this �rst order setting by

extending the language with a new predicate symbol fn. Although it is very powerful, this

technique sometimes leads to surprisingly long and uncomfortable proofs.

Another solution is to add as axioms more properties of the speci�ed predicate. For instance,

for the de�nition of even one can add the axioms:

(add-axiom even1 () (not (even 1)))

(add-axiom even_minus_two () (implies (even (add1 (add1 x))) (even x)))

Alternatively one can add the axiom:

(add-axiom even_inv () (implies (even x) (or (equal x 0)

(and (leq 2 x)

(even (sub1 (sub1 x)))))))
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The generality of this approach (i.e., the possibility of expressing the negative part of an induc-

tive de�nition by a �rst order statement) is not yet understood by us

1

.

In this paper we have only proved the soundness of our implementation (and not its com-

pleteness), so we have merely stated as axioms the positive part of the inductive de�nitions.

Nevertheless, although we have only worked on the soundness half, we have failed to prove three

lemmas presented below, which are useful in the soundness proof but which require the negative

part of the inductive de�nition.

5 Normalization

The kernel of the implementation of our proof-checker is the normalization function that permits

us to decide if two terms are convertible. In the recursive fragment of the Nqthm logic, only total

functions can be de�ned, so one would need to prove the normalization of reduction to de�ne it.

The following problems arise: (1) the reduction function does not terminate on all terms, but

only on well-typed terms and it is not possible in the Nqthm logic to de�ne a function restricted

in such a way as to be applicable only to some terms, (2) even on typed terms, the ordinal of

the normalization function is far above "

0

and therefore this function cannot be de�ned in the

recursive fragment of the Nqthm logic. It is possible to de�ne any partial recursive function

in the Nqthm logic via the function EVAL$, an interpreter for the partial recursive functions.

However, reasoning about functions de�ned via EVAL$ within Nqthm is much more di�cult than

reasoning about recursively de�ned functions.

The current solution we have taken in our implementation is to give a bound c to the

normalization function, such that it stops after c reduction steps. This way, we get weaker

soundness and completeness statements.

Soundness:

8� (9c (check � c)) (well-formed �))

Completeness:

8� ((well-formed �)) (9c check � c))

Such a parameter as c above, sometimes called a `clock' parameter, is frequently employed

by users of Nqthm in the veri�cation of computing systems, giving semantics to a system by

�rst de�ning a `single-stepper' and de�ning then a function that runs the single-stepper a given

number of steps. See, for example, [6].

1

Note that Clark's completion axiom [8] expresses the negative part of an inductive de�nition in some cases,

but not in general. Indeed the axioms

(even 0)

8x((even x)) (even (S (S x))))

8x((even x)) ((x = 0) _ 9y((even y) ^ (x = (S (S y)))))) (completion axiom)

characterize a unique set.

But let us de�ne the empty set E as the smallest set such that if x is in E then x is in E. In this case, the

axioms

8x((E x)) (E x))

8x((E x)) 9y((E y) ^ (x = y))) (completion axiom)

do not characterize a unique set.
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6 �-calculus with Nameless Dummies

In the presentation of the calculus above, we have ignored variable renaming problems. These

problems cannot be ignored in a formal speci�cation and implementation. We have therefore

used the notion of terms with nameless dummies introduces by de Bruijn [dB72]. In these terms,

variables have no names and each occurrence of a variable is represented by a positive integer:

the relative depth of its binder.

For instance the term [T : Prop][f : (T ! T ) ! T ](f [y : T ](f [x : T ]y)) is expressed by

[Prop][(1! 2)! 2](1 [2](2 [3]2)), so is the term [U : Prop][g : (U ! U) ! U ](g [a : U ](g [b :

U ]a)).

The de�nitions above are transformed into:

De�nition: Term

The set of term is the smallest set such that:

� Prop is a term,

� Kind is a term,

� if n is a positive integer then n is a term,

� if t and t

0

are terms then (t t

0

) is a term,

� if t and t

0

are terms then [t]t

0

is a term,

� if t and t

0

are terms then (t)t

0

is a term.

De�nition: Context

A context � is a list of which the elements are either terms (variable declarations) or pairs

of terms (constant declarations), i.e., the set of contexts is the smallest set such that:

� [ ] is a context,

� if � is a context and T a term then �[T ] is a context,

� if � is a context and t and T are terms then �[t : T ] is a context.

De�nition: Substitution (and lift by one while you are at it)

� Prop[n u] = Prop,

� Kind[n u] = Kind,

� n[n u] ="

n�1

1

u,

� p[n u] = p (if p < n),

� p[n u] = p� 1 (if n < p),

� (t t

0

)[n u] = (t[n u] t

0

[n u]),
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� [t]t

0

[n u] = [t[n u]]t

0

[n+ 1 u],

� (t)t

0

[n u] = (t[n u])t

0

[n+ 1 u],

where the lifting function "

k

n

is de�ned by:

� "

k

n

Prop = Prop,

� "

k

n

Kind = Kind,

� "

k

n

p = p (if p < n),

� "

k

n

p = p+ k (if p � n),

� "

k

n

(t t

0

) = ("

k

n

t "

k

n

t

0

),

� "

k

n

[t]t

0

= ["

k

n

t] "

k

n+1

t

0

,

� "

k

n

(t)t

0

= ("

k

n

t) "

k

n+1

t

0

.

Note that introducing de Bruijn indices makes the de�nition of substitution less intuitive

since we need to use the lifting operator "

k

n

. We have here an example in which the speci�cation

is as tricky as a program, and we could fail to express it correctly. An interesting problem is

to �nd a speci�cation of the substitution function with de Bruijn indices as intuitive as the one

with explicit names.

De�nition: ��-reduction

� ([T ]t u) >

�

t[1 u]

� if t : T is the n

th

element of � then n >

�

"

n

1

t,

� t >

�

t,

� if t >

�

u and u >

�

v then t >

�

v,

� if t >

�

u and t

0

>

�

u

0

then (t t

0

) >

�

(u u

0

),

� if t >

�

u and t

0

>

�

u

0

then [t]t

0

>

�

[u]u

0

,

� if t >

�

u and t

0

>

�

u

0

then (t)t

0

>

�

(u)u

0

.

De�nition: ��-convertibility

� if t >

�

u then t �

�

u,

� if t �

�

u then u �

�

t,

� if t �

�

u and u �

�

v then t �

�

v.

De�nition: Typing rules

� [ ] is well-formed,
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� if � ` T : s and s 2 fProp;Kindg then �[T ] is well-formed,

� if � ` t : T then �[t : T ] is well-formed,

� if � is well-formed then � ` Prop : Kind,

� if � is well-formed and T is the n

th

element of � then � ` n :"

n

1

T ,

� if � is well-formed and t : T is the n

th

element of � then � ` n :"

n

1

T ,

� if � ` T : s, �[T ] ` U : s

0

, s 2 fProp;Kindg and s

0

2 fProp;Kindg then � ` (T )U : s

0

,

� if � ` T : s1, �[T ] ` U : s2, �[T ] ` t : U , s1 2 fProp;Kindg and s2 2 fProp;Kindg then

� ` [T ]t : (T )U ,

� if � ` t : (T )U and � ` u : T then � ` (t u) : U [1 u],

� if � ` t : T , � ` U : s and T �

�

U and s 2 fProp;Kindg then � ` t : U .

7 Formal Speci�cation

We are now ready to give the (positive part of the) formal speci�cation of the function well-

formed. Here is an informal sketch of the mapping from the syntax of the Calculus of Construc-

tions described above to the corresponding objects in the Nqthm logic.

� Prop and Kind are represented as the symbols 'prop and 'kind.

� The variable n (i.e., the positive integer n, a de Bruijn index) is represented as itself.

� (t1 t2) is represented as (list 'apply t1 t2).

� [t1]t2 is represented as (list 'lambda t1 t2).

� (t1)t2 is represented as (list 'product t1 t2).

� A context is represented as a list. The empty context is represented as nil. De�nitional

elements of a context are represented with (list 'constant ty te) and other elements

are represented with (list 'variable ty).

We start with the lifting function "

k

n

and the substitution function.

(defn lift (n k c)

(cond ((numberp c) (if (lessp c n) c (plus c k)))

((listp c)

(list (car c)

(lift n k (cadr c))

(lift (if (equal (car c) 'apply) n (add1 n)) k (caddr c))))

(t c)))

(defn subst (d n c)

(cond ((numberp c) (cond ((equal c n) (lift 1 (sub1 n) d))

((lessp c n) c)
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(t (sub1 c))))

((listp c)

(list (car c)

(subst d n (cadr c))

(subst d (if (equal (car c) 'apply) n (add1 n)) (caddr c))))

(t c)))

We then axiomatize the (positive part of the) reduction and convertibility relations. We �rst

declare the function red to be a function of three arguments. (red env t1 t2) expresses that

t1 reduces to t2 in environment env.

(dcl red (env t1 t2))

(add-axiom red-beta (rewrite)

(red env (list 'apply (list 'lambda u1 u2) u3) (subst u3 1 u2)))

(add-axiom red-delta (rewrite)

(implies (equal (nth env n) (list 'constant ty te))

(red env n (lift 1 n te))))

(add-axiom red-lambda (rewrite)

(implies (and (red env t1 u1) (red (cons (list 'variable t1) env) t2 u2))

(red env (list 'lambda t1 t2) (list 'lambda u1 u2))))

(add-axiom red-product (rewrite)

(implies (and (red env t1 u1)

(red (cons (list 'variable t1) env) t2 u2))

(red env (list 'product t1 t2) (list 'product u1 u2))))

(add-axiom red-apply (rewrite)

(implies (and (red env t1 u1) (red env t2 u2))

(red env (list 'apply t1 t2) (list 'apply u1 u2))))

(add-axiom red-refl (rewrite)

(red env t1 t1))

(add-axiom red-trans (rewrite)

(implies (and (red env t1 t2) (red env t2 t3)) (red env t1 t3)))

(equiv en t1 t2) expresses that t1 is convertible to t2 in environment env.

(dcl equiv (env t1 t2))

(add-axiom equiv-red (rewrite)

(implies (red env t1 t2) (equiv env t1 t2)))

(add-axiom equiv-sym (rewrite)

(implies (equiv env t1 t2) (equiv env t2 t1)))

(add-axiom equiv-trans (rewrite)

(implies (and (equiv env t1 t2) (equiv env t2 t3))

(equiv env t1 t3)))
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At last we axiomatize the (positive part of the) typing predicate and the well-formedness pred-

icate.

(types env te ty) expresses that te has type ty in environment env.

(well-formed env) expresses that the environment env is well-formed.

(dcl types (env term type))

(dcl well-formed (env))

(add-axiom empty (rewrite)

(well-formed nil))

(add-axiom declaration (rewrite)

(implies (and (well-formed env) (member s '(prop kind)) (types env ty s))

(well-formed (cons (list 'variable ty) env))))

(add-axiom sort (rewrite)

(implies (well-formed env) (types env 'prop 'kind)))

(add-axiom variable (rewrite)

(implies (and (well-formed env) (equal (nth env n) (list 'variable ty)))

(types env n (lift 1 n ty))))

(add-axiom product (rewrite)

(implies (and (member s1 '(prop kind))

(member s2 '(prop kind))

(types env ty1 s1)

(types (cons (list 'variable ty1) env) ty2 s2))

(types env (list 'product ty1 ty2) s2)))

(add-axiom abstraction (rewrite)

(implies (and (member s1 '(prop kind))

(member s2 '(prop kind))

(types env ty s1)

(types (cons (list 'variable ty) env) ty2 s2)

(types (cons (list 'variable ty) env) t2 ty2))

(types env (list 'lambda ty t2) (list 'product ty ty2))))

(add-axiom application (rewrite)

(implies (and (types env t1 (list 'product u1 u2)) (types env t2 u1))

(types env (list 'apply t1 t2) (subst t2 1 u2))))

(add-axiom conversion (rewrite)

(implies (and (types env te ty1) (types env ty2 s) (equiv env ty1 ty2))

(types env te ty2)))

(add-axiom constdecl (rewrite)

(implies (types env te ty)

(well-formed (cons (list 'constant ty te) env))))

(add-axiom constant (rewrite)
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(implies (and (well-formed env) (equal (nth env n) (list 'constant ty te)))

(types env n (lift 1 n ty))))

8 Program

We start the implementation with the normalization function.

(defn apply-list (x l)

(if (nlistp l) x (apply-list (list 'apply x (car l)) (cdr l))))

(defn normal (flg env term stack clock)

(cond

((equal flg 'list)

(if (nlistp term)

nil

(cons (normal t env (car term) nil clock)

(normal 'list env (cdr term) nil clock))))

(t (cond

((zerop clock) (apply-list term stack))

((listp term)

(let ((op (car term)) (c1 (cadr term)) (c2 (caddr term)))

(cond

((equal op 'apply)

(normal t env c1 (cons c2 stack) clock))

((equal op 'product)

(apply-list

(list op

(normal t env c1 nil clock)

(normal t (cons (list 'variable c1) env) c2 nil clock))

stack))

((equal op 'lambda)

(if (nlistp stack)

(list op

(normal t env c1 nil clock)

(normal t (cons (list 'variable c1) env) c2 nil

clock))

(normal t env (subst (car stack) 1 c2) (cdr stack)

(sub1 clock))))

(t f))))

((numberp term)

(let ((val (nth env term)))

(if (and val (equal (car val) 'constant))

(normal t env (lift 1 term (caddr val)) stack (sub1 clock))

(apply-list term (normal 'list env stack nil (sub1 clock))))))

((equal term 'prop) (apply-list 'prop stack))

((equal term 'kind) (apply-list 'kind stack))

(t f))))

((ord-lessp (cons (add1 clock) (count term)))))

Then we implement the function that computes a type of a term.
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(defn check-term (env term clock)

(cond

((numberp term)

(let ((val (nth env term)))

(if val (lift 1 term (cadr val)) f)))

((equal term 'prop) 'kind)

((or (nlistp term) (not (equal nil (cdddr term)))) f)

(t (let ((op (car term)) (c1 (cadr term)) (c2 (caddr term)))

(cond

((equal op 'apply)

(let ((typ1 (check-term env c1 clock))

(typ2 (check-term env c2 clock)))

(if (and typ1 typ2)

(let ((ntyp1 (normal t env typ1 nil clock))

(ntyp2 (normal t env typ2 nil clock)))

(if (and (equal 'product (car ntyp1))

(equal ntyp2 (cadr ntyp1)))

(subst c2 1 (caddr ntyp1))

f))

f)))

((equal op 'lambda)

(let ((typ1 (check-term env c1 clock))

(typ2 (check-term (cons (list 'variable c1) env) c2 clock)))

(if (and (member typ1 '(prop kind))

typ2

(not (equal typ2 'kind)))

(list 'product c1 typ2)

f)))

((equal op 'product)

(let ((typ1 (check-term env c1 clock))

(typ2 (check-term (cons (list 'variable c1) env) c2 clock)))

(if (and (member typ1 '(prop kind)) (member typ2 '(prop kind)))

typ2

f)))

(t f))))))

At last, here is the function that checks that a context is well-formed.

(defn check-item (env item clock)

(let ((nature (car item)))

(if (equal nature 'constant)

(let ((typ (cadr item)) (val (caddr item)))

(let ((ty2 (check-term env val clock)))

(if (and (equal nil (cdddr item))

(check-term env typ clock)

ty2

(equal (normal t env ty2 nil clock)

(normal t env typ nil clock)))

(cons item env)

f)))

(if (equal nature 'variable)

(let ((typ (cadr item)))
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(if (and (equal nil (cddr item))

(member (check-term env typ clock) '(prop kind)))

(cons item env)

f))

f))))

(defn check (env clock)

(if (nlistp env)

(equal 'nil env)

(and (check (cdr env) clock) (check-item (cdr env) (car env) clock))))

This implementation is very inuenced by [Hue89].

9 Unproved Lemmas

We failed to prove three lemmas that are needed to prove soundness and that require the

negative part of the inductive de�nitions.

(add-axiom subject-reduction (rewrite)

(implies (and (types env t1 ty) (red env t1 t2))

(types env t2 ty)))

(add-axiom type-type (rewrite)

(implies (types env te ty)

(or (equal ty 'kind) (types env ty 'prop) (types env ty 'kind))))

(add-axiom red-kind (rewrite)

(equal (red env 'kind te) (equal te 'kind)))

10 Soundness

Given the foregoing axioms, de�nitions, and unproved lemmas, we can now check with Nqthm

our soundness result:

(implies (check l clock) (well-formed l))

Events suitable for driving Nqthm to check this result are given in [4].

11 An Example

Using this system, we have checked a proof of Tarski's �xed point theorem. The object was

obtained by using the system COQ. Nqthm can prove (in fact simply by running code for check)

that check returns non-F on this formal proof object, given a clock argument of 7, and thus by

the theorem above, it follows that that the proof object is well-formed.
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12 Proving The Soundness of a Enhanced Conversion Func-

tion

When we want to apply a function f of type A ! B to a value of type A

0

we need to check

that the terms A and A

0

are convertible. In the program above we normalize the terms A and

A

0

and we check that their normal forms are equal. When A = F (a) and A

0

= F (a

0

) where F is

a constant declared in the context F := t and a and a

0

are convertible terms, we normalize the

terms (t a) and (t a

0

) and check that the normal forms are equal. In [Hue89] Huet has proposed

a more evolved method, in which when we get the same constant as head-symbol of the terms

A and A

0

we �rst try to check that the arguments of this function are pairwise convertible and

only when this test fails expand the constants. Keeping the speci�cation the same, we have

proved the soundness of another program using this method.

Conclusions and Speculations

Thus far in our investigation, we have formally speci�ed and implemented in the Nqthm logic

a proof-checker for the Calculus of Constructions and we have proved the soundness of the

implementation, assuming three unproved lemmas.

Several problems remain unsolved.

� Our speci�cation of substitution is not very intuitive, since we de�ne it through the lifting

operator "

k

n

.

� We need to �nd a way to express the negative part of the inductive de�nitions to be able

to complete the proofs of the three admitted lemmas and to prove the completeness of

our implementation.

� We need to understand how to de�ne the normalization function without a `clock' ar-

gument, for which we need to be able to express a function that terminates only when

its arguments belong to some class (here, well-typed terms) and prove that in our de�-

nition this function is only used with such arguments. Because the class in question is

characterized by the function we are trying to de�ne, this problem is nontrivial for Nqthm.

� We need to understand how to strengthen Nqthm in order to be able to prove the termi-

nation of this unclocked normalization function, something non-trivial since, by G�odel's

second incompleteness theorem, it can be proved neither in the Calculus of Constructions

nor in weaker systems, such as the recursive fragment of the Nqthm logic. For example,

given a concrete representation for a suitably large ordinal and given a primitive recur-

sive `less-than' relation on this representation, we could easily `wire' the Nqthm system

to permit induction up to that ordinal. However, we do not currently know of such an

ordinal and representation.

� As an alternative to attempting to formalize an unclocked-version of the normalization

function, we might instead reformulate the well-formed predicate to take both an environ-

ment and a �nite sequence of reduction operations to perform. That is, we could retreat

from de�ning a `decision procedure' for well-formedness to being satis�ed with merely

de�ning a proof-checker for well-formedness.
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� As another alternative, we could de�ne check via EVAL$, an interpreter for the partial

recursive functions.
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Abstract

We show that in�nite objects can be constructively understood without the consideration of

partial elements, or greatest �xed-points, through the explicit consideration of proof objects. We

present then a proof system based on these explanations. According to this analysis, the proof

expressions should have the same structure as the program expressions of a pure functional

lazy language: variable, constructor, application, abstraction, case expression, and local let

expression.

Introduction

The usual explanation of in�nite objects relies on the use of greatest �xed-points of monotone

operators, whose existence is justi�ed by the impredicative proof of Tarski �xed point theorem.

The proof theory of such in�nite objects, based on the so called co-induction principle, originally

due to David Park [18] and explained with this name for instance in the paper [15], reects this

explanation. Constructively, to rely on such impredicative methods is somewhat unsatisfactory

and this paper is a tentative for a more direct understanding of in�nite objects. Interestingly,

the explicit consideration of proof objects plays an essential rôle here and this approach suggests

an alternative reasoning system. In particular, the notion of constructors, or introduction rules,

keeps the fundamental importance it has for proof system about well-founded objects [13],

while it appears as a derived notion in proof systems based on co-induction (where this notion

is secondary to the notion of destructors, or elimination rules). As a consequence, the strong

normalisation property does not hold any more, but it is still the case that any closed term

reduces to a canonical form.

Briey, we can describe our approach as follows. A co-inductive predicate, relation, : : : is

de�ned by its introduction rules. Following the proofs as programs principle, we represent them

as constructors of a functional language with dependent types and each proof is now represented

as a functional expression. Like in a programming language, we can de�ne a function by

recursion, which corresponds to a proof where the result we want to prove is used recursively.

This cannot be considered to be a valid proof in general, and has to satisfy some conditions in

order to be correct. We describe a simple syntactical check that ensures this correctness, which

we believe leads to a natural style of proofs about in�nite (or lazy) objects.

Since one important application we have in mind is the mechanisation of reasoning about

programs and processes, we analyse in our formalism some concrete examples from the littera-

ture [19, 15].
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One possible way of reading this paper is to read the proof principle described in the sub-

section 1.2.4, and then to look at the examples in the second section. The �rst section contains

motivations for and a purely inductive justi�cation of this proof principle.

Besides to illustrate further the increasingly recognized importance of in�nite proofs for

programming language semantics, we hope to show also that the addition of in�nite objects

is an interesting extension of Type Theory. In particular, we can now represent a notion of

processes in Type Theory.

1 General presentation

1.1 Type Theory of Well-Founded Objects

We recall briey some basic notions of type theory of well-founded objects, that will be important

for the extension to in�nite objects. The books [4, 13] contain more detailed explanations, and

the reference [3] describes the addition of case expressions and pattern-matching.

1.1.1 Semantics

A(n inductive) set A is de�ned by its constructors. A closed term of type A can be thought

of as a well-founded tree, built out of constructors. We identify sets and propositions. The

constructors can be interpreted as introduction rules, and a closed proof of the proposition

A is a well-founded proof tree built out of introduction rules.

It is clear [13, 7], that, besides terms purely built out of constructors, one needs also to

consider noncanonical expressions. The addition of such expressions is done in such a way

however that any closed term of a closed set can be reduced to a canonical form, i.e. a term

of the form c(a

1

; : : : ; a

n

) where c is a constructor

1

. We can then associate in a natural way to

any term a tree built out of constructors, and we require this tree to be well-founded. This tree

is called the computation tree of a term. A component of a closed term is a (closed) term

that appears in its computation tree. This de�nes an order relation of closed terms, called the

component ordering.

What is essential is the fact that the component ordering is well-founded.

These notions can be traced back to Brouwer's idea of the \fully analysed" form of a proof

[7].

1.1.2 Noncanonical Constants

We now give a general way of adding new noncanonical constant, which preserves this association

of a well-founded proof tree to any closed object. This new constant f is �rst given a type

(x

1

: A

1

; : : : ; x

n

: A

n

)A; and we write its de�nition f(x

1

; : : : ; x

n

) = e; where e is an expression

built on previously de�ned constants and case expressions. The de�nition may be recursive,

but, using the semantics of a term as a well-founded tree, we can ensure that the recursive

calls are well-founded and justify in such a way this recursivity. We notice, as in [6], that

there is a simple syntactical check that ensures this: there exists a lexicographic ordering of the

arguments of f; such that all recursive calls are well-founded for the lexicographic extension of

the component ordering.

1

Our notations will follow [4].
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1.1.3 Examples

The set N of integers is de�ned by its constructors 0 : N and s : (N)N: A closed element of

type N is thus a �nite object of the form s

k

(0):

Let us consider a type P with constructors out : (N)(P)P; in : ((N)P)P and nil : P: A

closed element p : P has to be thought of as a well-founded tree built out of the constructors

out; in and nil: For instance, if u(n) = out(n;nil); the term in(u) has for components, besides

itself, all the instances out(s

k

(0);nil); s

k

(0) and nil:

The requirement that we should be able to think of all closed elements as a tree, with a de�-

nite branching (that may be in�nite), imposes strong restriction on the type of the constructors.

Thus, we cannot have a set X with a constructor of type ((X)X)X or of type (((X)N)N)X:

However, a condition of strict positivity [8] on the type of the constructors is enough to ensure

that we can think of elements as trees built out of constructors.

The Ackerman function A : (N)(N)N de�ned by the equation

A(0; n) = s(n); A(s(m); 0) = A(m; s(0)); A(s(m); s(n)) = A(m;A(s(m); n));

follows the schema of de�nition, since the recursive calls are always smaller for the lexicographic

ordering.

The equations above are a sugared form of the following de�nition

A(x,y) = case x of

0 => s(y)

| s(x') => (case y of

0 => A(x',s(0))

| s(y') => A(x',A(x,y'))

end)

end

1.2 In�nite Objects

1.2.1 Analogy between proofs and processes

It is tempting to think of an object of type P as a process p which has three possible behaviours:

it can either emit an integer and becomes p

1

; when it is of the form out(n; p

1

); or express that

it needs an integer as input, if it is of the form in(f); or show that it is inert, if it is of the

form nil: In this reading, the computation tree of an element is the \behaviour tree" [16] of the

process associated to it.

With this reading, the restriction to well-founded objects seems too strong. For the type P

as de�ned above, this will mean that we consider only processes that eventually become inert.
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This forbids for instance a process p = in([n]out(s(n); p)) that interactively asks for an integer

and outputs its successor.

It is thus quite natural to consider also lazy sets that are, like inductive sets, speci�ed by

their constructors, but whose elements can be thought of as arbitrary, not necessarilly well-

founded, trees built out of constructors. We still require of noncanonical elements that they

reduce eventually to constructor forms.

As we have seen, the consideration of such objects is common in the analysis of processes

[16]. The consideration of not necessarilly well-founded objects arouse also in proof theory, for

the study of proofs in !-logic [11].

The process p = in([n]out(s(n); p)) recursively de�ned is an element of the lazy set P: It

makes also sense of considering the lazy set 
; which has only one constructor s : (
)
: The

well-founded version of this type is empty, but the lazy set 
 contains the recursively de�ned

element ! = s(!): An object is called productive if we can associate a computation tree to

it, without requiring this computation tree to be well-founded. If x is a (productive) object of

type 
; it should reduce to an element x = s(x

1

) (because s is the only constructor of the set


), and similarly x

1

should reduce to an element x

1

= s(x

2

), and so on.

Though this notion of productivity seems clear, at least in the case of �nitely branching

trees, the main problem will be to give a �nitary precise de�nition of productivity. We will

give this de�nition after reviewing some attempts in adding in�nite objects to type theory.

Though simple, it is quite surprising that this de�nition achieves this goal without in�nitary

considerations based on greatest �xed-points or in�nite ordinals

2

.

1.2.2 Problem with the addition of in�nite objects

Some problems in adding in�nite objects in Type Theory are analysed in the reference [14].

One basic problem can be expressed as follows: how to add in�nite objects without also adding

partial objects, that is objects that do not reduce to a canonical form? For instance, it is not

correct to de�ne a function f : (
)
 by the equation f(s(x)) = f(x); because f(!) does not

reduce then to canonical form. In contrast, the de�nition f(s(x)) = s(f(x)) should be clearly

allowed, because the element f(x) is then productive if x : 
 is productive.

Is their a simple syntactical criteria that ensures the preversation of productivity, which is

not too restrictive?

In our analysis, a de�nition of the primitive recursive form f(s(x)) = g(x; f(x)) cannot be

justi�ed in general. Indeed, the justi�cation of such a de�nition relies ultimately on the fact

that we consider only well-founded objects [13]. In [14], a di�erent view is followed, based

on an unexpected analogy between the addition of in�nite objects in type theory and non-

standard extensions in non-standard analysis. This explanation rejects circular de�nitions such

as ! = s(!); but allow non well-founded de�nitions such as

!

0

= s(!

1

); !

1

= s(!

2

); : : :

In the next paragraph, we will suggest a proof principle, which can also be seen as a way of

de�ning functions over not necessarilly well-founded objects, that relies directly on the semantics

of an object as a not necessarilly well-founded tree built out of constructors.

2

This de�nition can be extracted from the paper [11], where the notion of \convergence" corresponds to our

notion of productivity.
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1.2.3 A key example

At this point, the basic di�culty is to �nd a way of de�ning functions that ensures that any

instances of such functions on productive elements are productive. For this, we need a precise

notion of productivity.

In order to �nd this de�nition, let us analyse a key example. We consider the function

F : (P)P de�ned by the equations

F (nil) = nil; F (in(u)) = in([n]F (u(n))); F (out(n; p)) = out(n; F (p)):

It should be clear intuitively that F (p) is productive if p is productive. How can we be convinced

of this fact in a clear and rigourous way? One answer may be a de�nition of productivity as

a greatest �xed-point. While this answer is formally satisfactory, it can be argued that its

impredicative use of Tarski's �xed point theorem is not a satisfactory �nitary explanation of

in�nite objects.

It can be noticed however that it is directly clear that F (p) reduces to a canonical form if p

is productive. Furthermore, we can see that all components of F (p) are then of the form F (q);

for some productive q : P; or n for some n : N: This suggests the following de�nition.

De�nition: An element is productive i� all its components have a canonical form.

It is then clear that F (p) is productive if p is productive. This will be directly generalized

in the next section.

1.2.4 Proof principle for in�nite objects

Let f be a constant of type (x

1

: A

1

; : : : ; x

n

: A

n

)A where A is a set, we de�ne simulatenously

when f is guarded in an expression e and when f is authorized in e (this second notion is

only an auxiliary notion, and guarded implies authorized). This is by case on e :

� if f does not occur in e, then f is guarded and authorized in e;

� if e is of the form c(u

1

; : : : ; u

n

) where c is a constructor, and f is authorized in all u

i

; then

f is guarded (and authorized) in e;

� if e is of the form [x]u; and f is guarded (resp. authorized) in u; then f is guarded (resp.

authorized) in e;

� if e is a case expression case(v; p

1

! e

1

; : : : ; p

n

! e

n

); then f is guarded (resp. authorized)

in e i� f does not occur in v and f is guarded (resp. authorized) in e

1

; : : : ; e

n

;

� if e is of the form f(u

1

; : : : ; u

n

) and f does not occur in u

1

; : : : ; u

n

; then, f is authorized

in f(u

1

; : : : ; u

n

):

The importance of this notion comes from the following result, where we assume that all

closed expressions that do not contain f are productive.

Lemma: if f is de�ned by f(x

1

; : : : ; x

n

) = e and f is guarded in e, then all the components

of e either does not contain f; or are of the form f(u

1

; : : : ; u

p

) where f does not occur in

u

1

; : : : ; u

n

:
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Theorem: If f : (x

1

: A

1

; : : : ; x

n

: A

n

)A has a recursive de�nition f(x

1

; : : : ; x

n

) = e where

all recursive occurences of f in e are guarded by constructors, then f(p

1

; : : : ; p

n

) is productive

whenever p

1

; : : : ; p

n

are.

Proof: We establish �rst that any closed instance f(p

1

; : : : ; p

n

) reduces to a canonical form.

By the previous lemma, it follows that any closed instance of f is productive

3

. Q.E.D.

This theorem can be read as a proof principle. In order to establish that a proposition �

follows from other propositions �

1

; : : : ; �

q

; it is enough to build a proof term e for it, using

not only natural deduction and case analysis, but also using the proposition we want to prove

recursively, provided such a recursive call is guarded by introduction rules. We hope to show by

the examples given below that this reasoning principle is quite exible and intuitive in practice.

1.2.5 Some remarks on this proof principle

First, it has to be noticed that this criteria cannot accept nested occurences of the function,

contrary to the well-founded cases. Thus, we cannot de�ne a function f : (
)
 by the equation

f(s(s(x))) = s(f(f(x)));

since the nested occurence of f in the right handside is not guarded. Indeed, in this case, it can

be checked that f(!) is not productive: it has for component f(f(!)) which does not reduce to

canonical form.

Another remark is that we can combine this test with the previous test on well-founded

recursive calls, if some arguments are ranging over well-founded types. This situation will occur

in one example [15] analysed below, where an in�nite proof is de�ned by well-founded recursion

over an evaluation relation.

Finally, this guarded condition may seem too restrictive, especially in the de�nition of

functions over in�nite objects. Several programs on streams, even if they preserve productivity,

do not obey in general this guarded condition [22]. But we think that the situation is similar

to the one of well-founded objects, where the condition on structurally smaller recursive calls

does not capture all usual de�nitions of programs de�ned over well-founded objects (though its

scope is surprisingly large [3, 6]).

Though this does not seem to be the general case, some de�nitions that are not guarded

can be turned easily in de�nitions that are guarded. For instance, if we consider the set of

streams of integer S with only one constructor cons : (N)(S)S; we can de�ne of the function

map : ((N)N)(S)S by the guarded equation

map(f; cons(x; l)) = cons(f(x); map(f; l));

and thus consider the equation

u = cons(0; map(s; u));

which should represent the stream cons(0; cons(s(0); : : :)): This de�nition is not allowed be-

cause it is not guarded. It can be replaced however by the de�nition of the function v : (N)S

v(n) = cons(n; v(s(n)));

3

The guarded condition is well-known for the recursive de�nition of processes [16]. The two important points

here are �rst, its justi�cation based on an inductive notion of productivity, and second, its use as a proof principle.
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and the de�nition u = v(0):

Furthermore, the �rst intended application is for reasoning about in�nite objects, and not

for programming on them. For this application, the guarded condition is enough to give a proof

system at least as powerful as the one based on co-induction, and seems more exible on the

examples we have tried. It is actually by trying to understand intuitively what was going on in

proofs by co-induction that the guarded condition came out as a proof principle.

To summarize, what is important about the guarded condition is that it can be ensured

by a simple syntactical check, that it can be directly justi�ed, and that it seems to provide a

powerful enough proof principle for reasoning about in�nite objects.

1.3 Reformulation with rule sets

In this section we express in an abstract way how one can understand inductively a greatest

�xed-point. We follow the terminology of [1].

We start with a set U of atoms and a set � of rules, that are pairs (X; x) such that X � U

and x 2 U: We write � : X 7! x to mean that (X; x) 2 �: An element (X; x) 2 � is called a

rule of conclusion x and of premisses X: There is a monotone operator � associated to �;

given by

�(Y ) = fx 2 U j � : X 7! x for X � Y g:

The kernel of � is given by

K(�) =

[

fX j X � �(X)g:

This is the greatest �xed point of �:

We now give a purely inductive description of K(�) in the case where � is deterministic,

i.e. when � : X

1

7! x and � : X

2

7! x entail X

1

= X

2

:

First, we de�ne S

�

(x) as the set of y 2 U such that there exists � : X 7! x with y 2 X: Let

z 2 S

�

�

(x) mean that z = x or inductively that z 2 S

�

�

(y) for some y 2 S

�

(x): An element of

S

�

(x) is called a direct component of x, and an element of S

�

�

(x) a component of x: Let

C(�) � U be the set of x 2 U such that there exists a rule of conclusion x: This de�nes the set

of canonical elements. The alternative description of K(�) is

K

0

(�) = fx 2 U j S

�

�

(x) � C(�)g;

that is, K

0

(�) is the set of elements whose components are all canonical.

Theorem: K(�) = K

0

(�):

Proof: If A � �(A) and x 2 A; then we have A � C(�) and S

�

�

(x) � A; using the

fact that � is deterministic, and hence all the components of x are canonical. This shows the

inclusion K(�) � K

0

(�): Conversely, the inclusion K

0

(�) � �(K

0

(�)) holds in general, and hence

K

0

(�) � K(�); without any hypothesis on �: Q.E.D

2 Simple examples of proofs and programs

2.1 Divergence

We introduce the following set of expressions

0 : Exp; s : (Exp)Exp; ! : Exp;
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and the following inductively de�ned relation

e

1

: Eval(0; 0); e

2

: (x : Exp)Eval(s(x); s(x)); e

3

: Eval(!; s(!))

and the following lazy predicate

i : (x; y : Exp)(Eval(x; s(y)))(inf(y))inf(x):

The term

p

1

: inf(!)

is de�ned by the guarded equation

p

1

= i(!; !; e

3

; p

1

);

and thus, it is a proof of inf(!):

Though this example is almost trivial, it illustrates the di�erence between the present proof

system and proofs based on co-induction. A proof that ! is divergent using co-induction will

consist in �nding a predicate P , which holds for !, such that P (x) implies that there exists

y such Eval(x; y) and P (y): Thus, one has to �nd an \invariant" predicate. By contrast, the

present approach does not involve the search of suitable predicates, but analyses the problem

by looking at the introduction rule for the predicate inf: (We can see in this way that inf(!)

has only one proof.)

2.2 Abstract divergence

In general, if we start with a set A with a binary relation R; one can describe inductively the

subset of accessible elements

acc : (x : A)((y : A)(R(x; y))Acc(y))Acc(x);

and the lazy subset of divergent elements

inf : (x; y : A)(R(x; y))(Inf(y))Inf(x):

Classically, these subsets form a partition of A: In the present intuitionistic framework, one

cannot expect in general to have a proof of (x : A)[Acc(x) + Inf(x)]:

In particular, we cannot derive in our system some results of [12], which establish the equiv-

alence of two notions of divergence using the fact that an element either diverges or converges.

It seems quite interesting to investigate this problem more in detail from an intuitionistic point

of view (our guess is that this equivalence is not really used, and the non equivalence indicates

only that the stronger notion of divergence is the correct intuitionistic notion).

It is however possible to show that these subsets are disjoint, by de�ning

� : (x : A)(Acc(x))(Inf(x))N

0

with the following equation

�(x; acc(x; f); inf(x; y; q; r)) = �(y; f(y; q); r);

which is well-founded because the recursive call of � is smaller on its second argument.
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2.3 Representation of an unreliable medium

We want to build an element m : P that can be thought of as an unreliable medium: it asks

�rst for an integer input, and either forgets it, or outputs it, and this recursively. For this, we

introduce an in�nite oracle set C with two constructors 0 : (C)C and 1 : (C)C: An object of

the set C can thus be thought of as an in�nite stream of the form 0(1(0(0(: : :)))); and in this

case, the computation tree of a term is similar to the binary development of a real number.

The following equations de�ne a function m : (C)P

m(0(!)) = in([n]m(!)); m(1(!)) = in([n]out(n;m(!)));

since these equations satisfy the guarded condition.

What is important about this representation is that we will be able to de�ne by a lazy

predicate on C when an element of C contains in�nitely many 1; and hence to specify when an

unreliable medium is fair.

2.4 De�nition of co-recursion

We now show on one example how to translate co-induction and co-recursion in our proof system.

We suppose given a map f : (X)[X+X ] and we want to build from this a map corec(f) : (X)C

satisfying the usual co-recursive equations [19]. For this, we de�ne �rst � : (X + X)C by the

guarded equations

�(inl(x)) = 0(�(f(x))) �(inr(x)) = 1(�(f(x))):

One can then check that corec(f)(x) = �(f(x)) is such that corec(f)(x) = 0(corec(f)(y)) when

f(x) is of the form inl(y) and corec(f)(x) = 1(corec(f)(y)) when f(x) is of the form inr(y):

Hence, we have a representation of co-recursion over the lazy set C:

This indicates how one can develop a realisability semantics of co-induction with streams

(see [23]), in such a way that an element of a coinductive type is interpreted by a productive

element.

2.5 Fairness

We introduce an inductively de�ned predicate Event

1

on C; such that Event

1

(x; y) means

that x is of the form x = 0(0(: : :0(1(y)) : : :)). We have two introduction rules

d

1

: (x : C)Event

1

(1(x); x); e

1

: (x; y : C)(Event

1

(x; y))Event

1

(0(x); y):

A proof of Event

1

(x; y) has to be thought of as a �nite term of the form

e

1

(x

1

; y; : : : ; e

1

(x

n�1

; y;d

1

(y)) : : :);

with x = 0(x

1

); x

1

= 0(x

2

); : : : ; x

n�1

= 1(y):

Using the inductively de�ned predicate Event

1

; we can now introduce the predicate Inf

1

(x)

which means that x contains in�nitely many 1 in its development. It has only one introduction

rule:

inf

1

: (x; y : C)(Event

1

(x; y))(Inf

1

(y))Inf

1

(x);
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and a proof of Inf

1

(x

0

) should be thought of as an in�nite proof term of the form

inf

1

(x

0

; x

1

; p

1

; inf

1

(x

1

; x

2

; p

2

; inf

1

(: : :)))

where p

n

is a proof of Event

1

(x

n�1

; x

n

): This corresponds closely to the intuition of what it

means for such a stream to have in�nitely many 1:

A fair unreliable medium will then be de�ned as a medium m(!) : P; together with a proof

of Inf

1

(!):

2.6 Proof about the list of iterates

This example is taken from [19], and it is interesting to compare the proof given here to the

co-inductive proof presented in this paper. We de�ne �rst a lazy relation on the set of stream

of integers with the only constructor

eq : (n : N)(l

1

; l

2

: S)(Eq(l

1

; l

2

))Eq(cons(n; l

1

); cons(n; l

2

)):

As a parenthesis, let us illustrate further our proof principle by showing that Eq is transitive.

For this, we declare

trans : (l

1

; l

2

; l

3

: S)(Eq(l

1

; l

2

))(Eq(l

2

; l

3

))Eq(l

1

; l

3

);

and de�ne it by the guarded equation

trans(cons(n; l

1

); cons(n; l

2

); cons(n; l

3

); eq(n; l

1

; l

2

; p); eq(n; l

2

; l

3

; q))

= eq(n; l

1

; l

3

; trans(l

1

; l

2

; l

3

; p; q)):

We end this parenthesis, and present the problem: it is to show that, if we de�ne v : (N)S by

the guarded equation

v(n) = cons(n; v(s(n)));

and map : ((N)N)(S)S is de�ned by the guarded equation

map(f; cons(n; l)) = cons(f(n); map(f; l));

then we have Eq(l

0

; v(0)); whenever Eq(l

0

; cons(0; map(s; l

0

))):

We introduce �rst the lazy relation M(l

1

; l

2

) on S with the only introduction rule

m : (l

1

; l

2

: S)(M(l

1

; l

2

))(n :N)M(cons(n; l

1

); cons(s(n); l

2

)):

We can then de�ne

g : (l : S)M(l;map(s; l));

by the only guarded equation

g(cons(x; l)) =m(l;map(s; l); x; g(l)):

Next we de�ne a function

f : (n :N)(l; l

0

: S)(Eq(l; cons(n; l

0

)))(M(l; l

0

))Eq(l; v(n))

by the guarded equation

f(n; cons(n; l); cons(s(n); l

0

); eq(n; l; l

0

; p);m(n; l; l

0

; q)) = eq(n; l; v(s(n)); f(s(n); l; l

0

; p; q)):

This represents the following de�nition
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f(n,l,l',p,q) =

case p of

eq(n1,l1,l1',p1) => case q of

m(n2,l2,l2',q1) =>

eq(n1,l1,v(s(n)),f(s(n),l1,l1',p1,q1))

end

end

We have then

f(0; l

0

; map(s; l

0

); h; g(l

0

)) : Eq(l

0

; v(0)) [h : Eq(l

0

; cons(0; map(s; l

0

)))]:

2.7 Soundness of a type inference system

As a test example, we have represented the problem of soundness of a type inference system

analysed in [15]. This corresponds to using the present version of type theory with possibly

in�nite objects instead of Peter Aczel non-well-founded set theory [2]. We suppose given a set

of constants and we introduce

EXP : Set

const_exp : (CONST)EXP

lambda : (IDENT;EXP)EXP

app : (EXP;EXP)EXP

var : (IDENT)EXP

fix : (IDENT;IDENT;EXP)EXP

VAL : Set

ENV : Set

const_val : (CONST)VAL

clos : (IDENT;EXP;ENV)VAL

nil_env : ENV

cons_env : (IDENT;VAL;ENV)ENV

We can then de�ne

loop : (x:IDENT;f:IDENT;exp:EXP;E:ENV)VAL

loop(x,f,exp,E) = clos(x,exp,cons_env(f,loop(x,f,exp,E),E))

which is guarded, and corresponds to the object cl

1

described in [15].

We shall not describe the proof in detail, but only emphasize some points. The relation

v : � given by the rule (15) of the paper [15] is seen in our formalism as the introduction rule

for a lazy relation between expressions and types. Thus, in the case of recursion, rule 6, page

217 (which is the only case where our proofs di�er), we see the problem of proving cl

1

: � as
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the problem of building an in�nite proof tree ending with cl

1

: �: But this is direct, because

cl

1

=< x; exp; E + ff 7! cl

1

g > (we use the notation of [15]) and we can use recursively

cl

1

: �:

3 Mechanization

We now discuss the mechanization of the present system, that is the existence of an algorithm

for type/proof-checking, and how to design an interactive proof search.

The main problem for type-checking is the type-checking of case expression, because this

introduces an uni�cation problem. Let us say that an expression is �rst-order i� it is built

out of constructors and variables. If we impose that the conclusion of any introduction rule is

�rst-order, then, we can use the �rst-order uni�cation algorithm if we do only case analysis over

variables whose types are �rst-order expressions. This restriction to �rst-order expression does

not seem too strong in practice.

The checking of the well-foundedness condition, or the guarded condition, does not raise

any problem. One alternative is that the user speci�es himself a lexicographic ordering on the

arguments, and then the system checks that all recursive calls that are not guarded are smaller

for this ordering. The other alternative is that the system collects all recursive calls (all the

non guarded recursive calls in the case of the de�nition of an in�nite object), and tries to �nd

by itself a suitable lexicographic ordering which ensures termination.

We believe that this system leads to an intuitive interactive proof system, well-suited for

providing a mechanical help in the development of proofs in relational (or natural) semantics

[15]. The user introduces new sets, predicates, relations de�ned by their introduction rule. We

remark that, in practice and probably because it is clearer, in [12, 4], the lazy relations are not

given by their elimination rules, but by their introduction rules.

When one wants to prove a result, or builds a noncanonical function, one �rst gives to it

a name and a type. The use of case expression corresponds to the analysis of the hypotheses.

By uni�cation, this analysis generates subgoals that can be further analysed until we can write

a solution. The possibility of declaring and proving local lemmas (that can be themselves

recursively de�ned) corresponds to the addition of a local let construct.

Conclusion

Connections with the work of C. Ra�alli [20], which presents ideas that seem similar in the

logical system AF2 should be precised.

One main point of this paper, which goes back to the work of Lars Halln�as [10], is that

the in�nitary notions that seem necessary in dealing with in�nite objects, typically the use

of greatest �xed-point or in�nite ordinals, can be avoided altogether by explicit consideration

of proof objects. Though it was not originally conceived with this remark in mind, the proof

system we present can be seen as a further illustration of this basic idea

4

.

LOOP DETECTION???

4

One can see Martin-L�of's constructive explanation of the addition of non-standard elements through the

explicit consideration of non-standard proof-objects [14] as yet another example of this idea.

82



Acknowledgement

The initial idea of this paper came through a discussion with Eike Ritter and Peter Dybjer

about proof systems for in�nite objects, and was precised by several discussions with Peter

Dybjer, Andy Moran and Lars Halln�as.

References

[1] P. Aczel. An introduction to inductive de�nitions. In J. Barwise, editor, Handbook of

Mathematical Logic, 739 - 782, (1977), Elsevier.

[2] P. Aczel. Non-Well-Founded Set Theory CSLI Lecture Notes, Vol. 14 (LSCI, Stanford, 1988)

[3] Th. Coquand. Pattern-Matching in Type Theory. Proceedings of the B.R.A. meeting on

Proof and Types, (1992) Bastad.

[4] P. Cousot and R. Cousot. Inductive de�nitions, semantics and abstract interpretation.

POPL'91, (1991).

[5] H. Curry and R. Feys. Combinatory Logic, Vol. 1. North-Holland Publishing Company

[6] O. Dahl. Veri�able Programming. Prentice-Hall, 1992.

[7] M. Dummett. Elements of Intuitionism. Oxford University Press, 1977.

[8] P. Dybjer. Inductive Families To appear in Formal Aspects of Computing (1993)

[9] J.Y. Girard. Proof Theory and Logical Complexity. Bibliopolis, 1988.

[10] L. Halln�as. An Intensional Characterization of the Largest Bissimulation. Theoretical

Computer Science 53 (1987), 335 - 343.

[11] L. Halln�as. On the syntax of in�nite objects: an extension of Martin-L�of's theory of

expressions. LNCS 417, COLOG-88, P. Martin-L�of and G. Mints Eds., (1989), 94 - 103

[12] J. Hugues and A. Moran. A semantics for locally bottom-avoiding choice. Proceedings of

the Glasogow Functional Programming Workshop'92, WICS (1992).

[13] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.

[14] P. Martin-L�of. Mathematics of In�nity. LNCS 417, COLOG-88, P. Martin-L�of and G.

Mints Eds., (1989), 146 - 197

[15] R. Milner, M. Tofte. Co-induction in Relational Semantics Theoretical Computer Science

87 (1991), 209 - 220.

[16] R. Milner. A Calculus of Communicating Systems Report ECS-LFCS-86-7, Computer

Science Department, University of Edingburg, 1986.

[17] B. Nordstr�om, K. Petersson and J. Smith. Programming in

Martin-L�of 's Type Theory. An Introduction. Oxford University Press, 1990.

83



[18] D. Park. Concurrency and automata on in�nite sequences. in P. Deussen, editor, Proceed-

ings of the 5th GI-conference on Theoretical Computer Science, LNCS 104, (1981), 167 -

183.

[19] L. Paulson. Co-induction and Co-recursion in Higher-order Logic. Draft (1993), University

of Cambridge.

[20] C. Ra�alli. Fixed points and type systems (Abstract) proceeding of the third B.R.A.

meeting on Proofs and Types (1992), Bastad, 309.

[21] W. de Roever. On Backtracking and Greatest Fixpoints Formal Description of Program-

ming Concepts, J. Neuhold (ed.), North-Holland, (1978), 621 - 639.

[22] B.A. Sijtsma. On the productivity of recursive list functions. ACM Transactions on Pro-

gramming Language and Systems, Vol. 11, No 4 (1989), 633 - 649.

[23] M. Tatsuta. Realisability Interpretation of Coinductive De�nitions and Program Synthe-

sis with Streams. Proceedings of International Conference on Fifth Generation Computer

Systems (1992) 666 - 673.

84



Intuitionistic Model Constructions

and

Normalization Proofs

Thierry Coquand and Peter Dybjer

Abstract

We investigate semantical normalization proofs for typed combinatory logic and weak

�-calculus. One builds a model and a function `quote' which inverts the interpretation func-

tion. A normalization function is then obtained by composing quote with the interpretation

function.

Our models are just like the intended model, except that the function space includes a

syntactic component as well as a semantic one. We call this a `glued' model because of its

similarity with the glueing construction in category theory. Other basic type constructors

are interpreted as in the intended model. In this way we can also treat inductively de�ned

types such as natural numbers and Brouwer ordinals.

We also discuss how to formalize �-terms, and show how one model construction can be

used to yield normalization proofs for two di�erent typed �-calculi { one with explicit and

one with implicit substitution.

The proofs are formalized using Martin-L�of's type theory as a meta language and mech-

anized using the ALF interactive proof checker. Since our meta language is intuitionistic,

any normalization function is a normalization algorithm. Moreover, our algorithms can be

seen as optimized versions of normalization proofs by the reducibility method, where the

parts of the proof which play no role in returning a normal form are removed.

1 Introduction

There is a striking analogy between computing a program and assigning semantics to it. This

analogy is for instance reected in the similarity between the equations de�ning the denotional

semantics of a language and the rules of evaluation in an environment machine [17]

1

.

In this paper we use this analogy to give a semantical treatment of normalization for simply

typed combinators and �-calculus with weak reduction. The method consists of building a

non-standard model, and a function (`quote') which maps a semantic object to a normal term

representing it.

Our approach is strongly inspired by two early papers by Martin-L�of, where he emphasized

the importance of intuitionistic abstractions on the meta level and the notion of de�nitional

equality [19] and proved normalization for his type theory by using a model construction [20].

We pursue these ideas further. In particular we wish to emphasize the following aspects of

our normalization proofs:

1

The fundamental importance of this analogy was stressed by Per Martin-L�of in a recent talk about a substi-

tution calculus.
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� They are expressed as properties of normalization algorithms, rather than as the usual

89-propositions referring to binary reduction relations.

� The normalization algorithms are obtained by `program extraction' from standard normal-

ization proofs using the reducibility method. (Since any constructive proof is an algorithm

it would be better to talk about optimization of a proof seen as a program.) The resulting

models are simpli�cations of Martin-L�of's [19].

� The model constructions can be nicely expressed in the framework of initial algebra se-

mantics (formalized in our constructive setting). We also discuss the role of de�nitional

equality in this context [19].

� The models can be thought of as `glueing syntax with semantics' a technique analogous to

glueing (or sconing, or Freyd cover) in category theory [16, 22]. This technique has also

been used by Lafont [15] for proving a coherence result for categorical combinators.

� Syntactic properties, such as Church-Rosser, may be replaced by semantic ones, such as

the property that two terms are convertible i� their semantics are equal in the glued

model.

� Martin-L�of's type theory is used as a formal meta language.

� The proofs are implemented on a machine using the interactive proof checker ALF.

We �rst develop a proof for pure typed combinatory logic (or positive implicational calculus).

Then we extend it to full propositional logic, and note that all connectives except implication

are interpreted as in the intended model. Finally, we show that the proof extends directly to

inductively de�ned types, such as the natural numbers and Brouwer ordinals.

A very similar method also works for simply typed �-calculus with weak reduction, where

no reduction under � is allowed. Here we focus on the representation problem for �-terms.

In particular we build a glueing model from normal �-terms and meanings, and use it for

normalization of two di�erent versions of the �-calculus. One of these has explicit substitutions

and is similar to the ��-calculus of Abadi, Cardelli, Curien, and L�evy [1]. The other is a

nameless variant of the calculus used by Martin-L�of [20].

In an accompanying paper, a similar technique is used by Catarina Coquand [6] for normal-

ization in simply typed �-calculus with full reduction. In this case a Kripke model is used for

the non-standard semantics.

2 Type theory and ALF

2.1 Martin-L�of's type theory

The formal meta language is Martin-L�of's type theory with inductive de�nitions and pattern

matching. We use the intensional version of type theory formulated by Martin-L�of 1986, see

Nordstr�om, Petersson, and Smith [4].

The core of this language is the theory of logical types (Martin-L�of 's logical framework). This

is a dependently typed ���-calculus with a base type Set and a base type A for each object

A : Set . We use the notation

(x

0

: �

0

; : : : ; x

n

: �

n

)�
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for the type of n-ary functions

2

;

[x

0

; : : : ; x

n

]a

for n-ary function abstraction; and

a(a

1

; : : : ; a

n

)

for n-ary function application.

We then use this framework for de�ning new sets and families of sets (Martin-L�of 's set

theory). These are de�ned by their constructors (or introduction rules). The rules follow Dy-

bjer [11, 12], who gave natural deduction formulation of a class of admissible such inductive

de�nitions in type theory. (See also Coquand and Paulin [8] for similar ideas in the context

of the Calculus of Constructions.) This includes all standard set formers of Martin-L�of's type

theory. Here we also introduce sets of (object language) types, families of sets of terms, families

of conversion relations, etc. These are ordinary inductive de�nitions. In addition we need to

de�ne non-standard ordinals in the glued model by a generalized inductive de�nition.

To highlight the relationship between corresponding notions on the meta level and the object

level we use certain notational conventions illustrated by the following table:

meta language object language

! _!

�

_

�

app app

There are at least two notions of equality in type theory: de�nitional equality, written a =

b : A, and intensional equality, written I(A; a; b) (we often drop A in either case). De�nitional

equality is decidable and expressed by the equality judgement. Two terms are de�nitionally

equal i� they are convertible i� they can be reduced to the same normal form by unfolding

(possibly recursive) de�nitions. Intensional equality is expressed on the propositional level; it is

a binary relation which is inductively de�ned by the reexivity rule

ref : (A : Set; a : A)I(A; a; a)

If we have a = b : A, then ref(a) is a proof of I(A; a; b) by substitutivity of de�nitional equality.

Conversely, if we have a closed proof of I(A; a; b), where a; b : A are closed terms, then a = b : A.

This can be justi�ed by appealing to the semantics of type theory: a closed proof of I(A; a; b)

should reduce to a closed canonical proof ref(u) with u = a = b : A.

Furthermore, we introduce new functions by pattern matching following the ideas of Coquand

[7]. This facility provides both a convenient notation and a useful generalization of the standard

elimination rules or primitive recursive schemata [12] that can be derived from the introduction

rules for a set.

Firstly, it allows the de�nition of functions by case analysis on several arguments simulta-

neously and uses a criterion that recursive calls must refer to structurally smaller arguments to

ensure termination.

Secondly, uni�cation is used to generate possible cases. This entails a strengthening of case

analysis for inductively de�ned families. An example is that the proof of

peano4 : (I(0; 1));

2

An x

i

which is not referred to by later types may be omitted.
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now follows directly by pattern matching. The introduction rule for equality is reexivity, and

since this rule cannot be uni�ed with I(0; 1) no cases are generated.

In our proofs we have used pattern matching in a non-essential way, and we shall indicate

below how these uses can be reduced to standard primitive recursive schemata.

2.2 ALF - an interactive proof checker

We have implemented our proofs using the interactive proof checker ALF (Another Logical

Framework) developed by Augustsson, Coquand, Magnusson, and Nordstr�om. ALF is an im-

plementation of Martin-L�of's logical framework. It is easy to introduce new constants and

computation rules, for example, the formation and introduction rules for new sets and the typ-

ing and computation rules for functions de�ned by pattern matching. ALF implements the

generation of cases described by Coquand [7], but the checks that recursive calls refer to struc-

turally smaller arguments and that formation and introduction rules have the correct form have

to be done manually.

The terms we present are edited versions of terms generated by the machine. The main

di�erence is the use of implicit arguments (when they are clear from the context; this facility

is not part of the ALF implementation yet) and overloading for making the notation more

readable.

3 Typed combinatory logic

We �rst discuss pure typed combinatory logic, which by the Curry-Howard identi�cation corre-

sponds to a Hilbert-style axiomatization of positive implicational calculus. We give its syntax,

its intended semantics, a normalization algorithm, and a correctness proof for this algorithm.

We discuss algebraic and categorical aspects, and also how the algorithm can be extracted from

a more standard proof using the reducibility method.

We then extend the approach to new type constructors which yield full intuitionistic propo-

sitional calculus. Finally, we consider inductively de�ned types, such as natural numbers and

Brouwer ordinals.

3.1 Pure typed combinatory logic

3.1.1 Syntax

The identi�cation of propositions and types strongly suggests to choose a formulation �a la

Church rather than �a la Curry [3]. In the the former terms appear as proof objects of a

Curry-Howard interpretation of the positive implicational calculus. The formulation �a la Curry

introduces redundant information.

We begin by de�ning the set of types inductively. The formation and introduction rules are

Type

3

: Set

_! : (Type; Type)Type

3

We use the word `type' and the formal name Type for `type expression'. It would be less convenient but more

consistent with the meta language to talk about `set expression' and use the formal name Set.
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We introduce more types below; at this point the reader may wish to add an uninterpreted base

type o : Type.

The terms form an inductively de�ned family T of sets indexed by types. The formation

and introduction rules are

T : (Type)Set

K : (A;B : Type)T(A _!B _!A)

S : (A;B;C : Type)T((A _!B _!C) _!(A _!B) _!A _!C)

app : (A;B : Type; T(A _!B); T(A))T(B)

3.1.2 Intended semantics

It is now possible to relate object language and meta language notions by giving the intended

semantics. This is Tarski style semantics with intuitionistic notions on the meta level. What

may be a little confusing at �rst here is that both meta level and object level are formalized: it

is an interpreter (for terms of base type) written in ALF.

We de�ne the interpretation of Type by recursion:

[[ ]] : (A : Type)Set

[[A _!B]] = [[A]]![[B]]

The interpretation of T is also by recursion:

[[ ]] : (A : Type; a : T(A))[[A]]

[[K]] = �([x]�([y]x))

[[S]] = �([g]�([f ]�([x]app(app(g; x); app(f; x)))))

[[app(f; a)]] = app([[f ]]; [[a]])

Note that this is structural recursion on an inductively de�ned family of sets.

Martin-L�of [19] discusses an intuitionistic notion of model and argues that equality (conver-

sion) in the object language should be interpreted as de�nitional equality in the model. This

requirement is satis�ed for our (formalized) intended model in the following sense.

Firstly, we have the remarkable de�nitional equalities:

[[app(app(K; x); y)]] = [[x]]

[[app(app(app(S; x); y); z)]] = [[app(app(x; z); app(y; z))]]

The meta language expressions on both sides have the same normal form.

Moreover, we can introduce conversion as a family of inductively de�ned relations indexed

by the types:

I(; ) : (A : Type; a; a

0

: T(A))Set
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convK : (A;B : Type; a : T(A); b : T(B))I(app(app(K; a); b); a)

convS : (A;B;C : Type; g : T(A _!B _!C); f : T(A _!B); a : T(A))

I(app(app(app(S; g); f); a);app(app(g; a); app(f; a)))

convapp : (A;B : Type; c; c

0

: T(A _!B); a; a

0

: T(A); I(c; c

0

); I(a; a

0

))I(app(c; a); app(c

0

; a

0

))

convref : (A : Type; a : T(A))I(a; a)

convsym : (A : Type; a; b : T(A); I(a; b))I(b; a)

convtrans : (A : Type; a; a

0

; a

00

: T(A); I(a; a

0

); I(a

0

; a

00

))I(a; a

00

)

We can prove by induction on I(; ) that

(A : Type; a; a

0

: T(A); I(a; a

0

))I([[a]]; [[a

0

]])

This proof is almost immediately mechanizable since most of the work is done by ALF's nor-

malization. By the discussion of equality in section 2.1, we know that we can reexpress this

proposition as the meta level statement that if I(a; a

0

) (under no assumptions), then the de�-

nitional equality [[a]] = [[a

0

]] follows.

3.1.3 Normalization algorithm

It is impossible to invert the interpretation function for the intended model, but if we enrich

the interpretation of _! so that it has both a syntactic and a semantic component this becomes

possible.

First we de�ne a new interpretation function for types

4 5

[[A _!B]] = T(A _!B)�([[A]]![[B]])

From this model we can retrieve normal forms:

q : (A : Type; [[A]])T(A)

q

A _!B

(hc; fi) = c

This is a �rst simple use of pattern matching with dependent types: we analyze both the �rst

(implicit) and the second argument (which depends on the �rst one) simultaneously. Here it is

straightforward to transform this de�nition into a standard primitive recursive schema (using

higher types):

q

A _!B

(p) = fst(p)

The interpretation of terms becomes:

[[ ]] : (A : Type; T(A))[[A]]

4

Alternatively, we could have introduced sets of normal terms Nt(A) and used them as the syntactic component

of the model instead. In that way we would formally ensure that the retrieved term is normal. This may be

a technical advantage: for example one can use essentially the same set of normal terms for di�erent kinds of

�-calculi, see section 4.2.1.

5

Base types are interpreted syntactically: [[o]] = T(o)
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[[K]] = hK; �([p]happ(K;q(p)); �([q]p)ii

[[S]] = hS; �([p]happ(S;q(p)); �([q]happ(app(S;q(p));q(q)); �([r]app

M

(app

M

(p; r); app

M

(q; r)))i)i)i

[[app(f; a)]] = app

M

([[f ]]; [[a]])

where we have used the following application operator in the model:

app

M

: (A;B : Type; [[A _!B]]; [[A]])[[B]]

app

M

(hc; fi; q) = app(f; q)

Finally, the normal form is extracted:

nf : (A : Type; T(A))T(A)

nf(a) = q([[a]])

Also in this model we have the de�nitional equalities:

[[app(app(K; x); y)]] = [[x]]

[[app(app(app(S; x); y); z)]] = [[app(app(x; z); app(y; z))]]

and

(A : Type; a; a

0

: T(A); I(a; a

0

))I([[a]]; [[a

0

]])

and hence

(A : Type; a; a

0

: T(A); I(a; a

0

))I(nf(a);nf(a

0

))

so that the rules of conversion are sound for the normal form semantics.

From this model we can also easily extract the model of normal terms.

As pointed out to us by Thorsten Altenkirch, this program can be translated into ML, and

provides then a concise and elegant implementation of combinatory reduction.

datatype tm = s | k | ap of tm*tm;

datatype vl = v_arr of tm*(vl->vl);

fun term_part (v_arr (M,_)) = M;

fun val_ap (v_arr (_,f),x) = f x;

fun eval s =

v_arr (s,fn x => v_arr (ap(s,term_part x),

fn y => v_arr (ap (ap (s,term_part x),term_part y),

fn z => val_ap (val_ap (x,z),

val_ap (y,z)))))

| eval k = v_arr (k,fn x => v_arr (ap(k,term_part x),

fn y => x))

| eval (ap(x,y)) = val_ap (eval x,eval y);

fun norm t = term_part (eval t);
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3.1.4 Normalization proof

We shall prove that our normalization algorithm is correct in the sense that

(A : Type; a : T(A))I(a;nf(a)):

Together with the fact that convertible terms have equal normal forms, which we proved above,

and the fact that intensional equality is decidable, this yields a decision algorithm for convert-

ibility.

According to this view correctness amounts to showing that two syntactic notions are equiv-

alent: convertibility and equality of normal forms. But there is also a weaker but more funda-

mental form of semantic correctness: the normalization algorithm is correct since it preserves

semantical equality. (This may be either intensional or extensional equality of elements in the

intended model.)

Normalization yields an incomplete decision procedure for semantic equality. This is simply

because weak conversion fails to distinguish between � and �-convertible terms and these con-

versions preserve the intended semantics. However it is complete for the glued semantics that

we present below.

The correctness proof uses a construction closely related to glueing from categorical logic.

Recall that function spaces in the model have a syntactic and a semantic component. We

shall require that these components are coherent with each other: they are correctly `glued'

together in the sense that quotation commutes with application. This point will be clari�ed

and expanded in the next section.

We introduce the property Gl to formalize this:

Gl : (A : Type; [[A]])Set

Gl

A _!B

(hc; fi) = �([[A]]; [p](Gl

A

(p)!(Gl

B

(app(f; p))�(I(app(c;q(p));q(app(f; p)))))))

We can now show that each term is interpreted as a glued value:

gl : (A : Type; a : T(A))Gl([[a]])

gl(K) = �([p]�([x]h�([q]�([y]hx;convKi)); convrefi))

gl(S) = (long term)

gl(app(c; a)) = app

Gl

([[c]]; gl(c); [[a]]; gl(a))

where

app

Gl

: (A;B : Type; q : [[A _!B]]; y : Gl(q); p : [[A]]; x : Gl(p))Gl(app

M

(q; p))

app

Gl

(q; y; p; x) = fst(app(app(y; p); x))

From this it follows easily by T-recursion that

(A : Type; a : T(A))I(a;nf(a))

This is an external proof of correctness in the sense that we �rst write the program nf, and then

we make a logical comment on it. Note that in this way we do T-recursion (induction) three
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times: one for the program, one for glueing and one for convertibility. Alternatively, we could

directly prove by one T-recursion that

(A : Type; a : T(A))�([[A]]; [p]Gl(p)�(I(a;q(p))))

This would be an integrated proof of correctness. If we only care about the normal form,

however, it contains parts which are irrelevant. If the program is optimized by removing these

parts we get nf back.

3.1.5 Algebraic view of the normalization proof

One can present the normalization proof algebraically by observing that

� the algebra of combinatory terms is initial among typed combinatory algebras;

� the model of glued values is another typed combinatory algebra;

� the interpretation function mapping each term to a glued element (that is a value in the

model and a proof that it is glued) is the unique homomorphism from the initial algebra;

� the quote function (restricted to glued values) is a homomorphism back to the initial

algebra (but it is not a morphism on the original algebra of combinatory terms).

Hence the normalization function is a homomorphism on the initial algebra. Hence it is (ex-

tensionally) equal to the identity. Since equality on terms is convertibility, this means that the

normalization function preserves convertibility.

We shall now formalize these points in type theory using the fact that we can express model

notions as contexts and instances of such notions as explicit substitutions.

Firstly, the signature �

TCL

of typed combinatory algebras is represented by the following

context:

[M : (A : Type)Set;

K

M

: (A;B : Type)M(A _!B _!A);

S

M

: (A;B;C : Type)M((A _!B _!C) _!(A _!B) _!A _!C);

app

M

: (A;B : Type;M(A _!B);M(A))M(B)]

The intended model of these axioms is represented by the following substitution:

[M := [[ ]];

K

M

:= [A;B]�([x]�([y]x));

S

M

:= [A;B;C]�([g]�([f ]�([a]app(app(g; a); app(f; a)))));

app

M

:= app]

As for the representation of the axioms for combinators we have two choices. The �rst is to

follow Martin-L�of and let equality in the model be intensional:

[K

M

axiom : (A;B : Type; a :M(A); b :M(B))I(app

M

(app

M

(K

M

; a); b); a);

S

M

axiom : (A;B;C : Type; g :M(A _!B _!C))); f :M(A _!B); a :M(A))

I(app

M

(app

M

(app

M

(S; g); f); a); app

M

(app

M

(g; a); app

M

(f; a)))]
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As discussed above the intended model immediately satis�es these axioms. However, the term

model does not because there we need to reinterpret equality as convertibility, and quotient

formation is not a set forming operation in type theory.

So we need a second notion which includes an explicit uninterpreted equivalence relation as

part of the structure:

[E : (A : Type;M(A);M(A))Set;

ref

E

: (A : Type; a :M(A))E(a; a);

sym

E

: (A : Type; a; b :M(A);E(a; b))E(b; a);

trans

E

: (A : Type; a; a

0

; a

00

:M(A);E(a; a

0

);E(a

0

; a

00

))E(a; a

00

);

appcong : (A;B : Type; c; c

0

:M(A _!B); a; a

0

:M(A);E(c; c

0

);E(a; a

0

))E(app(c; a); app(c

0

; a

0

));

K

M

axiom : (A;B : Type; a :M(A); b :M(B))E(app

M

(app

M

(K

M

; a); b); a);

S

M

axiom : (A;B;C : Type; g :M(A _!B _!C))); f :M(A _!B); a :M(A))

E(app

M

(app

M

(app

M

(S; g); f); a); app

M

(app

M

(g; a); app

M

(f; a)))]

We shall also need the notion of a homomorphism of typed combinatory algebras in the

second sense. This a family of functions indexed by the types, which preserve the equivalence

relation and the operations.

We can prove that the algebra of combinatory terms under convertibility is initial among

typed combinatory algebras (in the second sense), since it has a unique homomorphism (up to

extensional equality) to any other. The proof is the standard one interpreted in our constructive

setting.

In the context of an arbitrary typed combinatory algebras (in the second sense), a homo-

morphism h is de�ned by structural recursion on combinatory terms:

h(K) = K

M

h(S) = S

M

h(app(c; a)) = app

M

(h(c); h(a))

The proof that h really is a homomorphism is direct: each rule of conversion is mapped into an

axiom for combinatory algebras; that h commutes with the operations is immediate from the

de�nition.

The uniqueness proof is by induction on terms. Assume that h

0

is any homomorphism from

the initial algebra, that is,

E(h

0

(K); K

M

)

E(h

0

(S); S

M

)

E(h

0

(app(c; a)); app

M

(h

0

(c); h

0

(a)))

and it follows that h and h

0

are extensionally equal:

(A : Type; a; a

0

: T(A); I(a; a

0

))E(h(a); h

0

(a

0

))

Furthermore, the model of glued values is given by the following substitution

[M := G;K

M

:= K

G

;S

M

:= S

G

; app

M

:= app

G

;K

M

axiom := K

G

axiom;S

M

axiom := S

G

axiom]
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where

G(A) = �p : [[A]]:Gl(p)

K

G

= h[[K]]; gl(K)i

S

G

= h[[S]]; gl(S)i

app

G

(hq; yi; hp; xi) = app

Gl

(q; y; p; x)

K

G

axiom(hp; xi; hq; yi) = ref(hp; xi)

S

G

axiom(hp; xi; hq; yi; hr; zi) = ref(: : :)

which is a combinatory algebra in the �rst sense.

The quote homomorphism is just fst � fst . We need to prove

I(q(K

M

); K)

I(q(S

M

); S)

I(q(app

M

(q; p)); app(q(q);q(p)))

The �rst two are immediate and the third follows by de�nition of a glued value. Indeed, the

glued values are precisely those for which the third conversion holds. So all the work is in

showing that we have a typed combinatory algebra of glued values.

This use of initial algebra semantics is similar to its use for structuring compiler correctness

proofs, see for example Thatcher, Wagner, and Wright [28].

3.1.6 Categorical glueing

In categorical glueing [16, 22] one starts with a functor T : C!S. The glueing (or sconing)

construction is a new category, which has as objects arrows

q : X!T(A)

of S and as arrows pairs hc; fi, such that

T(c) � q = q

0

� f:

The Freyd cover construction is a special case of this.

We now see the similarity between the interpretation of function spaces in our glued model

and the interpretation of hom-sets in categorical glueing: the commuting square states a similar

requirement to the requirement that quote commutes with application.

3.1.7 Optimization of a standard normalization proof

We shall compare our proof with Martin-L�of's proof of normalization for a version of intuition-

istic type theory [20] (adapted to the the simple case of typed combinatory logic). This proof is

also expressed as a model construction, but is standard in the sense that it de�nes a reducibility

predicate �a la Tait. Another proof of normalization for typed combinators (also using Tait-

reducibility) was implemented in ALF by Gaspes and Smith [13], but the relationship between

this proof and our extracted algorithm seems somewhat less direct.

We shall here show that we can optimize this proof too and again extract nf! When for-

malizing an informal proof one always has to make explicit certain choices which were left
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implicit. Here we have chosen a representation which makes the optimization process as simple

as possible.

So Martin-L�of [20] de�ned the meaning

6

of a type A relative to a term a is a triple consisting

of a normal term, a proof that it is reducible (which is a property of terms corresponding to

the glueing property of values) and a proof that it is normalizable:

[[ ]] : (A : Type; a : T(A))Set

[[A; a]] = �(Red(A); [ap]I(a;q(ap)))

The �rst two components are put together into a pair

Red : (A : Type)Set

q : (A : Type; xp : Red(A))T(A)

Red(A _!B) = �(T(A _!B); [c]�(Red(A); [ap]�(Red(B); [bp]I(app(c;q(ap));q(bp)))))

q

A _!B

(hc; fi) = c

The integrated normalization algorithm (proof) can now be de�ned by

[[ ]] : (A : Type; a : T(A))[[A; a]]

[[K]] = hhK; �([xp]hhapp(K;q(xp)); �([yp]hxp; convKi)i; convrefi)i; convrefi

[[S]] = (large term)

[[app(f; a)]] = app

M

([[f ]]; [[a]])

where we have used the following application operator in the model

app

M

: (A;B : Type; c : T(A _!B)); a : T(A); p : [[A _!B; c]]; q : [[A; a]])[[B; app(c; a)]]

app

M

(p; q) = hfst(app

R

(p; q)); convtrans(convapp(snd(app

R

(p; q))))i

where

app

R

(p; q) = app(snd(fst(p)); fst(q))

The connection with the optimized algorithm should now be apparent: just remove all proof

object for convertibility and simplify the types accordingly. This process could be made precise

by using a suitable formalism for removing redundant information such as checked quanti�ers or

subsets. It would also be interesting to investigate automatic removal of redundant information

along the lines of Takayama [26].

Berger [4] has provided a related analysis for a strong normalization proof of the typed

�-calculus, and shown that one gets the normalization algorithm of Berger and Schwichtenberg

[5]. He uses an alternative framework and explains program extraction in terms of modi�ed

realizability. Only the predicate logic part of the proof, and not the parts involving induction,

is treated explicitly.

6

This is a model construction in a somewhat di�erent sense than before, since [[ ]] here is indexed by a term

as well as a type.
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3.2 Propositional calculus

3.2.1 Syntax

We now extend our object language with type formers corresponding to the logical constants

to get full intuitionistic propositional calculus:

_

; : Type

_

1 : Type

_

� : (Type; Type)Type

_

+ : (Type; Type)Type

There are also new term constructors corresponding to the introduction and elimination rules

for propositional calculus

7

case0 : (C : Type)T(

_

; _!C)

<> : T(

_

1)

inl : (A;B : Type; T(A))T(A

_

+B)

inr : (A;B : Type; T(B))T(A

_

+B)

case : (A;B;C : Type; T(A _!C); T(B _!C))T(A

_

+B _!C)

< ; > : (A;B : Type; T(A); T(B))T(A

_

�B)

fst : (A;B : Type; T(A

_

�B))T(A)

snd : (A;B : Type; T(A

_

�B))T(B)

3.2.2 Intended semantics

The intended semantics is for types

[[

_

;]] = ;

[[

_

1]] = 1

[[A

_

+B]] = [[A]]+[[B]]

[[A

_

�B]] = [[A]]�[[B]]

and terms

[[case0]] = �([z]case

0

(z))

[[<>]] = hi

[[inl(a)]] = inl([[a]])

[[inr(b)]] = inr([[b]])

[[case(d; e)]] = �([z]case([x]app([[d]]; x); [y]app([[e]]; y); z))

[[<a; b>]] = h[[a]]; [[b]]i

[[fst(a)]] = fst([[a]])

[[snd(a)]] = snd([[a]])

7

To make things simple we sometimes give inference rules instead of axioms; it would be easy to modify the

approach to deal with a with axioms only.
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From the intended semantics we immediately get a consistency proof

(a : T(

_

;));

which is nothing but the term interpretation function specialized to

_

;.

It is a matter of debate whether or not this can be seen as an internalization of the discussion

in Martin-L�of [21] on simple-minded versus metamathematical consistency. On the one hand, it

is quite tempting to look at the opposition object (syntactic) level versus meta (semantic) level

(compare Tarski [27]) in the formalisation as the counterpart to the opposition syntax versus

semantics according to the meaning explanations of Martin-L�of [21]. On the other hand, it can

be argued that the real semantics contains completely di�erent dimensions. For instance, the

real semantics has to do with the way that we use the language, and this notion of `use' is not

captured by our formalisation.

We next extend the de�nition of conversion with the following rules

I(app(case(d; e); inl(a)); app(d; a))

I(app(case(d; e); inr(a)); app(e; b))

I(fst(<a; b>); a)

I(snd(<a; b>); b)

together with congruence rules for the new term constructors.

3.2.3 Normalization algorithm

We get an enriched model which can be used for normalization by interpreting the new type

formers as in the intended semantics. We also extend the de�nition of quote:

q

_

1

(hi) = <>

q

A

_

+B

(inl(p)) = inl(q

A

(p))

q

A

_

+B

(inr(q)) = inr(q

B

(q))

q

A

_

�B

(hp; qi) = <q

A

(p);q

B

(q)>

This is another application of pattern matching with dependent types, and here we really get a

more compact de�nition. For example, there is no clause for

_

;, since there is no constructor for

;. But again, it is easy to replace this by standard primitive recursive schemata for dependent

types if one de�nes an auxiliary function for each of the syntactic type formers.

We also need to extend the interpretation function for terms in the enriched model (we omit

cases which are the same as for the intended interpretation).

[[case0]] = hcase0; �([z]case

0

(z))i

[[case(d; e)]] = hcase(q([[d]]);q([[e]])); �([z]case([x]app

M

([[d]]; x); [y]app

M

([[e]]; y); z))i

3.2.4 Normalization proof

The de�nition of Gl can also be de�ned by pattern matching:

Gl

_

1

(hi) = 1
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Gl

A

_

+B

(inl(p)) = Gl

A

(p)

Gl

A

_

+B

(inr(q)) = Gl

B

(q)

Gl

A

_

�B

(hp; qi) = Gl

A

(p)�Gl

B

(q)

and the normalization proof extends as well.

3.3 Inductively de�ned types

3.3.1 Syntax

We �nally introduce natural numbers and Brouwer ordinals:

N : Type

_

O : Type

The new constructors for terms are

0 : T(N)

s : (T(N))T(N)

rec : (C : Type; T(C); T(N _!C _!C))T(N _!C)

0 : T(

_

O)

sup : (T(N _!

_

O))T(

_

O)

ordrec : (C : Type; T(C); T((N _!

_

O) _!(N _!C) _!C))T(

_

O _!C)

3.3.2 Intended semantics

[[N]] = N

[[

_

O]] = O

[[0]] = 0

[[s(a)]] = s([[a]])

[[rec(d; e)]] = �([z]rec([[d]]; [x; y]app(app([[e]]; x); y); z))

[[0]] = 0

[[sup(b)]] = sup([x]app([[b]]; x))

[[ordrec(d; e)]] = �([z]ordrec([[d]]; [xf; yf ]app(app([[e]]; �(xf)); �(yf)); z))

The new conversion rules are

I(app(rec(d; e); 0); d)

I(app(rec(d; e); s(a)); app(app(e; a); app(rec(d; e); a))

I(app(ordrec(d; e); 0); d)

I(app(ordrec(d; e); sup(b)); app(app(e; b); ordrec(d; e) � b))

together with congruence rules for the new term constructors. Here we have used an auxiliary

syntactic binary composition operator

� : (A;B;C : Type; T(B _!C); T(A _!B))T(A _!C)
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c � b = app(app(S; app(K; c)); b)

We note that it is su�cient to build the `intended model' to prove equational consistency

(I(0; s(0)));

However, to prove for example that the constructor s is one-to-one for convertibility we need

the normalization proof.

3.3.3 Normalization algorithm

The enriched model for inductively de�ned types is obtained by the same principle. Only con-

structors with functional arguments need to be reinterpreted, so natural numbers are interpreted

as in the intended model, but ordinals are not:

[[N]] = N

[[

_

O]] = O

M

where

O

M

: Set

has the following introduction rules:

0

M

: O

M

sup

M

: (c : T(N _!

_

O); f : (N)O

M

)O

M

and the following recursion operator

ordrec

M

: (C : Set;C; (T(N _!

_

O); (N)O

M

; (N)C)C;O

M

)C

The quote function has the following new clauses

q

N

(0) = 0

q

N

(s(p)) = s(q

N

(p))

q

_

O

(0

M

) = 0

q

_

O

(sup

M

(c; f)) = sup(c)

Term interpretation in the enriched model becomes

[[rec(d; e)]] = hrec(q([[d]]);q([[e]])); �([z]rec([[d]]; [x; y]app

M

(app

M

([[e]]; x); y); z))i

[[0]] = 0

M

[[sup(b)]] = sup

M

(q([[b]]); [x]app

M

([[b]]; x))

[[ordrec(d; e)]] = hordrec(q([[d]]);q([[e]]));

�([z]ordrec

M

([[d]];

[a; xf; yf ]app

M

(app

M

([[e]]; ha; �(xf)i); hordrec(q([[d]]);q([[e]])) � a; �(yf)i);

z))i

where we have omitted cases which are the same as for the intended interpretation.
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3.3.4 Normalization proof

We extend the de�nition of reducible value:

Gl

N

(p) = 1

Gl

_

O

(p) = Glord(p)

where

Glord : (O

M

)Set

is inductively de�ned by the introduction rules

Glord(0

M

)

(c : T(N _!

_

O); f : (N)O

M

; (p : N)Glord(f(p))�(I(app(c;q(p));q((f(p))))))Glord(sup

M

(c; f))

The normalization proof extends.

3.3.5 Proof that the constructors are one-to-one

We illustrate this point only in the case of natural numbers, though this method of proof works

generally for any data type.

By de�nition of q(

)

N; the constructor s commutes with the normalization function. Let us

assume that a; b : T(N) satisfy I(s(a); s(b)); we have then

I(nf(s(a));nf(s(b)))

since conversion implies identity of normal forms, and then

I(s(nf(a)); s(nf(b)))

by commutation of nf and s; and �nally

I(nf(a);nf(b))

because s is one-to-one for the intensional equality; from this follows

I(a; b)

because any term is convertible to its normal form.

4 Typed �-calculus

We shall consider normalization to weak head normal form, that is, no normalization under �

is performed. The method is similar to the treatment of combinatory logic, and we present the

normalization algorithms but not the proofs. These are done in an analogous way.

Instead we focus on the choice of syntax for the typed �-calculus. Shall we use traditional

named variables, de Bruijn indices, or perhaps some kind of categorical combinators; shall we use

a presentation �a la Curry or �a la Church; shall we employ explicit or implicit substitutions, etc?

We shall make two basic choices. Firstly, as for combinatory logic we shall use formulations

�a la Church, which arise by �rst considering formalization of natural deduction systems for

intuitionistic implicational calculus. This is one approach; we do not claim that it is the
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canonical one. (Compare for example Altenkirch [2] and Huet [14] who use ordinary de Bruijn-

indices in their implementations of proofs about �-calculi.) Secondly, we focus on normal terms,

since these are the only ones we need for building models. One model can then be used for

normalization proofs of several essentially equivalent calculi. We illustrate this by building a

model which can be used for the normalization proofs of both a weak �-calculus with explicit

substitutions (similar to the ��-calculus [1]) and a nameless version of the weak �-calculus with

implicit substitutions which was used by Martin-L�of [20].

4.1 Variables

We begin by de�ning sets of variables. These will then be used for formalizing sets of normal

terms and certain sets of general terms. We will also introduce variable sequences, which

correspond to renamings. We shall in particular de�ne the identity renaming.

The basic point is that the rule for assuming a variable in typed �-calculus corresponds to

the logical rule of assumption

(�

_

3A)T(�; A)

stating that A is true i� it is a member of the assumption list (context) �. Usually, the mem-

bership requirement is stated as a side-condition but here it is an assumption. If we de�ne

membership inductively

_

3 : (� : Context;A : Type)Set

0 : (� : Context;A : Type)�#A

_

3A

s : (� : Context;A;B : Type; �

_

3A)�#B

_

3A

we get proof objects which correspond to bounded de Bruijn-indices, so we can think of �

_

3A

as the singleton set containing a variable of type A.

Contexts are de�ned by

Context : Set

[] : Context

: : (Context; Type)Context

We also introduce variable lists:

_

� : (Context; Context)Set

<> : (� : Context)�

_

�[]

<; > : (�;� : Context;A : Type; � : �

_

��;�

_

3A)�

_

��:A

The notation is suggested by the fact that �

_

�� i� �

_

3A implies �

_

3A for all A, that is, � is a

subset of � if both are considered as sets of assumptions.

Just as lists of terms represent substitutions, lists of variables represent reindexing (nameless

renaming). Logically, they represent structural manipulations of the context by weakening,

contraction, and exchange. We will use the identity reindexing de�ned by

id : (� : Context)�

_

��
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id

[]

= <>

id

�:A

= <s(id

�

); 0>

where

s : (�;� : Context;B : Type; �

_

��)�:B

_

��

s(<>) = <>

s(<vs; v>) = <s(vs); s(v)>

is the weakening (lifting, projection) lifted to reindexings.

4.2 Normalization to weak head normal form

4.2.1 Normal terms

Weak head normal terms have either of the forms f(a

1

; : : : ; a

n

) or v(a

1

; : : : ; a

n

), where f is

a �-abstraction, v is a variable and a

1

; : : : ; a

n

are weak head normal terms. Since f is a �-

abstraction it may contain an arbitrary (not necessary normal) term, and hence the de�nition

of normal term Nt is parametric in the de�nition of general term T

8

. We de�ne normal terms

and lists of normal terms by a simultaneous inductive de�nition:

Nt : (Context; Type)Set

!

Nt

: (Context; Context)Set

appf : (�;� : Context;A;B : Type; T(�:A; B);�!

Nt

�)Nt(�; A _!B)

appv : (�;� : Context;A : Type; �

_

3� _�!! A; �!

Nt

�)Nt(�; A)

<> : (� : Context)�!

Nt

[]

<; > : (�;� : Context;A : Type; �!

Nt

�; Nt(�; A))�!

Nt

�:A

where _�!! is multivariate function space:

_�!! : (Context; Type)Type

(�:A) _�!! B = � _�!! (A _!B)

[] _�!! B = B

4.2.2 The glued model

We can now build our model. First we interpret types

[[]] : (Context; Type)Set

[[A _!B]]

�

= Nt(�; A _!B)�([[A]]

�

![[B]]

�

)

8

Alternatively, we could assume that �-abstractions come normalized and replace T with Nt in the body of

appf.
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and the quote function

q : (� : Context;A : Type; [[A]]

�

)Nt(�; A)

q

A _!B

(hc; fi) = c

This can be lifted to yield interpretation of contexts and quotation of lists of values as well. We

overload notation for these:

[[ ]] : (Context; Context)Set

q(:)(�;� : Context; [[�]]

�

)�!

Nt

�

We use three auxiliary functions. The �rst is the projection function

� : (�;� : Context;A : Type; �

_

3A; [[�]]

�

)[[A]]

�

�

0

(hps; pi) = p

�

s(v1)

(hps; pi) = �

v1

(ps)

The second is application in the model

app

M

: (� : Context;A;B : Type; p : [[A _!B]]

�

; q : [[A]]

�

)[[B]]

�

app

M

(hc; fi; p) = app(f; p)

The third is identity in the model. We de�ne it as the interpretation of the identity renaming.

This is obtained by �rst interpreting variables and renamings in general:

[[ ]] : (�;� : Context;A : Type; v : �

_

3� _�!! A; ps : [[�]]

�

)[[A]]

�

[[v]]

A _!B

(ps) = happv(v;

0

ps); �([p][[v]]

B

(hps; pi))i

This can be raised to an interpretation of lists of variables. Hence we get

id

M

= [[id]](hi)

4.2.3 Interpretation of a calculus of substitutions

As an example we shall prove normalization to whnf for a calculus with explicit substitutions

similar to the ��-calculus. The syntax of terms is the following

T : (� : Context;A : Type)Set

�! : (�;� : Context)Set

0 : (� : Context;A : Type)T(�:A; A)

s : (� : Context;A;B : Type; T(�; B))T(�:A; B)

app : (� : Context;A;B : Type; T(�; A _!B); T(�; A))T(�; B)

_

� : (� : Context;A;B : Type; T(�:A; B))T(�; A _!B)

[ ] : (�;� : Context;A : Type; T(�; A);��! �)T(�; A)

id : (� : Context)� �! �

o : (�;�;� : Context; � �! �; � �! �)� �! �

<> : (� : Context)� �! []

<; > : (�;� : Context;A : Type; � �! �; T(�; A))��! �:A
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The interpretation of terms and term lists in the model is

[[ ]] : (�;� : Context;A : Type; T(�; A); [[�]]

�

)[[A]]

�

[[ ]] : (�;�;� : Context; � �! �; [[�]]

�

)[[�]]

�

[[0]]hps; pi = p

[[s(a)]]hps; pi = [[a]](ps)

[[app(c; a)]](ps) = app

M

([[c]](ps); [[a]](ps))

[[

_

�(b)]](ps) = happf(b;

0

ps); �([p][[b]]hps; pi)i

[[a[as]]](ps) = [[a]]([[as]](ps))

[[id]](ps) = ps

[[csobs]](ps) = [[cs]]([[bs]](ps))

[[<>]](ps) = hi

[[<as; a>]](ps) = h[[as]](ps); [[a]](ps)i

The normal form function is then

nf(a) = q([[a]](id

M

))

We have the following conversion rules. (Leaving out congruence rules)

I( ; ) : (� : Context;A : Type; T(�; A); T(�; A))Set

I( ; ) : (�;� : Context; � �! �;� �! �)Set

I(app(

_

�(b)[as]; a); b[<as; a>])

I(app(c; a)[as]; app(c[as]; c[as]))

I(0[<as; a>]; a)

I(s(b)[<as; a>]; b[as])

I(b[bs][as]; b[bsoas])

I(<>oas; <>)

I(<bs; b>oas; <bsoas; b[as]>)

I(idoas; as)

I((csobs)oas; cso(bsoas))

We got these rules when trying to prove properties of the semantics, compare the methodology

with Knuth-Bendix completion used by Curien [9] for turning the equations for cartesian closed

categories into a term rewriting system.

It now follows

9

(� : Context;A : Type; a; a

0

: T(�; A); I(a; a

0

))I([[a]]; [[a

0

]])

9

The mechanical proofs have not yet been completed
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and hence

(� : Context;A : Type; a; a

0

: T(�; A); I(a; a

0

))I(nf(a);nf(a

0

))

The normalization proof is to prove that

(� : Context;A : Type; a : T(�; A))I(a; �(nf(a)))

where

� : (� : Context;A : Type; Nt(�; A))T(�; A)

is the injection of normal terms into general terms.

The proof of this is similar to the proof for combinatory logic, but in addition to a notion of

glued value, we also need a notion of glued list of values. We omit the details of this construction.

4.2.4 Interpretation of the calculus of Martin-L�of 1973

Can we treat normalization to whnf for the traditional syntax? Yes, but we must remember that

we must also change the implicitely de�ned substitution function so that it does not go under

� (otherwise we lose conuence, see Curien, Hardin, and L�evy [10]). Therefore Martin-L�of [20]

used a calculus where � is replaced by appf:

var : (� : Context;A : Type; �

_

3A)T(�; A)

appf : (�;� : Context;A;B : Type; T(�:A; B);� �! �)T(�; A _!B)

app : (� : Context;A;B : Type; T(�; A _!B); T(�; A))T(�; B)

<> : (� : Context)� �! []

<; > : (�;� : Context;A : Type; � : � �! �; T(�; A))� �! �:A

The interpretation functions for this calculus into the glued model can also easily be written

(where clauses which are the same as for the calculus with explicit substitution above are

omitted).

[[var(v)]](ps) = �

v

(ps)

[[appf(b; as)]](ps) = happf(b;q([[as]](ps))); �([p][[b]](h[[as]](ps); pi))i

The conversion rule is

I(app(appf(b; as); a); b[<as; a>])

where [ ] and o are de�ned by a simultaneous recursive de�nition:

var(v)[as] = �

v

(as)

appf(b; bs)[as] = appf(b; bsoas)

app(c; a)[as] = app(c[as]; a[as])

<>oas = <>

<bs; b>oas = <bsoas; b[as]>
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5 Related work

Catarina Coquand [6] has used a similar technique for full normalization with �-expansion

in simply typed �-calculus. She also proves a property of a normalization algorithm, which

is composed by an interpretation function and a quote function. But we note the following

essential di�erences

� A Kripke model is used instead of a glued model.

� Equality in the Kripke model is extensional, whereas it is su�cient to consider intensional

equality between glued values.

� Her quote function is de�ned simultaneously with an auxiliary unquote function which is

needed for interpreting variables. Both are de�ned by recursion on the type structure.

This algorithm is closely related to the normalization algorithm for full normalization with �-

expansion in simply typed �-calculus given by Berger and Schwichtenberg [5]. Their `inversion

of the evaluation functional' corresponds for example to the quote function from the Kripke

model.

Categorical glueing was used by Lafont [15] for proving a coherence theorem for categorical

combinators. However, he argued that the semantic component of his interpretation cannot

directly be used for computing: `Mais les valeurs abstraites de A!B, avec leur composante

fonctionelle, ne semblent gu�ere \mechanisable" ' [15][page 18]. In contrast to this, we make use

of the fact that these abstract values, when represented in our intuitionistic meta language, are

indeed mechanizable. But, of course, the implementation of this meta language may still make

use of an environment machine.

It is interesting to compare this situation with the following comments by Per Martin-L�of

on a normalization result [18]: `Of course, the fact that there is a not necessarily mechanical

procedure for computing every function in the present theory of types does not require any

proof at all for us, intelligent beings, who can understand the meaning of the types and the

terms and recognize that the axioms and rules of inference of the theory are consonant with the

intuitionistic notion of function according to which a function is the same as a rule or method.'

Related to this discussion is the following question: what kind of strategy (call-by-value,

call-by-name, etc.) does the normalization algorithm extracted from these semantical arguments

follow? The answer is simple: it is exactly the strategy used at the meta-level In a sense, the

process of `understanding' is represented by the computation of the semantics of a term.

Similar algorithms have also been considered in the context of metacircularity and partial

evaluation. Pfenning and Lee [25] considered a notion of metacircularity for the polymorphic

�-calculus and de�ned an `approximately metacircular interpreter' similar to our `intended

semantics'. Mogensen [23] considered similar notions for the untyped �-calculus intended to

be used as a foundation for partial evaluation. He de�ned a self-interpreter similar to our

intended semantics and a self-reducer similar to our normalizer. Both these papers use higher-

order abstract syntax for representing �-terms, whereas we use a concrete representation.
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What is the status of pattern matching in type theory?

Thierry Coquand Jan M. Smith

Department of Computer Science, University of G�oteborg/Chalmers

September 1993

In Martin-L�of's type theory sets are inductively de�ned by their introduction rules and

induction on a set is expressed by an elimination rule, formulated in a way corresponding to

Gentzen's eliminations rules in natural deduction. Coquand [2] has recently proposed pattern

matching, that is case analysis together with recursion, as an alternative to elimination rules.

The original motivations for this change of type theory were to get a simpler notation for proofs

by induction and to make precise how implicitly de�ned constants can be added to type theory.

But the addition of pattern matching to type theory also makes a reection principle available

which requires a universe in the usual formulation of type theory.

One can be reluctant to accept the addition of pattern matching to type theory, because

it is a major change in the formalism which may have inuences on the use as well as the

understanding of type theory. We will in this note discuss pattern matching and its relation to

the usual formulation of type theory.

The distinction between these twomethods of proof is not restricted to type theory. Winskel's

[8] rule induction and induction on derivations correspond to elimination rules and pattern

matching, respectively, and Halln�as [4] has also proposed a proof method similar to case anal-

ysis in the context of partial inductive de�nitions.

Some examples of pattern matching

When de�ning a function by recursion on a set in type theory, the elimination constant of the

set must be used; for instance addition of two natural numbers, add : (N;N)N, is introduced by

add(x; y) = natrec(x; y; (x; z)succ(z)) :

With pattern matching, add would be directly introduced by the equations

(

add (0; y) = y

add (succ(x); y) = succ(add(x; y)) :

In the case of add , the de�nition by natrec is very close to the direct de�nition by the two

equations, but if we instead look at subtraction sub : (N;N)N, which by pattern matching can

be de�ned by the equations

8

>

<

>

:

sub(0; y) = 0

sub(succ(x); 0) = succ(x)

sub(succ(x); succ(y)) = sub(x; y) ;
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then a de�nition cannot be made by natrec which directly captures these equations; instead

we are forced to use a higher order function which will give a de�nition which is harder to

understand and which will result in more steps when computing sub(m;n).

A function is introduced by pattern matching over a set by de�ning it for all possible

constructors of the set; in particular, if a set has no constructor then a function can be introduced

directly without any equations. Hence, since there is no introduction rule for Id(N; 0; succ(0)),

we immediately obtain a function

f(x) : ? (x : Id(N; 0; succ(0)))

and thereby a proof of Peano's fourth axiom :Id(N; 0; succ(0)). Without pattern matching, a

universe must be used to prove negated equalities [7].

A similar example of a propositions which cannot be proved without a universe but which

is trivially true by pattern matching is obtained from

member : (a : A; l : List(A)) Set

de�ned inductively by

member(a; a:l)

member(a; l)

member(a; b:l)

,

leaving out the proof-objects. Since there is no introduction rule for member(a; nil), pattern

matching directly gives a proof of :member(a; nil). In order to prove this proposition without

pattern matching we would �rst have to give another de�nition of the membership relation, this

time by recursion using a universe:

(

member

0

(a; nil) = ?

member

0

(a; b:l) = Id(A; a; b)_member

0

(a; l) :

It is easy to show with elimination rules that member(a; l) and member

0

(a; l) are logically

equivalent; hence :member(a; nil) follows.

Another example along these lines is the following inductive de�nition of � on the natural

numbers:

0 � y

x � y

succ(x) � succ(y)

.

A proof of transitivity of � is straightforward by pattern matching but seems to require a

universe when only using elimination rules.

In [3] a normalization proof by Tait's computability method for a combinator formulation

of G�odel's system T is given in Martin-L�of's set theory both with elimination rules and with

pattern matching. In this fairly large example it turns out that the length of the proof with

pattern matching is about one third of the proof with elimination rules. One example in this

proof where pattern matching makes it shorter is the de�nition of the computability predicate.

This de�nition is intrinsically by recursion on the types but it can also be viewed as an inductive

de�nition and, by using pattern matching, there are less steps in the proof than with the

recursive de�nition. Since this inductive de�nition is not strictly positive, it is not even clear

how an elimination rule should be formulated in this case.



A semantical analysis of simply typed �-calculus, containing a normalization proof, is given

in [1]. This analysis involves terms with explicit substitution and requires de�nition of sets by

mutual induction; the proofs in [1] contain striking examples of simpli�cations obtained by the

use of pattern matching. Although these proofs have not been carried out with elimination rules,

we expect that the di�erence in length would be considerably greater than the one obtained

in [3].

The above examples show that a proof by pattern matching can be much simpler than a proof

by elimination rules; but there are even stronger examples: Hofmann has recently announced [5]

a groupoid model for Martin-L�of's type theory with elimination rules in which pattern matching

fails. An example which is false in the model but which can be proved by pattern matching is

the following. Assume

h : (x : A)C(x; id(x))

where C(x; z) : Set [x : A; z : Id(A; x; x)]. By pattern matching we can obtain an element f in

(x : A; z : Id(A; x; x))C(x; z)

by simply de�ning f by

f(x; id(x)) = h(x) : C(x; id(x)) [x : A]

because the only possible canonical form of z : Id(A; x; x) is id(x). In the groupoid model the

interpretation of Id(A; a; a) may have more than one element and (x : A; z : Id(A; x; x))C(x; z)

may be empty although (x : A)C(x; id(x)) is inhabited; surprisingly, the interpretation of usual

elimination rule for the Id sets can be justi�ed in the model. However, if the set A is concretely

given by an inductive de�nition, like the set of natural numbers, then it can be derived by

elimination rules that Id(A; a; a) has only the element id(a) [5].

What are the conclusions of these examples?

As we have seen from the examples, pattern matching not only makes the proofs shorter and

more readable, but it is also a proof method which entails more than the elimination rules for

the sets we are reasoning about. The power comes from the possibility of excluding impossible

cases in an inductive proof and this involves a kind of reection on the inductive de�nition.

Martin-L�of's motivation for the introduction of universes is that they express reection princi-

ples; one can argue that pattern matching hides this reection, instead it should be clearly seen

in the rules one is using.

On the other hand, pattern matching is more exible since one is not forced to add the full

strength of an elimination rule when reasoning about an inductively de�ned set; for instance a

case expression for the natural numbers can be directly introduced while with elimination rules

one �rst have to formulate the stronger rules of natrec. Also, it seems that pattern matching

reects more closely the way induction proofs are done in ordinary mathematics than elimination

rules do.

In [3] Martin-L�of has given a semantics for type theory by which the rules of type theory can

be justi�ed; this semantics also justi�es pattern matching. But the semantics is not completely

presented in [3]: judgements in contexts are explained by substituting arbitrary closed objects

of appropriate types for the variables and it is crucial for the semantics what is meant by

\substituting an arbitrary closed object." In [3] the interpretation was quite liberal so that

c(x) = d(x) : B [x : A] was interpreted as extensional equality which, in particular, is not

decidable. Martin-L�of considers this extensional interpretation as a mistake and that instead



the judgemental equality should be understood as de�nitional; then, obviously, there must be

restrictions on what is meant by substituting an arbitrary closed object. It is, however, di�cult

to imagine a semantics along these lines which could justify Id-elimination without using case

analysis and, hence, also would justify the last example above. A clearer understanding of the

semantics of open objects may have consequences of the understanding of proofs by pattern

matching as we can see from the following example.

In the above proof of :Id(N; 0; succ(0)) by case analysis, the essential idea is that a case

is ruled out because two terms beginning with di�erent constructors cannot be de�nitional

equal. A questionable use of case analysis along similar lines is the following: in Martin-L�of's

type theory there is no reduction rule if (x; true; false) = x : Bool [x : Bool] so �x:x and

�x:if (x; true; false) in Bool ! Bool are not convertible; hence pattern matching will prove

:Id(Bool; �x:x; �x:if (x; true; false)) thereby ruling out the future addition of the conversion rule

if (x; true; false) = x : Bool [x : Bool].

Acknowledgements. This note is a summary of discussions with many users of type

theory. In particular, we would like to thank Michael Hedberg for several clarifying remarks.
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Introduction

In this paper we prove that the smallest transitive relation < on normal terms such that

� if t is a strict subterm of u then t < u,

� if T is the normal form of the type of t and the term t is not a sort then T < t

is well-founded in the type systems of the cube [1]. This result is proved using the notion of

marked terms introduced by de Vrijer [5]. One motivation for this theorem is to de�ne the

�-long form of a normal term in these type systems.

In simply typed �-calculus, to de�ne the �-long form of a normal term we �rst de�ne the

�-long form of a variable x of type P

1

! :::! P

n

! P (P atomic) as the term [y

1

: P

1

]:::[y

n

:

P

n

](x y

0

1

::: y

0

n

) where y

0

i

is the �-long form of the variable y

i

of type P

i

. Then we de�ne the

�-long form of a normal term t well-typed of type P

1

! :::! P

n

! P (P atomic) as

� if t = [x : U ]u then its �-long form is the term [x : U ]u

0

where u

0

is the �-long form of u,

� if t = (x c

1

::: c

p

) then its �-long form is the term [y

1

: P

1

]:::[y

n

: P

n

](x c

0

1

::: c

0

p

y

0

1

::: y

0

n

)

where c

0

i

is the �-long form of the term c

i

, and y

0

i

the �-long form of the variable y

i

.

The de�nition of the �-long form of a variable is by induction over the structure of its type, and

the de�nition of the �-long form of a normal term is by induction over the structure of the term

itself. The �-long form appeared in [15] under the name of long reduced form and in [13] under

the name of �-normal form, and was further investigated in [14], under the name of extensional

form.

In systems with dependent types this de�nition is more complicated. First when t = [x : U ]u

we have to take the �-long form of the term U too, then when t = (x c

1

::: c

p

) we have to take

the �-long form of the terms P

1

; :::; P

n

too. So the well-foundedness of this de�nition is not so

obvious, indeed P

i

is not a subterm of t, but a subterm of its type. We prove the well-foundedness

of this de�nition using the well-foundedness of the relation <.

Besides the de�nition of �-long form, this well-foundedness result has been used in [7] to

prove the completeness of the resolution method in the systems of the cube and in [6] to prove

the decidability of second order matching in these systems.
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1 The Cube of Typed �-calculi

De�nition: (Term)

The set of terms is inductively de�ned as

T ::= Prop j Type j x j (T T ) j [x : T ]T j (x : T )T

The symbols Prop and Type are called sorts, the terms x are called variables, the terms

(T T

0

) applications, the terms [x : T ]T

0

�-abstractions and the terms (x : T )T

0

products. The

notation T ! T

0

is used for (x : T )T

0

when x does not occur free in T

0

. In this paper we ignore

variable renaming problems. A rigorous presentation would use de Bruijn indices. We consider

that the application is left-associative and we write (a b

1

::: b

n

) for ( ::: (a b

1

) ::: b

n

) when n > 0,

and a when n = 0.

Notation: If t and u are two terms and x is a variable, we write t[x u] for the term obtained

by substituting u for x in t. We write a =

�

b when the terms a and b are �-convertible and

a =

��

b when the terms a and b are ��-convertible. We write t B u when t reduces (in one step)

to u, t B

�

u when t reduces in an arbitrary number of steps to u and t B

+

u when t reduces in

at least one step to u.

De�nition: (Context)

A context � is a list of pairs < x; T > (written x : T ) where x is a variable and T a term.

The term T is called the type of x in �.

We write [x

1

: T

1

; :::; x

n

: T

n

] for the context with elements x

1

: T

1

; :::; x

n

: T

n

and �

1

�

2

for

the concatenation of the contexts �

1

and �

2

.

De�nition: (Typing rules)

We de�ne inductively two judgements: � is well-formed and t has type T in � (� ` t : T )

where � is a context and t and T are terms. These judgements are indexed by the parameter

R which is a set of pairs of sorts that contains the pair < Prop; Prop >.

[ ] well-formed

� ` T : s x =2 �

s 2 fProp; Typeg

�[x : T ] well-formed

� well-formed

� ` Prop : Type

� well-formed x : T 2 �

� ` x : T

� ` T : s �[x : T ] ` U : s

0

< s; s

0

>2 R

� ` (x : T )U : s

0

� ` (x : T )U : s �[x : T ] ` t : U

s 2 fProp; Typeg

� ` [x : T ]t : (x : T )U

� ` t : (x : T )U � ` u : T

� ` (t u) : U [x u]

116



� ` t : T � ` U : s T =

��

U

s 2 fProp; Typeg

� ` t : U

Remark: There are eight choices for the set R de�ning eight calculi. Examples of such

calculi are the simply typed �-calculus (R = f< Prop; Prop >g), the ��-calculus [12] (R = f<

Prop; Prop >;< Prop; Type >g), the system F [11] (R = f< Prop; Prop >;< Type; Prop >g),

the system F! [11] (R = f< Prop; Prop >;< Type; Prop >;< Type; Type >g) and the

Calculus of Constructions [2, 4] (R = f< Prop; Prop >;< Prop; Type >;< Type; Prop >;<

Type; Type >g).

De�nition: (Well-typed term)

A term t is said to be well-typed in a context � i� there exists a term T such that � ` t : T .

Remark: The term Type is not well-typed.

The following facts hold for every type system of the cube. The proofs are given in [8, 18].

We do not give them, as these results are not really new, and because this would be slightly

redundant with respect to the next section.

Proposition: In all the systems of the cube each well-typed term has a unique type up to

conversion.

Proposition: If �[x : U ] ` t : T and � ` u : U then � ` t[x u] : T [x u].

Proposition: Let � be a context and t and T be two terms such that � ` t : T . Then T is

either the term Type or a term well-typed in �, in this last case, the type of T is a sort.

Moreover if t is a variable, an application or an abstraction (but neither a sort nor a product)

then T 6= Type.

De�nition: (Atomic Term)

A term is said to be atomic if it has the form (h c

1

::: c

n

) where h is a variable or a sort (in

this last case with n = 0). The symbol h is called the head of this term.

Proposition: Let T be a well-typed normal term of type s for some sort s, T can be written in

a unique way T = (x

1

: P

1

):::(x

n

: P

n

)P with P atomic. Moreover if s = Type then P = Prop.

Proposition (Subject reduction): If � ` t : T and t B

�

u then � ` u : T .

Proposition (Normalization): In all the systems of the cube the ��-reduction relation is

strongly normalizable.

Proposition (Conuence): In all the systems of the cube the ��-reduction relation is con-

uent.

Proposition (Church-Rosser): If � ` t

1

: T , � ` t

2

: T and t

1

=

��

t

2

, then there exists t

such that t

1

B

�

t and t

2

B

�

t (and so � ` t : T ).

De�nition: (Subterm)

We consider well-typed normal terms labeled with the contexts in which they are well-typed:

t

�

. Let t

�

such a term, we de�ne by induction over the structure of t

�

the set Sub(t

�

) of strict

subterms of t

�

:

� if t

�

is a sort or a variable then Sub(t

�

) = fg,
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� if t

�

is an application t = (u v) then Sub(t

�

) = fu

�

; v

�

g [ Sub(u

�

) [ Sub(v

�

),

� if t

�

is an abstraction t = [x : P ]u then Sub(t

�

) = fP

�

; u

�[x:P ]

g [ Sub(P

�

) [ Sub(u

�[x:P ]

),

� if t

�

is a product t = (x : P )u then Sub(t

�

) = fP

�

; u

�[x:P ]

g [ Sub(P

�

) [ Sub(u

�[x:P ]

).

De�nition: (The Relation <)

Let < be the smallest transitive relation de�ned on normal well-typed labelled terms such

that

� if neither t nor u is a sort and t

�

is a strict subterm of u

�

then t

�

< u

�

,

� if neither t nor T is a sort, and T

�

is the (unique) normal form of the type of t

�

in � then

T

�

< t

�

.

2 Marked Terms

The main idea in this proof is to consider a new syntax for type systems such that the type of

a well-typed term t is a subterm of t. So we de�ne a syntax for type systems where each term

is marked with its type. In fact, we only need to mark variables, applications and abstractions,

but neither sorts nor products.

De�nition: (Marked Terms)

T ::= Prop j Type j x

T

j (T T )

T

j ([x : T ]T )

T

j (x : T )T

De�nition: Let t and u be marked terms and x a variable. We write t[x  u] for the term

obtained by substituting u for x in t, remark that since the variable x may also occur in the

marks we have to substitute both in the term and in the marks.

The notions of free variables and substitution straightforwardly extend to marked terms.

Therefore � and �-reductions may be de�ned on marked terms in the same way they are on

unmarked terms. We write t B u when t reduces (in one step) to u. Here also the contracted

redex may be either in the term or in the marks. We write t B

�

u if the contracted redex is a

�-redex and t B

�

u if the contracted redex is a �-redex.

We write R

�

for the reexive-transitive closure of a relation R and R

+

for its transitive

closure (where R stands for B, B

�

or B

�

).

A marked term t is said to be normal (resp. �-normal, �-normal) if it contains no redex

(resp. �-redex, �-redex).

De�nition: (Contents of a marked term)

Let t be a marked term, the contents of t is the unmarked term t

#

de�ned by induction over

the structure of t:

� if t is a sort then t

#

= t,

� if t = x

T

then t

#

= x,

� if t = (u v)

T

then t

#

= (u

#

v

#

),

� if t = ([x : P ]u)

T

then t

#

= [x : P

#

]u

#

,
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� if t = (x : P )U then t

#

= (x : P

#

)U

#

.

Remark: If t and u are marked terms and t B u then either t

#

= u

#

(if the redex occurs in

the marks) or t

#

B u

#

.

Remark: If t is a marked term such that t

#

B

�

u then there exists a marked term t

0

such

that t B

�

t

0

and t

0#

= u. Note that this proposition is false for �-reduction, indeed the term

t = [x : T ](y

([z:T ]U x)

x) is not an �-redex, but t

#

= [x : T ](y x) is.

De�nition: (Conversion on marked terms) Let t

1

and t

2

be two marked terms. We say

that t

1

=

��

t

2

(respectively t

1

=

�

t

2

) if and only if t

#

1

=

��

t

#

2

(respectively t

1

=

�

t

2

)

1

.

De�nition: A marked context is a list of pairs < x; T > (written x : T ) where x is a variable

and T a marked term.

De�nition: (Typing rules)

We de�ne inductively two judgements: � is well-formed and t has type T in � (� ` t : T )

where � is a marked context and t and T are marked terms.

[ ] well-formed

� ` T : s x =2 �

s 2 fProp; Typeg

�[x : T ] well-formed

� well-formed

� ` Prop : Type

� well-formed x : T 2 �

� ` x

T

: T

� ` T : s �[x : T ] ` U : s

0

< s; s

0

>2 R

� ` (x : T )U : s

0

� ` (x : T )U : s �[x : T ] ` t : U

s 2 fProp; Typeg

� ` ([x : T ]t)

(x:T )U

: (x : T )U

� ` t : (x : T )U � ` u : T

� ` (t u)

U [x u]

: U [x u]

� ` t : T � ` U : s T =

��

U

s 2 fProp; Typeg

� ` t : U

� ` x

V

: T � ` W : s V =

��

W

s 2 fProp; Typeg

� ` x

W

: T

� ` ([x : T ]t)

V

: U � `W : s V =

��

W

s 2 fProp; Typeg

� ` ([x : T ]t)

W

: U

� ` (t u)

V

: U � ` W : s V =

��

W

s 2 fProp; Typeg

� ` (t u)

W

: U

1

The convertibility relation used on marked terms is de�ned as ��-conversion on the underlying unmarked

terms, whatever that marks are. We could chose to take the reexive-symetric-transitive closure of the reduction

relation instead, but this would imply to redo the proofs of propositions given in [8].
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Remark that the three last rules permit to perform conversions in marks, in the same way

as the rule above permit to perform conversion in the type of a term.

De�nition: (Well-typed marked term)

A marked term t is said to be well-typed in a marked context � if and only if there exists a

marked term T such that � ` t : T .

We now go to proving the basic properties of the system with marked terms. For several of the

following properties, the proofs are very similar to what is done for the usual formulation using

unmarked terms. In these cases, we do not detail the proof.

De�nition: (Contents of a marked context)

Let � = [x

1

: P

1

; :::; x

n

: P

n

] be a marked context, the contents of � is the context

�

#

= [x

1

: P

#

1

; :::; x

n

: P

#

n

]

Proposition: Let � be a marked context and t and T be marked terms such that � ` t : T .

Then �

#

` t

#

: T

#

.

Proof: By induction on the length of the derivation of � ` t : T .

De�nition: (Atomic Term)

A marked term is said to be atomic if it has the form ( ::: (h c

1

)

T

1

::: c

n

)

T

p

where h is a

marked variable x

T

0

or a sort s. The symbol h is called the head of this term.

Proposition (Uniqueness of Product Formation): If (x : T

1

)T

2

=

��

(x : U

1

)U

2

then

T

1

=

��

U

1

and T

2

=

��

U

2

. If s

1

and s

2

are two sorts such that s

1

=

��

s

2

then s

1

= s

2

.

Proof: The proof considers the raw �-terms obtained by replacing typed �-abstraction [x : T ]t

by �x:t. On these raw terms, the Church-Rosser property holds. The result follows quite

easily [8, 18].

Proposition (Substitution): If �[x : U ]�

0

` t : T and � ` u : U then

��

0

[x u] ` t[x u] : T [x u].

Proof: By induction on the length of the derivation of �[x : U ] ` t : T .

Proposition (Weakening): If ��

0

` t : T and � ` U : s then �[x : U ]�

0

` t : T .

Proof: By induction on the length of the derivation of ��

0

` t : T .

Proposition: If � ` t : T then either T = Type or there exists a sort s such that � ` T : s.

Moreover if t is a variable, an application or an abstraction (but neither a sort nor a product)

then T 6= Type.

Proof: By induction on the length of the derivation of � ` t : T . For induction loading one

simultaneously proves that if � = �[z : V ]�

0

, then � ` V : s.

Proposition (Stripping):

� If � ` Prop : T then T = Type,

� if � ` x

T

: U then there is some declaration x : V in � such that � ` T : s for some sort s

and T =

��

U =

��

V ,

� if � ` (x : T

1

)T

2

: U then there exists three sorts s; s

1

; s

2

such that U =

��

s, � ` T

1

: s

1

,

�[x : T

1

] ` T

2

: s

2

and < s

1

; s

2

>2 R,
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� if � ` ([x : T ]t)

U

: V then there exists a term W and two sorts s

1

and s

2

such that

U =

��

V =

��

(x : T )W , � ` T : s

1

, �[x : T ] ` t : W , �[x : T ] `W : s

2

and < s

1

; s

2

>2 R,

� if � ` (t u)

T

: U then there exists two terms V and W such that T =

��

U =

��

W [x u],

� ` t : (x : V )W , � ` u : V .

Proof: By induction on the length of the derivation.

Corollary: In all the systems of the cube each well-typed term has a unique type up to

conversion.

Corollary: Let t be a normal well-typed term, t is either an abstraction, a product or an

atomic term.

Corollary: Let T be a well-typed normal marked term of type s for some sort s, T can be

written in a unique way T = (x

1

: P

1

):::(x

n

: P

n

)P with P atomic. Moreover if s = Type then

P = Prop.

Corollary: Let � be a marked context and t and T be marked terms such that � ` t : T and t

is a variable, an application or an abstraction. Then T is convertible to the outermost mark of

t. For instance if t = (u v)

U

then T is convertible to U .

Proposition (Convertibility of contexts): If �[x : T ]�

0

and �[x : U ]�

0

are well-formed

contexts and � ` T : s, � ` U : s, T =

��

U and �[x : T ]�

0

` t : V hold then �[x : U ]�

0

` t : V

Proof: By induction on the length of the derivation of �[x : T ]�

0

` t : V .

Proposition (subject �-reduction): If � ` t : T and t B

�

t

0

then � ` t

0

: T .

Proof: By induction over the structure of t.

Proposition (Geuvers): If � ` t : u and t =

��

(x : T )U then t B

�

(x : V )W . If � ` t : u,

given a sort s such that t =

��

s, one has t B

�

s.

Proof: The proof goes as in [8], using again raw �-terms.

Proposition (Strengthening): If �[x : U ]�

0

` t : T and x occurs free neither in �

0

nor in t

then there exist a term T

0

such that ��

0

` t : T

0

.

Proof: We may �rst remark that if T is some sort s, we may chose T

0

= s, as T

0

=

��

s, which

implies T

0

B

�

�

s, and thus ��

0

` t : s, by subject �-reduction and conversion. The proof then

goes by induction over the structure of t:

� If t = (t

1

t

2

)

A

, we know that �[x : U ]�

0

` t

1

: (z : C)D and �[x : U ]�

0

` t

2

: C. The

induction hypothesis ensures that ��

0

` t

1

: E and ��

0

` t

2

: C

0

. As E =

��

(z : C)D,

Geuvers' lemma implies that E B

�

�

(z : C

00

)D

0

. The conversion rule gives ��

0

` t

2

: C

00

,

and so ��

0

` (t

1

t

2

)

D

0

[z t

2

]

: D

0

[z  t

2

]. The induction hypothesis also implies ��

0

` A : s,

and so we �nally have ��

0

` (t

1

t

2

)

A

: D

0

[z  t

2

].

� If t = ([z : A]t

0

)

B

, the stripping lemma ensures that �[x : U ]�

0

[z : A] ` t

0

: (z : A)C,

�[x : U ]�

0

` A : s

1

, �[z : U ]�

0

[z : A] ` C : s

2

and < s

1

; s

2

>2 R. We may apply the

induction hypothesis in order to get ��

0

[z : A] ` t

0

: D, ��

0

` A : s

1

, ��

0

[z : A] ` C : s

2

.

Applying Geuvers's lemma we get D B

�

�

(z : A

0

)C

0

. Uniqueness of typing then ensures

that ��

0

[z : A] ` C

0

: s

2

, and therefore ��

0

` (z : A)C

0

: s

2

. This is su�cient to derive the

judgement ��

0

` ([z : A]t

0

)

(z:A)C

0

: (z : A)C

0

and �nally ��

0

` ([z : A]t

0

)

B

: (z : A)C

0

, as

��

0

` B : s.
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The other cases are straightforward.

Proposition (subject �-reduction): If � ` t : T and t B

�

t

0

then � ` t

0

: T .

Proof: By induction over the structure of t, all the cases are straightforward, but the one in

which t is itself the reduced �-redex. In this case t = ([x : U ](u x

V

)

W

)

X

and t

0

= u. Using twice

the stripping lemma we get �[x : U ] ` u : (y : A)B with (y : A)B =

��

T . By the strengthening

lemma we get � ` u : C and by unicity of typing C =

��

(y : A)B. As T 6= Type we have

� ` T : s thus by conversion � ` u : T .

We have remarked above that even if t

#

is an �-redex then t is not necessarily an �-redex.

We prove now that if we perform enough reductions in the marks, the term t becomes an �-

redex. For instance the term t = [x : T ](y

([z:T ]U x)

x) reduces to [x : T ](y

U

x) which is an

�-redex. More precisely, we eventually want to prove the following: if t is ��-normal then t

#

is

��-normal.

Proposition: If �[x : U ]�

0

` t : T , t is �-normal and x does not occur free neither in �

0

nor in

t

#

and in T , then x does not occur free in t.

Proof: By induction over the structure of t:

� If t = (z : A)B, we have �[x : U ]�

0

` A : s which implies that x does not occur free in A.

We then apply the induction hypothesis to �[x : U ]�

0

[z : A] ` B : s

0

which ensures that x

does not occur free in B.

� It t = x

A

, we just apply the induction hypothesis to �[x : U ]�

0

` A : s.

� If t = ([z : B]C)

D

, the same reasoning as above ensures that x does not occur free in B

and in D. We know that D (or T ) is convertible to a product, and thus D B

�

�

(z : B

0

)E.

We may then apply the induction hypothesis to �[x : U ]�

0

[z : B] ` C : E.

� If t = ( ::: (z

T

0

c

1

)

T

1

::: c

n

)

T

p

, we �rst remark that x does not occur free in any T

i

, as

they are all well-typed of some sort in �[x : U ]�

0

. The stripping lemma ensures that T

0

is convertible to some product, and thus T

0

B

�

�

(y : A)B. As �[x : U ]�

0

` c

1

: A, we know

that x does not occur free in c

1

. This implies that x does not occur free in B[x  c

1

].

We may then iterate that reasoning and prove by induction over i that x does not occur

free in any c

i

.

Proposition: Let t be a well-typed marked term. If t is ��-normal then t

#

is ��-normal.

Proof: We already know that t

#

is �-normal. Now suppose that t is not �-normal. So we have

a subterm u of t such that u

#

is an �-redex: u = ([x : A](v x

B

)

C

)

D

with x not occurring free

in v

#

. It is easy to prove, by induction over the structure of v, that we may apply the previous

proposition to every mark of v. This implies that x does not occur free in v which leads to a

contradiction.

3 Normalization of Marked Terms

In this section we prove that each well-typed marked term has a unique normal form.

Proposition: Let � be a marked context and t a term well-typed in �. If the term t has the

form x

T

, (u v)

T

, ([x : P ]u)

T

then the term T is well-typed in � and its type is a sort.

Proof: By induction on the length of the derivation of � ` t : T .
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De�nition: (Translation of a marked term into a unmarked term)

Let � be a marked context and t be a marked term well-typed in � or which is a sort. When

t has the form x

T

, (u v)

T

, ([x : P ]u)

T

then let s be the type of T . If s = Type then T has

the form T = (x

1

: A

1

):::(x

n

: A

n

)Prop we let T = (x

1

: A

1

):::(x

n

: A

n

)o

Prop

, otherwise we let

T = T .

We de�ne by induction on t a term t

�

.

� if t is a sort we let t

�

= t,

� if t = x

T

then we let t

�

= ([z : Prop]x T

�

),

� if t = (u v)

T

then we let t

�

= ([z : Prop](u

�

v

�

) T

�

),

� if t = ([x : P ]u)

T

then we let t

�

= ([z : Prop][x : P

�

]u

�

T

�

),

� if t = (x : P )Q then we let t

�

= (x : P

�

)Q

�

.

This translation is similar to the ones de�ned in [12, 10].

De�nition: (Translation of a marked context into a unmarked context)

Let � = [x

1

: P

1

; :::; x

n

: P

n

] be a marked context, we let �

�

= [x

1

: P

�

1

; :::; x

n

: P

�

n

].

Proposition: a

�

[x b

�

] B

�

(a[x b])

�

Proof: By induction over the structure of a.

If a = x

T

then:

a

�

= ([z : Prop]x T

�

)

a

�

[x b

�

] = ([z : Prop]b

�

T

�

[x b

�

]) B

�

b

�

= (x

T

[x b])

�

= (a[x b])

�

The other cases are a simple application of the induction hypothesis. For instance if a is an

application a = (t u)

T

. We have

a

�

= ([z : Prop](t

�

u

�

) T

�

)

So

a

�

[x b

�

] = ([z : Prop](t

�

[x b

�

] u

�

[x b

�

]) T

�

[x b

�

])

By induction hypothesis we have

t

�

[x b

�

] B

�

(t[x b])

�

u

�

[x b

�

] B

�

(u[x b])

�

T

�

[x b

�

] B

�

(T [x b])

�

So

a

�

[x b

�

] B

�

([z : Prop]((t[x b])

�

(u[x b])

�

)(T [x b])

�

)

= ([z : Prop]((t[x b])

�

(u[x b])

�

)(T [x b])

�

)

= ((t[x b] u[x b])

T [x b]

)

�

= (a[x b])

�

Proposition: If a B b then a

�

B

+

b

�

.
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Proof: If a = (([x : P ]t)

T

u)

U

and b = t[x u],

a

�

= ([z : Prop]([z

0

: Prop][x : P

�

]t

�

T

�

u

�

) U

�

)

b

�

= (t[x u])

�

By reducing �rst three �-redexes in a

�

we get t

�

[x u

�

]. Thus

a

�

B

+

t

�

[x u

�

]

and

t

�

[x u

�

] B

�

(t[x u])

�

= b

�

thus

a

�

B

+

b

�

If a = ([x : P ](t x

P

)

T

)

U

and b = t,

a

�

= ([z : Prop][x : P

�

]([z

0

: Prop](t

�

([z

00

: Prop]x P

�

)) T

�

) U

�

)

b

�

= t

�

We reduce three �-redexes and one �-redex in a

�

to get b

�

.

The same holds if we reduce a redex in a subterm.

Proposition: Let � be a marked context and t and T two marked terms such that � ` t : T

in some system of the cube then [o : Prop]�

�

` t

�

: T

�

in the Calculus of Constructions.

Proof: By induction on the length of the derivation of � ` t : T .

Lemma: The reduction on marked terms is strongly normalizable.

If there was an in�nite reduction issued from a marked term t, we could build one issued from

the unmarked term t

�

, in contradiction with the fact that reduction is strongly normalizable on

well-typed terms in the Calculus of Constructions.

Proposition: Let a and b two normal marked terms well-typed in the marked context �. If

a

#

= b

#

then a = b.

Proof: By induction over the structure of a. Since a and b have the same contents, they are

either both sorts, both variables, both abstractions, both products or both applications.

If they are, for instance, both applications, a = (t u)

T

, b = (v w)

U

then the marked terms

t and v are well-typed and normal in � and have the same contents so they are equal, and

symmetrically the marked terms u and w are equal. The marked terms T and U are well-typed

and normal in �. Thus T

#

and U

#

are normal, and both are types of a

#

= b

#

in �

#

. So

T

#

= U

#

and thus T = U . We then conclude that a = b.

The same holds if they are both sorts, variables, abstractions or products.

Proposition: Let a and b be two marked terms. If a B

�

b then a

#

B

�

b

#

.

Proof: By induction on the length of the derivation of a B

�

b.

Proposition (Unicity of normal forms): Let � be a marked context and t, a, b be marked

terms well-typed in � such that a and b are normal terms and t reduces (in an arbitrary number

of steps) to a and b. Then a = b.

Proof: The marked terms a and b are well-typed in � and their contents is the normal form of

t

#

.
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Proposition (Conuence): Let � ` t : T , t B

�

t

1

and t B

�

t

2

. Then there exists a term u

such that t

1

B

�

u and t

2

B

�

u.

Proof: Let u

1

and u

2

be the normal forms of t

1

and t

2

. By de�nition, we have t

1

B

�

u

1

and

t

2

B

�

u

2

. The terms u

1

and u

2

are normal, t B

�

u

1

and t B

�

u

2

, thus u

1

= u

2

.

Proposition (Church-Rosser): Let � ` t

1

: T and � ` t

2

: T be two derivable judgements.

If t

1

=

��

t

2

, then there exits a term u such that t

1

B

�

u and t

2

B

�

u.

Proof: By induction on the length of the derivation of t

1

=

��

t

2

.

4 Well-foundedness of the relation <

We want to associate to each unmarked term a normal marked term. We could consider the

normal form of the unmarked term and mark each subterm by its type, but we would need then

to mark the new subterms introduced as marks and we would have to prove that this process

terminates. It is actually simpler to build the marked term by induction on the length of the

typing derivation of the term.

De�nition: A marked context � = [x

1

: P

1

; :::; x

p

: P

n

] is said to be normal if every P

i

is

normal.

Proposition: Let �

1

and �

2

be two normal well-formed marked contexts such that �

#

1

= �

#

2

.

Then �

1

= �

2

.

Proof: By induction on the common length of �

1

and �

2

.

Proposition: Let a and b two marked terms well-typed in the marked context �. If a

#

=

��

b

#

then a =

��

b.

Proof: Let c be the normal form of a and d the normal form of b. The term c

#

is the normal

form of a

#

and d

#

is the normal form of b

#

. Since a

#

=

��

b

#

we have c

#

= d

#

, and thus

c = d. Therefore a =

��

b.

De�nition: (Translation of an unmarked term into a marked term)

Let us consider an unmarked judgement � ` a : A or � well-formed which has a derivation.

By induction on the length of this derivation, we build in the �rst case a normal marked context

�

�

and normal marked terms a

�

and A

�

such that �

� #

=

��

�, a

� #

=

��

a, A

� #

=

��

A and

the judgement �

�

` a

�

: A

�

is derivable and in the second a normal marked context �

�

such

that �

� #

=

��

� and the judgement �

�

well-formed is derivable.

� If the last rule of the derivation is

[ ] well-formed

we let �

�

= [ ].

� If the last rule of the derivation is

� ` T : s

�[x : T ] well-formed

then by induction hypothesis we have built �

�

and T

�

. We let �

�

= �

�

[x : T

�

].
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� If the last rule of the derivation is

� well-formed

� ` Prop : Type

then by induction hypothesis we have built �

�

. We let �

�

= �

�

, a

�

= Prop and A

�

=

Type.

� If the last rule of the derivation is

� well-formed x : T 2 �

� ` x : T

then by induction hypothesis we have built �

�

. We have �

� #

=

��

�, so �

�

contains a

declaration x : P and P

#

=

��

T . We let �

�

= �

�

, a

�

= x

P

and A

�

= P .

� If the last rule of the derivation is

� ` T : s �[x : T ] ` U : s

0

� ` (x : T )U : s

0

then by induction hypothesis we have built �

�

, T

�

, (�[x : T ])

�

and U

�

. Since (�[x :

T ])

� #

=

��

�[x : T ], the context (�[x : T ])

�

has the form �

0

[x : P ] with �

0

and P normal

�

0#

=

��

� and P

#

=

��

T . Then since �

�

and �

0

are both normal well-formed and have

the same contents we have �

�

= �

0

and since T

�

and P are both normal, well-typed in �

�

and have the same contents T

�

= P . We let �

�

= �

�

, a

�

= (x : T

�

)U

�

and A

�

= s

0

.

� If the last rule of the derivation is

� ` (x : T )U : s �[x : T ] ` t : U

� ` [x : T ]t : (x : T )U

then by induction hypothesis we have built �

�

, ((x : T )U)

�

, (�[x : T ])

�

, t

�

and U

�

. Since

((x : T )U)

�

is normal and ((x : T )U)

� #

=

��

(x : T )U the term ((x : T )U)

�

is a product

(x : P )Q, P and Q are normal P

#

=

��

T and Q

#

=

��

U . In the same way since (�[x : T ])

�

is normal and (�[x : T ])

� #

=

��

�[x : T ], the context (�[x : T ])

�

has the form �

0

[x : R]

with �

0

and R normal �

0#

=

��

� and R

#

=

��

U . Since �

�

and �

0

are normal well-formed

and have the same contents �

�

= �

0

. Since P and R normal well-typed in �

�

and have

the same contents, P = R. Since Q and U

�

are normal well-typed in �

�

[x : P ] and have

the same contents Q = U

�

. We let �

�

= �

�

, a

�

= ([x : P ]t

�

)

(x:P )Q

and A

�

= (x : P )Q.

� If the last rule of the derivation is

� ` t : (x : T )U � ` u : T

� ` (t u) : U [x u]

then by induction hypothesis we have built �

�

1

, t

�

, ((x : T )U)

�

, �

�

2

, u

�

and T

�

. Since the

term ((x : T )U)

�

is normal and ((x : T )U)

� #

=

��

(x : T )U , the term ((x : T )U)

�

has the

form (x : P )Q, P and Q are normal P

#

=

��

T and Q

#

= U . Since �

�

1

and �

�

2

are normal,

well-formed and have the same contents, �

�

1

= �

�

2

. Since P and T

�

normal, well-typed in

�

�

1

and have the same contents, T

�

= P . We have �

�

1

` t

�

: (x : T

�

)U

�

and �

�

1

` u

�

: T

�

,

thus �

�

1

` (t

�

u

�

)

U

�

[x u

�

]

: U

�

[x  u

�

]. Let v be the normal form of (t

�

u

�

)

U

�

[x u

�

]

and

V be the normal form of U

�

[x  u

�

]. We have �

�

1

` v : V . We let �

�

= �

�

1

, a

�

= v and

A

�

= V .
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� If the last rule of the derivation is

� ` t : T � ` U : s T =

��

U

� ` t : U

then by induction hypothesis we have built �

�

1

, t

�

, T

�

, �

�

2

and U

�

. Since �

�

1

and �

�

2

are

normal well-formed and have the same contents they are equal. Since T

�

and U

�

are

normal, well-typed in �

�

1

and have the same contents, they are equal. We let �

�

= �

�

1

,

a

�

= t

�

and A

�

= U

�

.

Theorem: The relation < is well-founded.

Proof: Let t and u be two unmarked normal terms which are not sorts and which are well-typed

in two contexts � and �.

If t

�

is a strict subterm of u

�

then by induction on the structure of u, the term t

�

is a strict

subterm of u

�

. If t is the normal form of the type of u then t

�

is either the outermost mark of

u

�

or a sort, since t is not a sort, t

�

is not a sort, so it is the outermost mark of u

�

.

So if t

�

< u

�

then t

�

is a strict subterm of u

�

.

Assume there exist an in�nite decreasing sequence of terms t

1

; :::; t

i

; :::. For each i, t

�

i+1

is a

strict subterm of t

�

i

, thus the sequence t

�

1

; :::; t

�

i

; ::: is an in�nite sequence of marked terms such

that t

�

i+1

is a strict subterm of t

�

i

which is impossible.

Remark: The theorem above can also be proved for a Calculus of the Cube with �-conversion

only.

5 Application to de�ning the �-long normal form

De�nition: (Measure of a Term)

Let � be a context and t a normal term well-typed of type T in �. We de�ne by induction

over the order <, the measure �(t) of t

� If t is a sort then �(t) = 1,

� If t = x and T then �(t) = �(T ) + 1,

� If t = (u v) then �(t) = �(u) + �(v) + �(T ),

� If t = [x : U ]v then �(t) = �(U) + �(v) + �(T ),

� If t = (x : U)V then �(t) = �(U) + �(V ).

Now we can give the following de�nition by induction over �(t).

De�nition: (�-long form)

Let � be a context and t a normal term well-typed in � and (x

1

: P

1

):::(x

n

: P

n

)P (P atomic)

the normal form of its type. Then

� if t = [x : U ]u then the �-long form of t in � is the term [x : U

0

]u

0

where U

0

is the �-long

form of U in � and u

0

the �-long form of u in �[x : U ],

� if t = (x : U)V the �-long form of t in � is the term (x : U

0

)V

0

where U

0

is the �-long form

of U in � and V

0

the �-long form of V in �[x : U ],
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� if t = (w c

1

::: c

p

) the �-long form of t in � is the term [x

1

: P

0

1

]:::[x

n

: P

0

n

](w c

0

1

::: c

0

p

x

0

1

::: x

0

n

)

where c

0

i

is the �-long form of c

i

in �, P

0

i

the �-long form of P

i

in �[x

1

: P

1

; :::; x

i�1

: P

i�1

]

and x

0

i

the �-long form of x

i

in �[x

1

: P

1

; :::; x

i

: P

i

].

Note that �(x

i

) = �(P

i

) + 1 � �((x

1

: P

1

):::(x

n

: P

n

)P ) < �(t).

6 The Relation <

0

De�nition: (The Relation <

0

)

Let <

0

be the smallest transitive relation de�ned on normal well-typed terms such that

� if neither t nor u is a sort and t

�

is a strict subterm of u

�

then t

�

<

0

u

�

,

� if neither t nor T is a sort and T

�

is the �-long form of the normal form of the type of t

�

in � and the term t is not a sort then T

�

<

0

t

�

.

We prove that the relation <

0

is also well-founded.

De�nition: (Measure of a Marked Term)

Let t be a marked term, we de�ne by induction over the structure of t, the measure �(t) of t

� If t is a sort then �(t) = 1,

� If t = x

T

then �(t) = �(T ) + 1,

� If t = (u v)

T

then �(t) = �(u) + �(v) + �(T ),

� If t = ([x : U ]v)

T

then �(t) = �(U) + �(v) + �(T ),

� If t = (x : U)V then �(t) = �(U) + �(V ).

De�nition: (�-long Form of a Marked Term)

Let � be a marked context and t be a normal marked term well-typed in � with the type

(x

1

: P

1

):::(x

n

: P

n

)P (P atomic). The �-long form of the marked term t is de�ned by

induction on �(t).

� If t = ([x : U ]u)

T

then the �-long form of t is ([x : U

0

]u

0

)

T

0

where U

0

is the �-long form of

U in �, T

0

the �-long form of T in � and u

0

the �-long form of u in �[x : U ],

� if t = (x : U)V then the �-long form of t is (x : U

0

)V

0

where U

0

is the �-long form of U in

� and V

0

the �-long form of V in �[x : U ],

� if t = ( ::: (w

T

0

c

1

)

T

1

::: c

p

)

T

p

then the �-long form of t is

[x

1

: P

0

1

]:::[x

n

: P

0

n

]( ::: (( ::: (w

T

0

0

c

0

1

)

T

0

1

::: c

0

p

)

T

0

p

x

0

1

)

V

0

1

::: x

0

n

)

V

0

n

where c

0

i

is the �-long form of c

i

in �, T

0

i

the �-long form of T

i

in �, P

0

i

the �-long form

of P

i

in �[x

1

: P

1

; :::; x

i�1

: P

i�1

], P

0

the �-long form of P in �[x

1

: P

1

; :::; x

n

: P

n

], x

0

i

the

�-long form of x

P

i

i

in �[x

1

: P

1

; :::; x

i

: P

i

] and V

0

i

= (x

i+1

: P

0

1

):::(x

i+1

: P

0

n

)P

0

.
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De�nition: (Normal �-long Translation of an Unmarked Term)

Let t be a term well-typed in the context �, we de�ne its normal �-long translation t

+

as

the �-long form of its translation t

�

.

Theorem: The relation <

0

is well-founded.

Proof: As in the proof of the well-foundedness of the relation < we �rst prove that if t <

0

u

then t

+

is a strict subterm of u

+

and then that there is no in�nite decreasing sequence for the

relation <

0

.

Conclusion

We have proved that the relation < is well-founded in all the type systems of the cube. Thus

��-long forms exist in these type systems and moreover the relation <

0

is well-founded too.
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Conservativity between logics and typed � calculi
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�
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University of Nijmegen, Netherlands

1 Introduction

When looking at systems of typed � calculus from a logical point of view, there are some

interesting questions that arise. One of them is whether the the formulas-as-types embedding

from the logic into the typed � calculus is complete, that is, whether the types that are inhabited

in the typed � calculus are provable (as formulas) in the logic. It is well-known that this is not

a vacuous question: the `standard' formulas-as-types embedding from higher order predicate

logic into the Calculus of Constructions is not complete. (See [Berardi 1989], [Geuvers 1989] or

[Geuvers 1993].) Another interesting issue is whether the typed � calculus approach can help

to solve questions about the logics or vice versa. An example of such a fruitful interaction is

the proof of (strong) normalization for the Calculus of Constructions, which has as corollary

in higher order predicate logic that cut elimination terminates. In this paper we want to treat

questions of conservativity between systems of typed � calculi (and hence between the logical

systems that correspond with them according to the formulas-as-types embedding). On the

one hand this is an issue of interest for the typed � calculi themselves (can new type forming

operators create inhabitants of previously empty types?) On the other hand, however, this is a

nice example of how the formulas-as-types embedding can help to solve questions about logics

by making use of typed � calculi and vice versa.

If one sees a typed � calculus as a logical system, one takes one speci�c universe (sort in the

terminology of Pure Type Systems) to be interpreted as the universe of all formulas. Let's call

this universe Prop. Now suppose that S

1

is a system of typed � calculus containing the universe

Prop, and suppose that S

2

is a system that extends S

1

.

De�nition 1.1 The type system S

2

is a conservative extension of S

1

if for every context � and

type A one has

� `

S

1

A : Prop

� `

S

2

M : A

)

) 9N [� `

S

1

N : A]:

The `logical' intuition should be clear: if the formula A, taken from the smaller system, is

provable in the larger system, then it is already provable in the smaller system. To make the

connection with logics a bit more precise we recall that, if L

1

and L

2

are logics and L

2

extends

L

1

, then L

2

is a conservative extension of L

1

if for all formulas ' and sets of fomulas � one has

� [ f'g is a set of formulas of L

1

� `

L

2

'

)

) � `

L

1

':

�

e-mail: herman@cs.kun.nl
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Now, let H be the formulas-as-types embedding from L

1

into S

1

and from L

2

into S

2

. This

means that for every �nite set of formulas �

0

in L

i

there is a speci�c context �

�

0

in S

i

, in which

all the declarations are made that are necessary for forming the types H( ) (for  2 �) in S

i

.

Furthermore this embedding H is sound:

� `

L

i

') 9N [�

�[f'g

; ~p:H(�) `

S

i

N : H(')]:

Here the ~p:H(�) denotes a vector of variable-declarations p

i

: H( 

i

) for each  

i

2 �. Hence the

� is taken to be �nite, which is not a real restriction. In the formulas-as-types embedding, the

termN of typeH(') is de�ned by induction on the derivation of � ` ', so the formulas-as-types

embedding not only maps formulas to types, but also derivations to proof-terms.

The formulas-as-types embedding is not always complete, where completeness means (in the

terminology above) that for each formula ' and �nite set of formulas �, taken from L

i

one has

�

�[f'g

; ~p:H(�) `

S

i

N : H(')) � `

L

i

':

Some well-known examples of the formulas-as-types embedding are not complete, like the em-

bedding of higher order predicate logic into the Calculus of Constructions. In this paper we

are more interested in embeddings that are complete, in which case we usually speak of a

formulas-as-types isomorphism. This is because of the following.

Proposition 1.2 If the formulas-as-types embedding H is complete, then

S

2

is a conservative extension of S

1

, L

2

is a conservative extension of L

1

:

This proposistion can be useful in two ways, both of which will be applied in this paper.

Note therefore that in the de�nition of conservativity (De�nition 1.1) there is no requirement

about a function that takes an inhabitant M : ' in the larger system and returns an inhabitant

N : ' in the smaller system. However, if there is such a function, then the conservativity result

will usually be much easier to prove for the typed � calculi, because one just has to de�ne the

function and to show (by induction on the derivation or by induction on the structure of the

term) that it preserves derivability. This is a purely syntactic conservativity proof. If it is not

clear how such a function should be de�ned, it is better to look at the logics, in which case

one can forget about functions all together and just look at provability. In this latter case a

semantic approach suits very well to prove conservativity.

Here we study the conservativity relations inside the cube of typed � calculi, a collection

of eight type systems de�ned by Barendregt (see [Barendregt 1992]) to give a �ne structure for

the Calculus of Constructions. There is a close connection between the cube of typed � calculi

and a cube of logical systems, due to the formulas-as-types embedding from the latter into the

�rst. To make this embedding more readily understandable it is often described in two steps,

�rst from the logic to a typed � calculus that is in direct correspondence with the logic and then

from this latter typed � calculus to a type system of the cube. (See [Barendregt 1992] but also

[Geuvers 1993].) To strip our discussions about typed � calculi from the need to �rst having to

justify all kinds of meta theoretic reasoning, we work in the framework of `Pure Type Systems'.

(See [Geuvers and Nederhof 1991], [Barendregt 1992] or [Geuvers 1993].) This gives a general

method for describing typed � calculi. Moreover we can use all the well-known meta-theory for

Pure Type Systems (PTSs).

The main result in this paper is that, if S

1

is a system in the cube that contains the system

S

1

, then S

2

is a conservative extension of S

1

, unless S

2

is the Calculus of Constructions (CC)
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and S

1

is the second order dependent typed � calculus �P2. But more interesting than this

general result is maybe the proof, which is devided in four cases. The �rst case is to show that

CC is not conservative over �P2. The second case is to show that the extension of a system by

adding type dependency is conservative. The third is to show that an extension of a �rst order

system (i.e. a system in the bottom plane of the cube) is always conservative. This leaves over

one special case, which is to show that �! is not conservative over the polymorphic � calculus,

�2. The second and third case are by de�ning a mapping from terms in the larger system to the

terms in the smaller system, which gives us a purely syntactic conservativity proof. The fourth

case is more di�cult, because it is not clear how to do this proof by purely syntactic means.

We therefore de�ne a semantics for the logical systems of higher and second order propositional

logic (which are isomorphic to �! and �2 under by the formulas-as-types embedding) and show

the conservativity on the level of the logics.

2 A �ne structure for the Calculus of Constructions

2.1 Pure Type Systems

Our studies of the Calculus of Constructions and its subsystems will be done in the framework

of `Pure Type Systems'. This provides a generic way of describing systems of typed � calculus.

In fact one can only describe systems that have as type forming operator just the � and as

reduction rule just �. As the Calculus of Constructions is such a system, the Pure Type Systems

(or PTSs) is the right framework for us.

The Pure Type Systems are formal systems for deriving judgements of the form

� `M : A;

where both M and A are in the set of so called pseudoterms, a set of expressions from which

the derivation rules select the ones that are typable. The � is a �nite sequence of declarations,

statements of the form x : B, where x is a variable and B is a pseudoterm. The idea is that

a term M can only be of type A (M : A) relative to a typing of the free variables that occur

in M and A. Before giving the precise de�nition of Pure Type Systems we de�ne the set of

pseudoterms T over a base set S. (The dependency of T on S is usually ignored.)

De�nition 2.1 For S some set, the set of pseudoterms over S, T, is de�ned by

T ::= S jVar j (�Var:T:T) j (�Var:T:T) jTT;

where Var is a countable set of expressions, called variables. Both � and � bind variables and

hence we have the usual notions of free variable and bound variable. We adopt the �-calculus

notation of writing FV(M) for the set of free variables in the pseudoterm M .

On T we have the usual notion of �-reduction, generated from

(�x:A:M)P �!

�

M [P=x];

where M [P=x] denotes the substitution of P for x in M (done with the usual care to avoid

capturing of free variables), and compatible with application, �-abstraction and �-abstraction.

We also adopt from the untyped � calculus the conventions of denoting the transitive reexive

closure of �!

�

by �!�!

�

and the transitive symmetric closure of �!�!

�

by =

�

.
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The typing of terms is done under the assumption of speci�c types for the free variables

that occur in the term.

De�nition 2.2 1. A declaration is a statement of the form x : A, where x is a variable and

A a pseudoterm,

2. A pseudocontext is a �nite sequence of declarations such that, if x : A and y : B are

di�erent declarations of the same pseudocontext, then x 6� y,

3. If � = x

1

:A

1

; : : : ; x

n

:A

n

is a pseudocontext, the domain of �, dom(�) is the set fx

1

; : : : ; x

n

g;

for x

i

2 dom(�).

4. For � a pseudocontext, a variable y is �-fresh (or just fresh if it is clear which � we are

talking about) if y =2 dom(�).

5. For � and �

0

pseudocontexts, �

0

n � is the pseudocontext which is obtained by removing

from �

0

all declarations x : A for which x 2 dom(�).

De�nition 2.3 A Pure Type System (PTS) is given by a set S, a set A � S � S and a set

R � S�S �S. The PTS that is given by S, A and R is denoted by �(S;A;R) and is the typed

lambda calculus with the following deduction rules.

(sort) ` s

1

: s

2

if (s

1

; s

2

) 2 A

(var)

� ` A : s

�; x:A ` x : A

if x is �-fresh

(weak)

� ` A : s � `M : C

�; x:A `M : C

if x is �-fresh

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

3

if (s

1

; s

2

; s

3

) 2 R

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x]

(conv)

� `M : A � ` B : s

� `M : B

A =

�

B

If s

2

� s

3

in a triple (s

1

; s

2

; s

3

) 2 R, we write (s

1

; s

2

) 2 R. The equality in the conversion rule

(conv) is the �-equality on the set of pseudoterms T.

The elements of S are called sorts, the elements of A (usually written as s

1

: s

2

) are called

axioms and the elements of R are called rules.

This is not the place to go into a detailed treatment of the meta-theoretic properties of PTSs.

For details we refer to [Geuvers and Nederhof 1991], [Barendregt 1992] or [Geuvers 1993]. We

only give the most important properties without proof.
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Proposition 2.4 In an arbitrary PTS�(S;A;R), the following holds.

� Substitution

If �

1

; x:A;�

2

`M : B and �

1

` N : A, then �

1

;�

2

[N=x] `M [N=x] : B[N=x].

� Stripping

(i) � ` s : R; s 2 S ) R =

�

s

0

with s : s

0

2 A for some s

0

2 S;

(ii) � ` x : R; x 2 Var ) R =

�

A with x : A 2 � for some term A;

(iii) � ` �x:A:B : R ) � ` A : s

1

;�; x:A ` B : s

2

and R =

�

s

3

with (s

1

; s

2

; s

3

) 2 R for some s

1

; s

2

; s

3

2 S;

(iv) � ` �x:A:M : R ) �; x:A `M : B;� ` �x:A:B : s and

R =

�

�x:A:B for some term B and s 2 S;

(v) � `MN : R ) � `M : �x:A:B;� ` N : A with R =

�

B[N=x]

for some terms A and B:

� Subject Reduction

If � `M : A and M �!�!

�

N , then � ` N : A.

� Conuence

If � ` M : A, � ` N : A and M =

�

N , then there is a term Q with � ` Q : A and

M �!�!

�

Q, N �!�!

�

Q.

The de�nition of Pure Type System gives rise to an interesting notion of morphism between

typed � calculi which can be described by taking into account only the sorts, axioms and rules

of the system.

De�nition 2.5 Let �(S;A;R) and �(S

0

;A

0

;R

0

) be PTSs. A morphism from �(S;A;R) to

�(S

0

;A

0

;R

0

) is a mapping f from S to S

0

that preserves axioms and rules, that is

s

1

:s

2

2 S ) f(s

1

):f(s

2

) 2 S

0

;

(s

1

; s

2

; s

3

) 2 R ) (f(s

1

); f(s

2

); f(s

3

)) 2 R

0

:

A PTS-morphism f from �(S;A;R) to �(S

0

;A

0

;R

0

) immediately extends to a mapping from

the pseudoterms of �(S;A;R) to the pseudoterms of �(S

0

;A

0

;R

0

) and hence to a mapping from

pseudocontexts to pseudocontexts. This mapping preserves substitution and �-equality and

also derivability:

Lemma 2.6 If f is a PTS-morphism from � to �

0

, then

� `

�

M : A) f(�) `

�

0

f(M) : f(A):

2.2 The cube of typed � calculi

De�nition 2.7 The Barendregt's cube of typed � calculi consists of eight PTSs. Each of them

has

S := f?;2g;

A := f? : 2g:
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The set of rules R for each system are as given in the following table.

�! (?; ?)

�2 (?; ?) (2; ?)

�P (?; ?) (?;2)

�! (?; ?) (2;2)

�! (?; ?) (2; ?) (2;2)

�P2 (?; ?) (2; ?) (?;2)

�P! (?; ?) (?;2) (2;2)

�P! (?; ?) (2; ?) (?;2) (2;2):

The system �P! is the Calculus of Constructions, sometimes called the Pure Calculus of Con-

structions to distinguish it from its variants and extensions. We refer to it as CC. The systems

of the cube are usually presented as follows.

�!

-

�P! (= CC)

6

6

�

�

�

�

�

��

�

�

�

�

�

��

�2

-

�P2

6 6

�!

-

�P!

�

�

�

�

�

��

�

�

�

�

�

��

�!

-

�P

where an arrow denotes inclusion of one system in another.

The systems �! and �2 are also known as the simply typed lambda calculus and the

polymorphically typed � calculus (due to Girard, as system F, and Reynolds.) The system �!

is a higher order version of �2, also known as Girard's system F!. The presentation of these

systems as a PTS is quite di�erent from the original one. If one is just interested in those

systems alone it is in general more convenient to study them in their original presentation.

The PTS framework is more convenient for systems with type dependency , that is the feature

that a type A:? may itself contain a term M with M :B:?. This situation only occurs in the

presence of the rule (?;2). In that case there is no other syntax for the systems which is

essentially more convenient then the PTS format. The system �P is very close to the system

LF, [Harper et al. 1987]. In fact LF is obtained from �P by replacing in the conversion rule the

side condition A =

�

B by A =

��

B. The system �P! is the Calculus of Constructions, due to

[Coquand 1985]. (See also [Coquand and Huet 1988].) The system �P2 was de�ned under the

same name by [Longo and Moggi 1988].

The formulas-as-types embedding from logical systems into the systems of the cube is best

understood by �rst de�ning a cube of eight `logical typed � calculi'. These are systems for which
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there is a clear one-to-one correspondence between the original logical system and the typed �

calculus. This correspondence is given by the formulas-as-types embedding. This embedding

assigns to every formula ' a type ~' and to every proof in natural deduction style a term such

that a proof of ' becomes a term of the type ~'. That this embedding is one-to-one means that

every term of the type ~' is the image of a proof of '.

De�nition 2.8 The logic cube [Berardi 1990] consists of eight PTSs, each of them having as

sorts and axioms

S = Prop; Set;Type

p

;Type

s

;

A = Prop : Type

p

Set : Type

s

:

The rules of each of the systems is given by the following table

�PROP

(Prop;Prop)

�PROP2

(Prop;Prop) (Type

p

;Prop)

�PROP! (Type

p

;Type

p

);

(Prop;Prop)

�PROP! (Type

p

;Type

p

)

(Prop;Prop) (Type

p

;Prop)

�PRED (Set; Set) (Set;Type

p

)

(Prop;Prop) (Set;Prop)

�PRED2 (Set; Set) (Set;Type

p

)

(Prop;Prop) (Set;Prop) (Type

p

;Prop)

�PRED! (Set; Set) (Set;Type

p

) (Type

p

; Set) (Type

p

;Type

p

)

(Prop;Prop) (Set;Prop)

�PRED! (Set; Set) (Set;Type

p

) (Type

p

; Set) (Type

p

;Type

p

)

(Prop;Prop) (Set;Prop) (Type

p

;Prop)
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The systems are presented in a picture as follows.

�PROP!

-

�PRED!

6 6

�

�

�

�

�

��

�

�

�

�

�

��

�PROP2

-

�PRED2

6 6

�PROP!

-

�PRED!

�

�

�

�

�

��

�

�

�

�

�

��

�PROP

-

�PRED

where an arrow denotes inclusion of one system in another.

That the type systems described above indeed correspond to logical systems will not be dis-

cussed here. For details we refer to [Barendregt 1992], [Tonino anf Fujita 1992] and [Geuvers 1993].

To get the idea we give some examples.

Examples 2.9 1. A:Set; R:A!A!Prop; ':Prop `

�p:(�x; y:A:Rxy!Ryx!'):�x:A:�q:Rxx:pxxqq : (�x; y:A:Rxy!Ryx!')!(�x:A:Rxx!')

in �PRED. The term R : A!A!Prop is understood as a binary relation on A. It should

be clear how the term �x:A:�q:Rxx:pxxqq corresponds to a proof in natural deduction style

of the proposition (8x; y 2 A[R(x; y) � R(y; x) � ']) � (8x 2 A[R(x; x)!']).

2. In any system that contains �PROP2, ? can be de�ned as ��:Prop:�(: Prop). One has

indeed ':Prop ` �p:?:p' : ?!'.

3. In �PRED2 one has A:Set `

�R:A!A!Prop:�p:(�x; y:A:Rxy!Ryx!?):�x:A:�q:Rxx:pxxqq :

�R:A!A!Prop:(�x; y:A:Rxy!Ryx!?)!(�x:A:Rxx!?), stating that any binary re-

lation that is antisymmetric is areexive.

The systems of the Barendregt's cube and the logic cube enjoy some more special properties

that will be used. First of all, the type of a term is unique up to �-conversion. (The proof is

by induction on terms, see [Geuvers 1993] or [Barendregt 1992].)

Proposition 2.10 (Uniqueness of Types) For a system in one of the two cubes one has

that if � `M : A and � `M : B, then A =

�

B.

Another nice thing is that, if variables are treated with some care, then the terms can be

classi�ed into disjoint sets. One therefore devides the set of variables Var into disjoint subsets

Var

s

(s 2 S). In the rules (weak) and (var), if � ` A : s is the premise, one can now only take a

variable x from the set Var

s

. In the type systems of the Barendregt's cube, one often uses greek

characters and capitals for the variables in Var

2

and latin characters for the variables in Var

?

.

The following de�nition is now useful.
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De�nition 2.11 We work in some system of the Barendregt's cube.

1. The set of kinds is de�ned by Kind := fA j 9�[� ` A : 2]g].

2. The set of types is de�ned by Type := fA j 9�[� ` A : ?]g.

3. The set of constructors is de�ned by Constr := fP j 9A;�[� ` P : A : 2]g.

4. The set of objects is de�ned by Obj := fP j 9A;�[� ` P : A : ?]g.

Here � ` P : A : ? denotes the fact that � ` P : A and � ` A : ?.

The usefulness of this de�nition is due to the following lemma. (For a detailed proof see

[Geuvers 1993].)

Lemma 2.12 (Classi�cation) We work in some system of the Barendregt's cube.

Kind \ Type = ;;

Constr \ Obj = ;:

The formulas-as-types embedding of a logic into the corresponding system of the logic cube

is an isomorphism (for details see [Geuvers 1993]), so we can restrict our study of the formulas-

as-types embedding into the systems of the Barendregt's cube to the study of the collapsing

mapping H that maps the systems of the logic cube into the ones of the cube of typed � calculi.

De�nition 2.13 The collapsing mapping H is de�ned as the family of PTS-morphisms from

logic cube to Barendregt's cube given by

H(Prop) = ?;

H(Set) = ?;

H(Type

p

) = 2;

H(Type

s

) = 2:

It is immediate that the collapsing mapping H does not really do anything for the systems

of the left plane of the cube. The sorts Prop and Type

p

are renamed as ? and 2, but there

are no additional rules. This implies that the formulas-as-types embedding from propositional

logics into a system of the left plane of the cube is an isomorphism. For the right plane of the

cube the situation is more interesting, because the sorts Prop and Set, respectively Type

p

and

Type

s

are mapped to the same sort in the Barendregt's cube. This question of completeness of

H becomes a real issue here.

De�nition 2.14 For L

i

a system of the logic cube and S

i

the corresponding system in the

Barendregt's cube, we say that H : L

i

! S

i

is complete if for all context � in L

i

and ' with

� `

L

i

' : Prop, one has

H(�) `

S

i

M : H(')) 9N [� `

L

i

N : ']:
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Completeness is of course important because typed � calculi like the Calculus of Construc-

tions are intended to be used as systems for formalizing mathematics, which is done by reasoning

in the embedded higher order order predicate logic. However, it is well-known by now that the

embedding of higher order predicate logic into CC is not complete. In contrast, the embedding

H from �PRED into �P is complete and for the embedding H of �PRED2 into �P2 the question

of completeness is still open. (The incompleteness of H : �PRED! ! CC was �rst noticed by

[Berardi 1989] and [Geuvers 1989]. See also [Barendregt 1992] and [Geuvers 1993]. The com-

pleteness of H : �PRED ! �P is proved in [Berardi 1989] and [Barendsen and Geuvers 1989].

See also [Geuvers 1993].)

3 Conservativity relations inside the cube

We now want to address the question of conservativity inside the cube of typed � calculi and

the logic cube. We �rst look at the cube of typed � calculi, because the situation for the logic

cube is very similar. There are four results that do the whole job, resulting in the following

picture.

�!

-

CC

6 6

�

�

�

�

�

��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�2

-

�P2

6 6

�!

-

�P!

�

�

�

�

�

��

�

�

�

�

�

��

�!

-

�P

where an arrow denotes a conservative inclusion and a dotted arrow denotes a non-conservative

inclusion. By transitivity of conservativity (if system 3 is conservative over system 2 and system

2 is conservative over system 1, then system 3 is conservative over system 1), it is no problem to

�ll in the picture further. (Draw the arrows between two non-adjacent systems) We can collect

all this in the following Proposition.

Theorem 3.1 For S

1

and S

2

two systems in the cube of typed lambda calculi such that S

1

� S

2

:

S

2

is conservative over S

1

, S

2

6= CC & S

1

6= �P2:

Proof It su�ces to prove the following four results.

1. If S

2

� S

1

, S

1

a system of the lower plane in the cube, then S

2

is conservative over

S

1

.(Proposition 3.2.)

2. If S

2

a system in the right plane of the cube, S

1

the adjacent system in the left plane,

then S

2

is conservative over S

1

.(Proposition 3.6.)
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3. �P! is not conservative over �P2,

4. �! is conservative over �2. (Corollary 4.21.)

The fourth is a consequence of Corollary 4.21, saying that PROP! is conservative over PROP2

and of the fact that PROP! and PROP2 are isomorphic to, respectively, �! and �2 via the

formulas-as-types embedding. The conservativity of PROP! over PROP2 will be proved in

detail later by using semantical methods.

The third was ver�ed in detail by [Ruys 1991], following an idea from Berardi. The idea is to

look at a context � in �P2 that represents Arithmetic. Then � with �P2 is as strong as second

order Arithmetic and � with �P! is as strong as higher order Arithmetic. Hence we can use

G�odel's Second Incompleteness Theorem to show that in �P2 one can not derive from � that �

is consistent in �P2. On the other hand in �P! one can derive from � that � is consistent in

�P2. Hence the non-conservativity. 2

We �rst prove the Proposition about conservativity of systems over systems in the lower

plane. The Proposition was also proved in [Verschuren 1990] in a slightly di�erent way.

Proposition 3.2 Let S

1

be a system of the lower plane and S

2

be any system of the cube such

that S

1

� S

2

. Then

� `

S

1

B : ?

� `

S

2

M : B

� and M in normal form

9

>

=

>

;

) � `

S

1

M : B:

Proof By induction on the structure of M .

applic. Say M � xP

1

� � �P

n

. Then, by Stripping, x:A 2 � with A =

�

�y

1

:C:D for some C

and D. Now, A is in normal form (because � is) and so A is itself a �-term, say

A � �y

1

:C

1

:D

1

. So, x:�y

1

:C

1

:D

1

2 �. Now, � `

S

1

�y

1

:C

1

:D

1

: ? (in the lower plane,

i.e. without the rule (2; ?)), but then also

� `

S

1

C

1

: ?:

Of course we also have

� `

S

2

P

1

: C

1

;

so by IH (note that P

1

is in normal form), � `

S

1

P

1

: C

1

. Hence � `

S

1

xP

1

: D

1

[P

1

=y

1

].

We can now go further with P

2

: We know that D

1

[P

1

=y

1

] �!�!

�

�y

2

:C

2

:D

2

. Now,

� `

S

1

D

1

[P

1

=y

1

] : ? and hence � `

S

1

�y

2

:C

2

:D

2

: ? by Subject Reduction. So

� `

S

1

C

2

: ?:

Also

� `

S

2

P

2

: C

2

;

so again we can apply IH to obtain � `

S

1

P

2

: C

2

and hence � `

S

1

xP

1

P

2

: D

2

[P

2

=y

2

].

Continuing in this way upto n we �nd that � `

S

1

xP

1

� � �P

n

: D

n

[P

n

=y

n

] withD

n

[P

n

=y

n

] =

�

B. By one application of the conversion rule (using � `

S

1

B : ?) we conclude � `

S

1

xP

1

� � �P

n

: B.
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abstr. Say M � �x:A:N . Then B �!�!

�

�x:A:C for some C (note that A is in normal form).

So � `

S

1

�x:A:C : ? by Subject Reduction and �; x:A `

S

2

M : C (by Stripping and

the conversion rule). By IH we conclude �; x:A `

S

1

M : C. Now we are done: By one

�-abstraction and one conversion we conclude � `

S

1

�x:AM : B. 2

The side condition � in normal form has just been added for convenience (in giving the

proof.) It is not essential and it may be dropped.

As a corollary one �nds that a system of the cube is conservative over all its subsystems of

the lower plane. If S

1

� S

2

, S

1

in the lower plane, then

� `

S

1

A : Prop

� `

S

2

M : A

)

) 9N [� `

S

1

N : A]:

This can even be made more precise, because the term N can be computed directly from

the term M as follows.

Corollary 3.3

� `

S

1

A : Prop

� `

S

2

M : A

)

) � `

S

1

nf(M) : A;

where nf(M) denotes the �-normal form of M .

We now prove the conservativity of the right plane over the left plane. The idea is to de�ne

a mapping that removes all type dependencies. This mapping will go from a system in the right

plane to the adjacent system in the left plane and is the identity on terms that are already

well-typed in the left plane. Hence the conservativity. The proof is originally independently

due to [Paulin 1989] and [Berardi 1990]. The �rst described the mapping from �P! to �!

in the �rst place to use it for program extraction; the second described the collection of four

mappings (which is a straightforward generalisation of the mapping from �P! to �!) to give a

conservativity proof. The mappings are very much related to similar mappings one can de�ne

from predicate logic to propositional logic to prove conservativity of the �rst over the second.

De�nition 3.4 ([Paulin 1989] and [Berardi 1990]) Let S

2

be a system of the right plane

and S

1

the adjacent system in the left plane. The mapping [�] : Term(S

2

)! Term(S

1

) is de�ned

as follows.

[2] = 2;

[ ? ] = ?;

[x] = x; for x a variable;

[�x:A:B] = [B] if A:?; B:2;

= �x:[A]:[B] else;

[�x:A:M ] = [M ] if A:?;M :B:2; (for some B);

= �x:[A]:[M ] else;

[PM ] = [P ] if M :A:?; P :B:2; (for some A;B);

= [P ][M ] else;

Remark 3.5 The side conditions in the de�ntion are justi�ed by the Classi�cation Lemma

(2.12).
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The mapping [�] extends straightforwardly to contexts. The following proposition justi�es

the statement in the de�nition that the mapping [�] goes from the right plane to the left plane.

Proposition 3.6 ([Paulin 1989] and [Berardi 1990]) Let S

2

be a system in the right plane

and S

1

the adjacent system in the left plane of the cube.

� `

S

2

M : A) [�] `

S

1

[M ] : [A]

Proof By a straightforward induction on the derivation of � `

S

2

M : A. 2

Corollary 3.7 ([Paulin 1989],[Berardi 1990]) For S

2

a system in the right plane and S

1

the adjacent system in the left plane of the cube we have that S

2

is conservative over S

1

.

Proof The only thing to check is that for M 2 Term(S

1

), [M ] � M . This is done by an easy

induction on the structure of M . 2

Corollary 3.7 can be made a bit more precise by stating how the term in the smaller system

is computed from the term in the larger system. For S

2

in the right plane and S

1

the adjacent

system in the left plane one has

� `

S

1

A : Prop

� `

S

2

M : A

)

) � `

S

1

[M ] : A;

The conservativity relations in the logic cube (De�nition 2.8) are as follows. (An arrow

denotes a conservative extension, a dotted arrow a non-conservative extension.)

�PROP!

-

�PRED!

6 6

�

�

�

�

�

��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�PROP2

-

�PRED2

6 6

�PROP!

-

�PRED!

�

�

�

�

�

��

�

�

�

�

�

��

�PROP

-

�PRED

Proposition 3.8 For L

1

and L

2

two systems in the logic cube such that L

1

� L

2

:

L

2

is conservative over L

1

, L

2

6= �PRED! & L

1

6= �PRED2:

Proof The proof is completely analoguous to the proof for the cube of typed lambda calculi.

In fact, what has to be proved for conservativity is that, if L

1

� L

2

and � is a context of L

1

with � ` A : Prop, then

� `

L

2

M : A) 9N [� `

L

1

N : A]:
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The proof of non-conservativity of �PRED! over �PRED2 is the same as for CC over �P2,

by using G�odel's incompleteness theorem. The proof of conservativity of any system over a

subsystem in the lower plane is again by normalization (of the proof terms).

The proof of conservativity of the right plane over the left plane can be done by de�ning a

mapping that forgets predicates, analogously to the one de�ned in De�nition 3.4. A slightly

easier proof, for which we don't have to de�ne any mapping at all is the following: Let � be a

context of L

1

in the left plane and let A be a term such that � `

L

1

A : Prop. Let L

2

be the

adjacent system in the right plane and let � `

L

2

M : A. If S

1

is the system in the Barendregt's

cube that corresponds with L

1

and S

2

is the system in the Barendregt's cube that corresponds

with L

2

, then H(�) `

S

2

H(M) : H(A) and hence 9N [H(�) `

S

1

N : H(A)] by the conservativity

in the Barendregt's cube. Because the formulas-as-types embedding H is an isomorphism on

the left plane of the cube, we can conclude that 9N [� `

L

1

N : A].

The proof of conservativity of �PROP! over �PROP2 is given in the following section. 2

4 The conservativity of �! over �2

The conservativity of �! over �2 is shown by proving that PROP! is conservative over PROP2.

The conservativity of �! over �2 then follows from the fact that the formulas-as-types embedding

is an isomorphism. In order to be very speci�c about the conservativity proof, we �rst give the

detailed syntax of the systems of second and higher order propositional logic.

4.1 second and higher order propositional logics

De�nition 4.1 For n a natural number, the system of nth order propositional logic, notation

PROPn is de�ned by �rst giving the nth order language and then describing the deduction rules

for the nth order system as follows.

1. The domains are given by

D ::= Prop j (D!D):

We let the brackets associate to the right, so Prop!(Prop!Prop) will be denoted by

Prop!Prop!Prop and so every domain can be written as D

1

! : : :!D

p

!Prop, with

D

1

; : : : ; D

p

domains.

2. The order of a domain D, ord(D), is de�ned by

ord(Prop) = 2;

ord(D

1

! : : :!D

p

!Prop) = maxford(D

i

) j 1� i � pg+ 1:

The orders are de�ned in such a way that in n-th order logic one can quantify over domains

of order � n. Hence Prop is of order 2, because in second order propositional logic one

can quantify over the set of all formulas. The domain Prop!Prop should be understood

as the collection of sets of formulas (truth values), identifying a function P from Prop to

Prop with the set of formulas ' for which P' holds.

3. For n a �xed positive natural number, the terms of the nth order language are de�ned as

follows. (Each term is an element of a speci�c domain, which relation is denoted by �).

� There are countably many variables of domain D for any D with ord(D) � n,
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� If M � D

2

, x a variable of domain D

1

and ord(D

1

!D

2

) � n, then �x�D

1

:M �

D

1

!D

2

,

� If M � D

1

!D

2

, N � D

1

, then MN � D

2

,

� If ' � Prop, x a variable of domain D with ord(D) � n, then 8x�D:' � Prop.

� If ' � Prop and  � Prop, then ' �  � Prop.

4. The terms ' for which ' � Prop are called formulas and Form denotes the set of formulas.

5. On the terms we have the well-known notion of de�nitional equality by �-conversion. This

equality is denoted by =. The de�nitional equality allows us to identify for example the

application of the function �x:Prop:x � x (of domain Prop!Prop) to ' with the a formula

' � '.

6. For n a speci�c positive natural number, we now describe the deduction rules of the nth

order predicate logic (in natural deduction style) that allow us to build derivations. So in

the following let ' and  be formulas of the nth order language.

(�-I)

[']

i

.

.

.

 

' �  

i

(�-E)

' �  '

 

(8-I)

 

8x�D: 

(�) (8-E)

8x�D: 

 [t=x]

if t � D

(conv)

 

'

if ' =  

The formula occurrences that are between brackets ([�]) in the �-I rule are discharged.

The superscript i in the �-I rule is taken from a countable set of indices I. The index i

uniquely corresponds to one speci�c application of the �-I rule, so we do not allow one

index to be used more than once. The use of the indexes allows us to �x those formula

occurrences that are discharged at a speci�c application of the �-I rule.

(�): in the 8-I rule we make the usual restriction that the variable x may not occur free

in a non-discharged assumption of the derivation.

For � a set of formulas of PROPn and ' a formula of PROPn, we say that ' is derivable

from � in PROPn, notation � `

PROPn

', if there is a derivation with root ' and all

non-discharged formulas in �.

The system of higher order proposition logic, notation PROP!, is the union of all PROPn.

Remark 4.2 The choice for the connectives � and 8 may seem minimal. It is however a well-

known fact that in second and higher order systems, the intuitionistic connectives &, _, : and

9 can be de�ned in terms of � and 8 as follows. (Let ' and  be formulas).

' &  := 8��Prop:(' �  � �) � �;

' _  := 8��Prop:(' � �) � ( � �) � �;
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? := 8��Prop:�;

:' := ' � ?;

9x � D' := 8��Prop:(8x�D:' � �) � �:

Similarly we can de�ne an equality judgement (the �-equality =, the de�nitional equality of the

language, is purely syntactical) by taking the so called Leibniz equality: for t; q � D,

t =

D

q := 8P�D!Prop:P t � Pq;

which says that two objects are equal if they satisfy the same properties. (It is not di�cult to

show that =

D

is symmetric).

It is not di�cult to check that all the standard logical rules hold for &;_;?;:; 9 and =. In

the following we shall freely use these symbols.

Remark 4.3 In each PROPn (n � 2), the comprehension property is satis�ed. That is, for all

'(~x) : Prop with ~x = x

1

; : : : ; x

p

a sequence of free variables, possibly occurring in ' (x

i

� D

i

),

we have

9P � D

1

!� � �D

p

!Prop:8~x�

~

D('$ Px

1

� � �x

p

):

(Take P � �x

1

� D

1

: : : :�x

p

� D

p

:'(~x).)

The presentation of propositional logics above can be extended to predicate logics, which is

done in [Geuvers 1993]. There also the classical variants of the systems are studied. Here we

restrict to the constructive versions of the propositional logics, because PROP! and PROP2

are the ones that correspond to the type systems �! and F .

4.2 Extensionality

The de�nitional equality on the terms is �-equality. There is no objection to taking ��-equality

instead: all the properties remain to hold. In fact it would make a lot of sense to do so, because

we tend to view �-abstraction as the necessary mechanism to make comprehension work. (And

so both P � Prop!Prop and �x � Prop:Px describe the collection of formulas ' for which P'

holds).

This is related to the issue of extensionality: terms of domain D!Prop are to be understood

as predicates on D or also as subsets of D, an element t being in the set P � D!Prop if Pt

holds. But if we take this set-theoretic understanding seriously, we have to identify predicates

that are extensionally equal:

(8~x:f~x � g~x & g~x � f~x) � f =

D

g: (1)

Of course, this formula is in general not provable in our systems. However, in the standard

models where predicates are interpreted as real sets, the formula is satis�ed, so it is an important

extension. A di�culty is, that extensionality in the form of (1) is in general not even expressible:

in PROPn we can not express extensionality for f and g of domain D if ord(D) = n, because

f =

D

g is not a formula of PROPn (it uses a quanti�cation over D!Prop). This means that

we shall have to express extensionality by a schematic rule.
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De�nition 4.4 The extensionality scheme, (EXT), is

(EXT)

f~x � g~x g~x � f~x '(f)

'(g)

(�)

where f and g are arbitrary terms of the same domain D

1

!� � �!D

n

!Prop and '(f) stands for

a formula ' with a speci�c marked occurrence of f . (�) signi�es the usual restriction that the

variables of ~x may not occur free in a non-discharged assumption of the derivations of f~x � g~x

and of g~x � f~x.

The extension of a system with the rule (EXT) will be denoted by adding the pre�x E-, so

E-PROPn is extensional nth order propositional logic.

Notation 4.5 For f; g � D = D

1

!� � �!D

n

!Prop, if quanti�cation over D

1

; : : : ; D

n

is allowed

in the system we can compress the �rst two premises in the rule (EXT) to 8~x:f~x � g~x & g~x �

f~x. For convenience this will also be denoted by f �

D

g, so

f �

D

g := 8~x:f~x � g~x & g~x � f~x;

where the D will usually be omitted if it is clear from the context.

Lemma 4.6 The extensionality scheme for D = Prop is admissible in any of the propositional

logics, i.e.

' �  ;  � '; �(') ` �( )

is always provable.

Proof By an easy induction on the structure of �. 2

The following is now immediate by the fact that in PROP2 the only extensionality scheme

that can be expressed is the one for D = Prop.

Corollary 4.7 In the system E-PROP2 of extensional second order propositional logic one can

prove the same as in PROP2. That is

� `

E-PROP2

', � `

PROP2

':

4.3 Algebraic semantics for intuitionistic propositional logics

In this section we describe a semantics for our systems of intuitionistic propositional logic in

terms of Heyting algebras. It is well-known how this is done for the full �rst order propositional

logic, giving rise to a completeness result. For second and higher order propositional logic we

need to re�ne the notion of Heyting algebra to also allow interpretations for the universal quan-

ti�er. It is easily seen that complete Heyting algebras are strong enough to satisfy our purpose:

complete Heyting algebras have arbitrary meets and joins, so for example 8f � Prop!Prop:'

can be interpreted as

V

f[[']]

[f :=F ]

jF 2 A!Ag. It is however not so easy to show the com-

pleteness of complete Heyting algebras over E-PROPn (for any n), because the Lindenbaum

algebra de�ned from E-PROPn is not a complete Heyting algebra. The way out was suggested

by Theorem 13.6.13 of [Troelstra and Van Dalen 1988], stating that any Heyting algebra can be

embedded in a complete Heyting algebra such that �, ? and all existing

W

and

V

are preserved

(and hence the ordering is preserved). The embedding i that is constructed in the proof is also
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faithful with respect to the ordering, that is, if i(a) � i(b) in the image, then a � b in the orig-

inal Heyting algebra. All this implies completeness of complete Heyting algebras with respect

to E-PROPn, for any n. Hence we have conservativity of E-PROP(n+ 1) over E-PROPn.

At this point we do not know how (if at all possible) to conclude the conservativity of

PROP(n+1) over PROPn from the conservativity of E-PROP(n+1) over E-PROPn. However,

we do have the conservativity of PROPn over PROP2 for any n, because PROP2 and E-PROP2

are the same system (Corollary 4.7).

It is obvious that extensionality is required in the syntax because the model notion is exten-

sional: if, for example, F;G : A!A (where A is the carrier set of the algebra) and F (a) = G(a)

for all a 2 A, then F = G.

The method of showing conservativity by semantical means seems to be quite essential here.

Syntactic conservativity proofs (like the other in this paper) use mappings from the `larger'

system to the `smaller' system that are the identity on the smaller system. These mappings

also constitute a mapping from derivations to derivations that is the identity on derivations

of the smaller system. This was the case for the proof of conservativity of the upper plane of

the cube over the lower plane, where the proof-term in the smaller system is just obtained by

normalizing the proof-term in the larger system. For the case of propositional logics, this method

is impossible: there are formulas of PROP2 that have more and more cut-free derivations when

we go higher in the hierarchy of propositional logics.

De�nition 4.8 A Heyting algebra (or just Ha) is a tuple (A;^;_;?;�) such that (A;^;_) is

a lattice with least element ? and � is a binary operation with

a ^ b � c, a � b � c:

Remember that (A;^;_) is a lattice if the binary operations ^ and _ satisfy the following

requirements.

a ^ a = a; a _ a = a;

a ^ b = b ^ a; a _ b = b _ a;

a ^ (b ^ c) = (a^ b) ^ c; a _ (b _ c) = (a _ b) _ c;

a _ (a ^ b) = a; a ^ (a _ b) = a:

Another way of de�ning the notion of lattice is by saying that it is a poset (A;�) with the

property that each pair of elements a; b 2 A has a least upperbound (denoted by a _ b) and a

greatest lowerbound (denoted by a ^ b). By de�ning a � b := a ^ b = a we can then show the

equivalence of the two de�nitions of lattice.

De�nition 4.9 A complete Heyting algebra (cHa) is a tuple (A;

V

;

W

;?;�) such that (A;

V

;

W

)

is a complete lattice and (A;^;_;?;�) is a Heyting algebra. (So

W

and

V

are mappings from

}(A) to A such that for X � A,

W

X is the least upperbound of X and

V

X is the greatest lower

bound of X. The binary operations ^ and _ are de�ned by (for a; b 2 A) a ^ b :=

V

fa; bg and

a _ b :=

W

fa; bg).

An important feature of Heyting algebras which is forced upon by the presence of the binary

operation �, is that they satisfy the in�nitary distributive law:

(D) a ^

W

X =

W

fa ^ b j b 2 Xg, if

W

X exists.

(The inclusion � holds in any lattice; for the inclusion � it is enough to show that a ^ c �

W

fa^ b j b 2 Xg for any c 2 X , due to the properties of �). Two other important facts are the

following.
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Fact 4.10 1. If a complete lattice satis�es the in�nitary distributive law (D), it can be turned

into a cHa by de�ning

b � c :=

_

fd j d^ b � cg:

2. Any Heyting algebra is distributive, i.e. any Ha satis�es

a ^ (b _ c) = (a ^ b) _ (a ^ c):

For the �rst statement one has to show that a ^ b � c, a �

W

fd j d^ b � cg. From left to

right is easy; from right to left, notice that if a �

W

fd j d^b � cg, then a^b � b^

W

fd j d^b � cg

and the latter is (by D) equal to

W

fb^d j d^b� cg, which is just c. The second is easily veri�ed.

We are now ready to give the algebraic semantics for the systems E-PROPn. Let in the

following (A;

V

;

W

;?;�) be a cHa. We freely use the notions _ and ^, as they were given in

De�nition 4.9. The interpretation of the terms of E-PROPn will be in A and its higher order

function spaces. We therefore let d�e be the mapping that associates the right function space

to a domain D, so

dPrope = A;

dD

1

!D

2

e = dD

1

e ! dD

2

e;

where the second ! describes function space. In the following we shall freely speak of the

`interpretation of E-PROPn in (A;

V

;

W

;?;�)', where of course this interpretation includes the

mapping of higher order terms into the appropriate higher order function space based on A.

De�nition 4.11 Let n 2 IN [ f!g. Any cHa � is an algebraic model of E-PROPn.

Note that, as there are no constants in the formal systems of propositional logics, a model

does not include a valuation for the constants. (the extension with constants is no problem

though.)

De�nition 4.12 The interpretation of E-PROPn in the algebraic model (A;

V

;

W

;?;�), [[�]],

is de�ned modulo a valuation � for free variables that maps variables of domain D into dDe.

So let � be a valuation. Then [[�]]

�

is de�ned inductively as follows.

[[�]]

�

= �(�); for � a variable;

[[PQ]]

�

= [[P ]]

�

[[Q]]

�

;

[[�x�D:Q]]

�

= ��t 2 dDe:[[Q]]

�(x:=t)

;

[[' �  ]]

�

= [[']]

�

� [[ ]]

�

;

[[8x�D:']]

�

=

^

f[[']]

�(x:=t)

j t 2 dDeg:

It is easily seen that [[�]]

�

satis�es the usual substitution property and that interpretations

are stable under ��-equality, i.e.

[[P ]]

�(x:=[[Q]]

�

)

= [[P [Q=x]]]

�

and

P =

��

Q) [[P ]]

�

= [[Q]]

�

:
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De�nition 4.13 For � a �nite set of formulas of E-PROPn, ' a formula of E-PROPn and �

an algebraic model, ' is �-valid in �, notation � j=

�

', if for all valuations �,

^

f[[ ]]

�

j 2 �g � [[']]

�

:

If � is empty we say that ' is �-valid if j=

�

'.

Note that

V

f[[ ]]

�

j 2 �g exists, because � is �nite. In the following we just write [[�]]

�

for

V

f[[ ]]

�

j 2 �g.

Our de�nition is a bit di�erent from the one in [Troelstra and Van Dalen 1988], where � j=

�

' is de�ned by

8 2 �[[[ ]]

�

= >] ) [[']]

�

= >:

Our notion implies the one above, but not the other way around. However, they are the same

if � = ; and they also yield the same consequence relation. One disadvantage of our notion is

that we have to restrict to �nite �. This is easily overcome by putting

� j=

�

' if for all �nite �

0

� �; one has �

0

j=

�

':

De�nition 4.14 Let � be a (�nite) set of formulas of E-PROPn and ' a formula of E-PROPn.

We say that ' is a consequence of �, notation � j= ', if � j=

�

' for all algebraic models �.

Proposition 4.15 (Soundness) For � a �nite set of formulas of E-PROPn and ' a formula

of E-PROPn,

� `

E-PROPn

') � j= ':

Proof Let � be a model. By induction on the derivation of � ` ' we show that for all valuations

�, [[�]]

�

� [[']]

�

: None of the six cases is di�cult. We treat the cases for the last rule being (� -E)

and (8-I).

(� -E) Say ' has been derived from  � ' and  . Let � be valuation. Then by IH [[�]]

�

� [[ ]]

�

and [[�]]

�

� [[ � ']]

�

. The second implies [[�]]

�

^ [[ ]]

�

� [[']]

�

. So, by [[�]]

�

� [[ ]]

�

we

conclude [[�]]

�

� [[']]

�

.

(8-I) Say ' � 8f�D: and �

0

� � is the �nite set of non-discharged formulas of the derivation

with conclusion  . Then by IH, 8�[[[�

0

]]

�

� [[ ]]

�

], so 8�8F 2 dDe[[[�

0

]]

�

� [[ ]]

�(f :=F )

],

because f =2 FV(�

0

). This immediately implies that [[�]]

�

� [[8f � D: ]]

�

. 2

To show completeness we �rst construct the Lindenbaum algebra for E-PROPn. This is a

Ha but not yet a cHa. The construction in [Troelstra and Van Dalen 1988] tells us how to turn

it into a cHa which has all the desired properties.

De�nition 4.16 For n 2 IN[f!g, we de�ne the Lindenbaum algebra for E-PROPn, L

n

. First

we de�ne the equivalence relation � on Sent(E-PROPn) by

' �  := `

E-PROPn

' �  &  � ':

We denote the equivalence class of ' under � by [']. L

n

is now de�ned as the Ha (A;^;_;?;�)

where

A = (Sent(E-PROPn))

�

;

['] ^ [ ] = [' &  ];

['] _ [ ] = [' _  ];

['] � [ ] = [' �  ];

[?] = [?]:
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Note that the &, _, � and ? on the right of the = are the logical connectives: � is basic

and the others were de�ned in Remark 4.2 by

' &  := 8��Prop(' �  � �) � �;

' _  := 8��Prop(' � �) � ( � �) � �;

? := 8��Prop�:

Each L

n

is obviously a Ha: ['] � [ ] i� ' `

E-PROPn

 .

Lemma 4.17 For � a �nite set of sentences of E-PROPn and ' a sentence of E-PROPn,

� `

E-PROPn

' , � � ' in L

n

:

Proof Immediate by the construction of L

n

. 2

Theorem 4.18 ([Troelstra and Van Dalen 1988]) Each Ha � can be embedded into a cHa

c� such that ^, _, ?, � and existing

V

and

W

are preserved and � is reected.

Proof Let � = (A;^;_;?;�) be a Ha. A complete ideal of �, or just c-ideal , is a subset I � A

that satis�es the following properties.

1. ? 2 I ,

2. I is downward closed (i.e. if b 2 I and a � b, then a 2 I),

3. I is closed under existing sups (i.e. if X � I and

W

X exists, then

W

X 2 I).

Now de�ne c� to be the lattice of c-ideals, ordered by inclusion. Then c� is a complete lattice

that satis�es the in�nitary distributive law D, and hence c� is a cHa by de�ning

I � J :=

_

fK jK ^ I � Jg:

To verify this note the following.

� c� has infs de�ned by

V

q2Q

I

q

=

T

q2Q

I

q

.

� c� has sups de�ned by

W

q2Q

I

q

= f

W

X jX �

S

q2Q

I

q

;

W

X existsg: the set f

W

X jX �

S

q2Q

I

q

;

W

X existsg is indeed a c-ideal and it is also the least c-ideal containing all I

q

.

� I \

W

q2Q

I

q

=

W

fI \ I

q

j q 2 Qg and so D holds.

The embedding i from � to c� is now de�ned by

i(a) = fx 2 A j x � ag:

The embedding preserves ?, � and all existing

V

,

W

. For the preserving of

W

, let X � A such that

W

X exists in �. We have to show that

i(

W

X) =

W

x2X

i(x), i.e. show that

fy 2 A j y �

_

Xg = f

_

Y j Y �

[

x2X

i(x);

_

Y existsg:
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For the inclusion from left to right, note that X � fy 2 A j 9x 2 X [y � x]g and so X �

S

x2X

i(x). This implies that

W

X 2 f

W

Y j Y �

S

x2X

i(x);

W

Y existsg and so we are done because

the latter is a c-ideal. For the inclusion from right to left, let z =

W

Y

0

with Y

0

�

S

x2X

i(x).

Then z �

W

X so we are done.

Finally, the embedding i reects the ordering, i.e.

i(a) � i(b)) a � b:2

Corollary 4.19 (Completeness) For � a �nite set of sentences of E-PROPn and ' a sen-

tence of E-PROPn,

� j= ') � `

E-PROPn

':

Proof Following the Theorem, we embed the Lindenbaum algebra of E-PROPn, L

n

, in the

algebraic model (cHa) cL

n

. This algebraic model cL

n

is complete with respect to the logic. So,

for � a �nite set of sentences and ' a sentence of E-PROPn, we have

� j= ' ) � j=

cL

n

' ) � � ' in L

n

) � `

E-PROPn

':2

Corollary 4.20 (Conservativity) For any n � 2, E-PROP(n+1) is conservative over E-PROPn,

and hence E-PROP! is conservative over E-PROPn.

Proof For � a �nite set of sentences and ' a sentence of E-PROPn

�

,

� `

E-PROP(n+1)

') � j= ') � `

E-PROPn

'

by soundness and completeness of the algebraic models for any of the E-PROPn.

The conservativity of E-PROP! over E-PROPn is now immediate: any derivation in E-PROP!

is a derivation in E-PROPm for some m 2 IN. 2

Corollary 4.21 For any n 2 IN [ f!g, PROPn is conservative over PROP2.

Proof By the fact that PROPn is a subsystem of E-PROPn and the fact that PROP2 and

E-PROP2 are the same system. 2

By the fact that the formulas-as-types embedding (from PROP! to �!, respectively from

PROP2 to �2) is an isomorphism, we can immediately conclude the following.

Theorem 4.22 The type system �! is conservative over �2, that is, for all �2-contexts � and

�2-types � we have

� `

�!

M : � ) 9N [� `

�2

N : �]:

5 Discussion and concluding remarks

5.1 Semantical versus syntactical proofs of conservativity

We have seen that a proof of conservativity between typed � calculi can be helpful to prove

conservativity between logics. An example is the proof of conservativity of �PRED2 over

�PRED, which immediately implies the conservativity of second order predicate logic over

minimal �rst order predicate logic. Due to the syntactic nature of the proof (which is done

by normalizing the proof terms), it is convenient to use the typed � calculus format for the

conservativity proof. For the proof of conservativity of �! over �2, a semantical proof was used.

At this point it is not clear to us how a purely syntactical proof can be given. For example, the

method of normalizing the proof terms does not work here because of the following.
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Fact 5.1 There are a context � and a type A of �2 and a term M (of �!) such that

� `

�!

M : A and � 6`

�2

nf(M) : A:

One example is found by taking � the empty context and A the type of functions from

numerals to numerals, so A � N!N , where N � �� : ?:(A!A)!A!A. Then one can take

for M a representation of a recursive function that is not �-de�nable in �2. (Such terms exist,

due to [Girard 1972], where it is shown that in �! more recursive functions are �-de�nable then

in �2.) Then `

�!

M : N!N , but not `

�2

nf(M) : N!N , because the normal form of M

�-de�nes the same recursive function as M .

An easier counterexample is found by taking, for example, � to be z : ��: ? :�!True and

A � True, where True � ��: ? :�!�. Then � `

�!

x(�P : ?! ? :P True) : True, which is a term

in normal form and not typable in �2.

It would be interesting to see how a syntactic proof of the conservativity of �! over �2 could

be given. This would give an algorithm that computes for every �!-termM that has a �2-type

A, a �2-term N that also has the type A.

For the proof of conservativity of �2 over �! (and hence of conservativity of second order

propositional logic over minimal �rst order propositional logic), we used normalization here.

This is not really necessary. It is possible to give a semantical proof, using, for example, the

algebraic semantics that we discussed for second and higher order propositional logic. It is also

possible to de�ne a mapping from propositiona and proofs of second order propositional logic

to �rst order propositional logic that preserves derivability. This is done by Pitts.

One of the consequences of conservativity of PROP! ober PROP2 is that the system PROP!

is not decidable. (Both the extensional and the non-extensional version of the system are

undecidable.) This follows from the undecidability of PROP2, which was proved by [L�ob 1976].
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Abstract

ATTT is a conservative extension of Girard-Reynold's second order polymorphic lambda

calculus �2 introduced in [8]. ATTT has re�nement types which are intended to be subsets

of ordinary types or speci�cations of programs. In this paper, we will study the logic of

re�nement types. (Warning: logic of re�nement types is irrelevant to re�nement logic in the

sense of R. Constable.)

1 Introduction

ATTT is a conservative extension of Girard-Reynold's second order polymorphic lambda calcu-

lus �2 (or F in more popular name). The aim of ATTT is to serve yet another type theoretic

basis for program extraction or program development via type theories. In [8], the theory of

pure ATTT was presented and its basic metatheory was developed. In this paper, we will study

logics in ATTT. The main purpose of this paper is to show how logic is represented by re�ne-

ments of ATTT. We will show that the re�nements of each type is an \internally" complete

Heyting algebra (cHa). Using the cHa structure, second order intuitionistic logic is naturally

interpreted by re�nements using the technique of categorical logic [14]. The second order for-

mulas provable in the intuitionistic second order logic are provaly true in ATTT under this

interpretation. Conversely, the �rst order formulas provaly true in ATTT under this interpre-

tation are provable in the intuitionistic �rst order logic. We conjecture that this holds for the

second order case as well, and will give a su�cient condition.

The logic of re�nements mentioned above is \non-informative" in the sense of Coq sys-

tem [3] or \rank zero" in the sense of PX system [7]. It is used as a substitute of logics of

Coq's propositions and PX's rank zero formulas. This means that the interpretation of for-

mulas does keep any computational information contrary to the ordinary BHK-interpretation

(Brouwer-Heyting-Kleene-interpretation) of constructive logic. Besides this non-informative in-

terpretation, Some BHK-style informative interpretations of logic can be coded in ATTT. They

are essentialy realizability interpretations. We will show that both of recursive realizability and

mode�ed realizability are represented naturally in ATTT. Then, we will show that informative

induction principle is derivable by non-informative induction principle in ATTT.

We also introduce a notion of re�nement class�er resembling suboject classi�er of topos,

and, by means of this notion, we will compare our apprach to program/proof development in

ATTT with related works [2], [3], [15], [18].

�

hayashi@rins.st.ryukoku.ac.jp
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2 Re�nement types

In this section, we will briey review the notion of re�nement types and develope cHa-structures

of the re�nements.

2.1 Types versus re�nement types

A type is a collection of data which have the same uniform structure. A set is a collection of

data which have the same property. Property which de�nes a set can be so complicated that we

cannot e�ectively decide if a data belongs to the set. On the other hand, types (of programming

languages) are supposed to be simple. For examples, integers, elements of free algebras, records

and functions are all types. But, the primes are not a type, but a set. We summerize this

intuition by the following doctorine: the border of types are smooth and the border of sets are

rugged.

1

\The function f returns the next prime number to its real argument" is a speci�cation

of a function f . The edge of this speci�cation is rugged, as it uses the primes in it.

Intuitively, sepci�cations must be identi�ed with sets. Thus, we think that the speci�cations

should be distinguished from data types, even in the type theories for program extraction based

on Curry-Howard isomorphism. This consideration led us to introduce a new kind of \types"

called re�nement types. Re�nement types have rugged borders and are intended to serve as

speci�cations. This re�nement types \re�ne" the borders of types, i.e., they distinguish elements

more re�nedly than types. More precisely, a re�nement types of type A is intended to be a

subset of the ordinary type A. Note taht a re�nement type, or re�nement in short, is not a

subtype of A, since it may have a rugged border.

ATTT is a type system with re�nement types designed as \ATTT = �2 + re�nement types."

In a sense , ATTT is \�2 + logic." In set theory, sets are de�ned by the aid of logical formulas.

We do not introduce formulas, but can directly de�ne set (re�nements) by means of the rules for

re�nements in the framework of type theory. In categorical or algebraic logic, logics are coded

through sets (subobject), e.g. the statement \F (x) implies G(x)_H(x)" can be interpreted as

set-theoretic inclusion fxjF (x)g � fxjG(x)g[ fxjH(x)g. Thus we may think that the sets part

(re�nements part) of ATTT is a kind of logic without formulas. This resembles the philosophy

of Martin-L�of's type theory (at least his philosphy in 80's). The di�erence is that Martin-L�of

used Curry-Howard isomorphism to represent logic but we use more \traditional" approach via

categorical or algebraic logic. Note that we have not abandoned Martin-L�of's philosophy. The

categorical-algebraic logic approach is used only for non-informative part. For informative part,

we follow his philosophy. In a sense, we use Curry-Howard isomorphism, when we sit in outside

of Martin-L�of's subset type, but use categorical-algebraic logic approach, when we sit in inside

of Martin-L�of's subset type.

More formally, ATTT is described as follows. The types and terms of ATTT are exactly

the ones of �2. If A is a type of �2 (and so of ATTT), we introduce the re�nement kind of A,

which we will write re�ne(A). A re�nement kind is a sort of \kind" in the sense of GTS. The

elements of the re�nement kind re�ne(A) is intended to be the re�nements of the type A. Each

re�nement kind re�ne(A) is closed under the formation rules of singleton fag

A

(a 2 A), �nite or

in�nite union and intersection. Furthermore, if R

1

is in re�ne(A) and R

2

is in re�ne(B), then

R

1

! R

2

is in re�ne(A ! B). This function type like re�nement represents the constructive

implication. Natural introduction and elimination rules for these re�nements are included. A

subtle point is the introduction rule for the re�nement R

1

! R

2

. If e 2 R

2

for x 2 R

1

, then the

1

I learnt this \doctorine" from Rod Burstall. According him, it's due to J

_

A

_

Robinson.
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term �x 2 A:e is introduced in R

1

! R

2

, and not �x 2 R

1

:e.

2

The description of ATTT above

would be enough to understand the development below. Thus we do not enter the details more.

(See [8] for more details.)

2.2 Re�nement application

For the discussions below, we will introduce a notion re�nement application. A future of ATTT

is that the realizability relation \a realizes F" can be a re�nement not only a judgment. The

relation is expressed as

F ^ fag:

This re�nement is realized by a, if and only if, a belongs to F . If we consider a re�nement of A

as a predicate on A as we later do, F ^ fag is considered the application of F to a. So we call

this re�nement application and write Ffag.

Note that Martin-L�of's propositional equality I(F; a; a) is a proposition which expresses

realizability relation. The re�nement application resemble this. The di�erence is Ffag is

realized by a, and I(F; a; a) is realized by a �xed constant.

2.3 The algebra of re�nements

The re�nement kind re�ne(A) is intended to be the subsets of the type A. So it has a lattice

theoretic structure.

V

and

W

are \internal" in�mum and supremum, respectively. Actually,

they are an \internally" complete Heyting algebra. Namely, they are distributed \internally"

complete lattice. To show it, we de�ne an order relation on re�ne(A. The relation itself is a

re�nements of re�ne(A! A).

De�nition 1 (subset re�nement Let R

1

and R

2

be re�nements of a type A. The subset re�ne-

ment R

1

� R

2

is de�ned as follows:

R

1

� R

2

def

=

^

x 2 R

1

:R

1

fxg ! R

2

fxg:

The subset re�nement is a re�nement of type A ! A. Intuitively, the subset re�nement

says that R

1

is a subset of R

2

.

For this re�nement the following proposition holds.

Proposition 1 Let A 2 Type; R

1

2 re�ne(A); R

2

2 re�ne(A) be derivable under a context �.

Then, the following are equivalent:

1. �; x 2 R

1

` x 2 R

2

is derivable.

2. � ` �x 2 A:x 2 R

1

� R

2

is derivable.

3. � ` e 2 R

1

� R

2

is derivable for some term e.

2

This rule is justi�ed by the observation that terms of ATTT are exactly those of �2 and the former lambda

term is a term of �2 but the latter is not. This rule also reects the \typing" rule of modi�ed realizabilities.

Recently, Pfenning introduced a type theory with intersection types which has a function-introduction rule similar

to ours for a di�erent good reason [17].
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Note that the second condition shows that the identity function is the standard witness of

the re�nement. In this sense, the subset re�nement is self-realizing or non-informative.

It is easy to see the subset re�nement de�nes an pre-order relation on re�ne(A). Note

that this fact can be stated internally. Namely, the followings are derivable in an appropriate

context:

1.

V

R 2 re�ne(A):R � R,

2.

V

R

1

2 re�ne(A):

V

R

2

2 re�ne(A).

V

R

3

2 re�ne(A):R

1

� R

2

� R

2

� R

3

� R

1

� R

3

.

Note that \�" is the ordinary implication de�ned by the function space. (Since the subset

re�nement is self-realizing, the implication may be replaced by non-informative implication

explained later.)

Since the subset relation is a pre-order, we have to have the \equivalence relation" induced

from the pre-order. This can be also internalized. Let's call such an equivalence relation

extensional equality re�nement, R

1

�� R

2

in notation. It's de�ned by

R

1

�� R

2

def

= R

1

� R

2

� R

2

�� R

1

:

2.4 The re�nements are internally complete Heyting algebra

The �nite intersection and union are in�mum and maximum, respectively. These facts can be

stated internally as well as externally. As we have big intersections and unions, the re�nements of

a type are internally complete. For example, we can derive the followings for the big intersection:

: : : ; i 2 I ` �x 2 A:x 2 (

^

i 2 I:R) � R

: : : ; X 2 re�ne(A); i 2 I ` e 2 X � R

: : : ; X 2 re�ne(A) ` X �

V

x 2 A:R

(i is not free in e)

Note that we have to be careful with what kind of indexes i 2 I are allowed. It depends on

what kind of formation rules for the intersection and union are allowed. But, once a formation

rule is introduced, there is no di�culty to prove the properties above.

A complete Heyting algebra is a complete lattice with the following distribution law:

a ^

_

i 2 I:b

i

=

_

i 2 I:(a^ b

i

):

The distribution law is provable in ATTT.

Lemma 1 (the distribution lemma) Assume i is not free in S. In the contexts where R and S

are re�nements of a type A, the following re�nement is provably inhabited.

R ^

_

i 2 I:S ��

_

i 2 I:(R ^ S):

Note that I must be an index set (in the context) for which the formation of the big intersection

allowed.

This lemma is not quite trivial. The �-direction is trivial, but the �-direction is not trivial.

In some type theories with intersection and union types, the distribution law is included as

an axiom, as the �-direction is not derivable from the other axioms and rules. In ATTT, the

�-direction is easily derivable by the following lemma:
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Lemma 2 The following are derived rules of ATTT:

1.

� ` e

0

2

W

x 2 A:B

� ` e

0

2

W

x 2 A:(B ^ fe

0

g)

2.

� ` e

0

2

W

x 2 A:B �; x 2 A; y 2 B ^ fe

0

g ` e

1

2 C

� ` e

1

[y := e

0

] 2 C[y := e

0

]

;

where x is not in FV (e

1

) [ FV (C).

The second one is a consequence of the �rst one.

2.5 implication re�nement

In cHa, implication a � b is de�ned as the greatest element c such that a^ c � b holds. By the

same vain, we de�ne the implication re�nement.

De�nition 2 (implication re�nement) Let R

1

and R

2

be re�nements of a type A. Then we

de�ne the implication re�nement R

1

�

� R

2

by

_

R 2 re�ne(A):

_

w 2 R

1

^ R � R

2

:R:

Note that the implication re�nement is of type A and the subset re�nement is of type A! A.

For the implication re�nement, the following two are equivalent:

�; a 2 R

1

` a 2 R

2

;

�; a 2 A ` a 2 R

1

�

� R

2

:

This implies the equivalence of the followings:

�; a 2 R

1

fag ` a 2 R

2

fag;

�; a 2 A ` a 2 (R

1

�

� R

2

)fag:

By the commutativity, we can prove that (R

1

�

� R

2

) ^ fag and (R

1

^ fag

�

� R

2

^ fag are

extensionally equal re�nements. If we abuse the notation, we have

�; R

1

fag ` R

2

fag;

�; a 2 A ` R

1

fag

�

� R

2

fag:

This shows that the implication re�nement satis�es the natural deduction rules for the familiar

implication.
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2.6 Absurdity re�nement and truth re�nement

The absurdity re�nement of a type A, ?

A

, is the least re�nement and the negation re�nement

is de�ne from it and the implication.

?

A

def

=

^

R 2 re�ne(A):R;

�:R

def

= R

�

� ?

A

:

Obviously, the absurdity re�nement implies any re�nement of the same type. The truth

re�nement >

A

, which is the greatest re�nement is also de�nable by

>

A

def

=

_

R 2 re�ne(A):R:

Normally, Heyting algebra is assumed to have at least two elements. But, we do not assume in

this paper. As a type may be empty in a semantics for �2, we cannot prove the truth re�nement

is not the same as the absurdity re�nement.

Note that ? is not unique in ATTT. We have the absurdity ? for each re�nement kind.

Later, we will show the re�nement of the unit type unit classi�es the re�nements. Thus, ?

unit

is the most general absurdity in a sense. If x 2 A holds, then Rfxg for any re�nement R of A

under the assumption ?

unit

.

Proposition 2 The following is derivable in ATTT:

�A 2 Type:�x 2 A:x 2 �A 2 Type:

^

R 2 re�ne(A):

^

w 2 ?

unit

:A � R:

This means that any re�nement is true, if we assume ?

unit

.

3 Interpreting logic by re�nements

In this section, we give an interpretation of second order logic by re�nements. A re�nement kind

of a type A is the power set of A. Thus, re�nement kinds resemble the algebras of subobjects

in a category. We give an interpretation of second order predicate logic into ATTT using the

technique of categorical logic by Makkai and Reyes [14]. But, our case is some di�erent from

theirs. We will consider second order logic, on the other hand, Makkai and Reyes considered �rst

order logic. They used external intersections and unions are used, but we will use internal ones.

Furthermore, products are assumed in [14]. We de�ne product by the polymorphic product (see

[8]). The polymorphic products are not real products but semi-products in the sense of [6] and

[9], since �2part of ATTT does not have �-conversion.

3

3.1 The Makkai-Reyes-style interpretation

In spite of the di�erences mentioned above, Makkai-Reyes technique works well in our case by

small modi�cations. Let's illustrate the interpretation briey. Let D be a �xed type. This is

intended to be the domain of �rst order objects (ground type) for the second order logic that we

are going to interpret. Let F be second order formulas whose �rst order free variables are among

x

1

; ldos; x

n

. Their interpretations are re�nements of the type D

n

. F may have second order

free variables. Thus, the interpretation of these must be given. We assign re�nements with

appropriate types to them. The interpretation of F is de�ned depending on this assignment.

3

Note that we can de�ne a re�nement

W

a 2 A:

W

b 2 B:fha; big of a polymorphic product A�B, which is the

\real" product. But, this trick would be \incorrect," as a product of types should be a type not a re�nement.
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3.1.1 Interpretation of predicates

Let's see how to interpret predicates by re�nements. Since re�nements are sets, they are unary

predicates. There are no re�nements to represent predicates with many arguments. Thus, we

use the polymorphic products and paring to interpret n-ary predicates. For example, a binary

predicate P (x; y) is interpreted as a re�nement R of the polymorphic product D � D. More

precisely, we assign a R 2 re�ne(D�D to P , and interpret the formula P (x; y) by

fhx; yi 2 D �DjRfhx; yigg:

The pair hx; yi is the polymorphic Church pairing and the subset notation is an abbreviation of

_

x 2 D:

_

y 2 D:

_

w 2 Rfhx; yig:fhx; yig

D�D

:

(See [8].)

3.1.2 Interpretation of logical operators

Conjunction, disjunction, implication and negation of formulas are interpreted as intersection,

union, implication and negation of re�nements. Note that implication is interpreted by impli-

cation re�nement de�ned above. This is straightforward, but, there is a problem.

If F and G have di�erent free variables, this interpretation does not work, since their in-

terpretations are of re�nements of di�erent types. Then, we embed re�nements into a bigger

re�nements. Assume we are to form the union of the interpretations of F and G, say R

F

and

R

G

. If F has a free variable x

1

as F (x

1

) and G has another free variable x

2

as G(x

1

; x

2

). Then,

R

F

2 re�ne(D) and R

G

2 re�ne(D �D). Thus, we have to embed the interpretation of F (x

1

)

into D �D as fhx

1

; x

2

iinD �DjR

F

fx

1

gg.

Now, we interpret the universal and existential quanti�ers. This is the point at which

our interpretation diverges from Makkai-Reyes interpretation. Makkai and Reyes interpret

�rst order quanti�ers by images and \co-images" of subobject morphisms. We interpret them

by the big intersection and union over the type D. Let F (x

1

; : : : ; x

n

) be a formula and let

R

F

be its interpretation, which is a re�nement of D

n+1

. The interpretation of the formula

8x

i

:F (x

1

; : : : ; x

n

), is the re�nement

^

x

i

2 D:fhx

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

i 2 D

n

jRfhx

1

; : : : ; x

n

igg:

First order existential quanti�er is interpreted in the similar way by union.

Since we have unions and intersections over re�nement kinds, second order quanti�ers are

interpreted in the same way. For example, let P be a binary predicate variable. Then forallP:F

is interpreted by

V

P 2 re�ne(D

2

):R

F

. Although P runs through the re�nements of the poly-

morphic product D

2

, which may have more elements than the real pairs, this is the same to

have it run through the re�nements of the real products. This is because that P always ap-

pears in the form Pfhs; tig in F . This completes the de�nition of the interpretation of logic by

re�nements.

3.2 Provably true formulas in ATTT

A re�nement R of a type A is said to be true, if and only if �x 2 A:x 2 >

A

� R holds.

4

If this

judgment is provable in ATTT, we will say the re�nement R is provaly true in ATTT. If the

4

More exactly speaking, we have to respect in which context the re�nement is true.
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interpretation of a formula F is provably true in ATTT, then we say the formula is provably

true in ATTT.

3.2.1 Intuitionistic second order logic are provably true

Then, the following is easily proved:

Proposition 3 The intuitionistic second order (predicate) logic (ISOL) is sound w.r.t. the

interpretation. Namely, if a closed formula F of ISOL is provable, then it is provably true in

ATTT under the context D 2 Type; x 2 D, where the type variable D is used as the domain of

�rst order objects.

The intuitionistic predicate logic assumes that the domain is non-empty. Thus, the assump-

tion x 2 D is necessary. If we use a free logic instead, this is not necessary.

3.2.2 What are provably true formulas?

It is natural to ask what are provably true formulas in ATTT? We conjecture that provably true

formulas in ATTT are exactly the formulas provable in ISOL. This means that our interpretation

is adequate to ISOL, and amounts to the following:

Conjecture 1 The converse of proposition 3 holds. Namely, if a closed formula F of ISOL is

provably true in ATTT under the context mentioned in proposition 3, F is provable in ISOL.

Somehow related result can be found in [13]. Although, we have not been able to prove

this conjecture yet, we will prove the conjecture restricted to �rst order formulas. Namely, the

following proposition holds:

Proposition 4 If a closed �rst order formula F is provably true in ATTT under the context

mentioned in the proposition above, then F is provable in the intuitionistic �rst order predicate

logic (IFOL).

The idea of our proof is very simple. But, full details are rather clumsy. Thus, we illustrate

only the idea, below.

Our proof consists three steps. Firstly, we show that any provaly true �rst order formula F

is valid in the sense of Tarski semantics by means of a term model of �2. Secondly, we formalize

the proof of this fact in the intuitionistic second order arithmetic (HAS) augumented with an

auxiliary sort . The auxiliary sort is intended as the generic domain, i.e., we do not pose

any axiom or rules for this except the ones of ISOL. Let us call this system HAS(). By the

formalization, we can show that F



, which is F whose unique sort is made to be , is porvable

in HAS(). Lastly, we show that if F



is provable in HAS() then F is provable in ISOL. Thus,

F is provable in ISOL.

The �rst step is easy. If the judgment maintaining that the interpretation is true is provable

in ATTT under the judgment, we can interpret it in the set-theoretical sematics introduced of

[8]. Let Const be a arbitrary set of new constans. We augment �2 by Const as a new type.

Namely, we introduce a new type constant D and regard the constants from Const as new

constants of �2. Let denote such the augumented system �2(D). Let M be the closed term

model of �2(D).
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In [8], we took BMM-model as the basis of semantics of ATTT. But,M is not a BMM-model

but a �2-algebra in the sense of [10]. This is not important for us. Any concrete �2-algebra also

gives a semantics of ATTT in the sense of [8]. The reason why we considered only BMM-model

in [8] is only for simplicity. The semantics works for any other \concrete" semantics of �2, e.g.,

coherent semantics etc.

The model M consists of the collection of the set of closed normal terms of �2(D). We

denote the set of closed normal terms of type A by M(A). By interpreting re�ne(A) as the

power set of the closed normal terms of type A, it becomes a model of ATTT (see [8]). Assume

that a �rst order formula F is provaly true in ATTT, interpreting D is the domain of the

�rst order objects. Since the normal closed terms of D are only the new constants, M(D) is

identical to Const. Let x

1

; : : : ; x

n

be the free variables of F . Then, it is easy to check that R

F

(the interpretation of F ) coincides with the set of the list of constants of Const fhc

1

; : : : ; c

n

i,

where F [c

1

=x

1

; : : : ; c

n

=x

n

] is valid in the sense of Tarski semantics whose domain is Const. Since

Const is arbitrary, this means that F is tautology in the sense of Tarski semantics. Thus, F is

provable in the classical �rst order logic by the completeness theorem. Note that the argument

above is all constructive except the completeness theorem.

The second step involves messy formalization. Let us clarify the system HAS()in which

we do the formalization. HAS()is a second order theory with two sorts, � and . The sort �

is intended to be the sort of natural numbers and the sort  is intended to be arbitrary. The

constants of � is only 0, and  does not have any constants. The only function symbol is s

(successor). The arity of a predicate variable is a list (s

1

; : : : ; s

n

of sorts (n is possibly zero).

Thus we can talk about functions from � to , etc. The equality for each sort is de�ned by

Leibniz equality. (This is only for simplicity. We may have equality symbols, instead.) The

logic is the (two-sorted) intuitionistic second order logic, and the axioms are the Peano axiom

for the sort of natural numbers �.

Now, we formalize the argument of the �rst step in HAS(). The only pointwise formaliza-

tion is possible, since we need normalization theorem of �2. We augment ATTT with D just as

�2(D). Let us denote the augmented system by ATTT(D). Assume that a �rst order formula

F is provaly true in ATTT. Then it is also provably true in ATTT(D), regarding the new type

D as the domain of the �rst order objects. Then there is a fragment of �2(D) for which the

strong normalization property is provable in HAS() and all terms in the proof of the truth

of F fall in the fragment (see, e.g., [19]). Thus, we have a closed term model of the fragment

formalized in HAS(). Since the set of constants Const is arbitrary, we may regard it as the

sort . Recall that the Makkai-Reyes-style interpretation coincided with the Tarski semantics.

Thus, we can conclude that F

D

is provable in HAS(), where F

D

is F replaced the ground sort

by .

The third step consists of the following lemma:

Lemma 3 A �rst order formula F is provable in intuitionistic �rst order logic, if F

D

is provable

in HAS().

This is an easy consequence of in�nitary normalization theorem of intuitionistic second order

arithmetic which is proved by Tait-Girard computability predicate technique, e.g., [5]. A proof

of F

D

of HAS() can be normalized using !-rule. Since F

D

is a �rst order formula only with

the sort , subformula property holds, namely, the sort appearing in the normal proof is only

. This means that the proof is a proof of ISOL and, in fact, of the intuitionistic �rst order

logic, regarding the sort  as the ground sort. This completes the proof.
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The only third step fails for the second order case. Since second order logic does not have

subformula property, our proof fails to prove the lemma above for second order case. But, we

conjecture that the lemma will hold for second order formulas as well.

Conjecture 2 A second order formula F is provable in intuitionistic second order logic, if F

D

is provable in HAS().

Note that this lemma has an intrinsic meaning: if a second order formula is constructively

valid under the assumption of the existence of the natural numbers, then it is provable in second

order intuitionistic logic. Since this seems very plausible, the conjecture must be true.

3.3 The excluded middle

The law of excluded middle for re�nements

�A 2 Type:

^

R 2 re�ne(A):(>

A

� R _ �:R)

is not derivable in ATTT by the the adequacy result above. Thus, the Heyting algebra of a

re�nement kind is not boolean. But, they are compatible with boolean laws. Even if we add

the law of excluded middle above as an axiom, the system is still conservative over �2. In [8],

we de�ned a translation from ATTT to �2 which is identical on the �2 fragment of ATTT. We

may add the excluded middle above as an axiom, whose realizer is the identity function. Then

the translated axiom is �x 2 A:x 2 A! A.

Note that the excluded middle inequivalent to the following:

�A 2 Type:

^

R 2 re�ne(A):(66 R � R):

This resembles the logic of PX system, which is compatible with classical logic as stressed in

[7].

3.4 The re�nement classi�er and comparisons to the other approaches

The Makkai-Reyes-style interpretation given above look rather di�erent from the standard way

of interpreting logic in higher order type systems as Coq system. Thus, it seems di�cult to

compare our approach to the standard ones. But, we can encode logic similarly to the standard

way by the notion of re�nement classi�er. Upon the idea, we can compare our approach to the

others.

3.4.1 The re�nement classi�er

Re�nements resembles subojects in toposes. A topos has a subobject class�eirs by which sub-

objects are classi�ed. Namely, a subobject of an object is represented by a map from the object

to the subobject classi�er. Intuitively, a subobject class�er is the power set of a singleton set.

It can be considered as the set of truth values. Introducing a singleton type, say unit, consisting

the only element ?, the re�nement kind re�ne(unit) is a re�nement classi�er. Note that this is

the kind of non-informative propositions, and so corresponds to Prop in the sense of Coq system

rather than the Prop in the sense of the original Calculus of Constructions.

We will write the re�nement kind re�ne(unit) by 
 and call the re�nement classi�er. As-

sume that R 2 re�ne(A). Then we de�ne a term of the type A ! 
. Then the following

correspondence between A! 
 and re�ne(A) is obtained:
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R 2 re�ne(A) 7�! �x 2 A:

_

w 2 Rfxg:f?g;

F 2 A 2 
 7�!

_

x 2 A:

_

w 2 F (x)f?g:fxg:

But, A ! 
 is illegal in ATTT in [8]. Thus, we have to extend ATTT to include such a

type by allowing the following formation rule and corresponding introduction rule.

� ` A 2 Type � ` B 2 RKind

� ` A! B 2 RKind

This extension is not essential. In such a extension, any term of RKind has the form

A

1

! : : :A

n

! re�ne(B), where A

1

; : : : ; A

n

are types. Then, we can regard it as re�ne(A

1

�

: : :� A

n

� B), by regarding �x

1

2 A

1

: � � ��x

n

2 A

n

:R as fhx

1

; : : :x

n

i 2 A

1

� � � �A

n

� BjRg.

Note that this is a standard techinque to encode functions form �rst order objects to predicates

in the second order logic. Thus, the extension still keep the second order character.

3.4.2 Comparisons to the other approach

Upon the notion of re�nement class�er, we compare our approach to the others. In impredicative

higher order type theories as Calculus of Constructions, Type (or often denoted as Prop) is often

used as a substitue of the collection of the truth values. It is also regarded as the collection of

the data types. This confusion leads to ine�ciency of the extracted code and makes it di�cult

to understand encoded logic. Thus, Coq system separate these two notions introducing two

kinds Prop and Set. The kinds Prop and Set belong to the sorts (in the sense of GTS) Type and

Type Set, respectively. There is a messy confusion of symbols. Prop of Coq corresponds to our


 and Set of Coq corresponds to our Type, the kind of the types. Type of ATTT belongs to the

sort Kind and re�nement kinds re�ne(A) belong to the sort RKind. Thus, Type of Coq is our

Kind and Type Set is our RKind.

The super�cial divergences of our approach from Coq's are

1. . ATTT is a second order system, but Coq is a higher order system.

2. . The types of Coq can depend on data, as it uses Calculus of Construction. The types

of ATTT cannot depend on data, as it uses �2.

There is still another twist. Coq has an extraction algorithm, by which the data-dependency

of types (and other logical information) is stripped out so that the extracted codes are of Girard'

F

!

. At the speci�cation level, Coq has data-dependent types, but, at the object code level, it

does not have them. The types of ATTT are the ones of �2 at the both levels. In ATTT,

we directly talk about object level codes and their types, i.e. the terms and types of �2. On

the other hand, the users of Coq talk about them indirectly through the extraction procedure.

This is fate of the systems based on realizability as Coq and PX. We do not say this is a bad

doom, as the indirectness can make users think their programs abstractly and good extraction

procedure can sometime produce better codes than the users expected. This contrast between

direct and indirect approaches may be compared with the contrast between assembler languages

and compiler langauges.

Another approach closely related to Coq is \deliverable" by Burstall and McKinna ([2], [15]).

They take a direct approach. They do not consider any extraction algorithm, but directly talk
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about codes. To represent data types and talk about them and codes, they use Luo's Extended

Calculus of Constructions ECC ([11], [12]). ECC has Prop and a predictive cumulative hierarchy

of predictive kinds, Type(0), Type(1); : : :. They use Prop as the truth values and Type(i) as

data types. Thus, Prop corresponds to our 
. But, there is a di�erence. Prop belongs to and

is a subset of Type(0). This implies that the collection of truth values and each truth value is

a data type. It would be possible to regard the collection of truth values as a data type by

regarding them as formulas. But, a proposition (truth value) is a re�nement of a unit type from

our point of view. Thus, it has a rugged border, and so it is not a data type. When it comes to

data-dependency of types, deliverable approach allows it. The predictive hierarchy allows such

types.

The approach most closed to ours is Erik Poll's programming logic �!

L

[18]. As program-

ming language, he uses Girard's F

!

, �! in his notation. As logic, he uses the other copy of �!.

His �

s

is Type and �

p

is 
 of ATTT. These two copies of the same type theory resembles two

copies of Calculus of Constructions in the Coq system. Then he introduce function types from a

data type A to �

p

to represent predicates. This corresponds to the re�nement kind re�ne(A) or

A! 
. The data-dependency of types is not allowed as he uses F

!

. In a sense, �!

L

is a higher

order version of ATTT without re�nements. The di�erence is that Poll uses predicates, on the

other hand, we use sets (re�nement types). As propositions and data types, and so programs

and proofs, are more clearly separated in �!

L

than ECC, �!

L

might be a better framework for

the deliverable approach.

As illustrated above, the four approaches are closely related in a rather intricate way. They

do not seem very di�erent from a theoretical point of view. The di�erence in practice of

proof/program developments should be investigated.

4 Informative interpretations of logic

The logic of re�nements given above is a non-informative interpretation. In this section, we

examine two informative interpretations in ATTT.

4.1 Two informative interpretations of implication

Type theories based on \proofs as program" notion can be regarded as \axiomatizations" of re-

alizability notions. For example, Martin-L�of's type theory can be regarded as an axiomatization

of extensional recursive realizability as exploited in [1].

In PX, realizers of non-informative formulas are always the empty list which are passed

by extracted codes. In Coq, realizers of non-informative formulas are the null sequence which

literally disappear in extracted codes. These two di�erent treatments of non-informativeness

are reected by the di�erence of realizability interpretations used by these systems. PX uses

recursive realizability and Coq uses modi�ed realizability.

The di�erence of these realizabilities appears in the interpretation of implication. Let P be

a non-informative formula and let A be an informative formula. In recursive realizability,

r realizes P � A

def

= r # ^P � r(nil) realizes A:

In mode�ed realizability,

r realizes P � A

def

= r # ^P � r realizes A:
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(Normally, only terminating terms are used in mode�ed realizability. Then, the condition r #

may be omitted.) In ATTT, user can choose both intepretations locally. Let R

1

and R

2

be

re�nements. The standard intuitionistic implication is de�ned by R

1

! R

2

. This interpretation

takes R

1

informative.

The following interpretations take R

1

non-informative:

1.

V

w 2 R

1

:R

2

,

2. fx 2 unit jR

1

g ! R

2

,

w is a fresh variable which does not appear in R

2

. The �rst one represents the implication

of the mode�ed realizability, and the second one represents the implication of the recursive

realizability. In this sense, ATTT embodies both realizabilities in a single framework.

4.2 Induction principles

Induction principle is a very important componet of a system of constructive programming,

since it is the device to derive recusive programs. Below, we will examine two kinds of induction

principles, one is non-informative and the other is the informative.

The non-informative one is purly logical. The informative one is not only logical but also

representing recursion scheme as well. For example, informative mathematical induction repre-

sents primitive recursion and its correctness. We will show that informative induction principle

can be derived from non-informative induction principle in ATTT. This is a future which dis-

tinguishes ATTT from the other type theories.

4.3 Monotone inductive de�nition of re�nements

Firstly, we will examine non-informative induction principles. They are induction principles

over re�nements. The monotone inductive de�nition of re�nements are easily de�ned as in the

second order logic. Let R be a re�nement variable of type A and let 	(R) be a re�nement of

A. Then, �R:	(R) is

^

S 2 re�ne(A):

^

w 2 (	(S) � S):S:

If 	(S) � S holds, then, obvioulsy, �R:	(R) � S holds. If � is monotone, i.e., R

1

� R

2

�

�(R

1

) � �(R

2

), holds, then �(�R:	(R)) �� �R:	(R) holds. In this sense, �R:	(R) is the

least �xed point of a monotone operator �(R).

4.4 The type of natural numbers

Recursive data types as integers, list, etc. are de�nable in �2. For example, natural numbers

are de�nable as Church integers. But, we do not use this as data types. We should introduce

such types as primitive type as in [3]. For simplicity, we consider only Nat, here.

To extend ATTT by Nat, we introduce a type constant Natand two constants 0 2 Nat and

S 2 Nat ! Nat . Then, we add the primitive recursor natrec

natrec 2 �X 2 Type:X ! (Nat ! X ! X)! Nat ! X

together with the standard reductions.

To say Nat is built by 0 and S, we introduce the following axiom:

Nat � �R:fxg

Nat

_ S

00

R;
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where S

00

R is the image of R by S, which is de�ned by

f

00

R

def

=

_

x 2 R:ff(x)g:

Since Nat is not a re�nement, \Nat � �R: : : :" is not the order on re�nements. This is de�ned

by

V

x 2 Nat :fxg

Nat

! (�R: : : :)fxg.

As the axiom is self-realizing by the identity function, the axiom may be put in the context

with a variable, which is a virtual witness of the axiom. These are all of the axioms for Nat.

Note that we did not introduce the informative mathematical induction. The last axiom is

a kind of mathematical induction, but it is non-informative mathematical induction (NIMI).

The informative mathematical induction (IMI) should be

�A 2 Type:

^

P 2 Nat ! 
:P (0)! �n 2 Nat :(P (n)! P (Sn))! �n 2 Nat :P (n):

In ATTT, IMI is provable from the axioms above.

Theorem 1 The following is derivable in ATTT:

�A 2 Type:�a 2 Nat :�f 2 Nat ! A! A:�n 2 Nat :recAafn 2 IMI:

Note that we have to put the abstractions, since ATTT does not have �-conversion. Note

that this theorem asserts that the big �-term above is the realizar of IMI. Let e(n) be the term

recAafn. It is enough to prove e(n) 2 P (n) under the assumptions. To prove this, it is su�cient

to prove the re�nement P (n)fe(n)g. We can prove this by the non-informative mathematical

induction NIMI. The proof is essentially the same as the soundness proof of mathematical

induction for realizabilities.

This example shows that informative induction follows from non-informative induction in

ATTT. This ability of ATTT seems that distinguish it from the other type theories and illus-

trates its set theoretical nature.

There is one thing missing in the axioms above. It is Peano's fourth axiom \0 = 1 implies

?." There are several formulations of the axiom, since we have several ways to de�ne implication

and absurdity. One of the strongest formulation would be

�A 2 Type:

^

w 2 0 = 1:?

A

:

The type of this re�nement is PiA 2 Type:A. This is rather problematic as pointed out in [16].

If the re�nement is realized by f , then f(A) is a polymorphic element of A. In PX system,

this problem did not arise, as it is a monotype system whose domain is inhabited. But, we

are now in a type theoretic framework and so cannot use such a solution. In Coq system [16],

\abort"-command is introduced which belongs polymorphically to any type A. This solution

seems to lead us to a type theory with non-terminating programs. Coq system o�ers a solution,

but it is not very clear.

This approach shows a resembles to the resent works on controls in Curry-Howard isomor-

phisms by Gri�n, Murthy, Nakano. Especially, Nakano's calculus accommodate catch/throw

mechanism in a natural constructive framework which have termination property for all types.

(In Gri�n and Murthy's work, the termination seems restricted to speci�c types.) As \abort"

is a throw to the top-level, there might be a natural way to interpret this problem by Nakano's

calculus.
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Anyway, the problem does not seem to have been settled satisfactory. Thus, we do not use

it, here. Here, we consider a less ambitious formulation,

�A 2 Type:

^

w 2 0 = 1:A! ?

A

;

which is equivalent to

�A 2 Type:

^

w 2 0 = 1:?

unit

:

In Coq system, essentially the same statement is proved by a proof by cases, which is similar

to Martin-L�of's proof of the 4th axiom in his type theory. If we introduce a principle to de�ne

re�nement-valued functions by cases, we can do the same thing in ATTT. Assume that we can

de�ne the following program from Nat to 
.

�x 2 Nat :(if x = 0 then >

unit

else ?

unit

):

By assuming 0 = 1, we can convert top

u

nit to ?

unit

. This proves the axiom above by means

of conversion rule or an appropriate equality rule. Note that the program above have the type

Nat ! re�ne(unit). If we extend the type of the recursor rec so that it permits re�nement

kinds as well as the type A, then we can do such a de�nition by cases. This doesn't seem bad.

But we do not do so here. We simply add the axiom to the system.

Note that type A is assumed to be non-empty, when we deduce bot

A

:

�A 2 Type:

^

w 2 0 = 1:A! ?

A

:

(This means that \assume we have an element of A. If something is wrong, we return it as

the default value.") The non-emptiness assumption would not cause a big problem in practical

cases. Such an A would be the type of a speci�cation. A speci�cation of a program of a type

whose elements are not known will be meaningless.
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Abstract

A data link protocol developed and used by Philips is modeled and veri�ed using I/O automata

theory. Correctness is computer-checked with the Coq proof development system. The protocol
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of the automaton description of the protocol (Section 3.2). The deadlock was not

revealed until Lemma 3.16 was proof-checked. The re�nement proof including the

invariants have been adapted and veri�ed by hand, but re-checking all invariants

could not be completed in time.

1 Introduction

The data-link layer of a telecommunication protocol is veri�ed and proof-checked. The protocol

has been designed to communicate large messages over unreliable channels. The messages are

transmitted in small packets or frames . The protocol does not rely on fairness of data trans-

mission channels, i.e., repeated transmission of a frame does not guarantee its eventual arrival.

For this reason, the number of retransmission attempts is limited and the protocol is called

Bounded Retransmission Protocol.
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Reliable communication protocols are vital to the telecommunication industry. They are also

of increasing importance to the electronics business because more and more products consist of

communicating subsystems and because many products integrate technology from the �elds of

computers, telecommunication devices, and consumer electronics. The pressure for reliability

of the protocols involved poses an important challenge to veri�cation techniques.

Design, implementation and testing of communication protocols is a complicated and error-

prone activity. For many protocol-based products, erroneous protocol behavior is met by error-

recovery procedures or by issueing a new software release. For some products however, error

situations are not acceptable and software maintenance is impossible. Correctness of protocols

is usually examined by careful testing of implementations.

Thorough testing increases con�dence but testing is only semi-decidable: it may reveal the

presence of errors but not the absence of errors. Protocol veri�cation is required to obtain a

higher degree of con�dence. The protocol is modeled in a mathematical structure and cor-

rectness is guaranteed by showing that the protocol satis�es the required behavior under all

circumstances. Veri�cation is not restricted to implementations but can also be applied to

designs that have not yet been implemented. It should be stressed however that although veri-

�cation excludes design errors, it cannot replace testing of implementations.

A hand-written protocol veri�cation may itself contain certain errors that can be eliminated

by computer tools. Veri�cation errors can be classi�ed into two types: wrong assumptions and

wrong deductions, corresponding to errors in the protocol model and to errors in its correctness

proof, respectively. Errors of the �rst type are the responsibility of the modeler. Errors of the

second type can be eliminated using computer tools for proof development or proof-checking.

There is an additional advantage to the use of computer tools in protocol veri�cation. Protocol

veri�cation is a labour-intensive and a non-trivial activity: much e�ort of skilled experts is re-

quired. With the current state-of-the-art, it is cost-e�ective only for those (parts of) protocols

that are truly critical. Computer tools will enable more e�cient veri�cation of protocols.

In this paper we describe a veri�cation and the associated proof-checking for a data-link

protocol. First, the protocol is proven correct using the input/output automaton model of Lynch

and Tuttle [13], a formalism based on extended �nite state machines. Next, the veri�cation

is proof-checked in type theory with the Coq system [7]. The protocol is a simpli�ed and

stylized version of a Philips telecommunication protocol. The objective of this work is twofold.

The primary objective is to prove correctness of the protocol with the highest possible level of

con�dence. The second goal of this work is to bring to light all technical issues that are involved

in obtaining this result.

A starting point for the work described here was an algebraic speci�cation of the protocol in

PSF [17], a language based on process algebra. This speci�cation was developed and validated

using PSF simulation tools. The PSF description was translated into IO-automata theory and

a suitable correctness criterion was de�ned. The protocol was veri�ed by proving that it satis-

�es the correctness criterion. This speci�cation and veri�cation were then translated into type

theory and checked with the Coq proof development system.

This paper is divided into the following parts: Section 2 gives an informal description of

the protocol. Next, Section 3 explains the veri�cation of the protocol. Section 4 discusses the

proof-checking with the Coq system. Section 5 concludes with a discussion of the results.
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2 Protocol Outline

Like most data link protocols, the Bounded Retransmission Protocol can be regarded as an

extended version of the Alternating Bit Protocol. The protocol uses a stop-and-wait approach

known as `positive acknowledgement with retransmission' [21]: after transmission of a frame the

sender waits for an acknowledgement before sending a new frame. The protocol procedures are

similar to the LAPB link control procedures of the X.25 protocol [22] (for X.25 acknowledged

mode and window size = 1, viz. one outstanding unacknowledged frame). Incoming frames

are checked for errors. Correctly received frames are acknowledged while erroneous frames are

simply discarded. If the acknowledgement fails to appear, the sender times out and retransmits

the frame. An alternating bit is used to detect duplication of a frame. Real-time aspects are

limited to the use of time-outs to detect loss of frames and loss of acknowledgements. Three

service primitives are o�ered by the protocol: a request and con�rm service at the sender side,

and an indication service at the receiver side.

� REQ(s)

The request service to transmit a �nite list s of data. Each datum corresponds to a

message frame.

� CONF(c) (c 2 fC OK;C NOT OK;C DONT KNOWg)

The con�rmation service that informs the sender about the result of a request.

{ c = C OK : the request has been dispatched successfully.

{ c = C NOT OK : the request has not been dispatched of completely.

{ c = C DONT KNOW : the request may or may not have been handled completely.

This situation occurs when the last frame is not acknowledged.

� IND(d; i) (d a datum and i 2fI FIRST, I INCOMPLETE, I OKg)

The indication service to pass a new frame to the receiver.

{ i = I FIRST :

the packet is the �rst one of a message; more data to follow.

{ i = I INCOMPLETE :

the packet is an intermediate one; more data to follow.

{ i = I OK :

the packet is the last one of a series, completing the transmission of a message.

� IND NOT OK

The indication service to report loss of contact to the receiver. Only part of a message

has been received.

The protocol control procedures will be described by means of a sender S, a receiver R,

and two communication channels K and L (Figure 1). We will assume that K and L are lossy

channels: message frames are either lost or they arrive without corruption in the order in which

they are sent. Messages can be communicated over ports REQ, CONF, F, G, A, B, IND . A

data frame consists of a datum preceded by a header with three information bits named �rst,

last and toggle: F (�rst ; last; toggle; datum). �rst and last indicate if a packet is the �rst or last

frame of a series, respectively. For a single-frame message both are set. toggle plays the role
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of alternating bit to distinguish between subsequent data frames. Acknowledgement frames

consist of these three information bits only: A(�rst ; last; toggle).
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Figure 1: Bounded Retransmission Protocol.

First consider a faultless transmission where no frames are lost. The sender S receives a

request to transmit data d

1

: : :d

n

: REQ(d

1

: : : d

n

) (Here we will assume n> 2; case n=1 or

n=2 are similar). A frame F (true; false; toggle; d

1

) is sent on port F . Channel K passes on the

frame to receiver R over port G. R then issues an IND(d

1

; I FIRST) to port IND , and sends

an acknowledgement frame A(true; false; toggle) on port A, which is passed on by channel L to

port B. The acknowledgement frame consists of the header of the data frame. Upon receipt of

the acknowledgement, the sender transmits the second datum: F (false; false;:toggle; d

2

), where

toggle has ipped. The receiver issues IND(d

2

; I INCOMPLETE) and acknowledges the frame:

A(false; false; toggle). This procedure is repeated until the last frame is sent with �rst=false,

last=true, and datum=d

n

. The receiver sends IND(d

n

; I OK) to report completion of the mes-

sage and acknowledges receipt. The sender then informs the application of the successful dis-

patch of the transmission request with CONF(C OK).

Now consider the loss of data frames or acknowledgement frames. First consider the loss of

frames from the sender point of view. Upon transmission of a frame the sender starts a timer t

1

and waits until either the frame is acknowledged or the timer goes o�. If the acknowledgement

is received, the timer is switched o� and the next frame is sent. The timer is attuned to exceed

the round trip time for sending a data frame and receipt of its acknowledgement. If the timer

goes o� no acknowledgement can come anymore and the frame is retransmitted.

The number of retransmission attempts is bounded by a parameter max, and if this max-

imum number of retransmissions has been reached, the sender gives up. The con�rmation

service is invoked in one of two ways: if the data frame in question is not the last frame of a

series, then CONF(C NOT OK) con�rms failure of message transfer. For the last data frame,

a CONF(C DONT KNOW) is called: there is no way the sender can tell if the last frame was

lost and never arrived or if its acknowledgement was lost.

Finally consider the loss of frames from the receiver point of view. Suppose a lost data frame

is not the �rst one, i.e. the receiver is expecting a data frame follow-up. Upon receipt of a data

frame, the receiver starts a timer t

2

and goes to a waiting state. When a data frame arrives it

is acknowledged and timer t

2

is switched o�. If the data frame has a ipped toggle then it is

new and it is also indicated to the upper layers. When no data frame arrives, timer t

2

goes o�

eventually and service IND NOT OK is called. It is easy to see that timer t

2

> n�t

1

.
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3 Veri�cation

3.1 I/O Automata Theory

In this section we give a brief account of those parts of I/O automata theory that we need for

the purposes of the paper. For an introduction to the I/O automata model we refer to [13, 14].

3.1.1 I/O automata

An action signature S is a triple (in(S); out(S); int(S)) of three disjoint sets of respectively

input actions, output actions and internal actions. The derived sets of external actions, locally

controlled actions and actions of S are de�ned respectively by

ext(S) = in(S) [ out(S);

local(S) = out(S) [ int(S);

acts(S) = in(S) [ out(S) [ int(S):

An input/output automaton A (also called an I/O automaton) consists of �ve components:

� an action signature sig(A),

� a set states(A) of states,

� a nonempty set start(A) � states(A) of start states,

� a set steps(A) � states(A)�acts(sig(A))�states(A) of transitions, with the property that

for every state s and input action a in in(sig(A)) there is a transition (s; a; s

0

) in steps(A),

and

� an equivalence relation part(A) on local(sig(A)), having at most countably many equiva-

lence classes.

We let s; s

0

; u; u

0

,.. range over states, and a,.. over actions. We write s

a

�!

A

s

0

, or just s

a

�! s

0

if A is clear from the context, as a shorthand for (s; a; s

0

) 2 steps(A). Also, we will write in(A)

for in(sig(A)), out(A) for out(sig(A)), etc.

An action a is said to be enabled in a state s, if s

a

�! s

0

for some s

0

. Since every input action

is enabled in every state, I/O automata are said to be input enabled. The intuition behind the

input-enabling condition is that input actions are under control of the environment, and that

the system that is modeled by an I/O automaton cannot prevent the environment from doing

these actions. The partition part(A) describes, what intuitively are the `components' of the

system, and will be used to de�ne fairness.

3.1.2 Composition

A �nite collection S

1

; : : : ; S

n

of action signatures is strongly compatible if, for all i; j 2 f1; : : : ; ng

satisfying i 6= j, out(S

i

) \ out(S

j

) = ; and int(S

i

) \ acts(S

j

) = ;. We say that a collection of

I/O automata are strongly compatible if their action signatures are strongly compatible.

The composition S =

Q

n

i=1

S

i

of a �nite collection of strongly compatible action signatures

S

1

; : : : ; S

n

is de�ned to be the action signature with

� in(S) =

S

n

i=1

in(S

i

)�

S

n

i=1

out(S

i

),
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� out(S) =

S

n

i=1

out(S

i

),

� int(S) =

S

n

i=1

int(S

i

).

The compositionA = k

n

i=1

A

i

of a �nite collection of strongly compatible I/O automataA

1

; : : : ; A

n

is the I/O automaton de�ned as follows:

� sig(A) =

Q

n

i=1

sig(A

i

),

� states(A) = states(A

1

)� � � ��states(A

n

),

� start(A) = start(A

1

)� � � ��start(A

n

),

� steps(A) is the set of triples (~s; a;

~

s

0

) in states(A)�acts(A)�states(A) such that, for all

1 � i � n, if a 2 acts(A

i

) then ~s[i]

a

�!

A

i

~

s

0

[i], and if a 62 acts(A

i

) then ~s[i] =

~

s

0

[i].

� part(A) =

S

n

i=1

part(A

i

).

Notice that A is an I/O automaton indeed: start(A) is nonempty because all the sets start(A

i

)

are nonempty, A is input enabled because all the automata A

i

are input enabled, and part(A)

is a partition of local(A). We will sometimes write A

1

k � � �kA

n

for k

n

i=1

A

i

.

3.1.3 Hiding

If S is an action signature and I � out(S), then the action signature HIDE I IN S is de�ned

as the triple (in(S); out(S) � I ; int(S) [ I ). If A is an I/O automaton and I � out(A), then

HIDE I IN A is the I/O automaton obtained from A by replacing sig(A) by HIDE I IN sig(A),

and leaving all the other components unchanged.

3.1.4 Traces and fair traces

Let A be an I/O automaton. An execution fragment of A is a �nite or in�nite alternating

sequence s

0

a

1

s

1

a

2

s

2

� � � of states and actions of A, beginning with a state, and if it is �nite also

ending with a state, such that for all i, s

i

a

i+1

�! s

i+1

. An execution of A is an execution fragment

that begins with a start state. We denote by execs(A) the set of executions of A. A state s of

A is reachable if it is the �nal state of some �nite execution of A.

Suppose � = s

0

a

1

s

1

a

2

s

2

� � � is an execution fragment of A. Then the trace of � is the

subsequence of a

1

a

2

� � � consisting of the external actions of A. With traces(A) we denote the

set of traces of executions of A. For s; s

0

states of A and � a �nite sequence of external actions

of A, we de�ne s

�

=)

A

s

0

i� A has a �nite execution fragment with �rst state s, last state s

0

and

trace �.

A fair execution of an I/O automaton A is de�ned to be an execution � of A such that the

following conditions hold for each class C of part(A):

1. If � is �nite, then no action of C is enabled in the �nal state of �.

2. If � is in�nite, then either � contains in�nitely many occurrences of actions from C, or �

contains in�nitely many occurrences of states in which no action from C is enabled.
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This says that a fair execution gives fair turns to each class of part(A), and therefore to each

component of the system being modeled. A state of A is said to be quiescent if only input

actions are enabled in this state. Intuitively, in a quiescent state the system is waiting for

an input from the environment. A �nite execution is fair if and only if the �nal state of this

execution is quiescent. We denote the set of fair executions of A by fairexecs(A), and the set

of traces of fair executions of A by fairtraces(A). Also, we write qexecs(A) for the set of �nite

fair executions of A, and qtraces(A) for the traces of �nite fair executions of A.

3.1.5 Implementation

In I/O automata theory, inclusion of fair traces is commonly used as implementation relation,

i.e., we say that an I/O automaton A implements an I/O automaton B if fairtraces(A) �

fairtraces(B).

3.1.6 Re�nements

In the literature, a whole menagerie of so-called simulation techniques has been proposed to

prove that the set of (fair) traces of one automaton is included in that of another. We refer to

[16] for an overview and for further references. In this paper we only need a very simple type

of simulation, which is called weak re�nement.

Suppose A and B are I/O automata with the same input and output actions. A weak

re�nement from A to B is a function r from states(A) to states(B) that satis�es the following

two conditions:

1. If s 2 start(A) then r(s) 2 start(B).

2. If s is a reachable state of A and s

a

�!

A

s

0

, then r(s)

�

=)

B

r(s

0

) where � equals a if a 2

ext(A), and is empty otherwise.

Theorem 3.1 If there exists a weak re�nement from A to B, then traces(A) � traces(B).

Proof: Straightforward from the de�nitions.

The reverse implication does not hold, i.e. there exist I/O automata A and B such that

traces(A) � traces(B), but no weak re�nement from A to B can be given. In those cases one

has to use other, more general simulations. Also, if there exists a weak re�nement from A to B

then it is not in general the case that A implements B. However, in the protocol that we analyze

in this paper we will establish a weak re�nement that maps fair executions to fair executions,

and this additional property immediately implies inclusion of fair traces.

3.1.7 The precondition/e�ect style

In the I/O automata approach, the automata that model the basic building blocks of a system

are usually speci�ed in the so-called precondition/e�ect style. For the description of automata

one assumes a many-sorted signature � together with a �-algebra A which gives meaning to

the function and constant symbols in �. To describe properties, we use a �rst-order language

over signature � with equality and inequality predicates, and the usual logical connectives

(true; false;:;^;_;!; if : then : else :; 9; : : :).

An I/O automaton generator G consists of the following components:
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� three pairwise disjoint �nite sets in(G), out(G) and int(G) of action types, i.e. expressions

of the form a : S

1

� � � ��S

n

with S

1

; : : : ;S

n

sorts of �,

� a �nite set states(G) = fx

1

; : : : ; x

m

g of (sorted) variables,

� a formula start(G), in which the variables from states(G) may occur free,

� a �nite set steps(G) of transition types, which are expressions of the form

a(y

1

; : : : ; y

n

)

Precondition:

b

E�ect:

x

1

:= e

1

.

.

.

x

m

:= e

m

such that there is an action type a : S

1

� � � ��S

n

in acts(G) with each variables y

i

of sort

S

i

, b is a formula, in which variables x

1

; : : : ; x

m

; y

1

; : : : ; y

n

may occur free, and which is

true if a : S

1

� � � ��S

n

is in in(G), and the e

j

are expressions with the same sort as x

j

, in

which the variables x

1

; : : : ; x

m

; y

1

; : : : ; y

n

may occur,

� an equivalence relation part(A) on local(G).

Each I/O automaton generator G denotes an I/O automaton A in the obvious way: for each

action type a : S

1

� � � ��S

n

and for each choice of values v

1

; : : : ; v

n

taken from the domains of

S

1

; : : : ;S

n

, respectively, we introduce an action a(v

1

; : : : ; v

n

) of A. States of A are interpre-

tations of the variables of states(G) in their domains. Start states of A are those states that

satisfy formula start(G). There is a transition

s

a(v

1

;:::;v

n

)

�!

A

s

0

i� there is some transition type of the above form such that, if � is a valuation that agrees with

s on states(G) and maps, for 1 � i � m, variable y

i

to v

i

, b evaluates to true under �, and,

for 1 � j � n, e

j

evaluates to s

0

(x

j

) under �. Finally, part(G) trivially induces a partition on

local(A).

For each transition type t of the above form, we de�ne the formula enabled(t) by

enabled(t)

�

= 9y

1

; : : : ; y

n

: b

Let L(G)

�

= ft

1

; : : : ; t

k

g be the set of transition types for locally controlled actions of G. We

de�ne the formula quiescent(G) by

quiescent(G)

�

=

^

t2L(G)

:enabled(t)

Then it follows that a state s of the automaton associated to G is quiescent i� it satis�es formula

quiescent(G).

The reader will observe that the translation from I/O automata generators to I/O automata

is quite straightforward, and that these two notions are very similar. In fact, Lynch and Tuttle
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[13, 14] do not even bother to distinguish between these two levels of description. For the

formalization of I/O automata theory in Coq the distinction between the \semantic" level I/O

automata and the \syntactic" level of I/O automata generators is of course important, which

is why we have discussed it here. The de�nition of I/O automata generators has been inspired

by similar de�nitions in the work of Jonsson (see, for instance, [11]). In the sequel we will, like

Lynch and Tuttle, often refer to I/O automata when we actually mean I/O automata generators.

3.2 Protocol Speci�cation

In this section, we present the formal speci�cation of the Bounded Retransmission Protocol.

Following a brief description of the many-sorted algebra that we use, we will �rst give I/O

automata for each of the components of the protocol, and then de�ne the full protocol as the

parallel composition of these I/O automata. At the end of this section we will moreover present

the de�nition of an I/O automaton that gives the intended external behavior of the protocol.

Since the BRP protocol has been explained already in considerable detail in Section 2, we will

not repeat that explanation here, and con�ne ourselves in this section to the formal de�nitions,

together with a brief discussion of some of the notation and certain modeling assumptions.

3.2.1 Data types

We start the speci�cation of the Bounded Retransmission Protocol with a description of the

various data types that we will need. We assume a many-sorted signature � and a �-algebra

A which consist of the following components:

� a sort Bool of booleans with constant symbols true and false, and a standard repertoire

of function symbols (^, _, :, !), all with the standard interpretation over the booleans.

Also, we need, for all sorts S of �, equality and inequality function symbols, and an

if-then-else function symbol, all with the usual interpretation:

:=: : S�S! Bool

:6=: : S�S! Bool

if : then : else : : Bool�S�S! S

Note the (harmless) overloading of the constants and function symbols of sort Bool with

the propositional connectives used in formulas. We will frequently view boolean valued

expressions as formulas, i.e., we use b as an abbreviation of b=true.

� a sort Nat of natural numbers, with constant symbol 0, successor function symbol succ,

and function symbol � : Nat�Nat ! Bool, all with the usual interpretation. We also

need a constant symbol max, which denotes the maximum number of retransmissions

within the protocol.

� a sort Data of data elements that the protocol has to transmit. We �nd it convenient to

assume the presence of a constant symbol ? of sort Data, which denotes the unde�ned

data element.

� a sort List, with as domain the collection of �nite lists over the domain of Data. There is

a constant symbol �, denoting the empty list, and a function symbol add : Data�List !
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List, denoting the operation of pre�xing a list with a data element. Besides these two

constructors, there are function symbols

hd : List! Data

tl : List! List

one : List! Bool

hd denotes the operation of taking the �rst element of a list, tl denotes the operation

that returns the remainder of a list after removal of the �rst element, and one denotes

the operation that returns true i� the argument list has length one. These operations are

fully characterized by the axioms (where s is a variable of sort List, and d; e are variables

of sort Data):

hd(�) = ?

hd(add(d; s)) = d

tl(�) = �

tl(add(d; s)) = s

one(�) = false

one(add(d; �)) = true

one(add(d; add(e; s))) = false

� a sort Conf of con�rmation messages, with as domain the set

fC OK;C DONT KNOW;C NOT OKg:

� a sort Ind of indication messages, with as domain the set

fI OK; I FIRST; I INCOMPLETEg:

� a sort Sstatus of status values of the sender, with as domain the set

fSF;WA; SC;ET2;WT2g:

� a sort Rstatus of status values of the receiver, with as interpretation the set

fWF; SI; SA;RTS;NOT OKg:

We assume that all elements of the domains of Conf , Ind, Sstatus and Rstatus also occur in

the language as constants symbols of the corresponding sorts.

3.2.2 Notation

In the presentation below, we will use the following conventions:

� We do not mention the precondition of transition types for input actions (since they are

always equal to true).

� In the e�ect part of transition types we omit assignments of the form x := x.
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� We write if c then [z

1

:= f

1

; : : : ; z

k

:= f

k

] as an abbreviation for

z

1

:= if c then f

1

else z

1

.

.

.

z

k

:= if c then f

k

else z

k

� We never mention the partition of the local action types because in all I/O automata

generators that we consider it is trivial in the sense that there is only a single block which

contains all the action types.

3.2.3 Sender S

We will now present the I/O automaton S, which models the sender of the protocol. An

important state variable of S is status , which gives the current status of the sender. This

variable takes values in the domain Sstatus, which contains �ve elements:

� SF: Send a Frame at port F ,

� WA: Wait for an Acknowledgement to arrive at port B ,

� SC: Send a Con�rmation message to the upper layer,

� ET2: Enable Timer 2, and

� WT2: Wait for Timeout of Timer 2.

We have modeled the arrival of a request (REQ) as an input action, since this event is clearly

under control of the environment. However, once we have taken this decision the I/O automata

model forces us to specify, for all possible states, what happens if an REQ action occurs. In our

modeling, the sender discards an incoming request if it is busy handling the previous request,

something which is recorded in the boolean state variable busy .

T3 is a time out event that can occur when S wants to send a frame into channel K but

does not succeed because other agents (not speci�ed here) are using the channel. After the

occurrence of a T3 action, S will send a con�rmation message C DONT KNOW or C NOT OK.

When S sends a frame into channel K via an action F , it simultaneously starts a timer by

setting boolean state variable timer1 on to true. This timer will timeout if an acknowledgement

for the frame does not arrive in time. Since we cannot explicitly model real-time aspects in

the I/O automata model, we deal with this timing behavior in a di�erent way. Under the

assumptions that (1) the transmission of a frame through channels K and L takes a bounded

time, and (2) R will always acknowledge an incoming frame in a bounded time, and (3) the

timer is set properly, a timeout will only occur if either the frame gets lost in channel K, or the

acknowledgement for it gets lost in channel L. Thus one could say that the loss of a message

in the channel \causes" a timeout event. In our speci�cation we have made these causal links

visible by introducing output actions E1K and E1L for channels K and L, respectively, which

occur when a message gets lost, and corresponding input actions E1K and E1L of sender S,

whose occurrence sets a boolean state variable timer1 enabled . By taking timer1 enabled to be

part of the precondition of the timeout action T1 , this gives us the desired causal links.

If something goes wrong during the handling of a request, and S sends a C DONT KNOW

or C NOT OK con�rmation message, then before dealing with a new request, S will wait long
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enough to make sure that the receiver R is prepared to receive new frames. Also here, since we

cannot deal with real-time directly within our model, we describe the causal links that result

from these real-time constraints. After sending a C DONT KNOW or C NOT OK con�rmation

message, the sender does an output action E2 , which corresponds to starting a new timer (that

is not speci�ed here). Since it depends on the state of R when this timer will timeout, E2 is

made into an input action of R. At the appropriate moment R will generate the timeout action

T2 for the timer started by S, so that S can proceed and handle the next request.

We now give the code for I/O automaton S.

Input: REQ: List

B: Bool � Bool � Bool

E1K

E1L

T2

Output: CONF: Conf

F: Bool � Bool � Bool � Data

E2

Internal: T1

T3

State Variables: status: Sstatus

busy,�rst,toggle: Bool

timer1 on: Bool

timer1 enabled: Bool

list: List

rn: Nat

Initialization: status=SF ^ :busy ^ �rst ^ :timer1 on ^ :timer1 enabled ^ rn=0

REQ(s)

E�ect:

if :busy ^ s 6=� then [list := s

busy := true]

F (f; l; t; d)

Precondition:

status=SF ^ busy ^ f=�rst ^ l=one(list) ^ t=toggle ^ d=hd(list)

E�ect:

status :=WA

timer1 on := true

rn := succ(rn)

T3

Precondition:

status=SF ^ busy

E�ect:

status := SC

E1K

E�ect:

timer1 enabled := true

E1L

E�ect:

timer1 enabled := true

B(f; l; t)

E�ect:

status := if one(list) then SC else SF

�rst := one(list)

toggle := :toggle

timer1 on := false

list := tl(list)

if :(one(list)) then [rn := 0]

T1

Precondition:

timer1 on ^ timer1 enabled

E�ect:

status := if rn�max then SF else SC

timer1 on := false

timer1 enabled := false
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CONF (c)

Precondition:

status=SC

^ c=if list=� then C OK else (if one(list) ^ rn 6=0 then C DONT KNOW else C NOT OK)

E�ect:

status := if list=� then SF else ET2

busy := false

list := �

rn := 0

E2

Precondition:

status=ET2

E�ect:

status :=WT2

�rst := true

toggle := :toggle

T2

E�ect:

status := SF

3.2.4 Channel K

I/O automaton K gives a straightforward description of a faulty message bu�er with capacity

one. Messages that arrive when the bu�er is full are discarded. However, in Lemma 3.2 we will

show that such a situation never occurs during an actual run of the protocol.

Input: F: Bool � Bool � Bool � Data Output: G: Bool � Bool � Bool � Data

E1K

State Variables: full,�rst,last,toggle: Bool

datum: Data

Initialization: :full

F (f; l; t; d)

E�ect:

if :full then [full := true

�rst := f

last := l

toggle := t

datum := d]

G(f; l; t; d)

Precondition:

full ^ f=�rst ^ l=last ^ t=toggle ^ d=datum

E�ect:

full := false

E1K

Precondition:

full

E�ect:

full := false

3.2.5 Channel L

I/O automaton L is exactly the same as I/O automaton K, except that L handles frames that

consist of 3 instead of 4 �elds, and the actions have di�erent names.

Input: A: Bool � Bool � Bool Output: B: Bool � Bool � Bool

E1L
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State Variables: full,�rst,last,toggle: Bool Initialization: :full

A(f; l; t)

E�ect:

if :full then [full := true

�rst := f

last := l

toggle := t]

B(f; l; t)

Precondition:

full ^ f=�rst ^ l=last ^ t=toggle

E�ect:

full := false

E1L

Precondition:

full

E�ect:

full := false

3.2.6 Receiver R

I/O automatonR has a state variable status, whose value gives the current status of the receiver.

The variable takes values in the domain Rstatus, which consists of �ve elements:

� WF: Wait for a Frame to arrive at port G,

� SI: Send an Indication message to the upper layer,

� SA: Send an Acknowledgement message at port A,

� RTS: Return the control bits of the received frame To the Sender via port A, and

� NOT OK: send an indication message \NOT OK" to the upper layer.

The subtle part in the de�nition of R is again the part concerned with timing. The receiver has

a timer of its own, which it starts simultaneously with sending an acknowledgement message by

setting the boolean state variable timer2 on . The timer will time out if no new frame arrives

at port G for a su�ciently long time and it is clear that the sender has interrupted an attempt

to transmit a list. When a timeout occurs, the receiver will set ctoggle to false (meaning that

it will not reject the next frame on basis of its toggle bit), and it will generate an indication

\NOT OK" in the case some messages have not yet been received. Now if R has set the timer

and S generates an E2 event, then a transmission has been interrupted and a timeout event

may occur. For convenience we identify, in this case, E2 with the timeout event. If an E2 event

occurs and the receiver's timer has not been set, then this event should not be interpreted as a

timeout, but just as a signal that a timeout event T2 can be generated at the sender side.

We now present the code for R.

Input: G: Bool � Bool � Bool � Data

E2

Output: A: Bool � Bool � Bool

IND: Data � Ind

IND NOT OK

T2

State Variables: status: Rstatus

�rst,ast,ftoggle: Bool

fdatum: Data

�rst,toggle,ctoggle: Bool

timer2 on: Bool

timer2 enabled: Bool
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Initialization: status=WF ^ �rst ^:ctoggle ^ :timer2 on ^ :timer2 enabled

G(f; l; t; d)

E�ect:

if status=WF then [status := if ctoggle ! t=toggle then SI else RTS

�rst := f

ast := l

ftoggle := t

fdatum := d

if ctoggle ! t=toggle then [timer2 on := false] ]

IND(d; i)

Precondition:

status=SI ^ d=fdatum

^ i=if ast then I OK else (if �rst then I FIRST else I INCOMPLETE)

E�ect:

status := SA

�rst := ast

ctoggle := true

toggle := :ftoggle

A(f; l; t)

Precondition:

(status=SA _ status=RTS) ^ f=�rst ^ l=ast ^ t=ftoggle

E�ect:

if status=SA then [timer2 on := true]

status :=WF

IND NOT OK

Precondition:

status=NOT OK

E�ect:

status := WF

�rst := true

timer2 on := true

E2

E�ect:

timer2 enabled := true

if timer2 on then [ctoggle := false

if :�rst then [status := NOT OK

timer2 on := false] ]

T2

Precondition:

timer2 enabled ^ status=WF

E�ect:

timer2 enabled := false

3.2.7 The Bounded Retransmission Protocol (BRP)

The bounded retransmission protocol can now be de�ned as the parallel composition of au-

tomata S;K; L and R, with all communication between these components hidden:

BRP

�

= HIDE I IN (SkKkLkR)

where

I

�

= fF (f; l; t; d);G(f; l; t; d);A(f; l; t);B(f; l; t);E1K ;E1L;E2 ;T2

j f; l; t in domain Bool; d in domain Datag
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3.2.8 Correctness criterion P

We now specify the collection of allowed behaviors of the Bounded Retransmission Protocol in

terms of an I/O automaton P . This automaton has the same input and output actions as BRP ,

but no internal actions. If a REQ(s) action occurs in the initial state, then the regular behavior

of P is to output the elements of s one by one, tagging the �rst datum with an indication

I FIRST, intermediate data with I INCOMPLETE, and the last datum with I OK. After sending

the last datum the protocol will generate a con�rmation message C OK to indicate that the

request has been carried out successfully, and return to its initial state. Requests that come

in at a time when the previous request has not yet been processed, are always ignored. While

a request is being processed, something may go wrong at any point and, instead of the C OK

message, a C DONT KNOW or a C NOT OK con�rmation message may be sent. However, the

C DONT KNOW message will only occur if at most one data element has not been delivered,

whereas the C NOT OK will only occur if at least one data element has not been delivered. In

case a C NOT OK or C DONT KNOW message is sent somewhere in the middle of the processing

of a request, i.e., after the �rst but before the last data element has been delivered, the protocol

will do an IND NOT OK action. After the IND NOT OK action the protocol returns to its

initial state, except if it has just received a new request, which will then be processed.

Below we present the formal de�nition of I/O automaton P . In the next section we will

prove that the BRP is indeed a correct implementation of P .

Input: REQ: List Output: IND: Data � Ind

IND NOT OK

CONF: Conf

State Variables: busy,�rst,error: Bool

list: List

Initialization: :busy ^ �rst ^ :error

REQ(s)

E�ect:

if :busy ^ s 6=� then [busy := true

list := s]

IND(d; i)

Precondition:

busy ^ :error ^ list 6=� ^ d=hd(list)

^ i=if one(list) then I OK else (if �rst then I FIRST else I INCOMPLETE)

E�ect:

�rst := one(list)

list := tl(list)

CONF (c)

Precondition:

busy ^ :error

^ (c=C OK! list=�)

^ (c=C DONT KNOW! (list=� _ one(list)))

^ (c=C NOT OK! list 6=�)

E�ect:

busy := false

error := :�rst

list := �

IND NOT OK

Precondition:

error

E�ect:

�rst := true

error := false
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3.3 Protocol Correctness Proof

3.3.1 Invariants

Before we can establish a weak re�nement from BRP to P we must gain insight into what are

the reachable states of BRP . To this end, we will now present 13 invariants of the protocol,

i.e., properties that hold initially and that are preserved by transitions. Most of these invariants

are proved by a routine induction on the length of the executions to the reachable states. In

the manual proofs of the invariants, which together occupy about 16 pages of ASCII text, we

used numbering of assertions, as advocated by Lamport [12], although, due to the fact that

the proofs went rarely more than 4 levels deep, we found it easier to use explicit names, like

3.1.1.1, instead of the implicit ones, like h4i1. As an illustration we have included the proof of

the invariant INVR (Lemma 3.6).

The �rst invariant, stated in Lemma 3.2, relates the control variables of the di�erent com-

ponents of the protocol. In order to distinguish between the state variables of the di�erent

components of BRP , we pre�x each state variable by the name of the component it originates

from.

Lemma 3.2 The following property holds for all reachable states of BRP . INV1

�

=

S:status2fSF; SC;ET2g ! R:status=WF

^

S:timer1 enabled ! (S:status=WA ^R:status=WF ^ :K:full ^ :L:full)

^

K:full ! (S:status=WA ^R:status=WF ^ :L:full)

^

R:status2fSI; SA;RTSg ! S:status=WA

^

R:timer2 enabled ! (S:status=WT2 ^R:status2fWF;NOT OKg ^ :K:full ^ :L:full)

^

L:full ! (S:status=WA ^R:status=WF ^ :K:full)

Invariant INV1 already allows us to make several important observations on the behavior of

the protocol. The invariant implies that sender S will never send a frame into channel K when

the channel is busy delivering another frame. Similarly, receiver R will never send a frame into

channel L when L already contains a frame. Thus the protocol does not need communication

channels with a bu�ering capacity of more than one. Clause three and six together give that

there will never be a message in both K and L at the same time. Thus, an implementation of

the protocol may use a single bidirectional medium to implement both channels. If channel L

delivers a frame to the sender S, then S is in fact waiting for this frame to arrive. Similarly, if

channel K delivers a frame to receiver R, then the receiver is waiting for this frame.

It follows rather directly from invariant INV1 that in each reachable state of the protocol

at most one of the four components enables a locally controlled action. This means that in a

sense the protocol is fully sequential.

The second invariant INVS , stated in Lemma 3.3, gives some of relationships between the

state variables of the sender that are valid in all reachable states. The proof is via a routine

inductive argument and uses Lemma 3.2. Since the actions in which S does not participate

trivially preserve the validity of INVS , one only has to establish that INVS holds initially and

is preserved by the actions of S.
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Lemma 3.3 The following property holds for all reachable states of BRP . INVS

�

=

S:status2fWA; SCg ! S:busy

^

S:status=WA ! (S:timer1 on ^ S:rn 6=0)

^

S:list=� ! ((S:status2fSF;ET2;WT2g ^ :S:busy) _ S:status=SC)

^

S:status2fET2;WT2g ! S:rn=0

^

S:rn 6=0 ! S:busy

^

S:status=SC ^ S:list=� ! S:�rst

Invariants INVK and INVRS , stated in Lemma 3.4 and Lemma 3.5, deal with the ow of

information from sender to receiver via channel K.

Lemma 3.4 The following property holds for all reachable states of BRP . INVK

�

=

K:full ! (K:�rst=S:�rst ^K:last=one(S:list)

^ K:toggle=S:toggle ^K:datum=hd(S:list))

Lemma 3.5 The following property holds for all reachable states of BRP . INVRS

�

=

R:status2fSI; SA;RTSg ! (R:�rst=S:�rst ^ R:ast=one(S:list)

^ R:ftoggle=S:toggle ^R:fdatum=hd(S:list))

The invariants INVR, INVR

0

and INVR

00

of Lemmas 3.6, 3.7 and 3.8, respectively, give

certain relationships between the state variables of R that are valid in all reachable states.

Lemma 3.6 The following property holds for all reachable states of BRP . INVR

�

=

R:status=NOT OK ! :R:ctoggle

^

R:status=SI ! (R:ctoggle ! R:ftoggle=R:toggle)

^

R:status2fRTS; SAg ! R:ctoggle ^R:ftoggle 6=R:toggle

Proof: Let s

0

be a reachable state of BRP . By induction on the length n of the shortest

execution of BRP that ends in s

0

, we prove s

0

j= INVR. If n = 0, then s

0

is a start state. Hence

s

0

j= R:status=WF, which implies s

0

j= INVR.

For the induction step, suppose that s

0

is reachable via an execution with length n+1. Then

there exists a state s that is reachable via an execution of length n and s

a

�! s

0

, for some action

a. By induction hypothesis, s j= INVR. We prove s

0

j= INVR by a routine case distinction on

a. In the proof we will use several times that, by Lemma 3.2, s j= INV1 .

1. Assume a is an action in which R does not participate. Then s

0

j= INVR trivially follows

from s j= INVR and the observation that a does not change any of the state variables

mentioned in INVR.
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2. Assume a = G(f; l; t; d)

2:1) s j= K:full (by 2 and precondition G)

2:2) s j= R:status=WF (by 2:1 and INV1)

2:3) Assume s j= R:ctoggle ! t=R:toggle

2:3:1) s

0

j= R:ctoggle ! t=R:toggle (by 2 and 2:3 since G does not

change R:ctoggle and R:toggle)

2:3:2) s

0

j= R:status=SI ^ R:ftoggle=t (by 2; 2:2; 2:3 and e�ect G)

2:3:3) s

0

j= INVR (by 2:3:1 and 2:3:2)

2:4) Assume s j= :(R:ctoggle ! t=R:toggle)

2:4:1) s

0

j= :(R:ctoggle ! t=R:toggle) (by 2 and 2:4 since G does not

change R:ctoggle and R:toggle)

2:4:2) s

0

j= R:status=RTS ^R:ftoggle=t (by 2; 2:2; 2:4 and e�ect G)

2:4:3) s

0

j= INVR (by 2:4:1 and 2:4:2)

2:5) s

0

j= INVR (by 2:3 and 2:4)

3. Assume a = IND(d; i)

3:1) s

0

j= R:status=SA ^R:ctoggle ^ R:ftoggle 6=R:toggle (by 3 and e�ect IND)

3:2) s

0

j= INVR (by 3:1)

4. Assume a = A(f; l; t)

4:1) s

0

j= R:status=WF (by 4 and e�ect A)

4:2) s

0

j= INVR (by 4:1)

5. Assume a = E2

5:1) s j= S:status=ET2 (by 5 and precondition E2 )

5:2) s j= R:status=WF (by 5:1 and INV1 )

5:3) Assume s j= R:timer2 on ^ :R:�rst

5:3:1) s

0

j= R:status=NOT OK ^ :R:ctoggle (by 5; 5:3 and e�ect E2 )

5:3:2) s

0

j= INVR (by 5:3:1)

5:4) Assume s j= :(R:timer2 on ^ :R:�rst)

5:4:1) s

0

j= R:status=WF (by 5; 5:2; 5:4 and e�ect E2 )

5:4:2) s

0

j= INVR (by 5:4:1)

5:5) s

0

j= INVR (by 5:3 and 5:4)

6. Assume a = T2

6:1) s j= R:status=WF (by 6 and precondition T2 )

6:2) s

0

j= R:status=WF (by 6; 6:1 and e�ect T2 )

6:3) s

0

j= INVR (by 6:2)

7. Assume a = IND NOT OK

7:1) s

0

j= R:status=WF (by 7 and e�ect IND NOT OK )

7:2) s

0

j= INVR (by 7:1)

8. s

0

j= INVR (by 1-7)
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Lemma 3.7 The following property holds for all reachable states of BRP . INVR

0

�

=

R:status=WF ! (R:ctoggle ! R:timer2 on)

^

R:timer2 on ! R:status2fWF;RTSg

^

R:status=RTS ! R:timer2 on

Lemma 3.8 The following property holds for all reachable states of BRP . INVR

00

�

=

R:status2fWF;RTSg ! (R:�rst _ R:timer2 on)

The next invariant implies that when an acknowledgement message arrives at the sender,

the three bits of this acknowledgement are determined by the state of the sender, and hence

provide no information. The only information conveyed by an acknowledgement is the fact of

its arrival itself.

Lemma 3.9 The following property holds for all reachable states of BRP . INVL

�

=

L:full ! (L:�rst=R:�rst=S:�rst ^ L:last=R:ast=one(S:list)

^ R:ctoggle ^ L:toggle=:R:toggle=S:toggle)

Lemma 3.10 The following property holds for all reachable states of BRP . INVS

0

�

=

(S:status=SC ^ S:list=�) ! (R:ctoggle ^ S:toggle=R:toggle)

^

(S:status2fSF; SCg ^ S:rn=0) ! (R:ctoggle ! S:toggle=R:toggle)

^

S:status=WT2 ! :R:ctoggle

Lemma 3.11 The following property holds for all reachable states of BRP . INVS

00

�

=

S:list=� ! (S:status=ET2 _ (R:ctoggle ! S:toggle=R:toggle))

Proof: By combination of INVS and INVS

0

.

Lemma 3.12 The following property holds for all reachable states of BRP . INVFIRST

�

=

R:status=NOT OK ! S:�rst

^

(S:rn 6=0 ^ R:ctoggle ^ S:toggle 6=R:toggle) ! (R:�rst=one(S:list) ^ S:�rst=R:�rst)

^

((R:ctoggle ! S:toggle=R:toggle) ^R:status 6=NOT OK) ! S:�rst=R:�rst

Lemma 3.13 The following property holds for all reachable states of BRP . INVRFIRST

�

=

(S:status=SC ^ S:list=�) ! R:�rst

^

R:status=SI ! R:�rst=R:�rst
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Proof: By combination of INV1 ; INVS; INVS

0

; INVR; INVRS and INVFIRST.

The next and �nal invariant is not used in the proof of the re�nement, but interesting

because it implies that, when a frame arrives at the receiver, the �rst �eld of this frame is

determined by the state of the receiver and the other �elds of the frame. Hence the �rst bit of

the frame conveys no information and is redundant.

Lemma 3.14 The following property holds for all reachable states of BRP . INVK

0

�

=

K:full ! K:�rst=if R:ctoggle ! K:toggle=R:toggle then R:�rst else R:�rst

Proof: By combination of INV1 ; INVK ; INVS and INVFIRST.

3.3.2 The re�nement relation

We have now prepared the ground for one of the main results of this paper, the re�nement

relation from BRP to P .

Theorem 3.15 The function determined by the following formula is a weak re�nement from

BRP to P . REF

�

=

P:busy = S:busy

^

P:�rst = R:�rst

^

P:error = R:status=NOT OK _ (S:status=ET2 ^R:timer2 on ^ :R:�rst)

^

P:list = if S:status=ET2 _ (R:ctoggle ! S:toggle=R:toggle) then S:list else tl(S:list)

Proof: Not included in this paper. Given the invariants established above, the proof is a routine

exercise, which however still takes almost 5 pages densely �lled with ASCII.

3.3.3 Absence of deadlock

In this subsection we will establish that the BRP does not have deadlocks, i.e., states in which

the system is quiescent even though it should not be so according to the speci�cation. Because

in I/O automata input actions are always enabled, they will typically not have deadlock states

in the sense of states without any outgoing transitions. Instead we de�ne an I/O automaton A

to be deadlock free with respect to an I/O automaton B if qtraces(A) � qtraces(B). This means

that whenever it is possible to reach a quiescent state of A via some trace, we can also reach a

quiescent state of B with the same trace.

In order to prove that BRP is deadlock free with respect to P , we need one additional

invariant.

Lemma 3.16 The following property holds for all reachable states of BRP . INVD

�

=

S:status=WT2 ! R:timer2 enabled

^

R:status=NOT OK ! S:status=WT2

^

(S:status=WA ^R:status=WF) ! (K:full _ L:full _ S:timer1 enabled)
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Theorem 3.17 BRP is deadlock free with respect to P .

Proof: It is su�cient to prove that for each reachable and quiescent state s of BRP , REF (s)

is a quiescent state of P . Since REF is a weak re�nement from BRP to P this will imply that

BRP is deadlock free with respect to P .

1) s j= R:status 6=SI (since s j= :enabled(IND))

2) s j= R:status 6=SA ^R:status 6=RTS (since s j= :enabled(A))

3) s j= R:status 6=NOT OK (since s j= :enabled(IND NOT OK ))

4) s j= R:status=WF (by 1; 2 and 3)

5) s j= S:status 6=SC (since s j= :enabled(CONF))

6) s j= S:status 6=ET2) (since s j= :enabled(E2 ))

7) s j= :R:timer2 enabled (by 4 and s j= :enabled(T2 ))

8) s j= S:status 6=WT2 (by 7 and s j= INVD)

9) s j= Sstatus=WA! S:timer1 on (by INVS)

10) s j= :(S:timer1 on ^ S:timer1 enabled) (by :enabled(T1 )

11) s j= :K:full (since s j= :enabled(G))

12) s j= :L:full (since s j= :enabled(B))

13) s j= S:status 6=WA (by 4; 9; 10; 11; 12 and s j= INVD)

14) s j= S:status=SF (by 5; 6; 8 and 13)

15) s j= :(S:status=SF ^ S:busy) (since s j= :enabled(T3 ))

16) s j= :S:busy (by 14 and 15)

17) REF(s) j= :P:busy ^ :P:error (by 4; 14; 16 and de�nition REF )

18) REF(s) j= quiescent(P) (by 17 and inspection of

local transition types P )

3.3.4 Inclusion of fair traces

We now come to the main result of this section, which says that the Bounded Retransmission

Protocol is a correct implementation of the speci�cation automaton P .

Theorem 3.18 BRP implements P .

Proof: (Sketch) By Theorem 3.15, we know that REF maps each execution of BRP to an

execution of P . We will show that REF moreover maps each fair execution of BRP to a fair

execution of P . This then immediately implies the theorem.

By the proof Theorem 3.17, REF maps each �nite fair execution of BRP to a �nite fair

execution of P . Thus it is enough to prove that REF maps each in�nite fair execution of REF

to an in�nite fair execution of P .

4 Proof-Checking

4.1 Coq Proof Development System

Coq is a proof assistant for higher-order logic. It is based on the Calculus of Inductive Construc-

tions [18], which is a polymorphic type theory allowing dependent types and inductive types. It

is based on [6]. Constructing a proof in Coq is an interactive process. The user speci�es which

deduction rule should be applied and Coq does all the calculations and bookkeeping.
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4.1.1 The Tactics Theorem Prover

The system makes use of the Curry-Howard isomorphism, which states that �-terms can be

used to encode natural deduction proofs. For instance the well-known S-combinator

�x : A! (B ! C): �y : A! B: �z : A: xz(yz)

encodes under the Curry-Howard isomorphism the following natural deduction proof. (Can-

celled hypotheses are placed between square brackets.)

[ A! (B ! C) ]

3

[ A ]

1

B ! C

[ A! B ]

2

[ A ]

1

B

C

1

A! C

2

(A! B)! (A! C)

3

(A! (B ! C))! ((A! B)! (A! C))

In order to give the reader a avor of a proof session in Coq we give the list of commands

needed to construct the proofterm above. At the right we expose how the proofterm is built step

by step. Note that the proofterm is constructed in a top-down fashion. The terms Hyp1; : : : ; Hyp5

are meta-variables over proofterms for subgoals that are generated during the proof session.

They are instantiated during goal re�nement. (We omit the types in the proofterm in order to

save space.)

Goal (A->(B->C))->((A->B)->(A->C)). proofterm: Hyp1

Intros x y z. proofterm: �xyz.Hyp2

Apply x. proofterm: �xyz.x Hyp3 Hyp4

Assumption. proofterm: �xyz.x z Hyp4

Apply y. proofterm: �xyz.x z (y Hyp5)

Assumption. proofterm: �xyz.x z (y z)

Commands (tactics) can be composed to so called tacticals. The tactical tac0 ; tac1 �rst

applies tac0 on the current goal and then applies tac1 on all the subgoals generated by

tac0. More generally, the tactical tac0 ; [ tac1 | � � � | tacN ] �rst applies tac0 and

then applies taci on the i-th subgoal generated by tac0 (i = 1; : : :N). (When tac0 does not

generate N subgoals, this tactical fails.) The following tactical generates the same S-combinator.

Intros x y z ; Apply x ; [ Assumption | Apply y ; Assumption ].

Details about the use of Coq can be found in the Coq manual [7].

One of the most important features of Coq is the so called program abstraction. From a

proof of 8x : A: 9y : B: P (x; y) one can extract a function (program) f : A �! B such that

8x : A: P (x; f(x)). We do not need this facility for our purposes.
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4.1.2 Inductive Types

In our encodings we extensively use the inductive types. For details about this phenomenon we

refer to [18]. In this paper we restrict ourselves to some examples. When we de�ne

nat : Set

O : nat

S : nat->nat

then S (S ( � � � (S (S

| {z }

n

O)) � � � )) is of type nat for all n 2 N but there might still be other terms

of type nat. In Coq we have the alternative possibility

nat := Ind(X:Set)f X | X->X g

O := Constr(1,nat)

S := Constr(2,nat).

This must be read as `nat is the smallest set X closed under two constructors, one of type

X and one of type X->X'. When we choose for the second option then nat contains no other

terms then those constructed from O and S. In other words: for an arbitrary term P:nat->�

and an arbitrary x:nat we are able to construct a term of type (P x) from terms }

o

:(P O)

and }

s

:�y:nat.(P y)->(P (S y)). This term is written as (<P>Match x with }

o

}

s

) in the

system. The reduction behavior of this term is determined by the construction of x from O and

S.

<P>Match O with }

o

}

s

!! }

o

<P>Match (S y) with }

o

}

s

!! }

s

y (<P>Match y with }

o

}

s

)

Note that these reductions are well typed, i.e. reduction of a term does not change its type.

When � � Prop (which is a prede�ned notion of Coq, representing the type of all propositions)

then P is a predicate over nat and }

o

and }

s

are just the usual proofs for the zero-case and the

successor-case. When � � Set (another prede�ned notion, representing the type of all sets) and

P is a constant function on nat, say P � �n:nat.A for some A:Set, then }

o

:A and }

s

:nat->A->A

and �x:nat.(<P>Match x with }

o

}

s

) represents the function from nat to A that is de�ned by

primitive recursion from }

o

and }

s

. In other words: �a:A.�g:nat->A->A.�x:nat.(<P>Match

x with a g) is a recursor. With this mechanism one can de�ne any primitive recursive function

(and even more because one can use higher order recursion).

We conclude this subsection with the illustration of how one can use inductive types to

encode the logical symbols ^ and _. De�ne

and := �A,B:Prop.Ind(X:Prop)f A->B->X g

or := �A,B:Prop.Ind(X:Prop)f A->X | B->X g

conj := �A,B:Prop.Constr(1,(and A B))

or introl := �A,B:Prop.Constr(1,(or A B))

or intror := �A,B:Prop.Constr(2,(or A B))

then (and A B) contains no other terms (proofs) then those constructed from (conj A B)

and (or A B) contains no other terms then those constructed from (or introl A B) and
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(or intror A B). This exactly reects the intuitionistic meanings of ^ and _. The only way

to prove A ^B is proving both A and B, and the only way to prove A _B is proving A or B.

Remark: In this paper we write �'s and �'s in Coq input and Coq output in order to improve

the readability. In the system these symbols are replaced by square brackets and parenthesis,

so [x:A]b instead of �x:A.b and (x:A)B instead of �x:A.B.

The hand-written proof is written in many sorted predicate logic. For each sort there is an

equality relation. We use the standard encoding

eq : �A:Set.A->A->Prop

to represent these equality. These encoding can be found in [7]. Note that eq is a polymorphic

equality. Furthermore we used the standard encodings and and or, briey explained in the

previous subsection. The types Prop and Set, also mentioned in the previous subsection, are

prede�ned notions (constants) of Coq, comparable with `�' in systems of Barendregt's �-cube

[2]. The logical implication and the functional implication are both identi�ed with the arrow of

type theory. (As a consequence our proof is intuitionistically valid.)

There are at least two ways to encode the functional behavior of a function F : A �! B.

For instance the sum + :Nat �! Nat �! Nat can be de�ned by

sum : nat->nat->nat

sum1 : �x:nat.<nat>(sum O x)=x

sum2 : �x,y:nat.<nat>(sum (S y) x)=(S (sum y x))

where <A>a=b is syntactic sugaring for (eq A a b). In this case sum is just a variable without

any computational power. Computing the value of (sum n m) can be done by the Coq command

`Rewrite sum1.' or `Rewrite sum2.' depending on the value of n. The alternative is to de�ne

sum as an abbreviation.

sum := �x,y:nat.<�z:nat.nat>Match x with y �z:nat.S: (1)

The advantage of the second approach is that one does not have to give any command for

computing the value of (sum n m). The computation of (sum n m) is just normalization of

(sum n m), which is executed automatically by the system. Note that Coq cannot reduce (sum

n O)) to n when n is a variable. In such a case one can do a case analysis on n. We try to use

the second approach as much as possible.

In Coq it is allowed to omit the �-abstraction in <P>Match : : :when P is a constant predicate,

so <nat>Match : : : instead of <�z:nat.nat>Match : : : in the de�nition of sum. In the sequel

we will omit such �-abstractions.

The main result in the hand-written proof is the claim that there exists a weak re�nement

from automaton BRP to automaton P. We modi�ed our encodings several times in order to get

a better formulation in Coq of this weak re�nement property. Furthermore we would like to be

able to represent functions like REF:(states of BRP) �! (states of P) by a �-term like in (1).
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4.1.3 The Datatypes

The speci�cation of the Bounded Retransmission Protocol makes use of several datatypes. We

represent these types by inhabitants of Set.

� the sort Bool is represented by the inductive type

bool := Ind(X:Set)f X | X g

true := Constr(1,bool)

false := Constr(2,bool)

The standard functions :, ^, _, !, = and 6= on booleans can all be represented by �-

terms. For instance ^ can be represented by

andb := x,y:bool.<bool>Match x with

<bool>Match y with true false

false

� The sort Data is represented by the variable data:Set. Furthermore we de�ne a variable

Undefined:data which represents the element ? 2 Data.

� The sort List is de�ned as the inductive type with constructors NIL and CONS, representing

� and add respectively. In formula:

LIST := Ind(X:Set)f X | data->X->X g

NIL := Constr(1,LIST)

CONS := Constr(2,LIST)

Functions like hd, tl, � and one can all be represented by �-terms. For instance

tl := �L:LIST.<LIST>Match L with

NIL

�d:data.�y,z:LIST.y

one := �L:LIST.<bool>Match L with

false

�d:data.�y:LIST.�b:bool.<bool>Match y with

true

�d:data.�y:LIST.�b:bool.false

The equalities on page 182 are satis�ed. All the right-hand-sides are just the normal forms

of the left-hand-sides.

� The �nite sets Ind, Sstatus, Rstatus and Conf are encoded as inductive types in the

same style as the booleans.

4.1.4 The Actions

We de�ne �nite sets act BRP and act P representing the sets of actions. We cannot use the same

name for actions of di�erent automata. Hence we add a prime by those action of automaton

P that already occurred in automaton BRP. Constructors of act BRP are REQ:LIST->act BRP,

F:bool->bool->bool->data->act BRP, etc. Elements of act P are REQ':LIST->act P, etc.
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We add an extra element tau to the inductive set act P. Next we de�ne a term ev (evaluate)

which maps actions of BRP to the corresponding actions of P. (REQ

ev

7�! REQ', etc.) Internal

actions of BRP are mapped to tau.

ev := �a:act BRP.<act P>Match a with REQ'

�B1,B2,B3:bool.�d1:data.tau

tau

�B1,B2,B3:bool.tau

tau

tau

tau

CONF'

tau

tau

�B1,B2,B3:bool.�d1:data.tau

�B1,B2,B3:bool.tau

IND'

INDn'.

Note that we simply posit which actions are internal in automaton BRP. One could think of

encoding the complete theory about input- and output actions. Given the status of the actions

in the components, the status of the actions in the product automaton could then be computed.

However, a Coq formalization of this part of automaton theory is arduous and not cost-e�ective.

4.1.5 The State Spaces

The following step is the de�nition of types states BRP and states P representing the state

spaces of the two automata BRP and P. The state space of BRP is encoded as a cartesian

product of cartesian products. states S := status S � bool � � � �� bool � LIST� nat, where

status S = fSF; WA; SC;ET2;WT2g. Analogously we de�ne states K, states L and states R.

Now states BRP := states S � states K � states L � states R. Finally states P := LIST

� bool � bool � bool.

We use the standard inductive type prod [7] with constructor pair for the encoding of

the cartesian product. When A and B are sets and (a; b) 2 A � B then (a; b) is represented

in Coq by (pair A B a b). Hence (a; b; c) 2 A � B � C is represented by (pair A (prod

B C) a (pair B C b c)) which introduces unattractive syntax. For instance, an element of

states BRP would cover the whole page. However, we can handle big product terms by de�ning

abbreviations for them. For instance, we de�ne a function F : A �! B �! C �! (A�B �C)

such that F (a)(b) maps c to (a; b; c) by a �-term in the style of (1).

F := �x:A,y:B,z:C.(pair A (prod B C) x (pair B C y z))

Then (a; b; c) can be represented by (F a b c). This way we de�ne functions st S, st K, st L,

st R, st BRP and st P mapping the components of the state spaces to the corresponding ele-

ments in the cartesian products. Similarly we de�ne projection functions p t S:states S->bool,

p R:states BRP->states R, etc. (p t S stands for projection toggle Sender and p R for projec-

tion Receiver). For instance
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(p t S (st S B1 B2 B3 B4 B5 L rn)) !! B3

(p R (st BRP S K L R)) !! R

4.1.6 The Weak Re�nement Map

The re�nement mapping REF can now be represented by the �-term below. We replace the

lambda-terms orb, andb, negb, eqb, eqst S and eqst R by _, ^, :, =, = and = respectively.

Furthermore we used in�x-notation.

ref := �x:states BRP.(st P

(<LIST>Match

(p st S (p S x)) = ET2 _

: (p ct R (p R x)) _

(p t S (p S x)) = (p t R (p R x))

with

(p l S (p S x))

(tl (p l S (p S x))))

(p b S (p S x))

(p f R (p R x))

(p st R (p R x)) = NOK _

(((p st S (p S x)) = ET2 ^

(p on R (p R x)) ^

: (p f R (p R x)))).

4.1.7 The Step Relation

The next step is the de�nition of types step:act BRP->states BRP->states BRP->Prop and

step':act P->states P->states P->Prop representing the notion of transition step. The in-

tended meaning of (step a s1 s2) is s

1

a

�! s

2

. We use an inductive type again.

step := Ind(X:act BRP->states BRP->states BRP->Prop)f

�sigma:LIST.�S1:status S.�B1,B2,B3,B4:bool.

�L:LIST.�rn:nat.

�sK:states K.�sL:states L.�sR:states R.

(<bool>false=(empty sigma)) ->

(X (REQ sigma)

(st BRP (st S S1 false B1 B2 B3 B4 L rn) sK sL sR)

(st BRP (st S S1 true B1 B2 B3 B4 sigma rn) sK sL sR))

|

.

.

.

| � � � g

This enables us to do a case analysis on H when we have a proof H:(step a s1 s2) in our

context. Assume that we want to prove �(s1; s2) for some s1,s2:states BRP and assume that

we have a proof H:(step a s1 s2) in our context. The �rst constructor of step leads to the
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following subgoal:

�sigma:LIST.�S1:status S.�B1,B2,B3,B4:bool.

�L:LIST.�rn:nat.

<bool>false=(empty sigma) ->

�((st BRP (st S S1 false B1 B2 B3 B4 L rn) sK sL sR);

(st BRP (st S S1 true B1 B2 B3 B4 sigma rn) sK sL sR))

This is the result of matching s1 and s2 with the terms of type states BRP on which X is

applied in the �rst{constructor{case of step (describing the behavior of the REQ action).

In our approach we encode directly how the actions a�ect the product automaton BRP.

This way we avoid the problem of encoding how the composition of the automaton BRP out

of its components S, K, L and R is organized. The fact that local actions that have the same

name are synchronized in the product automaton is di�cult to express.

In Coq, actions with if-then-else constructions are split in more than one case. This way,

the 15 actions in Section 3.2 correspond to 25 cases in Coq. For instance the action B is split

into B 1 with precondition one(list)=true and B 2 with precondition one(list)=false. (Both B 1

and B 2 also have all the preconditions mentioned in automaton L).

4.1.8 Reachability

Reachability is encoded as an inductive type, having two constructors. The �rst constructor

encodes the reachability of the initial state. The second constructor encodes the preservation

of reach under step.

reach := Ind(X:states BRP->Prop)f

�s:states BRP.(start s) -> (X s)

| �a:act BRP.�s1,s2:states BRP.

(step a s1 s2) -> (X s1) -> (X s2) g

where start is the predicate on states BRP that holds only for the initial state, also de�ned

inductively:

start := Ind(X:states BRP->Prop)f

�B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11:bool.

�L:LIST.�d1,d2:data.

(X (st BRP

(st S SF false true B1 false false L O)

(st K B2 B3 B4 false d1)

(st L B5 B6 B7 false)

(st R WF B9 B10 B11 d2 true B8 false false false))) g.

Assume that we want to prove �(s) for some s:states BRP and assume that we have a proof

R:(reach s). Eliminating the inductive type reach returns two subgoals:

(i) : �s1:states BRP.(start s1) -> �(s1)

(ii) : �a:act BRP.�s1:states BRP. (step a s1 s) -> �(s1; s2) -> (reach s1) -> �(s).
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The second goal can be proved by assuming an a:act BRP, s1, s2 and a proof H:(step a s1

s) and then prove �(s1) -> �(s2) by a case analysis on H.

We can de�ne a type reach' encoding the reachability in the automaton P by using start'

and step' but we don't need this notion.

4.1.9 The Weak Re�nement Property

Assume that we have a transition s

1

a

�! s

2

for some external BRP-action a, then we must have

a transition REF(s

1

)

a

�! REF(s

2

) in automaton P. We are able to express this as

(step a s1 s2) -> (step' (ev a) (ref s1) (ref s2)) (2)

When a is an internal action then (2) evaluates to

(step a s1 s2) -> (step' tau (ref s1) (ref s2))

which we cannot prove for there are no constructors of the form step' tau : : : in the de�ni-

tion of step'. When we add a constructor of type �s:states P.(step' tau s s) then we can

prove (step a s1 s2) -> (step' tau (ref s1) (ref s2)) i� we can prove <states P>(ref

s1)=(ref s2). This is exactly what we required so (2) also encodes the weak re�nement prop-

erty when a is internal.

Of course (2) does not have to hold for states that cannot be reached. Hence we can add an

extra precondition. Furthermore we abstract from the states and the action:

�a:act BRP.�s1,s2:states BRP.(reach s1) ->

(step a s1 s2) -> (step' (ev a) (ref s1) (ref s2)) (3)

A weak re�nement mapping also has to map initial states to initial states. This is encoded as

�s:states BRP.(start s) -> (start' (ref s)) (4)

4.1.10 The Invariants

For proving (3) we have to use the invariants. These invariants are proven valid in the reachable

states only. Their formulation is rather straightforward. Below we give the encoded version

of INVR (Lemma 3.6). Note that the expression has precondition (reach x). Furthermore

x 2 fy

1

; : : :y

n

g is encoded as x = y

1

_ � � � _ x = y

n

. (Again, we give a `pretty-printed' version)

invr := �x:states BRP.(reach x) ->

((p st R (p R x)) = NOK ->

(p ct R (p R x)) = false)

^

((p st R (p R x)) = SI ->

((p ct R (p R x)) = true ->

(p ft R (p R x)) = (p t R (p R x))))

^

(((p st R (p R x)) = RTS _

(p st R (p R x)) = SA) ->

((p ct R (p R x)) = true ^

(p ft R (p R x)) = : (p t R (p R x)))).
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Machine-checking the invariant proofs can be done with a less complex de�nition of reach-

ability. Instead of having separate de�nitions step and reachability one can construct one

single de�nition reach alt (reach alternative) which has the following shape:

reach alt := Ind(X:states BRP->Prop)f

�B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11:bool.

�L:LIST.�d1,d2:data.

(X (st BRP

(st S SF false true B1 false false L O)

(st K B2 B3 B4 false d1)

(st L B5 B6 B7 false)

(st R WF B9 B10 B11 d2 true B8 false false false)))

�sigma:LIST.�S1:status S.�B1,B2,B3,B4:bool.

�L:LIST.�rn:nat.

| �sK:states K.�sL:states L.�sR:states R.

(<bool>false=(empty sigma)) ->

(X (st BRP (st S S1 false B1 B2 B3 B4 L rn) sK sL sR)) ->

(X (st BRP (st S S1 true B1 B2 B3 B4 sigma rn) sK sL sR)))

|

.

.

.

| � � � g

The crucial di�erence between the types reach and reach alt is that the actions are not men-

tioned explicitly in the de�nition of reach alt. This is not bothering us when we try to prove

�x:states BRP.(reach alt x)->(INV x) for some invariant INV. In fact, the proof is almost

identical to the proof of �x:states BRP.(reach x)->(INV x). However, encoding the weak

re�nement property seems problematic. We cannot use (3) because we don't have the types

step and step' anymore. We could prove

�s:states BRP.(reach alt s) -> (reach alt' (ref s)) (5)

where reach alt' encodes `reachability' in automaton P. When we prove (5) in a somewhat

restricted way then the �-term, together with the meta argument that this term is of a restricted

form, could serve as a proof for the weak re�nement property. The restriction is as follows:

Prove (reach alt' (ref s)) by a case analysis on the hypothesis H:(reach alt s). Do not

use any other constructors of P then the one corresponding with the subgoal you are working

on. (Internal actions of BRP do not correspond with any constructor of P.)

Obviously, this is very inconvenient: It is sometimes di�cult to see on which case one is working

and hence which hypothesis one may use. Even more unsatisfactory is the fact that the resulting

proofterm is incomplete as a justi�cation in itself and needs an additional meta-argument.

4.2 Coq Correctness Proof

Section 4.2.1 will explain the kind of Coq goals that correspond to the proof obligations in this

veri�cations. Section 4.2.2 discusses the use of tacticals in this application.
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4.2.1 Goals

Proofs of the invariants and the re�nement are essentially by induction over the transitions and

split in the corresponding 25 cases (Section 4.1.7). As is to be expected, transitions that do not

a�ect variables that occur in an invariant prove in Coq simply by assumption with the induction

hypothesis. Other cases resolve into further subgoals.

In this application of I/O-automata, most predicates are equality assertions over state vari-

ables and the proofs involve much propositional reasoning. This is best illustrated by means

of an example subgoal: Figure 2 shows a Coq goal that occurs when proving invariant INVR

(Lemma 3.6). After elimination of reachable states (Section 4.1.7), Coq has �lled in the variables

and terms in proper places in the states before and after the transition, in the precondition,

and in the invariant. The assertion to prove is on top, below that are the assumptions. This

case corresponds to action G in case (ctoggle ! t=toggle). The latter condition is expressed

by assumption H . Other preconditions of this transition arise as equalities over state variables

that have been �lled in automatically in the states before and after this transition. H0 and

H1 assume reachability of these states. H2 contains the induction hypothesis for the invariant

property. The goal to prove is that the property holds for states after a G step.

The goal in Figure 2 decomposes in a number of subgoals. Figure 3 focuses on a par-

ticular subgoal. The proposition occurs in the rightmost conjunction of the invariant, viz.

R:status2fRTS; SAg ! R:ftoggle 6=R:toggle. The induction hypothesis (H2 in Figure 2) has

been decomposed into its constituent conjuncts. Applications of projection functions in the

goal and in the assumptions have been reduced to retrieve the appropriate terms. negb is a

function that inverts booleans. H5 assumes the precondition of this conjunction. The proof

uses assumption H .

Note that the statements to prove consist of a logical combination of equality statements.

The same observation holds for those assumptions in the context that have not yet been elimi-

nated and can be of relevance to the un�nished proof. This is characteristic of this application

and of many I/O-automata proofs. In nearly all cases the equality statements are over �nite sets

or variables thereover. This holds for preconditions of transition steps as well as for predicates

in the invariants. Many proofs are elementary.

Induction serves two purposes in the de�nition of a set: it states that the given elements are

the only inhabitants of the set (no junk property) and it states that all elements are di�erent (no

confusion property). Inductively de�ned �nite sets play an important role in the Coq checking

of this veri�cation, both to do analysis by cases as well as to distinguish between elements.

Analysis by cases is provided directly in Coq via elimination of a variable over the inductive

set. Inequality of di�erent elements of an inductively de�ned �nite set is not directly available

in Coq but must be derived with the Match mechanism. Because the veri�cation described here

uses this extensively, it will be is illustrated by means of a small example. We inductively de�ne

a �nite set S and a predicate that discriminates its elements:

Inductive Definition S : Set = a : S | b : S | c : S.

Definition neq_S = [x,y:S](<Prop>Match x with

(<Prop>Match y with False True True)

(<Prop>Match y with True False True)

(<Prop>Match y with True True False)).
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((<status_R>RTS=NOK)->

(<bool>(p_ct_R (st_R RTS f l t d B4 B5 B6 B7 B8))=false))

/\(((<status_R>RTS=SI)->

(<bool>(p_ct_R (st_R RTS f l t d B4 B5 B6 B7 B8))=true)->

(<bool>(p_ft_R (st_R RTS f l t d B4 B5 B6 B7 B8))

=(p_t_R (st_R RTS f l t d B4 B5 B6 B7 B8))))

/\(((<status_R>RTS=RTS)\/(<status_R>RTS=SA))->

((<bool>(p_ct_R (st_R RTS f l t d B4 B5 B6 B7 B8))=true)

/\(<bool>(p_ft_R (st_R RTS f l t d B4 B5 B6 B7 B8))

=(negb (p_t_R (st_R RTS f l t d B4 B5 B6 B7 B8)))))))

============================

H2 : ((<status_R>WF=NOK)->

(<bool>(p_ct_R (st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8))=false))

/\(((<status_R>WF=SI)->

(<bool>(p_ct_R (st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8))=true)->

(<bool>(p_ft_R (st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8))

=(p_t_R (st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8))))

/\(((<status_R>WF=RTS)\/(<status_R>WF=SA))->

((<bool>(p_ct_R (st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8))=true)

/\(<bool>(p_ft_R (st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8))

=(negb (p_t_R (st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8)))))))

H1 : (reach

(st_BRP sS (st_K f l t false d) sL

(st_R RTS f l t d B4 B5 B6 B7 B8)))

H0 : (reach

(st_BRP sS (st_K f l t true d) sL

(st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8)))

H : ~((<bool>B6=true)->(<bool>B5=t))

sL : states_L

sS : states_S

d1 : data

B1 B2 B3 B4 B5 B6 B7 B8 : bool

d : data

f l t : bool

S : (step a s1 s2)

s1 s2 : states_BRP

a : act_BRP

R : (reach x)

x : states_BRP

Figure 2: Characteristic Coq subgoal for this application. The assertion to prove is on top,

the assumptions are below. The goal forms part of the obligation to prove that transition G

preserves invariant INVR. H2 assumes the invariant property holds for states that enable this

transition step. The assertion to prove is that the property holds for states after the transition.
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<bool>t=(negb B5)

============================

H5 : (<status_R>RTS=RTS)\/(<status_R>RTS=SA)

H4 : ((<status_R>WF=RTS)\/(<status_R>WF=SA))->

((<bool>B6=true)/\(<bool>B3=(negb B5)))

H3 : (<status_R>WF=SI)->(<bool>B6=true)->(<bool>B3=B5)

H2 : (<status_R>WF=NOK)->(<bool>B6=false)

H1 : (reach

(st_BRP sS (st_K f l t false d) sL

(st_R RTS f l t d B4 B5 B6 B7 B8)))

H0 : (reach

(st_BRP sS (st_K f l t true d) sL

(st_R WF B1 B2 B3 d1 B4 B5 B6 B7 B8)))

H : ~((<bool>B6=true)->(<bool>B5=t))

sL : states_L

sS : states_S

d1 : data

B1 B2 B3 B4 B5 B6 B7 B8 : bool

d : data

f l t : bool

S : (step a s1 s2)

s1 s2 : states_BRP

a : act_BRP

R : (reach x)

x : states_BRP

Figure 3: A subgoal of the goal in Figure 2.

I.e., (neq S x y) reduces to False if x = y = a or x = y = b or x = y = c and it evolves to

True otherwise. It serves to prove the desired inequalities :(a = b), :(a = c), etc. Instead of

deriving and naming all n

2

lemmas for an n-ary set, we prove the following generalised lemma

to derive contradictions:

8x; y : S:(< S > x = y)! (neq Sxy)! 8P : Prop:P

Such a lemma is derived for all inductive sets. Say the lemma is named absurd S . The latter

is used extensively to resolve goals with an inconsistent equality assumption in the context, say

< S > a = b. The following Coq tactical then solves the goal immediately:

( Apply (absurd S a b) ; [ Assumption | Simpl ; Exact I ] ) (6)

For invariants that are proved by induction over transition steps, sometimes a majority of

the subgoals prove by contradiction because they assume a = b for di�erent a and b from an

inductive set.

A small anomaly of Coq is that it cannot distinguish inductive types that have the same

structure. Choosing di�erent names for such types just introduces di�erent names for the same

basic notion. In particular we cannot distinguish �nite sets that have the same cardinality. In

this application for instance, status S and status R are two abbreviations for the same type
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Ind(X:Set)f X | X | X | X | X g. A typing error <status R>Rst=WA in one of the invari-

ants was overlooked for a long time. In this application, one can even prove <status R>SF=WF

by reexivity because SF and WF are both the �rst element of a set of �ve elements (see Section

4.1.5).

4.2.2 Tacticals

Both tactics and tacticals have been used in the proof-checking. Coq tacticals are composed

of tactics and they can be used to apply at once a combination of rules. They can also be

used to accomplish a limited form of proof search. Such tacticals have been written for �ve

of the invariants in this application. One generic tactical was developed to decompose and

investigate versions of INVR (Lemma 3.6), INVR

0

(Lemma 3.7) and INVR

00

(Lemma 3.8).

After case distinction over the 25 transition steps, the tacticals attempt to decompose these

cases by elimination of logical connectives until only simple goals are left, where the assertion

to prove is an equality assertion. For our invariants, typically some 50-100 simple goals are

left then. Many of these are solved automatically by assumption, reexivity or by means of

an inconsistent equality statement in the context. For the invariants above, only a handful of

non-trivial goals remain to be solved by the user.

To achieve a form of search, the tacticals are mainly composed of combinations of the ";"

and "Orelse" tacticals explained below.

tactical

1

;

tactical

2

;

tactical

3

;

: : :

This applies tactical

2

to the subgoals generated by tactical

1

and tactical

3

to those that are gen-

erated by tactical

2

.

tactical

1

Orelse

tactical

2

Orelse

tactical

3

This tries to apply tactical

1

. If that fails, tactical

2

is applied. If that fails, tactical

3

is applied.

Coq tacticals are fairly basic. A de�nition mechanism or parameterization is not provided. This

would be convenient for this application, since it would allow often recurring tacticals like (6)

to be written very compact.

The current Coq tactical language has no variables and pattern matching. As a consequence,

tacticals must be tailored to the overall structure of goals if they are used for proof search.

Because of this, writing a tactical proof often is as much e�ort as writing the corresponding

tactic proof. Currently, the advantage of such tacticals is mainly that it is easier to adapt them

than to adapt tactic proofs: tactical proofs are less a�ected when invariants or automata are

modi�ed.
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5 Discussion

The primary objectives of this work have been ful�lled: the protocol has been veri�ed and the

veri�cation has been proof-checked. Although the Bounded Retransmission Protocol is small,

it is by no means trivial and the e�orts involved are considerable. While the PSF speci�cation

and simulation activity have been carried out in only two man-weeks, the manual veri�cation

took roughly two man-months (including write-up) and the proof-checking took more than three

man-months. Part of the latter e�ort is due to a learning e�ect. Analysis of the Bounded Re-

transmission Protocol is not completed: the protocol has an additional disconnect service that

allows the sender and the receiver to disrupt an ongoing communication. This service has been

neglected here and will be veri�ed later.

The veri�cation has answered a number of questions about the protocol. Foremost, it proves

that the data link protocol is free of design errors. An important result of the work is that has

corrected several inconsistencies, ambiguities, and omissions in the accurate but semi-formal

original speci�cation of the protocol. For instance, the exercise has pinned down the behavior

of the toggle bit between subsequent messages and has formalized many assumptions that were

previously left implicit. In addition, the correctness criterion formalizes the required external

or black-box behavior of the protocol services.

The automaton speci�cation serves also as a precise functional description for protocol

implementations. In this description, all kind of important questions for implementors have

been answered, like : "Can I send an empty message?", "How to respond if a request comes

before the previous request is completed", "What the start value of the toggle bit for subsequent

messages?".

Other protocol properties are con�rmed by the automaton model. For instance, invariant

INVK

0

(Lemma 3.14) proves that the use of the bit named �rst in data frames is redundant,

because the receiver can always predict its value. This is consistent with the situation in the

X.25 LAPB protocol [22] that has no comparable �eld and that uses a more data bit only,

which corresponds to the (inverted) bit named last in the Bounded Retransmission Protocol.

Further, the automaton model con�rms that the �rst, last and toggle bits from the header of

acknowledgements are irrelevant for correctness.

The Coq proof-checking con�rms that the veri�cation is correct. It was not �rst-time right

though and the proof-checking has corrected a number of draft versions. Both the veri�cation

and the speci�cation have been revised several times. Other corrections relate to various errors

and inaccuracies in versions of the manuscript proof. Preliminary versions of six invariants

required modi�cation. One invariant proved false and required weakening. In four cases the

invariants seemed valid but needed strengthening (induction loading) to admit a proof. In one

case small modi�cations to the automaton were necessary to admit a missing proof. Much of the

checking was done while parts of the proof were still under development and certain errors must

therefore be ascribed to the iterative approach that characterizes the development of automata

proofs. Usually the manuscript proof was followed, unless obvious simpli�cations were seen. For

invariant INVR

0

(Lemma 3.7) the use of tacticals simpli�ed a handwritten proof by abstaining

from the application of two other invariants that were used in the manuscript proof.

The experiences with the Coq system are positive. The Coq system 5.8 is robust and reliable

and is well-documented. Most shortcomings are related to the ASCII interface: it is easy to lose

the overall picture when dealing with large contexts and large proofs.
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Modeling the Bounded Retransmission Protocol automata, the invariants and the weak

re�nement proof in type theory (Coq's Inductive Calculus of Constructions) posed no problem.

An important question is if the encoding that has been chosen is satisfactory and how it can

be improved upon. A clear advantage of the current mapping to type theory is that it closely

follows the application and directly supports the checking of the invariants and the re�nement

proof. While this encoding thus facilitates the operational checking, it also amalgamates the

automata theory and the application which makes it di�cult to reuse much of the Coq text for

other applications.

An interesting option is to use a more general modeling of automata theory, together with

a compact application description similar to the speci�cation in Section 3.2. This can lead to

an approach that is more exible because it allows reuse of the theory modeling for di�erent

applications. Also, the simpler application description is less error-prone. The current encoding

is tailored towards the proving of invariants and weak re�nement relations. Absence of deadlock

has to be de�ned speci�cally for this application and cannot be reconstructed easily from the

transition steps. In an approach that uses a higher level of abstraction, such properties could

be de�ned independent of the particular application. Automatic translation of non-operational

application descriptions is desirable. The translation can be within Coq or part of a prepro-

cessor. One may even want to use di�erent translations for di�erent purposes. Some of these

options are currently investigated by the authors.

If this application is characteristic of I/O-automata proofs - and this seems to be the case -

then I/O-automata veri�cations could bene�t from proof search procedures. Many (sub-)proofs

are truly elementary. It must be stressed that this quality does not come for free. In I/O-

automata veri�cations the crucial and most di�cult part is �nding the proper automata, the

weak re�nement relation and the invariants. This is an iterative process that can bene�t from

proof search support. The tacticals written for this application indicate that it is feasible to

reduce conjectures of invariants to a few non-trivial or impossible subgoals for the user. Proof

search can be used in two ways: it can speed up the checking of manuscript proofs but it can also

speed up their development. The Coq system is currently designed as a proof-checker and not

as a theorem prover. Nevertheless, most proof obligations require very speci�c and elementary

reasoning and some additional tactical building blocks may be of great help for I/O-automata

veri�cations.

Proof-checking of protocol veri�cations involves choosing a veri�cation formalism and choos-

ing a proof system. In general, the proof system uses a di�erent formalism in which the veri�-

cation must be embedded.

Several research e�orts are aimed at computer support for protocol veri�cations. A num-

ber of example studies are mentioned below, with di�erent veri�cation methods and di�erent

proof systems. Engberg, Gr�nning and Lamport [8] have used the Larch prover (LP) to check

veri�cations in TLA, the Temporal Logic of Actions. The Larch prover is also used by S�gaard-

Andersen et.al. [20] to check veri�cations in I/O-automata. The successful exploitation of a

theorem prover con�rms our conjecture that proof search may form a useful contribution in the

�eld of I/O-automata theory. Bezem and Groote [3] have used Coq to check a veri�cation of

the alternating bit protocol in process algebra. Their proofs are essentially rewriting proofs.

Martin Ho�mann [10] in Edinburgh has checked with LEGO a veri�cation of the Alternating

Bit Protocol. His veri�cation is based on a functional approach and uses stream transformers.
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Abstract

We introduce axioms of extensionality and quotienting into intensional type theory and

show how these can be eliminated using an interpretation of type theory in terms of sets

with equivalence relations.

1 Introduction | a discussion of the identity type

Martin-L�of introduced the inductive identity type in order to internalise the notion of de�nitional

equality. For any two termsM;N of some type A a type Eq

A

(M;N) is introduced, which should

be inhabited i� M and N are de�nitionally equal. This is achieved by the following rules.

� ` A

�; x; y:A ` Eq

A

(x; y)

Here and in the sequel round brackets with commas are used to denote free variables and

substitution in an informal way. So Eq

A

(x; y) could also be written Eq

A

if we would not want

to emphasize the two particular free variables, and Eq

A

(M;N) is a shorthand for Eq

A

[x :=

M ][y := N ]. Since we have only one universe, we write � ` A instead of � ` ASet. The other

rules are:

� `M : A

� ` re

A

(M):Eq

A

(M;M)

�; x; y:A; p:Eq

A

(x; y) ` C(x; y; p)

�; x:A `M : C(x; x; re

A

(x))

�; x; y:A; p:Eq

A

(x; y) ` J

C

(M) : C(x; y; p)

�; x:A; p:Eq

A

(x; x) ` C(x; p)

�; x:A `M : C(x; re

A

(x))

�; x:A; p:Eq

A

(x; x) ` K

C

(M) : C(x; p)

and equality rules

J

C

(M)(x; x; re

A

(x)) =M(x) K

C

(M)(x; re

A

(x)) =M(x)
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The eliminator J is the one originally used by Martin-L�of; the homogeneous eliminator K has

later been added by Streicher [13] and independently by Altenkirch. One may also devise an

�-like equality for the J and K eliminators (cf. [11]). As observed by Streicher [13] this �-rule is

equivalent to the equality reection rule

� ` p : Eq

A

(M;N)

� `M = N : A

This rule is known to render de�nitional equality and type checking undecidable, and was thus

rejected by Martin-L�of. In the next paragraph we briey review the strength and the weaknesses

of the identity type without this rule.

This formulation of the identity type captures most of the rules governing de�nitional equal-

ity. Apart from reexivity, symmetry, and transitivity, in particular the substitution rule for

dependent types

�; x : A ` B(x)

� `M = N :A

� ` U : B(M)

� ` U : B(N)

is reected in that from J we can de�ne an operator Subst

A

, where Subst

A

(p; U) : B(N) if

p : Eq(M;N) and U : B(M) for some type B depending on the type A of M and N . Moreover,

by induction, i.e. using J we can prove that these Subst functions are coherent , i.e. they do not

depend on the proof p and any diagram formed out of these functions commutes up to Eq. Also

all the congruence rules for de�nitional equality hold for the identity type, with the exception

of the �-rule

�; x:A `M = N : B(x)

� ` �x:A:M = �x:A:N : �x:A:B

which is not provable for the identity type. This means that from a proof of pointwise equality

of two dependent functions

�; x:A ` p : Eq(F;G)

we cannot conclude their propositional equality, i.e. we cannot in general �nd an inhabitant of

the type

� ` Eq(�x:A:F; �x:A:G)

The reason for this lies in the equality reection principle which says that in the empty context

an identity type is inhabited if and only if its two arguments are de�nitionally equal. This

follows because the only canonical term of an identity type is re which only applies in case of

de�nitional equality. Now if the � rule held propositionally then two extensionally equal func-

tions on the natural numbers, say, would be conversionally equal, which is in general obviously

not the case, for example because de�nitional equality is decidable and pointwise equality even

of primitive recursive functions is not.

So the lack of extensionality can be explained on the grounds that Eq should not identify

de�nitionally di�erent terms. This is, however, a very purist point of view. The real strength of

the identity type lies in its substitution property witnessed by Subst . We therefore propose to

give up equality reection, and to understand propositional equality as substitutability in every

context . Now two pointwise equal functions are indeed substitutable for one another in every
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context except one arising from the identity type itself. Clearly if F (x) and G(x) are pointwise

equal we cannot substitute �x:A:F for �x:A:G in Eq(?; �x:A:G). The reason is again the lack

of extensionality. So we might just add a new constant to the theory

�; x : � ` p : Eq(F;G)

� ` Ext (p) : Eq(�x : �:F; �x : �:G)

which both achieves (via Subst ) substitutability of pointwise equal functions in every context,

and repairs the just mentioned problem with the particular context Eq( ; G). This is essentially

the solution proposed by Turner in [14]. Its serious drawback, immediately pointed out by

Martin-L�of in a subsequent discussion also in [14] is that this introduces noncanonical elements in

each type, since we have not speci�ed, how the eliminator J should behave when applied to Ext .

For example, consider the (constant) family f : A! B ` N. Now if x : A ` p : Eq(F x;Gx) then

Subst (Ext (p); 0) is an element of N in the empty context which does not reduce to canonical

form. One might try to �nd suitable reduction rules for Ext under which this term would for

example reduce to 0. Yet no satisfactory set of such rules has been found, and we conjecture

that there can be no conuent and strongly normalising set of rules which would encompass all

the obvious cuts arising from Ext .

The solution to the problem we are going to describe in this paper consists of a post-hoc

translation of proofs containing Ext into ones in the pure theory in which every occurrence

of the identity type will be replaced by an equality relation de�ned by induction on the type

structure. On basic inductive types this relation will be the identity type itself, but for example

on the type N! N it will be pointwise equality and so on.

This translation is performed by constructing a model for type theory including Ext in

which types are types with relations and dependent types are dependent types together with

dependent relations and substitution functions. The interpretation of the identity type in the

model is just the relation associated to each type, which is why extensionality holds in the

model.

Given this translation we may view the type theory with Ext as a meta- or macro-language

for the theory in which equality is de�ned along the type structure and in which every substi-

tution must be validated by a tedious proof of substitutivity. Through the interpretation in

the model (which can be implemented on a machine) these substitutivity proofs are generated

automatically.

For the nondependent case and predicate logic this construction is well-known, in [3] it is

attributed to Gandy, cf. also [8]. The idea of interpreting extensional type theory in intensional

one was put forward by Martin-L�of during the discussion in [14], but to the best of our knowledge

has so far never been made explicit.

2 Quotient types

The model we are going to describe does not only eliminate extensionality, it may also be used

to interpret an intensional version of quotient types which permit to \factor" types by arbitrary

equivalence relations. For lack of space we will in this paper not give the interpretation of

quotient types, but only de�ne their syntax, see however Section 10. It is as follows.

� ` A

�; x; y:A ` R

� ` A=R
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� `M : A

� ` [M ]

R

: A=R

� `M : A

� ` N : A

� ` p : R(M;N)

� ` Q

R

(p) : Eq

A=R

([M ]

R

; [N ]

R

)

�; x:A=R ` B

�; x:A `M : B([x]

R

)

�; x; y:A; p:R(x; y) ` P : Eq(Subst (Q

R

(p);M(x));M(y))

�; x:A=R ` lift

R;B

(M;P; x) : B(x)

and equality (computation) rule

lift

R;B

(M;P; [N ]

R

) =M(N)

These quotient types permit quite comfortable implementations of data structures arising in

algebra like integers or rational numbers. The fact that via Q

R

( ) the user-de�ned equality for

these types becomes substitutive facilitates many proofs. Again the drawback is that Q

R

( )

introduces noncanonical elements not only in the identity type, but in fact into all other types

as can be seen by a similar argument as the one for Ext . In the syntactic model we are going to

describe, these quotient types will be translated into their underlying types together with the

symmetric, transitive closure of the quotienting relation, and suitable proofs of substitutivity

will be generated via the interpretation by induction along the term structure. Observe that

the lift-rule only allows the de�nition of such functions on the quotient which \respect" the

relation.

Our de�nition of quotient types di�ers from the one described in [2] in that since we do not

have the equality reection rule we need an instance of Subst in order to make the proviso for

quotient elimination (in the lift-rule) well-typed.

3 The setoid model

We shall now describe the syntactic model in detail, and show that its structure su�ces to

interpret all of intensional type theory including Ext . The underlying syntactic system is

intensional Martin-L�of type theory without universes as described in [10]. Our presentation is

clearly inuenced by \categorical type theory" as described e.g. in [6, 12], we shall, however,

avoid categorical terminology as far as possible and we assume no knowledge of category theory.

For the cognoscenti: we construct a \category with attributes" in the sense of Cartmell [1], see

also [7].

We begin the construction with nondependent sets with relations which will later serve to

interpret the contexts.

De�nition 1 (Setoids) A setoid

1

consists of a type in the empty context

` X

1

This terminology is due to Rod Burstall.
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and a relation on it

x; y:X ` R(x; y)

which is provably an equivalence relation, i.e. there are terms

x:X ` re(x) : R(x; x)

x; y:X; p:R(x; y) ` sym(p) : R(y; x)

x; y; z:X; p:R(x; y); q:R(y; z) ` trans(p; q) : R(x; z)

If X is a setoid then we refer to its components by X

set

, X

rel

, X

re

, X

sym

, X

trans

, resp. Two

setoids are equal if all their �ve components are equal.

Every type X gives rise to a setoid by taking the identity type as the relation which is an

equivalence relation. One can also see that the cartesian product (degenerated �-type) of

setoids is a setoid again. In particular the empty product, i.e. the unit type is a setoid. We

shall use it to interpret the empty context.

Two general comments concerning the syntactic nature of setoids are in order. First, by a

setoid we really mean the syntactic object itself consisting of several types, terms, and judge-

ments; and not its interpretation in some model. Second, the \proofs" of reexivity, symmetry,

etc. are not merely required to exist, but form an intrinsic part of a setoid. This also applies to

the other syntactic objects we are going to de�ne.

De�nition 2 (Morphisms of setoids) A morphism between two setoids X and Y consists

of a \function"

x:X

set

` fun(x) : Y

set

and a proof that it respects the relations, i.e. a term

x; y:X

set

; p : X

rel

(x; y) ` resp(p) : Y

rel

(fun(x); fun(y))

Again, if F is a morphism of setoids we refer to its components by F

fun

and F

resp

. Two

morphisms of setoids are equal if both components are equal. The set of setoid morphisms from

X to Y is denoted by Mor (X; Y ).

The reader is invited to check that the projections, as well as the pairing functions corresponding

to a cartesian product form morphisms of setoids. Moreover, one can easily see that morphisms

of setoids contain the identities and are closed under composition and thus form a category. In

fact this category is cartesian closed, and although we will not need it for the interpretation

we give the construction of the exponential, since its construction is similar to the one of the

dependent product we need later. So let X and Y be setoids. Their exponential X ) Y is

de�ned by

(X ) Y )

set

:= �f :X

set

! Y

set

:�x; y:X

set

:X

rel

(x; y)! Y

rel

(f x; f y)

(X ) Y )

rel

[f; g : (X ) Y )

set

] := �x; y:X

set

! Y

set

:�x; y:X

set

:X

rel

(x; y)! Y

rel

(f:1 x; g:1 y)

Here :1 and :2 denote the projections of the �-type and the [: : :] notation facilitates the de�nition

of terms with free variables in a hopefully understandable way. We leave it as an exercise to

de�ne the remaining components and to verify that this de�nes indeed the desired exponential.

It is important that the underlying set of the exponential is not the full function space, since

otherwise the relation could not be proven reexive. In fact on higher types reexivity actually

means substitutivity, and it is by the requirement that all relations be reexive that we achieve

the interpretation of the substitutive identity type.
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4 Families of setoids

The most important ingredient needed to interpret Martin-L�of type theory is the correct def-

inition of type dependency. So we must say what a family of setoids indexed over a setoid

is.

De�nition 3 Let X be a setoid. A family of setoids indexed over X is given by the following

data.

� A type depending on X

set

x:X

set

` Y (x)

� A dependent relation on Y

x; x

0

:X

set

; y:Y (x); y

0

:Y (x

0

) ` S(y; y

0

)

� A \reindexer" which allows to substitute related elements of X

set

in Y

x; x

0

:X

set

; p:X

rel

(x; x

0

); y:Y (x) ` F (p; y):Y (x

0

)

such that S is an equivalence relation and such that F (y) is always S-related to y. More precisely

we require terms

x:X

set

; y:Y (x) ` re(y) : S(y; y)

x; x

0

:X

set

; p:X

rel

(x; x

0

); y:Y (x); y

0

:Y (x

0

); q:S(y; y

0

) ` sym(p; q) : S(y

0

; y)

x; x

0

; x

00

:X; p:X

rel

(x; x

0

); p

0

:X

rel

(x

0

; x

00

);

y:Y (x); y

0

:Y (x

0

); y

00

:Y (x

00

); q:S(y; y

0

); q

0

:S(y

0

; y

00

) ` trans(p; p

0

; q; q

0

) : S(y; y

00

)

x; x

0

:X

set

; p:X

rel

(x; x

0

); y:Y (x) ` ax : S(y; F (p; y))

If Y is a family of setoids indexed over X we shall denote its ingredients by Y

set

, Y

rel

, Y

reindex

,

: : : resp.

The idea behind the rewriter F is to allow substitution inside a dependent family if the indexing

elements are \equal", i.e related. It will be the main ingredient in the interpretation of the

identity elimination rule in the setoid model.

If X and Y are setoids we can form a constant family of setoids indexed over X whose

underlying set and relation are just their weakened companions taken from Y , whereas the

reindexer is the identity. Every ordinary dependent type induces a family of setoids with the

identity type as relation, and Subst

A

as reindexer. More examples arise from the constructions

on families of setoids we are going to describe.

5 Context comprehension

In the setoid model contexts will be interpreted as setoids, whereas types (in contexts) will be

interpreted as families of setoids indexed over their context. So the �rst thing we have to de�ne

is context comprehension, i.e. the rule

� ` A

�; x:A `
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The judgement � ` means that � is a derivable context. Let Y be a family of setoids indexed

over X . Its comprehension denoted Compr (X; Y ) is the setoid having as underlying set the

dependent sum �x : X

set

:Y

set

(x) and as relation

Compr (X; Y )

rel

[u; v : Compr (X; Y )

set

] = X

rel

(u:1; v:1)� Y

rel

(u:2; v:2)

where � is shorthand for the nondependent special case of the �-type. We have omitted the

�rst two variables to Y

rel

since they can be inferred from the context. Where appropriate we

shall do that in the sequel as well. That this is an equivalence relation is an easy consequence

of the laws for X

rel

and Y

rel

. Indeed the axioms on Y

rel

were precisely chosen so as to make

Compr (X; Y )

rel

an equivalence relation.

We must also interpret the canonical projection from the enlarged context to the original

one. We de�ne compr (X; Y ) 2 Mor (Compr (X; Y ); X) by

compr (X; Y )

fun

[u:Compr (X; Y )

set

] := u:1

compr (X; Y )

resp

[u; v:Compr (X; Y )

set

; p:Compr (X; Y )

rel

(u; v)] := p:1

6 Sections of families

Instead of de�ning arbitrary morphisms between families we restrict ourselves to \sections"

which will be used to interpret terms and can be viewed as family morphisms from the constant

(unit) family corresponding to the context itself into a family.

De�nition 4 (Sections) If Y is a family over a setoid X then a section of Y consists of a

term

x:X

set

` el : Y

set

(x)

and a proof that it respects the relations

x; x

0

:X

set

; p:X

rel

(x; x

0

) ` resp(p) : Y

rel

(x; x

0

; el(x); el(x

0

))

We denote the set of sections of Y by Sect (Y ) and refer to the components of a setoid by

el

and

resp

.

Every section induces a setoid morphism from its context to the comprehension of its type, more

precisely if M 2 Sect (Y ) then we get a morphism in Mor (X;Compr(X; Y )) whose function

part is given by

�x:X

set

:(x;M

el

(x))

In the sequel we shall identify a section with its associated morphism

7 Weakening and substitution

Instead of de�ning the substitution

2

of an element (a section) into a family we de�ne substitution

for arbitrary setoid morphisms which gives both simultaneous substitution by several terms and

weakening as special cases. This technique is reminiscent from categorical models of type theory.

Under this interpretation it is helpful to think of setoid morphisms as of tuples of terms (\context

2

We apologise for the apparent overloading of the term \substitution".
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morphisms" or \substitutions"). So let S be a family of setoids indexed over Y and f be a setoid

morphism from X to Y . We obtain a family of setoids over X denoted S[f ] by putting

S[f ]

set

[x:X

set

] := S

set

(f

fun

(x))

S[f ]

rel

[x; x

0

:X

set

; y:S

set

(f

fun

(x)); y

0

:S

set

(f

fun

(x

0

))] := S

rel

(f

fun

(x); f

fun

(x

0

); y; y

0

)

S[f ]

reindex

[x; x

0

:X

set

; p:X

rel

(x; x

0

); y:S

set

(f

fun

(x))] := S

reindex

(f

resp

(p); y)

We leave out the obvious proof components. This substitution operation is the �rst example of a

construction on setoids which blurs the distinction between \computational" part and \proof"

part, since the second component of the morphism f becomes part of the rewriter for the

substituted family. Later on, when we shall de�ne the identity type for setoids this distinction

will be destroyed completely.

Substitution along a morphism arising from a section corresponds to real substitution as in

�; x:A ` B(x)

� ` B(M)

whereas substitution along a morphism compr (X; Y ) interprets weakening

� ` B

�; x:A ` B

If no confusion can arise we abbreviate T [compr (X;S)] simply by T

+

. Remember also that

since we have notationally identi�ed sections and the corresponding morphisms, the substitution

of M 2 Sect (X;S) into T above Compr (X;S) will simply be written as T [M ].

Substitution also applies to sections; if M 2 Sect (S) then we obtain a section M [f ] 2

Sect (S[f ]) in the straightforward way. There is also a context morphism arising from substitu-

tion which is a bit di�cult to understand at �rst. It goes from Compr (X;S[f ]) to Compr (Y; S)

and we denote it by q(f; S). Its function component is de�ned by

q(f; S)

fun

[u : �x:X

set

:S

set

(f

fun

(x))] := (f

fun

(u:1); u:2) : �y:Y

set

:S

set

(y) : Compr (Y; S)

set

It is used to perform substitutions in variables other than the last one like in

� ` A

�; x:A ` B

�; x:A; y:B ` C

� `M : A

�; y:B(M) ` C(M; y)

Here A is a family of setoids over �, B is one over Compr (�; A), and C is a family over

Compr (Compr (�; A); B). M is a section of A. The conclusion is then obtained as

C[q(M;B)]

It is a characteristic property of substitution that the square of morphisms f , compr (Y; S),

compr (X;S[f ]), q(f; S) is a pullback.
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The �nal ingredient we require to interpret all manoeuvres with variables and substitutions

is the last variable in a context, i.e.

�; x:A ` x : A

In our setup this is a section of A

+

, since the type A on the rhs is actually weakened. We omit

the de�nition of this section which we denote by v0 (A).

It should be stressed that our substitution inherits the split property from the syntax. This

means that for f 2 Mor (X; Y ) and g 2 Mor (Y; Z) and S above Z we have the type equality

S[g][f ] = S[g � f ]

and also

S[id

Z

] = S

where id

Z

is the identity morphism and � is composition in the applicative order.

8 Dependent product

Let G be a setoid, S be a family over G and T be a family over Compr (G; S). We want to de�ne

a family over G which \internalises" the sections of T , i.e. the dependent product �(S; T ). As

in the case of the exponential of setoids its underlying set is a �-type

�(S; T )

set

[g : G

set

] := �F : �s:S

set

(g):T

set

(g; s) :�s; s

0

:S

set

(g):S

rel

(s; s

0

)! T

rel

(F s; F s

0

)

The relation is de�ned accordingly by

�(S; T )

rel

[g; g

0

:G

set

; U :�(S; T )

set

(g); U :�(S; T )

set

(g

0

)] :=

�s:S

set

(g)�s

0

:S

set

(g

0

):S

rel

(s; s

0

)! T

rel

(U:1 s; V:1 s

0

)

We leave out the de�nition of the other components, but mention that the proof of transitivity

requires the rewriter S

reindex

.

3

.

Next we de�ne introduction and elimination for the dependent product, more precisely if

M 2 Sect (T ) we construct

�

intro

(S; T;M) 2 Sect (�(S; T ))

and conversely if M 2 Sect (�(S; T )) and N 2 Sect (S) we construct

�

elim

(S; T;M;N) 2 Sect (T [N ])

in the straightforward way.

3

This means that if we had de�ned families of setoids without the rewriter, it would have been impossible to

de�ne the dependent product. This also means that if we apply the setoid construction to an arbitrary locally

cartesian closed category (lccc) we do not obtain an lccc again, but only a \display map category" [12] the display

maps being those maps which have a rewriter. In categorical terms these are the �brations in the 2-category of

setoids. In the author's opinion this fact is a convincing argument as to why locally cartesian closed categories

cannot be considered as a general notion of model for type theory.
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Compatibility with substitution Since in a model substitution is given as an additional

operation and cannot be de�ned by induction, it requires a proof that the inductive substitution

laws are actually satis�ed. In other words we have to show that substitution commutes with

product formation, as well as with introduction and elimination. In categorical jargon this is

referred to as \Beck-Chevalley condition". Consider the following situation, G, S, T as before;

B a setoid and f a setoid morphism from B to G. Now we may form the product of T and then

substitute along f :

�(S; T )[f ]

or �rst substitute f into both S and T and then take the product:

�(S[f ]; T [q(f; S)])

Unfortunately these families do not agree. Their sets of sections are equal, however, so that we

do not have to introduce explicit conversion functions to pass from one type to the other. There

is no problem with the introduction and elimination operators, they commute with substitution.

Equality rules It remains to check the � and �-equations for �-introduction and elimination.

Both are inherited from their syntactic companions.

9 The identity type

We can now reap the fruits of the laborious model constructions carried out so far and de�ne

the identity setoid which will satisfy the extensionality principle. Suppose we are given a setoid

G and a family of setoids S over G. We �rst form the context consisting of G and two copies

of S. In combinator notation this is Compr (Compr (G; S); S

+

) =: G:S:S. The identity setoid

denoted Eq (S) is a family over this. We de�ne its components in order.

Eq (S)

set

[(g; s

1

; s

2

) : (G:S:S)

set

] := S

rel

(g; g; s

1

; s

2

)

Notice that the underlying set of the context for Eq is a �-type with three components.

Eq (S)

rel

[u; u

0

:(G:S:S)

set

; i:Eq (S)

set

(u); i

0

:Eq (S)

set

(u

0

)] := 1

where 1 is the unit type with single inhabitant ? : 1. So all elements of the identity setoid are

related. This is clearly an equivalence relation. To de�ne the rewriter Eq (S)

reindex

we make use

of transitivity and symmetry of S

rel

. We shall now embark on the de�nition of the combinators

associated with the identity type. We henceforth use the informally introduced dot notation for

successive context comprehensions.

Reexivity The canonical element of the identity type is a section of Eq (S)[v0 (S)]. It is

de�ned by

re (S)

el

[(g; s) : Compr (G; S)] := S

re

(g; s)

The

resp

component is trivial since any two elements of the identity setoid are related.
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Identity elimination The main part in the de�nition of the J-eliminator for Eq (S) is the

rewriter S

reindex

. We must do a bit of work though in order to get the various contexts and

substitutions right. Let C be a family of setoids indexed over G:S:S:Eq(S). Substituting re

into it gives

C[q(v0(S);Eq(S))][re(S)]

Let M be a section of this family which we will abbreviate by C(re ). We must construct a

section of C from this. We de�ne

J(C;M)

el

[(g; s

1

; s

2

; p) : G:S:S:Eq(S)] :=

C

reindex

((G

re

(g); S

re

(s

1

); p; ?); (M

el

(g; s

1

)))

We omit the

resp

part of J(C;M). Its main ingredient is S

ax

| the proof that rewriting does

not alter the S

rel

-class. The de�nition of the other eliminator K is similar.

Unfortunately our de�nition of identity elimination does not validate the corresponding

�-rules up to conversion, i.e. we do not have

J(C;M))[q(v0(S);Eq(S))][re (S)] =M

We can, however, show that the corresponding identity type is inhabited, i.e. that both sides

are related. So in the interpretation we have to replace all instances of the �-rule for equality by

propositional equalities and suitably interspersed Subst -operations. Indeed one might envisage a

completely descriptive type theory with equality con�ned to syntactic identity and computation

rules replaced by propositional equalities. Terms are then in 1-1 correspondence to derivations.

Fortunately in our model computation for the �-type does hold and it is only in the case of the

identity type that we have to accept this less comfortable presentation.

Extensionality Let G and S be as before, T above G:S and U; V sections of T . Moreover,

assume a section M of Eq (T )[V [compr (G:S; T )]][U ] =: Eq (S)(U; V ), i.e. a proof that U and

V are equal. We must show that their respective abstractions are equal as well | we need a

section of

Eq (�(S; T ))[�

intro

(T; V )

+

][�

intro

(T; U)]

The element part of M is basically (modulo some currying of �-types) a term of type

g:G

set

; s:S

set

(g) ` S

rel

(U

el

(g; s); V

el

(g; s))

The element we are looking for amounts to an inhabitant of

g:G

set

; s; s

0

:S

set

(g) ` S

rel

(U

el

(g; s); V

el

(g; s

0

))

We obtain that by using either U

resp

or V

resp

and transitivity. The

resp

part is again trivial.

Compatibility with substitution Fortunately with the identity type no such problems as

with the dependent product arise, all constructions commute with substitution up to conversion.

However the identity types of the two di�erent but should-be equal instances of a substituted

� remain di�erent. Again, however, it is possible to pass from one to the other in a coherent

way.
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10 Interpretation of other type constructors

Inductive types like the natural numbers or the booleans lift straightforwardly to the se-

toid model; the relation is simply the identity type. At the moment we are not sure about

parametrised inductive types like lists or trees; we expect, however, that a suitable relation can

always be formulated.

Strong �-types can be interpreted staightforwardly, we have done so in the Lego implemen-

tation mentioned below.

It should be possible to interpret a universe by using the identity type as relation, but the

details remain to be checked.

A quotient type will have as underlying set the same as the one of its type of representatives.

The relation, however, will be the symmetric, transitive closure of the quotienting relation. The

fact that this relation is given \internally" as a family of setoids means that it is compatible

with the relation on the set of representatives. We will describe this more precisely and more

formally in a future paper.

11 Other approaches to extensionality

There are at least two more solutions to the extensionality problem. One consists of adding a

new universe of propositions which does not a�ect the types at all. One is then free to add any

propositional assumptions one likes, provided one can give a model or other proof of consistency,

but one loses the possibility of extracting programs from proofs, in particular the possibility to

reindex dependent types along propositional equalities. If one is interested in formalisations of

algebra where dependent types play a subordinate rôle, this is a very simple yet sound approach.

The other solution is again a syntactic model construction, which di�ers from the given one

in that we interpret families of setoids as nondependent sets where a non-reexive relation singles

out the di�erent �bres. The identity type becomes the unit type under this interpretation. In

this model the type part and the relation part are completely separated, so that the relation

part can be projected away. What remains is a kind of realisability interpretation of type

theory. Dependent types are interpreted as simple types, dependent product as rrow type

and the identity type becomes the unit. Both constructions will be described in the author's

forthcoming thesis [4].

12 Lego implementation

The setoid model has been implemented in the Lego system [9]. This means that the combinators

we have de�ned are actually available and setoids can be built together using these combinators

according to some derivation in type theory. Also we have used Lego to check all the equations

which are required to hold. For the future it might be useful to have an interpreter which

translates actual lambda terms into such combinators.

13 Conclusion

We have given an interpretation of intensional type theory with the Ext -axiom in intensional

type theory. One may now use the type theory with Ext and eliminate its occurrences by

a post-hoc interpretation in the setoid model. But is there any use in doing so? Certainly
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the terms obtained from this interpretation can be executed, whereas the terms containing

Ext cannot. But if one is merely interested in execution one may just as well use the much

simpler realisability interpretation into untyped lambda calculus where Ext can be realised by

the identity.

In our opinion the real value of model constructions like the one we have described lies in

the syntactic justi�cation of rules like Ext or quotient types, and in the insight that formal

proof development in type theory does not necessarily mean to carry around lots of di�erent

equalities and substitutivity proofs, since in principle the translation into setoids may always

be performed.

>From a theoretical point of view our construction is interesting since it represents an al-

ternative to the approach to quotients described e.g. in [5] where morphisms are functional

relations instead of true functions and thus correspond to speci�cations rather than actual al-

gorithms. From outside the main di�erence is that our quotient types are not e�ective. This

means that even if R is an equivalence relation it is in general impossible to conclude from

Eq

A=R

([Q]

R

; [N ]

R

) that M and N are actually related.
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Abstract

ALF is a proof editor in which the proofterm plays an important role. To prove a

statement in ALF is to interactively construct a proofterm by direct manipulation of the

(partial) proofterm. A partial proofterm is a term which contains placeholders, i.e. \holes"

which are meant to be �lled in. The two main operations on a proofterm is to replace a

placeholder by a partial proofterm (re�nement), and to replace a partial proofterm by a

placeholder (local undo). Local undo refers to a \local" removal of the unwanted part of a

proofterm, in contrary to the the global undo (or state undo) which acts on the global state

of the proofsystem. Re�nement and local undo are dual actions in the sense that the state

of ALF is determined entirely by the partial proofterm, regardless of how and in what order

the two operations has been used to build that proofterm. To achieve duality between the

operations, information about dependencies and sharing must be taken into account in the

representation of partial proofterms. The proofterm representation and the procedures of

the two operations are explained in this paper.

1 Introduction

The aim of ALF is to have a proof editor in which formal proofs can be made as convenient and

exible as possible. The object to be edited in ALF is a (named) partial proof term, in contrary

to most other systems which are command oriented (and acts on the state of the proof engine). A

proofterm may contain several placeholders, and the user may choose to re�ne any placeholder

at any time. Moreover, there may be several partial proofterms simultaneously, which for

example allows the user to add a lemma at any time. The user chooses freely which proofterm

to work on. The exibility in construction order makes it possible to fully take advantage of the

typechecking, since re�ning a placeholder may force the instantiation of another placeholder

of which the �rst depends. The instantiation is done by uni�cation, but since placeholders

may be of higher order and higher order uni�cation is neither complete nor decidable [Hue75],

uni�cation can not always solve the equations restricting the placeholders. We have chosen to

leave the \di�cult part" of uni�cation as constraints, and the \simple part" will be automatically

instantiated.

x

lena@cs.chalmers.se
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Even though constructing proofs is the purpose of these systems, we believe that some kind of

undo mechanism is an important feature of a practical system. The obvious reason is that if we

seriously want to construct proofs in these systems, and not simply check formally completed

proofs, there must be a convenient way to recover from mistakes. Most systems in the same

class as ALF support the global undo mechanism (if they support backtracking at all), which

goes well together with state transition systems. However, we believe that with the exibility

of manipulating proofterms rather freely, we also need another way of erasing wrong attempts.

For example, global (state) undo could force the deletion of a completely unrelated part of the

proofterm, or even another proofterm, and an extensive amount of work may be lost. With

the local undo mechanism, the user can remove any part (and only that part) of a proofterm

he/she desires. It should be noted that this may resume in a completely new state, which is not

possible with the state undo operation. The desire for local undo is also expressed in [TBK92].

On the other hand, if we restrict ourselves to constructing proofterms strictly in dependency

order (left to right, top to bottom), global undo would su�ce, since the two undo operations

would have the same e�ect.

There are possibly some additional usage of the local undo operation. In programming one

often reuses code by copying parts of the program text and makes (small) alterations to get a

similar program. Copying and using local undo might be a convenient way of producing proofs

similar to completed proofs. Another interesting aspect to investigate is the possibility of using

the old ancient way of solving problems by example (see [M�ae93]) and generalize the solution

by local undo.

This paper is organized in the following way, �rst we will give an example as motivation for our

local undo, followed by an explanation of the problems with the operation. Then we describe

the scratch area which is the proof construction part of ALF. The part concerning the theory

de�nitions (the environment) is beyond the subject of this paper, but can be found in [Mag92].

We will continue by describing the constraints, which are the equations restricting the choices

of unknowns, and the procedure of simplifying a set of constraints. Section 8 and 9 explains

the two main operations on the scratch area, namely re�nement of an unknown and local undo.

Finally, some optimizations in the actual implementation of the algorithms presented.

2 Motivation of local undo

We believe that the advantage of local undo is well illustrated in the little story below (see

picture 1.) The story is about Calvin who is getting dressed for school one winter morning.

The story can easily be formalized in ALF. We will de�ne the set of clothes by

Clothes : Set

hat : Clothes

scarf : Clothes

jacket : Clothes

socks : Clothes

shoes : Clothes

mittens : Clothes

and to be dressed as a proposition which says that there exists a list of clothes such that there
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Figure 4: Local undo beats global undo...

is one of each of the clothes items and they are in the proper order:

Dressed � 9l 2 List(Clothes):OneOfEach(l)&ProperOrder(l)

where OneOfEach is de�ned as

OneOfEach(l) � (lenght(l) =

N

6) &Mem(hat; l) &Mem(scarf; l) & : : :&Mem(mittens; l)

and ProperOrder as

ProperOrder(l) �

(last(l) =

Clothes

mittens) & Before(socks; shoes; l) & Before(jacket; scarf; l)

since we all know that it is impossible to get dressed with big mittens on, that socks must be

put on before shoes and jackets must be put on before scarfs. Before is inductively de�ned with

two constructors,

Before : (c1,c2: Clothes ; l: List(Clothes)Set

before1 : (c1,c2: Clothes ; l : List(Clothes); h: Mem(c2,l)) Before(c1,c2,c1::l)

before2 : (c1,c2,c3: Clothes ; l:List(Clothes); h:Before(c2,c3,l)) Before(c2,c3,c1::l)

229



where the �rst constructor states that if c1 is the �rst element in a list and c2 is a member of

that list, then c1 is before c2 in that list. The second constructors corresponds to the inductive

case, when we know that c2 is before c3 in a list it still holds if we put on element in front of

the list.

Now Calvin has to prove that he is properly dressed. He proceeds by �nding the six items of

clothes which corresponds to re�ning the unknown goal with a list of length six

l = [?

1

; ?

2

; ?

3

; ?

4

; ?

5

; ?

6

]

and he can prove that length(l) =

N

6. He puts on his shoes, by re�ning ?

1

= shoes

l = [shoes; ?

2

; ?

3

; ?

4

; ?

5

; ?

6

]

and continues with the jacket, scarf, hat and mittens, resulting with the list

l = [shoes; jacket; scarf; hat;mittens; ?

6

]

and he can simultaneously prove Mem(shoes; l), Mem(jacket; l) ; : : : ; Mem(mittens; l) and

Before(jacket; scarf; l). But at this point he realizes that his socks is left over... He tries to

sneak out the door, but Calvins mom (read ALF) forbids it. To prove OneOfEach(l) he needs

?

6

= socks, but this violates that last(l) =

Clothes

mittens. This is a dead end. After some time

of deep contemplation, Calvin realizes that he must not get totally undressed, but it is enough

to remove his mittens and shoes:

l = [?

1

; jacket; scarf; hat; ?

5

; ?

6

]

and he can still keep the proofs of

Mem(jacket(l)),Mem(scarf; l),Mem(hat; l) and Before(jacket; scarf; l)

since they do not depend on the choices of ?

1

; ?

5

and ?

6

. The only thing left to do is to �ll in l

as

l = [socks; jacket; scarf; hat; shoes;mittens]

and to prove the remaining few properties.

3 Terms and Types

Terms in ALF are lambda terms, extended with constants and explicit substitution. Open

terms, which contain free variables, must be validated in a context. A context is a sequence of

typings of distinct free variables. A substitution is a sequence of simultaneous assignments of

terms to variables

fx

1

:= a

1

; x

2

:= a

2

; : : : ; x

n

:= a

n

g:

Types are generated from a set of ground types and a dependent function type constructor. A

ground type is either the prede�ned type Set or a term of type Set and a type � is

� ::= �

ground

j (x

1

: �

1

; : : : ; x

n

: �

n

)�

ground

for n > 0,

The syntax of terms is the following

e ::= x j c j [x

1

; : : : ; x

n

]e j e(e

1

; : : : ; e

n

) j cfx

1

:= e; : : : ; x

n

:= eg for n > 0,

where x denotes variables and c constants.

Additional restrictions are that 1) in an abstraction [x

1

; : : : ; x

n

]e, e is not itself an abstraction,

2) the head e in an application e(e

1

; : : : ; e

n

) is not an application nor an abstraction and 3) in

an explicit substitution fx

1

:= e; : : : ; x

n

:= eg applied to the constant c, the variables x

1

; : : : ; x

n

must all be declared in the local context of c.
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We will denote terms by a; b; e or A;B, types by �; �, contexts by �;� and substitutions by .

An extension of a context � (or substitution ) is denoted by � + [x : �] (or by fx := ag).

4 Why is local undo di�cult?

The complication in performing local undo properly is that there is information hidden in the

visible output, which must be taken into account. Since we want local undo to be the dual

operation of re�nement, there are mainly two problems we must consider; instantiations caused

by constraints and implicit sharing of subterms. We also need to make sure that the automatic

instantiations and the constraints correspond to the proofterm after the undo operation, which

means that the restrictions forced by the removed subterm should be removed, but all other

restrictions kept.

Instantiations caused by constraints, which means that an unknown is instantiated be-

cause of a choice of another unknown, and if the latter is removed we expect the instanti-

ation of the former to be removed as well, since it is not among the user re�nements which

should fully determine the resulting state. The instantiation is possible since the order in

which unknowns are solved can be chosen freely, and a given solution to one unknown may

force a particular instantiation to another unknown (due to dependent function types).

For example, if mem is of type (A : Set; a : A)Set and an unknown of type Set is re�ned

(partially solved) with mem, the re�ned expression will become

mem(?A; ?a) : Set

and two new unknowns are created

?A : Set, and

?a : ?A:

The expression may be completed by either

(1) �rst solving ?A with N , and then ?a with 0, or

(2) directly solve ?a with 0

yeilding in both cases the solved expression

mem(N; 0) : Set

If the unknown ?a is solved directly, then ?A must be instantiated to N to make the

term mem(?A; 0) type correct, which means that the instantiation of ?A is a consequence

of the choice of ?a. Therefore, if the choice of ?a is withdrawn, the instantiation of ?A

ought to be removed as well. On the other hand, if the user had �rst chosen ?A to be

N , then the instantiation should not be e�ected since the choice of re�ning ?A with N

is still a valid choice. Therefore, there will be a distinction between re�nements by the

user and instantiations forced by type checking. Note also that by re�ning ?a �rst, only

one re�nement was needed to complete the term, and this is what we meant by taking

advantage of the type checking.

Implicit sharing of subterms Consider the following example: Suppose we want to prove

that 2 divides 6, by solving the goal

?x : DIV (2; 6)

where DIV (m;n) � 9k:m � k =

N

n and a =

N

b is an abbreviation of Id(N; a; b) which is

the identity set with only one constructor re stating reexivity. The solution is obvious
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by choosing the witness k to 3, yeilding the term

< 3; ?b > where ?b is of type 2 � 3 =

N

6

and ?b is solved by reexivity, yielding the proofterm < 3; re (2 � 3) > : If we remove the

choice of the witness k, we resume at

<?k; re (2�?k) >: DIV (2; 6)

where ?k is a new unknown with the restriction

?k+?k = 6: (2�?k unfolded)

Note that the two occurences of 3 was implicitly shared in < 3; re (2 � 3) >, and the

reason for this is that the �rst step of re�nement we actually did was to re�ne the goal

?x : DIV (2; 6) by the pairing operation, yeilding the term

<?k; ?b >: DIV (2; 6), where

?k : N , and

?b : 2�?k =

N

6

The implicit sharing of ?k from this �rst step is remembered, and this is necessary to

prevent illtyped terms (<?k; re (2�?3) > is not well typed). The restriction ?k+?k = 6

comes from typechecking re (2�?k) : 2�?k =

N

6.

Note that the state (proofterm) after removing the witness is a completely new state

(proofterm).

If we now try to generalize the statement by removing the choice of n = 6, then the result

becomes

<?k; re (2�?k) >: DIV (2; ?n)

with the constraint

?k+?k =?n.

Since the constraint uniquely determines ?n, it is instantiated, yielding

<?k; re (2�?k) >: DIV (2; ?k+?k)

If we now re�ne ?k with a variable and then abstract on that variable, we have gener-

alised the proof to work for even numbers, which can be seen as a toy example of proof

generalisation.

In the local undo procedure, we want to remove the minimum amount of instantiations to

save useful work for the user. But we need to be careful not to loose necessary restrictions

of the unknowns involved in the operation. Since several constraints may restrict the same

unknowns, they may also interact in the process of searching automatic instantiations in a

complicated manner. To avoid retracing the interaction between constraints and in favor of

a faster re�nement procedure, we have chosen an algorithm which recomputes the constraints

after local undo. This will be discussed more in detail in section 9.

5 The scratch area

The scratch area contains two parts - a set of (non recursive) constant declarations D and a

set of global constraints. The constraints are separated in two parts as well, the simple (or

solved) constraints C

S

(corresponding to automatic instantiations) and the other constraints C.

A scratch area is denoted by < D; < C

S

; C >>.
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Declarations

A constant declaration is either unknown

u =? : � �

or de�ned by a at term t

flat

u = t

flat

: � �

where t

flat

::= c(u

1

; : : : ; u

n

) j c(u

1

; : : : ; u

n

) j x(u

1

; : : : ; u

n

) j [x

1

; : : : ; x

n

]u for (n � 0)

c is a constant (from the environment or the scratch area),

 is a substitution containing only at terms,

x is a variable occurring in �,

and u is a constant in the scratch area.

For example,

add = [x; y]u

1

: (x; y : N)N [ ]

u

1

= natrec(u

2

; u

3

; u

4

; u

5

) : N [x; y : N ]

u

2

= [n]u

6

: (n : N)Set [x; y : N ]

u

6

= N : Set [x; y; n : N ]

u

3

=? : u

2

(0) [x; y : N ]

u

4

=? : (w : N ; v : u

2

(w))u

2

(succ(w)) [x; y : N ]

u

5

= y : N [x; y : N ]

is a set of declarations. We will distinguish between visible and invisible constants, and we

will use the convention of properly naming visible constants, whereas invisible constants

will be denoted u

1

; u

2

; : : :. The de�nitions of invisible constants will be expanded before

presenting the scratch area for the user, yielding

add = [x; y]natrec([n]N; ?u

3

; ?u

4

; y) : (x; y : N)N [x; y : N ]

for the example above. The restriction of de�nitions to at terms, means that we will

have a (invisible) name for each proper subterm of any visible de�nition. Since the name

is used in the other declarations, the problem of implicit sharing of subterms is taken care

of.

Constraints

A constraint is an equation

e

1

= e

2

: � �

where at least one of e

1

and e

2

is an incomplete term. Constraints are denoted by quadru-

ples < e

1

; e

2

; �;� >.

Def An incomplete term is a term of the form

u

where u is an unknown constant

u

where u is an unknown constant and  a substitution

u(e

1

; : : : ; e

n

) where u is an unknown constant

u(e

1

; : : : ; e

n

) where u is an unknown constant and  a substitution

b(e

1

; : : : ; e

i

; : : : ; e

n

) where b is de�ned by pattern matching, i is the position

of a main argument of the function b, and e

i

is an incomplete term.

In the last case, the incompleteness of a main argument e

i

prohibits a match of any pattern

de�ning the function b, since e

i

is not on constructor form. The reason is that the list
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of patterns are guaranteed to be exhaustive and nonoverlapping ([Coq92]) which means

that each position in the patterns are either all constructors or all variables.

Def A simple constraint is a constraint < e

1

; e

2

; �;� > where e

1

(or e

2

) is an unknown

constant u 2 D, and where e

2

(e

1

respectively) does not depend on u, i.e., the

declaration is not circular.

The reason for requiring non circularity in a simple constraint, is that circular constraints

(or cyclic sets of constraints) may actually appear in the global set of constraints. Since

the simple constraints corresponds to the automatic instantiations of unknowns, the re-

quirement is needed to guarantee non recursive declarations in D. (This can be compared

with the occurence check in uni�cation algorithms). On the other hand, circularities in

constraints may disappear as in the equation

u

i

= u

j

(u

i

) : � �

which is a possible constraint. With u

j

instantiated to a constant function [x]c, the equa-

tion reduces to the simple constraint

(u

i

; c; �;�).

The division of the scratch area in the parts < D; < C

S

; C >>, gives us the possibility of

distinguishing user re�nements (the declarations with de�nitions in D) from the unknowns

which are forced to a unique solution relative to D (the simple constraints C

S

). When the

scratch area is presented, simple constraints are considered as ordinary re�nements and all

de�nitions of invisible constants are expanded.

6 Producing constraints

The set of global constraints in the scratch area originate in type checking the declarations in D.

The procedure is as follows. When an unknown constant is re�ned with a term e, e is checked

to be of proper type, yielding a set of type equations that must be ful�lled for e to be type

correct. The type equations are simpli�ed to a set of term equations if the two types in each

equation match structurally, and a type checking failure otherwise. The term equations are

either reduced to a set of constraints by the conversion algorithm described below, or produce

a failure. If the procedure was executed successfully so far, the set of constraints from the last

step is added to C in the global constraints. Finally, the global constraints are simpli�ed as far

as possible and the result is checked to satis�es the requirements of an admissible re�nement

(described in section 8).

We will start by presenting an alternative type checking algorithm from the one given in [Mag92],

which is independent of the reduction and conversion algorithms. Thereafter we will briey

present the conversion algorithm (= simpli�cation of constraints), before we continue with the

simpli�cation of a global set of constraints.
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6.1 Type checking

The term e has type � in context � in a given environment �, if the set of equations produced by

the type checking algorithm has a solution, i.e there are instantiations of all unknowns occurring

in e; � and �. If e, � and � are all complete, i.e., they contain no unknowns at all, then the

algorithm becomes a decision procedure for type correctness since the only possible answers are

an empty set of constraints or a failure. The type checking algorithm computes (denoted =))

a set of type equations (�), which contains tuples < �; �

0

;� > meaning that � and �

0

must be

convertible in the context �. It proceeds by case analysis of the term structure.

Var :

x : �

0

2 �

x : � � =) f< �; �

0

;� >g

Const :

c : �

0

2 �

c : � � =) f< �; �

0

;� >g

Abs :

e : � � + [x

1

: �

1

; : : : ; x

n

: �

n

] =) �

[x

1

; : : : ; x

n

]e : (x

1

: �

1

; : : : ; x

n

: �

n

)� =) �

App :

a

1

: �

1

� =) �

1

a

2

: �

2

fx

1

:= a

1

g � =) �

2

.

.

.

a

n

: �

n

fx

1

:= a

1

; : : : ; x

n�1

:= a

n�1

g � =) �

n

f(a

1

; : : : ; a

n

) : � � =)

S

n

i=1

�

i

[ f< �; �

0

;� >g

where  is fx

1

:= a

1

; : : : ; x

n

:= a

n

g and f has type (x

1

: �

1

; : : : ; x

n

: �

n

)�

0

. Note that f must

be a constant or a variable and can be looked up in the environment or context, respectively.

The transformation from type equations to term equations is straight forward and therefore

omitted here. The simpli�cation of term equations, also referred to as conversion, is de�ned

in terms of reduction to head normal form. The reduction rules in question are � reduction

(formulated in terms of explicit substitution), � expansion, and the ordinary � calculus struc-

tural rules. Moreover, there are rules for explicit substitutions and expansion of simple constant

de�nitions as well as pattern matching. We will leave out the actual rules, simply state that

the result of the reduction is one of the following cases

� the term is on head normal form (the head of the term is a constructor or a variable, or

the term is an abstraction)

� the term is irreducible, which means that the term is not on head normal form neither is

the term incomplete but it could not be reduced any further. The only possible situation

is when the term is a function de�ned by pattern matching applied to all its arguments,

where there is a variable (or an irreducible term) in the position of a main argument of

the function.

� the term is incomplete, as de�ned above.
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6.2 Conversion

The check for conversion is done in four stages. The �rst stage checks trivial cases such as

syntactic equality or if either of the terms are unknowns. The second stage assures that the type

of the terms are ground by transforming a conversion problem of higher type to an equivalent

conversion problem of ground type. This is specially helpful in the pattern matching, since all

functions will be applied to the proper number of arguments. The following stage reduces both

terms to head normal form, irreducible form or incomplete form, respectively. The �nal stage

investigate the form of the terms and invokes the (simpler) head conversion check when needed.

The computation of the conversion problem, denoted by

Conv(e

1

; e

2

; �;�)

results in a set of constraints (�), or a failure denoted by Fail, as shown below

Stage 1

If e

1

� e

2

then Conv(e

1

; e

2

; �;�) =) ; (empty set of constraints)

If either e

1

or e

2

is an unknown constant, then Conv(e

1

; e

2

; �;�) =) f< e

1

; e

2

; �;� >g

Stage 2

If � is a function type of arity n (i.e., (x

1

: �

1

; : : : ; x

n

: �

n

)�), then both e

1

and e

2

are

applied to n new variables, say y

1

; : : : ; y

n

. The transformation corresponds to �-expansion

followed by possibly �-conversion and removal of common abstraction. The transformed

conversion problem will become

Conv(e

1

(y

1

; : : : ; y

n

); e

2

(y

1

; : : : ; y

n

); �;�

0

)

where  is the substitution fx

1

:= y

1

; : : : ; x

n

:= y

n

g and �

0

is the extension of � by the

new variables y

1

; : : : ; y

n

.

Stage 3

Apply the reduction to head normal form to both terms, and depending on the status of

the reduced terms e

0

1

and e

0

2

, we take the following actions

� If any of the reduced terms are an incomplete term, then Conv(e

0

1

; e

0

2

; �;�) =) f<

e

0

1

; e

0

2

; �;� >g

� If both terms are irreducible, then the head conversion algorithm is invoked.

� If both terms are on head normal form, then the head conversion algorithm is invoked.

� If neither of the above holds, (i.e., one term is on head normal form and one is

irreducible), then the conversion fails, since the head of the irreducible term must be

a function de�ned by pattern matching, whereas the head of the other is a constructor

or a variable.

Stage 4

We only have to consider two cases in the head conversion, since we know that e

1

and

e

2

are on head normal form or irreducible, and since the type is ground, they are not

abstractions. The only possibilities are for the heads to be variables, constructors or

functions constants, applied to a proper number of arguments.
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* b(a

1

; : : : ; a

n

) and b

0

(a

0

1

; : : : ; a

0

n

)

if b � b

0

then

Conv(a

1

; a

0

1

; �

1

;�) =) �

1

.

.

.

Conv(a

n

; a

0

n

; �

n

;�) =) �

n

Conv(b(a

1

; : : : ; a

n

); b

0

(a

0

1

; : : : ; a

0

n

); �;�) =)

S

n

i=1

�

i

else Fail (for b 6� b

0

).

* b and b

0

Conv(b; b

0

; �;�) =)

(

; if b � b

0

Fail otherwise

7 Simplifying the global set of constraints

The simpli�cation proceeds by applying the following rule of transformation, divided in two

steps, to the global set of constraints < C

S

; C >:

1. Pick out a simple constraint < u; e; �;� > in C (if there are any), replace u by e everywhere

in C

S

and C and add the simple constraint to C

S

.

2. For each constraint in C, replace the constraint with its corresponding set of (simpler)

constraints, i.e., replace < e

1

; e

2

; �;� > by Conv(e

1

; e

2

; �;�) or fail if the conversion fails.

This replacement only e�ects constraints which are not fully simpli�ed, which means that

the e�ected constraints previously contained the unknown u from above, which has been

replaced by the term e.

This transformation will be performed until there are no more simple constraints to pick. It

will terminate since

1) the number of unknowns are �xed, and for each transformation the number of unknowns

occurring in C decreases by one, and

2) when a constraint is replaced by the simpli�cation of the constraint, the result is either

empty, identical to the original constraint or replaced with a set of constraints corresponding to

the arguments compared pairwise which are all strictly smaller in complexity then the original

constraint.

Def A normal set of constraints is a set < C

S

; C > such that the rule of transformation is not

applicable to the set.

Note that < C

S

; ; > is trivially a normal set.

Def A set of simple constraints C

S

is an independent substitution if for any constraint (u; e; �;�) 2

C

S

, u does not occur in any other constraints in C

S

.

Proposition

Let < C

S

; C > be a normal set of constraints obtained by the transformation rule above.
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Then C

S

is an independent substitution.

Proof: By induction on the number of simple constraints in C

S

. One simple constraint is an

independent substitution by the de�nition of simple constraint and the only way to increase

C

S

is by the transformation rule �rst step, which preserves the property of independent

substitution since the de�nition of the added constraint is expanded everywhere.

Conjecture 1.

Let < C

S

; ; > be a set of constraints. Then for each constraint < u; e; �;� > in C

S

, e : � �

is a valid judgement for any instantiations of the unknowns occurring in the constraint.

The intuition is that since C is empty, there are no restrictions at all on the unknowns in the

constraint, which means that we may assume the unknowns.

The following conjecture captures the idea of the state being determined by the partial proofterm:

Conjecture 2.

Let < D; < C

S

; ; >> be a scratch area. Then C

S

is uniquely determined from D.

The intuition behind this conjecture is that the constraints in C

S

are all simple constraints, i.e.,

there is only one possible instantiation for each unknown. This means that we have a solution to

the uni�cation problem (since C is empty there are no unsolved constraints left). What we claim

is that this solution is unique. On the other hand, the conjecture is not true if C is not empty,

unless we restrict ourselves to a selection algorithm which chooses the \smallest" unknown (in

some ordering of unknowns), when there is a choice. The reason is that, for example, the set

with the two constraints

< u

1

; f(u

2

); �;� > and < u

2

; g(u

1

); �;� >

is either simpli�ed to

< u

1

; f(u

2

); �;� > and < u

2

; g(f(u

2

)); �;� >

or to

< u

2

; g(u

1

); �;�> and < u

1

; f(g(u

1

)); �;� >

where in both cases the former constraint is simple and the latter circular (and therefore not

simple). The result depends on which constraint is �rst chosen. However, we believe that

this situation is only possible when the starting set of constraints is circular, and the circle of

dependent constraints will eventually result in at least one cyclic constraint which is not simple

by de�nition. Therefore, C can not become empty without �rst eliminating the circularity in

the set of constraints.

8 Re�nement

A re�nement of an unknown constant u, where u =? : � � 2 D and u is not given a solution

in C

S

, is to de�ne u to be (the at term) e. The re�nement procedure is done in the following

�ve steps

1. e is checked to be of type � in context �, producing a set of type equations.

238



2. The set of equations is simpli�ed, producing a set of constraints � or a failure.

3. If 2) succeeded, � is added to the global set of constraints and the entire set is simpli�ed,

i.e.,

< C

S

; C [ � > �! < C

0

S

[ C

S

u

; C

0

> or FAIL

where C

S

u

is the new simple constraints which are consequences of the re�nement of u.

4. If 3) succeeded, we must check that the solutions given in C

S

u

all �t their scopes, i.e., if

< u; e; �;�> 2 C

S

u

and

u =? : � � 2 D

then we must check that all free variables in e is in the context �. An example of this

problem is given below.

5. If 4) succeeded, then the re�nement is admissible, and results in the new scratch area

< D; < C

S

; C > > �! < D

0

; < C

0

S

[ C

S

u

; C

0

>>

where D

0

= D with ? replaced by e in the declaration of u.

The problem of a solution in C

S

not being in the proper scope can only arise when an unknown

u with context � is used in the de�nition of another declaration u

0

(with context �) and � � �,

i.e., � is a proper subcontext of �. (The converse is not possible since the variables in � are

\free in u", and must be declared in the context where u is used). Moreover, u must get its

instantiation because of the way it is used in u

0

, i.e., u will occur in a constraint produced from

type checking the declaration u

0

, which has access to the larger context �. We will illustrate

the scoping problem with the example of trying to prove the proposition 9x:8y:R(x; y) for some

relation R.

Ex. Suppose there is a constant

re : (x : a)R(x; x) [ ]

and the scratch area declarations

proof =? : R(?x; y) [y : A]

x =? : A [ ]

which come from the proposition above. Re�ning proof with the constant re, creates a

new unknown constant u (for the argument of re) and yields the declarations

proof = re (?u) : R(?x; y) [y : A]

x =? : A [ ]

u =? : A [y : A]

The type of re (?u) is R(?u; ?u), so the result of type checking the declaration of proof

is the equation (R(?u; ?u) = R(?x; y) : Set [y : A]) which is simpli�ed to

u =?x : A [y : A]

u = y : A [y : A]

which results in the two simple constraints

u = y : A [y : A]

x = y : A [y : A]

but where ?x is instantiated to y, which is not in the scope of ?x (since the local context

of x does not contain y).
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Conjecture 3. If u is given a solution in C

S

which is not in the scope of u, then u has no

solution.

The argument is that if u is given a solution in C

S

, then that is the only possible instantiation

(by uni�cation) and since it is not a valid solution, there is none.

8.1 User friendly re�nement

We have described the atomic re�nement, when the term e to re�ne with is restricted to a at

term. Since the �rst step in the atomic re�nement is to type check e, all constants in e must be

known before the re�nement. Neither of these two restrictions are particularly user friendly, and

therefore the system preprocesses the user re�nement and generates the new unknown constant

declarations before the actual re�nement. Moreover, any user re�nement u = e where e is not

at, can easily be transformed into a sequence of re�nements (with at terms) by investigating

the term structure.

Recall that a at term is either an abstraction [x

1

; : : : ; x

n

]u or b(u

1

; : : : ; u

n

) where b is either

a constant or a variable. It is the u in the abstraction and the arguments u

1

; : : : ; u

n

in the

application we want the system to generate new unknown declarations for. Since in the ab-

straction there is nothing the user must contribute with, there is a special command that given

an unknown constant u

u =? : (x

1

: �

1

; : : : ; x

n

: �

n

)� �

performs the abstraction by adding a new constant u

0

u

0

=? : � � + [x

1

: �

1

; : : : ; x

n

: �

n

]

and invokes the atomic re�nement

u = [x

1

; : : : ; x

n

]u

0

In the application case, the user supplies the constant or variable, and its type is looked up and

compared to the type of the constant to be re�ned. If the constant/variable needs to be applied

to, say k, arguments to make the arities of the types match, k new declarations are added:

u

1

=? : �

1

�

u

2

=? : �

2

fx

1

:= u

1

g �

.

.

.

u

k

=? : �

k

fx

1

:= u

1

: : : x

k�1

:= u

k�1

g �

if b : (x

1

: �

1

; : : : ; x

n

: �

n

)� �, where k � n, and the unknown u to be re�ned is in context �,

where � � �. Finally, the atomic re�nement

u = b(u

1

; : : : ; u

k

)

is invoked.
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9 Local undo

As mentioned, by local undo we mean \withdraw an earlier made choice including its conse-

quences". This can now be described in our setup by replacing a declaration in D

u = e : � �

by

u =? : � �

which withdraws the choice. To remove the consequences, we need to undo the e�ect the set

of constraints produced from type checking e : � �, had on the global set of constraints. This

could be done in two di�erent ways. One way is to keep the original constraints in the global

set of constraints, and perform the simpli�cation each time it is needed. Then the constraints

produced from type checking the declaration u could simply be removed. Since the simpli�ca-

tion involves reduction of terms as well as expansion of simple constraints, it is obviously an

irrevocable procedure. The other alternative is therefore to type check each declaration in D

again, to recover the original constraints. We have chosen the latter alternative, since local

undo is normally performed very seldom compared to re�nements, and to simplify the set of

constraints after each re�nement would be time consuming, but necessary to present the scratch

area in a satisfactory way.

Making the declaration of u into an unknown is a necessary condition, but not su�cient to

achieve a useful algorithm. It would be like a functional language implementation without a

garbage collector, since making u unknown removes the access to all the invisible constants

corresponding to subterms of e, and the scratch area would soon be cluttered with useless

declarations. Therefore, we must possibly also delete entire declarations in D when removing

the term e.

It might be helpful to picture the declarations as graphs, where nodes correspond to constants

declared in the scratch area, and an edge from a to b means that b is used in the de�nition

of a. All visible constants can be seen as root nodes of graphs and the invisible constants

as nodes of subgraphs. The graphs may be connected if a visible constant is used in another

constant declaration. With this intuition in mind, the declarations that should be deleted are

the constants corresponding to nodes in the term graph which can be reach from the node u

without visiting the root node of a visible constant. Since visible constants can be accessed by

the user, it may be used in other places than in e and should not be deleted just because it

is used in a deleted term. We will distinguish between explicit sharing which is when the user

deliberately uses the same (visible) constant in several places, and the implicit sharing which

is introduced when an unknown is re�ned with a constant or variable with actually dependent

type. Then we have the following properties

� Implicit sharing only occurs within a visible constants subgraph.

� Explicit sharing corresponds to an edge from within a subgraph to the root of another

subgraph.

� Only the root of a subgraph could be reached from other subgraphs.

� The declarations to be garbage collected, are the constants in the subgraph of the deleted

constant, and any explicit sharing edge within that subgraph is removed.
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More formally, removing the de�nition of declaration u (which can correspond to any proper

subterm in the visible part of the scratch area) is to transform the scratch area in two steps.

First the required declarations in D, and the set of constraints are removed, and then the

recomputation is done.

< D; < C

S

; C >> �! < D

0

; < ;; ; >> �! < D

0

; < C

0

S

; C

0

>>

with D

0

= D�D

u

where D

u

is the set of declarations corresponding to u

0

s subgraph and where

the declaration of u is made unknown,

and < C

0

S

; C

0

> is the set of constraints produced from type checking each declaration in D

0

yielding a new global set of constraints, which is simpli�ed as far as possible.

Conjecture 4.

Let C

S

be a set of simple constraints and C

0

S

the result after performing a local undo

operation. If the simpli�cation of global constraints is performed with a deterministic

selection algorithm, then C

0

S

� C

S

, where � means that

1) the constants instantiated in C

0

S

� the constants instantiated in C

S

, and

2) if u has de�nition e

0

in C

0

S

and de�nition e in C

S

, then there is an instantiation of

(some of) the unknowns in e

0

, such that the two de�nitions become identical.

The intuition behind this conjecture is that the state of the scratch area after a local undo,

could have been reached without the undo operation but with the re�nements done in another

order. Moreover, if the constants of the simple constraints in C

0

S

are uniquely determined from

the new declarations, then additional re�nements could not change the already determined

instantiations, and C

0

S

would be less de�ned in this particular meaning than C

S

.

10 Conclusion: How are the problems in the introductory sec-

tion solved?

The problem with implicit sharing is solved since there is an internal name for each proper

subterm (an invisible constant declaration), and internally the name is used instead of the term

at all its shared occurrences. Therefore, when removing a subterm, the corresponding invisible

constant declaration is made into an unknown constant, which means that all shared occurrences

of that subterm will become the (same) unknown constant (i.e., a new goal).

The two other problems; removing \consequences of a choice", i.e., undo the e�ect that a

particular choice had on the scratch area, and the problem of achieving restrictions on the new

unknowns (which are the least possible restrictions), are both related to how instantiations by

constraints are treated. Since internally we distinguish between unknowns re�ned by the user

and unknowns instantiated by constraints, these problems can be solved. When a subterm is

removed, the corresponding internal constant declaration is made unknown and unreachable

declarations are garbage collected. This means that the set of declarations exactly corresponds

to the choices made by the user except the one just withdrawn. Therefore, the resulting set of

constraints yielded by type checking the remaining declarations, will only contain restrictions

caused by other re�nements and they will be as unrestrictive as possible.
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11 Optimisations in the implementation

Since ALF is an interactive proof editor equipped with an window interface, the presentation of

the scratch area to the user is of great importance. As already mentioned, invisible constants

and solved constraints are expanded before the scratch area is presented to the user. Naturally,

changes in the scratch area ought to be apparent after each action by the user. It would be

rather time consuming to perform all these expansions each time an action is taken which alters

the scratch area. Therefore, we have chosen to include a visible part of the scratch area, which

is exactly what is presented to the user. This means that some information is represented twice,

in favour of speed. The only time expansions of invisible constants and simple constraints need

to be performed with this optimisation, is after local undo.

There is also some minor optimisations, such as keeping a dependency graph reecting the

dependency between the constants in the scratch area and by giving invisible constants names

corresponding to their path in a visible constant declaration. The naming convention is practical

to get direct access to a declaration from its position in the visible part, as well as for \garbage

collecting" declarations after local undo. The dependency graph is mainly used for circularity

checks, which is required in every re�nement. But it is also convenient when checking if a

declaration is complete (when moved to the environment) or for sorting the declarations in

dependency order (used for a quicker expansion of invisible constants as well as for printing

on external �les). There is another optimisation (which is not yet implemented but will be if

needed) and that is to only include invisible declarations of which the constant does occur in

several places. This means that only subexpressions which are actually shared implicitly are

given a name, since the others need not be named for a proper local undo algorithm.
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Abstract

This report describes methods of representing the Z Schema Calculus in the type theory

UTT. We �rst attempt a direct encoding of schemas as �-types in the manner prescribed

by Luo. This turns out to be unsatisfactory because encoding the operations of the Schema

Calculus requires an ability to perform computations on the syntax of schemas, so we develop

methods in which this syntax is also represented. These methods also depend upon the

existence of � types but use them in an unconventional fashion.

1 Introduction

The Z language[BN92, Spi88] is an formal notation which provides an expressive, unambiguous

language for writing speci�cations of programs. One of its main strengths is a module-handling

mechanism called the Schema Calculus which allows speci�cation modules to be put together

in various ways to build new speci�cations. However Z falls short of providing a complete

program development methodology in that it lacks a notion of implementation, and provides no

mechanical support for carrying out proofs.

1

.

The Unifying Theory of dependent Types [Luo91b], and its implementation in the LEGO

proof-checker [LP92], possess features that complement Z to some degree. LEGO provides

a means of doing machine-checked proofs in UTT, while UTT provides us with notions of

\program" and \proof" which we can use to de�ne an implementation. However UTT lacks

some of the user-friendly properties of the speci�cation languages used in industry. One goal of

this work is to explore methods in which we can put together the tried and tested expressiveness

of the Z notation with UTT and LEGO.

In this paper we investigate ways of combining Z and UTT by encoding a portion of the

Z Schema Calculus into UTT. This enriches UTT by providing a way of writing structured

speci�cations in UTT in the style of Z. This work can also be viewed as a presentation of a

possible semantics for the Z Schema Calculus in UTT, giving us an opportunity to use LEGO to

explore the properties of the Z Schema Calculus. We hope to gain insight into the meaning of Z

schemas and to gather a collection of LEGO proofs about the properties of of Z schemas which

we can then use for proving properties of speci�cations and for doing program veri�cation.

For instance, Z provides an operation whereby two schemas S and T can be conjoined to

produce a new schema S ^T . We would like to know whether if we have an implementation of

schema S^T we can always derive from it implementations of S and of T |a kind of elimination

�

University of Edinburgh. This work was partially supported by the British Council.

1

There have been e�orts to remedy some of these problems.
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rule. Conversely, if a program implements both S and T , or is an extension of implementations

of these, does it then yield an implementation of S ^ T | a kind of introduction rule?

In section 2 I introduce a small fragment of the Z notation, just enough to illustrate the

work that I have done. Then in section 3 I discuss the ways in which I have tried to encode Z

schemas in LEGO, showing the problems that have led me to develop each subsequent technique

from the previous one. Finally in section 4 I talk about the theorems I've managed to prove

and discuss some outstanding conjectures, questions, and problems.

2 The Z notation

The Z notation consists of a core language based on set theory, and a structuring mechanism

consisting of modules called schemas which can be combined in various ways using operations

that make up the Schema Calculus.

Here is an example of a simple Z schema:

S

x : N

y : list N

x � length y

The schema consists of a signature and a predicate.

One of the operations of the schema calculus is schema conjunction; this involves joining

the signatures of two schemas and conjoining their predicates to give a new predicate over the

joined signature. When two signatures are joined occurrences of the same identi�er in both

signatures are identi�ed with each other.

Example:

T

x : N

z : list N

x � length z

Conjoining S and T gives the schema:

S ^ T

x : N

y : list N

z : list N

(x � length y) ^ (x � length z )

Other operations, which I won't describe here, include disjunction, implication, negation,

inclusion of one schema within another, composition of schemas, and piping. Most of these

make use of the join operation to combine signatures.
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3 Representing Schemas in Type Theory

A note about the core language

The core language of Z is based on Zermelo-Fraenkel set theory. While it is possible to encode

sets in UTT in various ways [Mah90, CM93], there is no reason to attempt this if we are mainly

interested in the schema calculus since we can use UTT itself as our core language. If we �nd a

exible representation of schemas, we can later change our representation of the core language,

if desired, without a�ecting the theorems we prove about the module language.

We can represent the types used by Z by UTT types, including a selection of inductive types

such as nat , bool and polymorphic list . See [LP92] and [Luo91b, Luo93] for discussions of,

respectively, the practical and the theoretical aspects of introducing such inductive datatypes

into the LEGO implementation of UTT. Note that we will also be using these types as our

metalanguage in which we encode Z schemas.

Method 1: Schemas as � types

We can use �-types to represent schemas in a manner similar to the use of type theory outlined

in [Luo93]. Then the schema S presented above is encoded in UTT as:

S sig

def

= nat�list nat

S pred

def

= �str :S sig : str :1� length str :2

S

def

= � str :S sig : S pred str

This allows us to de�ne an implementation: an implementation of S is just an object whose

type is S , that is, a program of type S sig paired with a proof that this satis�es the predicate

S pred . But how do we go about de�ning the operations of the schema calculus? In order to

implement the join operation we need to compare the identi�ers and types used in our schemas.

But these things have no existence as objects within the type theory.

It may appear that our problem would be solved by adding record types to the type theory.

In fact this is not so, since the problem is not the absence of labels for the components of the

�-type, but the impossibility of treating such labels as terms in the type theory that can be

acted upon by functions de�ned in the type theory. What we need to do therefore is to encode

the syntax of Z identi�ers and types as terms in UTT that we can use to do computations.

Method 2: Syntactic names and types in signatures

We introduce two new inductive types to represent identi�ers and type names. The identi�ers

will be derived from the speci�cation that is being encoded. For our example we have:

Ident ::= `x ' j `y ' j `z '

We also introduce a new inductive type of Z type names. Here, Given Type is an inductive

type consisting of type names over which a speci�cation is parameterised.

Ztype ::= natT jboolT jgivenT Given TypejfunT (Ztype;Ztype)jprodT (Ztype;Ztype)

Now we de�ne a signature as a list of pairs of these syntactic identi�ers and types:

Signature

def

= list (Ident�Ztype)
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Since we still want to be able to relate these speci�cations to programs written in UTT,

we must de�ne the relationship between these syntactic signatures and types in UTT. To do

this we de�ne a semantic function, Typ that maps these syntactic types to UTT types: e.g.

Typ natT = nat . Then we extend this to a function Typify of type Signature!Type

2

which

forms a product of the types obtained by applying Typ to all of the Ztypes in a given signature,

together with the unit type in the case of the empty signature. This essentially allows us to

recapture our previous de�nition of a signature as a product of types.

We can then de�ne a schema as consisting of a syntactic signature Sig paired with a predicate

over the semantic signature Typify sig :

Schema

def

= � sig :Signature: (Typify sig)!Prop

We de�ne an implementation of such a schema (sig ; pred) as an program of type Typify sig

paired with a proof that it satis�es the predicate pred . This closely resembles the notion of

implementation in Method 1.

Imp

def

= �S :Schema:� str :Typify S sig : S pred str

In order to work with these syntactic functions we need to de�ne several functions. One of

these is lookup which, when given an identi�er and a tuple str of type Typify sig for some signa-

ture sig , attempts to locate the identi�er in sig and then returns the value in the corresponding

position in str . We use sums to handle failure, returning in1 void if the given identi�er does

not appear in the given signature.

One of the uses of lookup is in writing schema predicates. This is illustrated by the following

example of a schema:

S sig

def

= [(`x '; natT ); (`y '; listT natT )]

S pred

def

= �str :Typify S sig : (lookup `x ' str) � (lookup `y ' str)

S

def

= (S sig ; S pred)

Another example of a schema is the trivial, unsatis�able, Absurd schema which consists of

the empty signature and the predicate �str :Typify [ ]: absurd .

Now we can begin to de�ne the operations of the schema calculus. Consider the operation

of conjoining two schemas S and S

0

. First we must form a new signature newsig by joining

the signatures of S and S

0

. These two signatures may be inconsistent, in that there may be an

identi�er which occurs in both of them that is paired with di�erent Ztypes in each occurrence,

so we must �nd some way of handling this possibility. Next we must form a new predicate over

the semantic signature Typify newsig by conjoining the two old predicates. To do this we have

to make use of coercions which map programs in the new semantic signature back to programs

in Typify sig and Typify sig

0

since these types are the domains of the old predicates.

First we de�ne the join function. This takes two signatures sig and sig

0

yields a new signature

newsig together with a coercion back from newsig to sig . The coercion takes a tuple of type

Typify newsig and produces a tuple of type Typify sig by projecting only those components

that correspond to identi�ers present in sig . No coercion back to the second signature sig

0

is

computed since this may not exist if sig and sig

0

happen to be inconsistent.

2

Actually, Type(0), but for simplicity we ignore details about type universes in this paper.
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Another operation coerce attempts to �nd coercions between arbitrary signatures. The type

of coerce reects the fact that it is partial: if no coercion exists it returns in2 void .

� S ; S

0

:Signature: ((Typify S)!(Typify S

0

)) + unit

Now we can de�ne schema conjunction. To conjoin S and S

0

we �rst join their signatures

to form a new signature newsig . Then we attempt to coerce newsig back to the signature of S

0

.

This will fail if S and S

0

happen to be inconsistent, in which case we return Absurd schema as

our result. Otherwise we return a schema made up of newsig and the predicates of S and S

0

conjoined and composed with coercions as appropriate.

The de�nition is as follows. I use square brackets [:] here to enclose local de�nitions of

identi�ers, a useful feature of LEGO syntax.

And schema

def

= �S ; S

0

:Schema:

[tmp

def

= join S S

0

]

[newsig

def

= tmp:1]

[coercion1

def

= tmp:2]

[coercion2

def

= coerce newsig s

0

:1]

case

(�f : (Typify newsig)!(Typify S

0

:1):

(newsig ; �s :Typify newsig : (S :2 (coercion1 s))^ (S

0

:2 (f s))))

(�x :unit :Absurd schema)

coercion2

With this method we can de�ne all the operations of the schema calculus. However we need

to compute lots of coercions and reasoning about these turns out to be di�cult. For instance,

coerce makes use of a simple function called coerce Ztypes which takes two Ztypes z and z

0

and

attempts to �nd mappings to and from Typ z and Typ z

0

. Its type is the following:

� z ; z

0

:Ztype: (((Typ z )!(Typ z

0

))�((Typ z

0

)!(Typ z ))) + unit

This function is de�ned by induction on Ztypes in a straightforward way. It succeeds when

z and z

0

are identical, in which case it returns functions that are extensionally equal to the

identity function on the appropriate type. So I tried to prove the following result:

8z :Ztype: 9f ; f

0

: (Typ z )!(Typ z ):

(coerce Ztypes z z = in1 (f ; f

0

)) ^ (8x :Typ z : (f x = x) ^ (f

0

x = x))

However I found that in order to prove I needed to assume extensionality for functions. The

reason for this has to do with way that coerce Ztype is de�ned on Ztypes of the form funT z z

0

.

The coercions that are found in this case are of type ((Typ z )!(Typ z

0

))!((Typ z )!(Typ z

0

))

They map a function f to another function created by pre- and post-composing f with coercions

between z and z and between z

0

and z

0

. This function is only extensionally equal to f .

Extensionality is not part of UTT and we would prefer not to have to assume it. Perhaps

we can avoid it if we �nd a way of avoiding having to �nd coercions. We needed coercions

because schema predicates were de�ned over speci�c signatures and therefore needed to be

composed with coercions before they could be applied to other signatures. So what if we allow

our predicates to be de�ned over all signatures? This leads us to explore a third method of

representing Z schemas.
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Method 3: Syntactic names in programs

The idea here is to introduce a new type of programs, over which schema predicates will be

de�ned. Whereas before we used UTT's typing rules to determine whether a program matched

a signature, we will now have to explicitly de�ne a matching relation between programs and

signatures.

We continue to use the types Ident , Ztype and Signature and the semantic function Typ.

However instead of representing programs as tuples, we use a more syntactic representation in

which values are associated with syntactic names and types. I call these programs Structures

since they are reminiscent of Structures in the programming language SML.

Structure

def

= list (� p :Ident�Ztype:Typ p:2)

We have to write some functions to handle these syntactic programs. The types of three of

these are given below. The �rst function, match, checks whether the names and identi�ers in

a Structure are exactly the same as those in a given Signature. The second, restrict , attempts

to cut down a structure so that it has only those components speci�ed in a given Signature;

restrict fails if the Signature requires components that are not in the Structure. We will use

the third function, lookup, in writing schema predicates.

match :Signature!Structure!bool

restrict :Structure!Signature!unit + Structure

lookup :� p :Ident�Ztype: Structure!unit + (Typ p:2)

An example of a syntactic program is the following:

prog

def

= [(`x '; natT ; 0); (`b'; boolT ; true)] : Structure

If we de�ne sig to be the signature [(`b'; boolT )] then (match sig prog) evaluates to false and

(restrict prog sig) evaluates to the Structure [(`b'; boolT ; true)].

Our new de�nition of the type Schema is:

Schema

def

= Signature�(Structure!Prop)

Schema predicates become more complicated since we always have to allow for the possibility

that lookup might fail. The predicates and relations that we use in writing schema predicates

need to be rede�ned with this in mind. For instance in the de�nition of the schema S we

replace �: nat!nat!Prop with �: (unit + nat)!(unit + nat)!Prop which is de�ned as the

proposition absurd in the case where either of its �rst arguments happens to be in1 void . Here

is the new de�nition of this schema:

S sig

def

= [(`x '; natT ); (`y '; listT natT )]

S pred

def

= �str :Structure: (lookup `x ' natT str) � length (lookup `y ' (listT natT ) str)

S

def

= (S sig ; S pred)

Another example is the new de�nition of Absurd Schema, which now has as its predicate

�str :Structure: absurd .

We need to place a condition on schemas in order to exclude some badly behaved predicates.

We would like predicates to remain true of structures if they are enriched by adding new
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components. Therefore we don't want to allow, for instance, a predicate that says that a

certain identi�er does not occur in a structure. The following condition excludes predicates of

this sort.

Valid schema

def

= �S :Schema: 8str :Structure: (S :2 str), (S :2 (restrict str S :1))

The user will need to prove that this condition is satis�ed whenever a new schema is de�ned.

We will have to show that all our basic schemas and schema operations have or preserve this

property. It is trivial to show that Absurd Schema has this property.

With syntactic programs like these, our de�nitions of schema operations become much sim-

pler since there is no longer any need to compute or keep track of coercions. The function join,

for instance, gets rede�ned in a simpler way.

Here is the new de�nition of schema conjunction. We make use of a new function consistent :

Signature!Signature!bool which checks whether two signatures are consistent.

And schema

def

= �S ; S

0

:Schema:

if

(consistent S :1 S

0

:1)

(join S :1 S `:1; �s :Structure: (S :2 s) ^ (S

0

:2 s))

Absurd schema

An implementation of a schema S is a structure str paired with a proof of (Implements S str)

where Implements is de�ned as

�S :Schema: �str :structure: (match S :1 str = true) ^ (S :2 str)

This states that an implementation of a schema is a Structure which exactly matches the

schema's signature and which satis�es the schema's predicate. It may turn out that requiring

an exact match with the signature is too restrictive, but for now this is the de�nition that we

use.

4 Results

So far I have had partial success in proving the kinds of results that I want about my encoding of

the Z schema calculus. The theorems I have proved depend on a number of somewhat baroque

but uncontentious conjectures about the behaviour of the functions join and restrict . I am

hoping that my attempts to prove these conjectures will uncover cleaner and more illuminating

properties that can take their place.

I won't list all these conjectures but only give a couple of examples. The �rst of these is

typical. This says that a Structure that matches the join of two consistent Signatures can

successfully be restricted to the �rst Signature. The corresponding property regarding the

second Signature is also one of my conjectures.

Conjecture 1

8S ; S

0

:Signature: 8str :Structure:

(consistent S S

0

= true))

(matches (join S S

0

):1 str = true))

9str

0

:Structure: restrict str S = in2 str

0
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The next is the only conjecture that does not involve the restrict function. It states that

that if there is some structure which satis�es the predicates of both of two valid schemas, then

those schemas have consistent signatures.

Conjecture 2

8S ; S

0

:Signature: 8str :Structure:

(Valid schema S) ^ (Valid schema S

0

) ^ (S :2 str) ^ (S

0

:2 str))

consistent S :1 S

0

:1 = true

Under the assumption that these, and similar, conjectures are true I have been able to carry

out some proofs in LEGO about schema conjunction. My �rst theorem states that schema

conjunction preserves the property Valid schema:

Proposition 1 (And preserves valid schema)

8S ; S

0

:Schema: (Valid schema S) ^ (Valid schemaS

0

))

Valid schema (And schema S S

0

)

My proof of this takes slightly over 100 steps in LEGO and makes use of a number of conjectures

about the behaviour of restrict .

The next three results make use of a predicate named restricts to impl which has type

Schema!Structure!Prop. This says two things: that a given Structure can be successfully

restricted to the signature of a given Schema, and that the new Structure obtained by this

restrict ion is an implementation of the given Schema.

The following result gives a kind of introduction rule for schema conjunction. If we are

given a Structure str which can be restricted to give implementations of two Schemas S and

S

0

, then we can conclude from this theorem that str can be restricted to an implementation of

And schema S S

0

. The proof of this result in LEGO is almost 90 steps long, and again it must

be regarded as incomplete since it makes use of the conjectures described above.

Proposition 2 (And schema intro)

8S ; S

0

:Schema: 8str :Structure:

(restricts to impl S str))

(restricts to impl S

0

str))

restricts to impl (And schema S S

0

) str

The next two results can be thought of as left and right elimination rules for schema conjunc-

tion. They have short proofs (less than 20 steps long) but these are again incomplete because

they depend on outstanding conjectures.

Proposition 3 (And schema elim left)

8S ; S

0

:Schema: 8str :Structure:

(Implements (And schema S S

0

) str)) restricts to impl S str

Proposition 4 (And schema elim right)

8S ; S

0

:Schema: 8str :Structure:

(Implements (And schema S S

0

) str)) restricts to impl S

0

str
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5 Conclusions and Future Work

The obvious next step in this work is to complete the proofs of the conjectures that remain

outstanding. While these all appear to be obviously true, carrying out the formal proofs can

take a long time. There is also a possibility that subtle problems may arise having to do with

the way we use the powerful substitutive properties of inductive equality to get certain functions

to typecheck. Finding out whether these problems arise and how they can be handled will be

a test of the powers of UTT.

Next we would like to explore the usability of this encoding by carrying out a moderate-

sized example. This will reveal whether we have made useful choices in de�ning, for instance, an

implementation, and whether our theorems about schema operations are appropriate for doing

structured program veri�cation.

A major task would be to �nd out the relationship between our type-theoretical semantics

for Z schemas and other proposed semantics. However even if we cannot do this in a formal

way, we can still use examples to show how our encoding allows us to mimic the use of the Z

notation within the LEGO proofchecker.
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Abstract

We explore the expressive power of the formalism introduced in [BH90] for de�ning the

operational semantics of programming languages. This formalism derived from the Natural

Semantics of Despeyroux and Kahn [Des86, Kah87] and arises if we take seriously the possi-

bility of deriving assertions in Natural Semantics under assumptions, i.e. using hypothetic-

general premises in the sense of Martin-L�of ([Mar84]). We investigate to what extent we can

reduce to hypothetical premises the notions of store and environment of Plotkin's Structural

Operational Semantics. We use this formalism to de�ne the semantics of a functional lan-

guage which features commands, blocks, procedures, complex declarations, structures and

Abstract Data Types. We give the NOS style together with the denotational semantics and

prove the adequacy of the former w.r.t. the latter. Moreover, we solve some other di�culties

which arose in the previous treatment of variables in connection with procedures ([BH90]).

Natural Operational Semantics can be easily encoded in formal systems based on �-

calculus type-checking, such as the Edinburgh Logical Framework. We briey investigate

this and discuss some of the design choices.

1 Introduction

In order to establish formally properties about programs, we have to represent formally their

operational semantics. A very successful style of presenting operational semantics is the one

introduced by Gordon Plotkin and known as Structural Operational Semantics (SOS) ([Plo81]).

The idea behind this approach is that all computational elaboration and evaluation processes

can be constructed as logical processes and hence can be reduced to the sole process of formal

logical derivation within a formal system.

For example, the SOS of a functional language is a formal system for inferring assertions

such as � ` M ! m, where m is the value of the expression M , and � is the environment

in which the evaluation is performed { usually a function mapping identi�ers to values. The

intended meaning of this proposition is \in the environment �, the evaluation of M gives m".

This style of speci�cation does not have many of the defects of other formalisms (such

as automata and de�nitional interpreters), since it is syntax-directed, abstract and easy to

understand. This style of speci�cation was proved to be very successful in various areas of

z
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theoretical computer science. It was studied in depth by Kahn and many of his coworkers, and

it has been used by Milner with the name of Relational Semantics. Nevertheless, the explicit

presence of environments in propositions can exhibit several inconveniences:

� the abstraction power is limited: a function which maps identi�ers to values amounts to

von Neumann's computer's memory, and each assertion can predicate of only one memory

at a time.

� Modularity is limited: if we extend the language by adding another kind of identi�ers

and denotable object (e.g. procedure identi�ers and procedures), we have to introduce

another environment function. Therefore, we have to change the assertion into the form

�; � ` M ! m where � denotes the procedure declaration environment. So, all previous

rules and derivations are not compatible any more with the new assertion.

� The system lacks conciseness. Environments appear in all rules but are seldom explicitly

used, e.g. in the following rule:

� ` N

1

! n

1

� ` N

2

! n

2

� ` N

1

+ N

2

! plus(n

1

; n

2

)

Here � plays no rôle: it is merely transferred from conclusion to premises (in a top-down

proof development). The environment is e�ectively used only when we are dealing with

identi�ers, i.e. when we either declare an identi�er or evaluate it. These rules are e.g.

� `M ! m [x 7! n]� ` N ! n

� ` let x = M in N ! n

� ` x ! �(x):

� It is well-known that in order to reason formally about properties of the operational seman-

tics, it is necessary to encode the formal system into some proof-editor/checker. However,

in most of the proof editors and checkers, encoding functions (such as the environments)

can be rather cumbersome.

A possible solution to these drawbacks is the Natural Operational Semantics formalism

(NOS) introduced in [BH90] as a re�nement of the Natural Semantics originally proposed by

Kahn and his coworkers ([Des86, Kah87]). This formalism arises if we take seriously the possibil-

ity of deriving under assumptions assertions in Natural Semantics, i.e. using hypothetic-general

premises in the sense of Martin-L�of ([Mar84]). It is based in fact on Gentzen's Natural Deduc-

tion style of proof ([Gen69]): hypothetical premises are used to make assumptions about the

values of variables. We investigate to what extent we can reduce to hypothetical premises the

notions of store and environment of Plotkin's Structural Operational Semantics. Thus, instead

of evaluating an expression within an environment, we compute its value under some assump-

tions about the values of its free variables. I.e. we replace explicit environments with implicit

contextual structures, that is the hypothetical premises in Natural Deduction.

Going back to the previous functional language, it has two syntactic classes, Expr, the class

of expressions (ranged over by M ;N ), and Id, the class of identi�ers (ranged over by x ; y), the

former including the latter. The assertions of the formal system can be simpli�ed to those of

the form M ) m, whose reading is \the value of expression M is m". There are no more

contextual structures: the predicate is )� Expr � Expr .
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These assertions can be inferred by using a Natural Deduction style proof system, that is a

set of rules of the form

(�

1

) : : : (�

k

)

.

.

.

.

.

.

M

1

) m

1

: : : M

k

) m

k

M ) m

(possible side-condition)

where the sets of assertions �

1

; : : :�

k

are the discharged assumptions. Therefore, the evaluation

of the expression M to the value m can be represented by the following derivation in N.D. style:

� = fx

1

) n

1

; : : : ; x

k

) n

k

g

�

�

�

@

@

@

D

M ) m

written D : � `M ) m

where the hypotheses � = fx

1

) n

1

; : : : ; x

k

) n

k

g(k � 0) can be interpreted as a set of variable

bindings: the value of the variables involved in the evaluation of M . The meaning of this

derivation is \in every environment which satis�es the assumptions in �, M is evaluated to m."

This means that, given an environment � s.t. 8(x ) m) 2 � : �(x) = m, there is a derivation of

� ` M ! m in the corresponding SOS proof system. Moreover, an assumption about the value

of a variable can be discharged when it is valid only locally to a subcomputation. E.g. in the

case of local declarations, in order to evaluate let x = N inM , we can evaluate M assuming

that the value of x is the same as that of N . However, this extra assumption is inconsistent

when we evaluate let x = N in M . Therefore, the let rule is in which the whole N.D. style

appears

(x ) n)

.

.

.

N ) n M ) m

let x = N inM ) m

whose reading is \if n is the value of N and, assuming the value of x is n then m is the value

of M , then the value of let x = N inM is m."

Unfortunately the situation is not so simple, since this extra assumption can clash with a

previous assumption on x which is valid globally. In order to deal with the issue of locality of

variables we need to make a slight technical extension of original Gentzen's Natural Deduction

style which allows us to reason directly on �-equivalence. This will be discussed in detail in

sec.2. The above let rule is not correct (it allows us to evaluate let x = 0 in let x = 1 in x to

0).

This truly N.D. approach has the bene�t that all the rules which do not refer directly to

identi�ers appear in a simpler form than those in SOS style. There are no environment. For

instance, the rule for the \+" function above mentioned becomes the following:

N

1

) n

1

N

2

) n

2

N

1

+ N

2

) plus(n

1

; n

2

)

In this paper, we address the following question: what kind of programming languages can

be treated conveniently using this formalism. We are interested to understand to what extent

we can reduce to assumptions the concepts of store, environment, binding and similar linear

datatypes.

257



2 Analysis of the NOS style

In this section we try to convey briey to the reader the main features of operational semantics

in N.D. style. Recall that a N.D. style rule is as follows:

(�

1

) : : : (�

k

)

.

.

.

.

.

.

A

1

: : : A

k

A

where A;A

1

; : : : ;A

k

are propositions and �

1

; : : : ;�

k

sets of propositions. More formally, a N.D.

rule can be viewed as a concise description of a special kind of rule for deriving metapropositions

of the form � ` A, the sequents ([Gen69, Avr91]). The above rule can be written in fact as

follows:

�;�

1

` A

1

: : : �;�

k

` A

k

� ` A

where � is any set of proposition. This rule means that, in order to prove that A is a consequence

of a given �, we have to prove for i = 1 : : :k that A

i

is a consequence of �;�

i

. In other words,

for proving each A

i

we can use some local assumptions �

i

, the global hypotheses � always

remaining valid. Therefore, the hypotheses of the sub-derivations of a derivation D : � ` A

always contain �. This fact is at the core of the issues discussed in the following subsections.

2.1 The issue of local variables

Since the NOS rules are N.D. rules, if we have the following deduction D : � `M ) m

�; (�

1

) �; (�

k

)

D

1

: : : D

k

M

1

) m

1

M

k

) m

k

M ) m

all the bindings in � are available in evaluating M

i

, for i = 1 : : :k . As a consequence of this,

the let rule showed in sec.1 above, is incorrect because previous (global) assumptions on locally

de�ned variables can be used during the subevaluation, e.g. as follows:

0) 0

1) 1 (x ) 0)

(1)

let x = 1 in x ) 0

let x = 0 in let x = 1 in x ) 0

(1)

In order to overcome this problem we could use higher-order syntax �a la Church. This

technique originated with Church's idea to analyze 8x :P as 8(�x :P) where 8 has a higher

order functionality: 8 : (Individuals ! Propositions) ! Propositions. It was further used by

Martin-L�of and thoroughly expanded in the Edinburgh Logical Framework. See [AHM87] for

a treatment of this in the context of �-calculus and [Han88, MP91] of functional languages.

For example, the construct let x = M in N could be compiled to let (�x :N )M , where let :

(Expr ! Expr)! Expr ! Expr . But this approach needs a form of textual substitution of an

expression within another expression which cannot be expressed purely in Natural Deduction.

Furthermore, the higher-order syntax cannot be used directly in the use of languages with

258



imperative features. See [AHM87] for di�culties in handling Hoare's logic. In fact, it easily

yields semantic inconsistencies, since it treats identi�ers as the same of expressions.

1

The di�culty of avoiding the capturing of local variables can be overcome in another way,

by introducing an extension of original Gentzen's style of Natural Deduction called �-notation

which explicitly manipulates textual substitution ([BH90]). In evaluating let x = N inM , we

have to replace all the occurrences of x in M with a new identi�er never used before, say x

0

,

which will be bound to the value of n.

Textual substitution of identi�ers can be represented by using two syntactic constructors,

�; � : Id � Id � Expr ! Expr . They are dual to one another and capture the notion of �-

equivalence: �

x=y

is an explicit denotation of the textual substitution of occurrences of y by x .

Their meaning is de�ned by two sets of rules (rule schemas),

< :

C [N ]

C [�

y=x

M ]

< :

C [M ]

C [�

x=y

N ]

where C [ ] is any context (formula with hole), x ; y 2 Id are identi�ers, andM ;N are expressions

such that N is obtained from M by replacing all the occurrences of x by y .

Using this extension, the let rule is de�nable as follows:

(x

0

) n)

.

.

.

N ) n �

x

0

=x

M ) �

x

0

=x

m

let x = N inM ) m

x

0

is a new variable

where \x

0

is a new variable" means that x

0

appears neither in n, x , M e m nor in any assumption

di�erent from (x

0

) n), which are discharged by the rule application. This side condition will

be shown to be natural and easily implementable by a general hypothetical judgment in LF.

Actually, the evaluation of �

x

0

=x

M can be performed by using only the �-rules, as follows:

N ) n

(x

0

) n)

(1)

.

.

.

M

0

) m

0

M

0

) �

x

0

=x

m

�

x

0

=x

M ) �

x

0

=x

m

let x = N inM ) m

(1)

where in M

0

;m

0

all the occurrences of x have been replaced by x

0

. Therefore, any previous

assumption about x cannot be used in evaluating M

0

.

This treatment of local variables correctly obeys the standard stack discipline: when we

have to de�ne a local variable, we allocate a new cell (represented by x

0

, a new variable) where

we store the local value (this is achieved by assuming x

0

) n). This allocation is active only

during the evaluation of M (the derivation tree of �

x

0

=x

M ) �

x

0

=x

m); then, the cell is disposed

(x

0

does not occur in any other place). The e�ect of � is akin to that of a garbage collector and

it is necessary to maintain the locality of x

0

.

1

E.g, the application of the �-abstraction containing a command lambda �x :[x := x + 1]x to 0 would be

reduced to the evaluation of [0 := 0 + 1]0, which is meaningless.
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2.2 What informations can assumptions represent?

The monotonicity of hypothesis structural rules implicit in N.D. rules has another immediate

consequence: we can reduce to assumptions only informations which can be dealt with using

a stack discipline. In particular, an side-e�ect assignment of pointers which induces variables

aliasing (or sharing) is di�cult to encode, since we would then necessitate of a vector. In fact,

we cannot retrace given a hypothesis all the bindings which are involved on the shared variables

whenever one of them changes its value.

However, in languages which do not allow sharing, assignments can be reduced to de�nitions

of new variables. Therefore, we focus on this kind of languages, that is those whose semantics

can be de�ned without using both environment and store. These comprise all purely func-

tional languages, but also some interesting extensions of these which have genuinely imperative

features. This is in fact our thesis: only languages whose denotational semantics is de�nable

by using only the notion of environment can be conveniently handled by using NOS. In the

following we describe some of these languages.

3 The language L

P

In this section, we examine a functional language extended with imperative features as assign-

ments which give it an imperative avor. Its semantics can been successfully described by using

NOS. We give its syntax, its NOS and denotational semantics and we prove that the former is

adequate w.r.t. the latter. Finally, we will discuss the relation between the NOS and a SOS

description of L

P

.

3.1 Syntax

L

P

is an untyped �-calculus extended by a set of structured commands. These commands are

embedded into expressions using the \modal" operator [on � do �]�. The expression [on x

1

=

M

1

; : : :x

k

= M

k

do C ]M can be read as

execute C in the environment formed only by the bindings x

1

= M

1

; : : : ; x

k

= M

k

;

use resulting values of these identi�ers x

1

: : :x

k

to extend the global environment in

which M has to be evaluated, obtaining the value of the entire expression.

C cannot have access to \external" variables other than x

1

: : :x

k

, so all possible side e�ects

are concerned with only these variables. Moreover, the entire on-do expression above does not

have any side e�ect: all environment changes due to C 's execution are local to M .

L

P

allows us to declare and use procedures. For the sake of simplicity, but w.l.o.g., these

procedures will take exactly two arguments. The �rst argument is passed by value/result, the

second by value ([Plo81]). Furthermore, the body of a procedure cannot access global variables,

but only its formal parameters (and locally de�ned identi�ers, of course). This means that when

P(x ;M ) is executed within the scope of the declaration proc P(y ; z ) = C inD , C is executed

in the environment formed by only two bindings: fy ) n; z ) mg, where n;m are the values

of x ;M respectively. After C 's execution, the new value of y is copied back into x . So, P(x ;M )

can e�ect only x .

The restriction on global access forbids sharing of identi�ers, so there is no need of a store.

This does not reduce drastically the expressiveness of the imperative language. Donahue has
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Syntactic class Id

x ::= i

0

j i

1

j i

2

j i

3

j : : :

Syntactic class Expr

M ::= 0 j succ j plus j true j false j�

j nil j M :: N j hd j tl

j lambda x :M jMN

j let x = M in N

j letrec f (x) = M inN

j [onR do C ]M

Syntactic class ProcId

P ::= p

1

j p

2

j p

3

j : : :

Syntactic class Declarations

R ::= hi j x = M ;R

Syntactic class Commands

C ::= x := M j C ;D j whileM do C

j nop j ifM then C elseD

j begin new x = M ; C end

j proc P(x ; y) = C in D j P(x ;M )

Figure 5: The syntax of L

P

shown that in this case, the call-by-value/result is a \good" simulation of the usual call-by-

reference ([Don77]).

In [BH90] a di�erent de�nition of procedure is given. There, procedures parameters are

passed only by value, but procedures can have access to global variables. However, there is a

problem with this approach, since the N.D. treatment of procedures does not immediately lend

itself to support side e�ects on global variables. That approach does not work; for instance,

the expression [on x = 0 do proc P(z ) = (x := z ) in x := 1;P(nil)]x would be evaluated to 1

instead of nil. This is due to the fact that the assignment made by P(nil) on the global variable

x is local to the environment of the procedure itself. In fact, executions of such procedures leave

the global environment unchanged.

3.2 Natural Operational Semantics

The complete NOS formal system for L

P

consists of 70 rules; it appears in appendix A.1. Here,

we can describe only some of its features; for a more extended discussion see [Mic92].

In order to perform evaluations and applications of �-closures, command checking and execu-

tion, procedure checking and bookkeeping, we need to introduce some new constructors besides

those of sec.3.1 and new predicates besides ). As in [BH90] the use of these new constructors

is reserved: a programmer cannot directly utilize these constructors to write down a program.

Below we list the constructors and predicates, and we briey describe the most important ones.

Constructor Functionality

[ = ] : Expr � Id � Expr !Expr

�; � : Id � Id � Expr !Expr

� : Expr � Expr !Expr

[ j ] : Declarations � Commands � Expr!Expr

[ = ]

c

: Commands � Id � Commands !Commands

lambda : Id � Id � Commands !Procedures

[ = ]

pe

: Procedures � ProcId � Expr !Expr

[ = ]

pc

: Procedures � ProcId � Commands!Commands
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where Procedures is a new syntactic class de�ned as follows: q ::= lambda x ; y :C

Judgment Type

) � Expr � Expr

value � Expr

closed � Expr

closed

p

� ProcId

Judgment Type

)

p

� ProcId � Procedures

free

e

� Expr � IdSet

free

c

� Commands � IdSet

> � Declarations � IdSet

where IdSet is the subset of Expr de�ned as follows: I ::= nil j x j I

1

:: I

2

substitution: the intuitive meaning of [n=x ]M is \the expression obtained fromM by replacing

all free occurrences of x with n." Just as for the let discussed in sec.2, in order to evaluate

[n=x ]M we have to evaluate M under the assumption that the value of x is n, and hence

any previous assumption on x must be ignored. This is implemented by the substitution

rule, no.4, which, of course, is very similar to the let rule of sec.2:

(x

0

) n)

.

.

.

value n �

x

0

=x

M ) �

x

0

=x

m

[n=x ]M ) m

x

0

is a new Id (4)

This rule is the core of the evaluation system. Many other evaluation rules, e.g. the one

for let, are reduced to the substitution evaluation (rule no.6).

In NOS, to each sort of identi�ers and substitution operators (e.g. Id and [ = ] , ProcId and

[ = ]

pe

, Id and [ = ]

c

, etc.) there corresponds a speci�c substitution rule, similar in shape

to rule no.4, which de�nes how to evaluate substitutions. In fact, this mechanism is used

whenever one has to deal with standard static scoping. One can even think of these rules

as a polymorphic variant of the same set of rules. Of course, minor adjustments have to

be accounted for (rules no.29, no.39, no.35). More details can be found in [BH90, Mic92].

The operator [ = ] is also used to record local environments in those values that are

lambda-abstractions, i.e. the closures. An expression like lambda x :M is evaluated into

[n

1

=x

1

] : : : [n

k

=x

k

]lambda x :M , where x

1

; : : : ; x

k

are all the free identi�ers of M but x ,

and n

1

; : : : ; n

k

are their respective values. The construction of this closure is performed

by rules no.7 and no.8; its application by rules no.10 and no.11

command execution: the intuitive meaning of [RjC ]M is the same as of [on R do C ]M .

This expression is introduced in order to apply the declaration R until it is empty (rule

no.21); then, the command C is executed. We will write [C ]M instead of [hijC ]M . It is

interesting to notice that the assignment rule (no.22) and the let rule (no.6) are almost

the same.

The judgment value encodes the assertion that an expression is a value, and so it cannot be

further reduced nor its meaning is a�ected by an �-substitution.

The judgments closed, closed

p

are used during closure construction, in order to determine

the bindings that we have to record (rules no.7, no.8, no.37). Informally, we can derive

closed M if and only if M has no free variables. For its formal meaning, see th.1. The

judgment closed belongs to static semantics: it can be inferred without using evaluation

rules.
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The judgments free, free

c

; > are used to check that command expressions [onD doC ]M and

procedures do not access global variable. Informally, we can infer � ` free M I if and only

if all the free variables of M appear in the list I (see th.2). On the other hand, > collects

the variables de�ned by a declaration D into a set (represented by a list of identi�ers).

The judgment )

p

is used for bookkeeping the bindings between procedure identi�ers and

procedural abstraction (see rules no.34, no.36).

3.3 Denotational Semantics

In appendix B.1 we give the denotational semantics for the language L

P

. Domains are intro-

duced to represent all the entities we have de�ned. This semantics is self-explanatory. We

follow the usual syntax ([Sch86]); � denotes the strict abstraction: for each meta-expression M

with free variable x on pointed domain D , (�x :M )? = ?. Furthermore, � is the double-strict

abstraction: for each meta-expression M 6= ? with free variable x on pointed domain D with

both ? and >, (�x :M )? = ?; (�x :M )> = >.

Moreover we use the standard domains without give their de�nition. The domains used are

Unit (the set composed by only one point), T (the boolean set composed by two points, true

and false), N (the set of natural numbers).

3.4 Adequacy

In this section we will show that the NOS description of L

P

appearing in appendix A.1 is

adequate w.r.t. the denotational semantics; that is, we will give soundness and completeness

results of one semantics w.r.t. the other. We will only sketch the proofs; for further details see

[Mic92].

3.4.1 Soundness

De�nition 1 A set of formulae � is a canonical hypothesis if

� it contains only formulae like \x ) n;P )

p

q ; closed(x); closed

p

(P)";

� if x ) n; x ) m 2 � then m and n are syntactically the same expression;

� if P )

p

q ;P )

p

q

0

2 � then q and q

0

are syntactically the same procedure abstraction;

where x 2 Id ;P 2 ProcId and m; n 2 Expr ; q ; q

0

2 Procedures.

In the rest of section, � will denote a generic canonic hypothesis.

De�nition 2 Let G be a formula. With � ` G we denote the N.D. derivation of G, whose

undischarged assumptions are in �.

De�nition 3 For M 2 Expr, FV(M ) � Id [ ProcId is the set of free identi�ers of M.

The de�nition of FV can be naturally extended to Commands, bearing in mind that FV(x :=

M )

def

= FV(M ).

De�nition 4 For any declaration R 2 Declarations, DV(M ) � Id is the set of variables de�ned

by R and it is de�ned as DV(x

1

= M

1

; : : : ; x

k

= M

k

)

def

= fx

1

; : : : ; x

k

g.
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De�nition 5 The set of �-closed identi�ers C(�) is C(�)

def

= fx 2 Id j closed(x) 2 �g [ fP 2

ProcId j closed(P) 2 �g.

Theorem 1 (Adequacy of closed) 8�; 8M 2 Expr : � ` closed M () FV(M ) � C(�)

Proof. =) By induction on the structure of derivation � ` closed M .

(= By induction on the syntactic structure of the expression M.

Theorem 2 (Adequacy of free) 8�; 8m 2 Expr ; 8C 2 Commands ; 8l 2 IdSet :

� ` free m l () FV(m) \ Id � l ^ FV(m) \ ProcId � C(�)

� ` free C l () FV(C ) \ Id � l ^ FV(C ) \ ProcId � C(�)

Proof. By suitable inductions.

De�nition 6 Let I � Id [ ProcId and let �; �

0

: E be two environments. We say that � and �

0

agree on I (� �

I

�

0

) if the following properties hold: 8x 2 I \ Id : (access [[x ]] � = access [[x ]] �

0

)

and 8P 2 I \ ProcId : (procaccess [[x ]] � = procaccess [[x ]] �

0

).

Note that all environments �; �

0

agree on the empty set, that is 8�; �

0

2 E : � �

;

�

0

.

Lemma 1 Let be m 2 Expr, R 2 Declarations, �; �

0

2 E . Then � �

FV(m)

�

0

) E [[m]]� =

E [[m]]�

0

; � �

FV(C )

�

0

) C[[C ]]� = C[[C ]]�

0

; � �

FV(R)

�

0

) D[[R]]� = D[[R]]�

0

Proof. By simultaneous induction on the syntactic structure of expressions, commands and

declarations.

Theorem 3 8�; 8�; �

0

2 E ; 8m 2 Expr ; 8l 2 IdSet, if � �

C(�)

�

0

then

� ` closed m =) E [[m]]� = E [[m]]�

0

; (� ` free C l) ^ � �

leaves(l)

�

0

=) C[[C ]]� = C[[C ]]�

0

Proof. Apply th.1 to lemma 1.

De�nition 7 We de�ne �, the � closure, as follows: �

def

= � [ fclosed x j y ) n 2 �; x 2

FV(n)g [ fclosed

p

P j y ) n 2 �;P 2 FV(n)g:

Lemma 2 8x ) n 2 � : � ` closed n.

Proof. Trivial, by de�nition of � and th.1.

Theorem 4 Let m 2 Expr; if � ` value m then � ` closed m.

Proof. A tedious induction on the structure of derivations � ` value m.

Note that the statement does not hold if we use � in place of �. E.g., y ) x ` value x by rule

no.1, but y ) x 6 ` closedx . The information we are missing is that x should be closed, since it

appears on the right-hand side of ).

De�nition 8 A canonic hypothesis � is a well-formed hypothesis (wfh) if � = �.

In particular, ; is a wfh.
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Theorem 5 8�wfh;m 2 Expr ; �; �

0

2 E : � ` value(m) ^ � �

C(�)

�

0

=) E [[m]]� = E [[m]]�

0

:

Proof. Apply lemma 2 to th.4 remembering that � = � (it is wfh).

Corollary 1 (Soundness of value) 8m 2 Expr :` value m =) 8�; �

0

2 E : E [[m]]� = E [[m]]�

0

Proof. Just put � = ; in th.5.

De�nition 9 Let � be a canonical hypothesis. We say that a � 2 E is �-compatible (written

�-comp(�)) if 8(x ) n) 2 � : access [[x ]] � = E [[n]]�, and 8P ) q 2 � : procaccess [[x ]] � = Q[[q ]]�

This is another place where the conciseness of the N.D. formalism comes into play. The domain

of �-compatible environments can be much larger than the set of variables which occur on the

left of assumptions in �.

Theorem 6 8M ;m 2 Expr ;� wfh; � 2 E : �-comp(�) ^ � `M ) m ) E [[M ]]� = E [[m]]�

Proof. By a long induction on the structure of derivations, using the previous results.

Corollary 2 (Soundness of NOS wrt DS) 8M ;m 2 Expr :` M ) m =) E [[M ]] = E [[m]]

Proof. Just put � = ; in th.6, and notice that every environment is ;-compatible.

3.4.2 Completeness

A completeness result is something like an \inverse" of corollary 2. However, a statement inverse

of corollary 2 cannot hold. E.g. for M = m = (lambdax :x)0) it is E [[M ]] = E [[m]] but of course

6`M ) m. In fact, only some expressions can appear as values. We need a new de�nition:

De�nition 10 Let M 2 Expr . An hypothesis � is suitable for M, (M -suit(�)), if 8x 2

FV(M )9(x ) n) 2 � and 8P 2 FV(M )9(P )

p

q) 2 �.

In other words, an hypothesis is suitable for M if it contains enough bindings to evaluate M .

Theorem 7 Let M 2 Expr, � wfh and � 2 E . If E [[M ]]� 6= ?;> and M -suit(�) and �-comp(�),

then 9m 2 Expr : � `M ) m.

Proof. The di�culty in the proof is the problem: given an expression M whose meaning, in

a given environment, is a proper point of V, and a suitable hypothesis �, we have to build up

a deduction � ` M ) m, for some m.

2

This cannot be done by induction on the syntactic

structure ofM , since our language is higher order; in fact, the evaluation ofM can use M itself,

and not only its subterms (see e.g. rule no.26). Nevertheless, we can prove the theorem by

using the technique of inclusive predicates, developed by Milne and Plotkin.

2

By th.6, this m has the same meaning of M
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3.5 Adequacy w.r.t. the SOS

In the previous subsection we have proved the adequacy of the NOS speci�cation of L

P

w.r.t.

the denotational semantics. Actually, the same adequacy can be proved w.r.t. a Structural

Operational Semantics (�a la Plotkin, [Plo81]). One can de�ne a complete \input-output" SOS

system for L

P

, that is a system for deriving two kinds of judgments:

evaluation of expressions: � `

SOS

M ! m

execution of commands: � `

SOS

C ! �

0

where �; �

0

are �nite environments, i.e. they are de�ned on a �nite number of identi�ers, and

m is a value. In such a SOS system, there is no problem in handling substitutions, since we

merely update the environment function in the subderivation:

�[x 7! n] `

SOS

M ! m

� `

SOS

[n=x ]M ! m

Of course, this is not a linearized Natural Deduction style system since we may delete a previous

binding on x from the environment. However, the following results can be proved:

Theorem 8 (Soundness of NOS wrt SOS) Let M ;m 2 Expr, � wfh and � �nite environ-

ment. If 8(x ) n) 2 � : �(x) = n and � `M ) m, then � `

SOS

M ! m

Theorem 9 (Completeness of NOS wrt SOS) Let M 2 Expr , � wfh and � �nite environ-

ment. If � `

SOS

M ! m and 8x 2 FV(M ) : (x ) �(x)) 2 �, then � `M ) m.

Both theorems can be proved by using techniques similar to those of previous subsection. More-

over, the completeness result does not need the technique of inclusive predicates, but only a

simpler structural induction on the derivation � `

SOS

M ! m.

4 Some remarks about language design

L

P

is quite di�erent from the language considered in [BH90]. There are several reasons for these

changes. In some cases these are motivated by the desire to have a natural soundness result

(see section 3.1 for remarks concerning procedures).

In our language, commands are embedded into expressions by the on-do construct. A

simpler formalism for applying directly commands to expressions is used in [BH90], i.e. the

\modal" operator [ ] : Commands � Expr ! Expr , so that [C ]M is an expression if M 2

Expr ;C 2 Commands . Informally, the value of [C ]M is the value ofM after the execution of C ;

C can a�ect any variable which is de�ned before its execution. Furthermore, as all expressions,

[C ]M has no side-e�ects, that is evaluating [C ]M does not change the global environment any

more than evaluating 0 or nil. C a�ects only the local environment which is used to evaluate

M , but its side e�ects are not \�ltered" by a declaration of accessible variables. In order

to appreciate the di�erence in notation between the two approaches compare the following

semantically equivalent expressions:

in the system of [BH90]: let x = 0 in [x := nil]x ; in L

P

: [on x = 0 do x := nil]x

At �rst it seems that the latter is more complex and nothing has been gained. But the former

expression might lead us to think that we can de�ne functions with local state variables and

more interesting expressions objects, but this is not the case! For instance, if we try to model a

bank account de�ning a function withdraw which takes the amount to be withdrawn from the

balance (an example snarfed from [AS85]):
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let bal = 100; withdraw = lambda a.[bal:=bal-a]bal

in let remaining = (withdraw 50)

in (withdraw 30)

The system in [BH90] will evaluate it to 70 instead 20: the �rst withdraw has no e�ect. The

reason is that in the closure of withdraw, bal is bound to 100, and this binding is reapplied

to local environment whenever withdraw is applied; this \reinitializes" bal to 100 each time

(see rules no.8, no.9, no.11). Therefore, an application of withdraw cannot a�ect any following

application.

Thus, [BH90]'s system may lead to misunderstanding the meaning of some expressions. We

decide to avoid this by writing explicitly the variables which a command can a�ect, and making

explicit that such variables are always reinitialized whenever the command is executed. By

writing [onx

1

= M

1

; : : : ; x

k

= M

k

doC ]M we immediately know that, before C is executed, the

\interface variables" x

1

: : :x

k

are initializated. Therefore, an obscure program, like the withdraw

one, cannot be written in L

B

. In L

B

, the above withdraw function should be declared as follows:

let withdraw = lambda a.[on bal = 100 do bal:=bal-a]bal

in ...

and hence it is clear(er) what is the meaning of withdraw.

This aspect is however a major problem: neither in [BH90] system nor in L

P

the withdraw

function with the intended meaning of [AS85] can be written. We'll elaborate on this in sec.7.

5 Some extensions of L

P

In this section we discuss some further extensions of L

P

whose semantics can be expressed with-

out stores because there is no variable sharing. These extensions concern complex declarations,

structures and imperative modules. Due to lack of space, we can give only a brief description of

these extensions. Their NOS and denotational semantics are in appendix A and B respectively.

We deal with each extension by itself, by simply adding new rules to the formal system without

altering the previous ones. This illustrates modularity of NOS which allows us to add new

rules for new constructs without changing the previous ones. For each extension, one can prove

adequacy of NOS w.r.t. the denotational semantics ([Mic92]). The soundness and completeness

theorems and proofs also can been gradually extended by discussing only the new cases due to

the extra rules.

5.1 Complex Declarations

L

D

is obtained from L

P

by adding expressions of the form let R inM where R is a complex

declaration like in Standard ML ([Har89]). In spite of the syntactic simplicity of this exten-

sions (�g.6), it appears to be unavoidable to de�ne an entire evaluation system for declarations

(rules no.77|93). The value of complex declarations are �nite sets of bindings. These sets are

represented by expressions called syntactic environments; they are trees whose leaves are of the

form x 7! n where 7!: Id � Expr ! Expr is a new local constructor. We need to introduce

furthermore several constructors and a judgment for applying such syntactic environments to

expressions and declarations (f g ; f g

d

) and for inferring expression closures (h i ;�). Infor-

mally, one can derive � ` R � I i� all expressions contained in R are closed in � and I is the

set of identi�ers de�ned by R. On the other hand, � ` closed hI iM i� all free variables in M
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Syntactic class Expr

M ::= : : : j let R inM

Syntactic class Declarations

R ::= : : : j R; S j R and S

Figure 6: The syntax of L

D

Syntactic class LongId

u ::= x j u:x

Syntactic class Commands

C ::= : : : j u :=M

Syntactic class Expr

M ::= : : : j sig x

1

: : :x

k

end

j struct x

1

= M

1

; : : : ; x

k

= M

k

end

jM : N j open u inM

Figure 7: The syntax of L

M

F

.

but the ones in I are closed in �. Once the rules will be laid down, these fact will be formally

provable. Using this set of rules, we can de�ne precisely when a complex let is closed without

using any evaluation, since closed is a property belonging to static semantics. An adequacy

theorem similar to th.1 can be proved for the system given in sec.A.2. In [BH90] there is a

simpler approach; it uses the complex declaration evaluation in order to determine the set of

de�ned identi�ers. This approach is not complete: there are closed expression whose closed

property cannot be inferred in [BH90]'s system. E.g., let o = (lambda x :xx); z = (oo) in z .

5.2 Structures and signatures

L

M

F

extends L

P

by adding a module system like that of Standard ML ([Har89]), where a

module is \an environment turned into a manipulable object". Like SML, a module (here called

structure) has a signature, and we can do signature matching in order to \cast" structures.

However, there are some di�erences between SML and L

M

F

. First, in L

M

F

structures and

signatures are indeed expression. Therefore, they may be associated to identi�ers with simple

lets, without using special constructs. These lets can appear anywhere in expressions, not only

at top level. Structures and signatures can be manipulated by common functions; however,

there are not functors since the sharing speci�cation is not implemented.

The NOS should be self-explanatory.

5.3 Imperative modules (Abstract Data Types)

The extension L

M

I

introduces modules �a la Morris ([Mor73]). In this formulation, a module is

very close to an Abstract Data Type: it contains

1. a set of local variables, recording the state of the module; they are not accessible from

outside the module;

2. some code for the initialization of the local variables above;

3. a set of procedures and functions which operate on these local variables and are the only

part accessible from outside the module (the interface).
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Syntactic class ModId

T ::= t

1

j t

2

j t

3

j : : :

Syntactic class Expr

M ::= : : : j T :f

Syntactic class Commands

C ::= : : : jmoduleT is

x = M ;proc P(y) = C ; func f = N

in D j T :P(M )

Figure 8: The syntax of L

M

I

.

From outside a module we can only evaluate its functions, which do not produce side-e�ects, and

execute its procedures, which can modify the state of the module (the value of local variables).

In order to illustrate the idea, but w.l.o.g., we discuss only modules with exactly one local

variable, one procedure with one argument (passed by value) and one function (�g.8).

As for the previous languages, we do not need a representation of the store in de�ning the

semantics of this kind of module ([Don77]). The rules for the speci�cation of the imperative

modules are certainly the most complex of those discussed in this paper. They are based on

the principle of distributing as much as possible under the form of hypothetical assumption in

deductions. In a module there are three informations: the state, the procedure and the function.

Actually, only the state is subject to changes upon execution of the module procedure. We split

these three informations and record them using three di�erent judgments (see rule no.113). The

predicates of these assumptions are the following:

)

m

� ModId � (Expr �ModId) )

mp

� (ModId � ProcId)�Q )

mf

� (ModId � Id)� Expr

We use a lot of syntactic sugar; for instance, instead of )

mp

((T ;P); lambdax ; y :C ), we write

T :P )

mp

lambda x ; y :C .

When the state of a module changes (by executing its procedure), we have to substitute

only the assumption involving )

m

; the other two remain the same. Thus, while the procedure

and the function are left associated to original module identi�er, the state becomes associated

to a new ModId, and this substitution a�ects a part of the declaration to be evaluated (see

rules no.115 no.114). The link between the new state and the procedures is maintained by the

module identi�er which appears on right of )

m

assumption: it is merely copied from the old

assumption into the new one (rule no.115).

When a module procedure has to be executed (T :P(M )), �rst we look for the state of

the module T , by requiring T )

m

(p;T

0

). Here we �nd the original module identi�er,

T

0

. The invoked procedure is then associated to this identi�er in the assumption T

0

:P )

mp

lambda x ; y :C . After having bound x and y respectively to module variable value (p) and

actual parameter (m), we execute C and get back the new value of the state variable. Finally,

we substitute T with the new module state.

Module function evaluation is similar to procedure call, but simpler (rule no.116).

We can successfully implement the bank account examined in sec.4 by using this kind of

modules, e.g. as follows:

module account is

bal = 100;

proc withdraw(amount) = bal := bal - amount;

func balance = bal

in ...
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After this declaration, we can withdraw an amount A from the balance by executing the

command account.withdraw(A), and know how much money we have left by evaluating

account.balance.

However, even this notion of module is too weak to adequately model \functions with local

state" as are necessary, for instance, in realizing memoized functions. In fact, as soon as

an instance of a module is packaged within a � abstraction, its connection with its parent

(de�nition) is severed.

6 Encoding NOS in LF

From a logician's point of view, the Natural Operational Semantics of a language is just a

formal logical system in Natural Deduction style. Therefore, it can be easily encoded in interac-

tive proof-checkers based on type-checking of typed �-calculus, such as the Edinburgh Logical

Framework (LF, [HHP93]). This was actually one of the main motivations for introducing and

investigating the systems of this paper. A �rst outline about this can be found in [BH90]. In

[Mic92] a complete encoding of the semantics of the while subset of L

P

appears.

The LF encoding of NOS has several signi�cant consequences. When we encode the opera-

tional semantics in LF, we have to discuss details that are normally left out or too often taken

for granted or even \swept under the rug". For instance, in rule no.4 we require that \x is a

new identi�er", but we do not give a formal de�nition of this. When we encode NOS in LF,

this condition has to be expressed formally and unambiguously.

Furthermore, we can use this encoding with proof editors based on LF, such as LEGO

([LPT89]), and theorem provers, such as Elf ([Pfe89]). LEGO can be successfully used to develop

derivations (= computation traces) and to verify properties about the semantics themselves, e.g.

equivalence between constructs. During the phase of operational semantics developing, we can

try our rules and look for inconsistencies. Thus, we have immediately a powerful tool for

semantic development and consistency checking.

On the other hand, theorem provers such as Elf can be used to get an interpreter prototype

for free: immediately after we have encoded in Elf the LF representation, we can ask queries

like ?- True(eval M V). where M is (the encoding of) an expression. In resolving this goal,

Elf instantiates V to M 's value, and develops a term which represent the deduction ` M ) V ,

that is the computation trace of the evaluation of M .

In these systems we can prove several meta-results about semantics. In [Mic92] the equiv-

alence between two di�erent NOS of the same while-language is developed. One of these

semantics is \natural", clear but ine�cient. The rules for the while execution are the follow-

ing:

M ) true [C ]([whileM do C ]N )) n

[whileM do C ]N ) n

M ) false N ) n

[whileM do C ]N ) n

This semantics needs to backtrack and to re-evaluate the test expression if it does not match the

required value in the assumption. The second semantics overcomes this drawback by introducing

an auxiliary judgment, dowhile:

M )

a

m dowhilem M C N )

a

n

[whileM do C ]N )

a

n

[C ]([whileM do C ]N ))

a

n

dowhile trueM C N )

a

n

N )

a

n

dowhile falseM C N )

a

n

Here, backtracking and double evaluation are not needed any more (actually, the

a

means

\algorithmic").
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By using a technique used by Michaylov and Pfenning for functional languages ([MP91]),

we can prove the equivalence between these two semantics by encoding in Elf a judgment,

naeq :

Q

M ;m2Expr

(M ) m) ! (M )

a

m) ! Type: This judgment represents the equivalence

between \natural" and \algorithmic" computation traces. Asking Elf about queries of the form

?- naeq D D

0

where one of D , D

0

is instantiated to a derivation in one semantics, the system

automatically gives us the equivalent derivation in the other semantics. In this way we have

de�ned a bijection between the computation traces of the two semantics.

We can think the former semantic as the \theoretical" semantics of the language, and the

latter as the real implementation. Thus, the formal equivalence proved in Elf between them can

be seen as the backbone of a proof of compiler correctness.

7 Concluding remarks

In this paper we have described the expressive power of the Natural Operational Semantics

formalism. We have seen that this formalism handles successfully languages which do not allow

variable aliasing, or sharing, i.e. variables whose semantics does not necessitate of stores. We

have shown some of these languages: functional languages extended with a restricted form

of commands and procedures, blocks, complex declarations, modules �a la ML (structures and

signatures) and modules �a la Morris.

This formalism improves abstractness and modularizability of Plotkin's Structural Opera-

tional Semantics and Kahn's Natural Semantics. Furthermore, such a operational description

can be easily encoded in LF. Such encodings can be used within implementations of LF (LEGO

and Elf), giving us powerful tools for developing language semantics formally, for checking

correctness of translators and for proving semantic properties.

Unfortunately, so far we have not been able to give the semantics of a truly imperative

language using this distributed formalism. It seems that one cannot give simultaneously a

representation of the store by means of assumptions. Without encoding a store we cannot

describe usual imperative phenomena like side-e�ects with aliasing, argument passage of pa-

rameters by-reference and so on. Therefore, this formalism seems not general enough to deal

with expressions with side-e�ects, functions with local state variables or memoization, Pascal

procedures, i.e. procedures with global variables and call-by-reference.

7.1 The aim: the NOS of ML

We have seen that the NOS style can describe the operational behavior of a language very close

to ML. We think that exception handling can be added to L

M

F

quite easily ([BH90]). The

real lack of our languages w.r.t. ML is the absence of the store: ML is a store-based language.

Therefore, in order to capture fully the semantics of ML (and encode it in LF) we have to

�nd some representation of the store. This is a task remaining to be done. Currently we

are investigating further extension of the Natural Deduction style similar to the �-notation.

Ideally, we would like to extend the formalism as much as is needed to describe the semantics

of a language like the following one:

M ::= x j 0 j succ j lambda x :M jM N jmkM j get x j setM N

where, roughly speaking, mk corresponds to ML's ref, get to ! and set to := ([Har89]). The

NOS of this language should be easily extended to that of ML.
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A Rules for the natural oper-

ational semantics

A.1 NOS of L

P

A.1.1 Rules for judgment value

M ) m

value m

(1)

value m

m is a constant

(2)

A.1.2 Schemas for �; �

C [J ]

C [�

j=i

I ]

C [I ]

C [�

i=j

J ]

(3)

where C [ ] is a context and i ; j 2 Id ; I ; J 2

Expr such that J is obtained from I by replac-

ing occurrences of i with j .

A.1.3 Rules for judgment )

(x

0

) n)

.

.

.

value n �

x

0

=x

M ) �

x

0

=x

m

[n=x ]M ) m

x

0

is a new variable

(4)

value m

m ) m

(5)

N ) n [n=x ]M ) m

let x = N inM ) m

(6)

(closed x)

.

.

.

closed M

lambda x :M ) lambda x :M

(7)

(closed y)

.

.

.

y ) n lambda x :M ) m

lambda x :M ) [n=y ]m

(8)

M ) m N ) n m � n ) p

MN ) p

(9)

[n=x ]M ) p

(lambda x :M ) � n ) p

(10)

value n [m

0

=x ](m � n)) p

([m

0

=x ]m) � n ) p

(11)

value n

succ � n ) succ � n

(12)

value m

plus �m ) plus �m

(13)

value n

(plus � 0) � n ) n

(14)

(plus �m) � n ) p

(plus � (succ �m)) � n ) succ � p

(15)

let f = (lambda x :letrec

f (x) = N inN ) inM ) p

letrec f (x) = N inM ) p

(16)

M ) m N ) n

M :: N ) m :: n

(17)

value m

hd � (m :: n)) m

(18)

value n

tl � (m :: n)) n

(19)

D > I free C I [D jC ]N ) n

[onD do C ]N ) n

(20)

M ) m [m=x ]([D jC ]N )) n

[x = M ;D jC ]N ) n

(21)

In the following, [C ]N

def

= [hijC ]N .

M ) m [m=x ]N ) n

[x := M ]N ) n

(22)

[C ]([D ]M )) m

[C ;D ]M ) m

(23)

M ) true [C ]N ) n

[ifM then C elseD ]N ) n

(24)

M ) false [D ]N ) n

[ifM then C elseD ]N ) n

(25)

M ) true

[C ]([whileM do C ]N )) n

[whileM do C ]N ) n

(26)

M ) false N ) n

[whileM do C ]N ) n

(27)
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N ) n [[n=x ]

c

C ]M ) m

[begin new x = N ; C end]M ) m

(28)

(x

0

) n)

.

.

.

value n [�

c x

0

=x

C ]M ) �

x

0

=x

m

[[n=x ]

c

C ]M ) m

x

0

is a new Id

(29)

value n

� �n )� �n

(30)

value n

(� �0) � n ) true

(31)

value n

(� �(succ � n)) � 0) false

(32)

(� �n) �m ) p

(� �(succ � n)) � (succ �m)) p

(33)

[[lambda x ; y :C =P ]

pc

D ]M ) m

[proc P(x ; y) = C in D ]M ) m

(34)

(P

0

)

p

lambda x ; y :C )

.

.

.

free

c

C (x ; y) [�

pc P

0

=P

D ]M ) �

pe P

0

=P

m

[[lambda x ; y :C =P ]

pc

D ]M ) m

P

0

is a new ProcId

(35)

P ) lambda x ; y :C

M ) m z ) p

[p=x ][m=y ][C ]x ) v [v=z ]N ) n

[P(z ;M )]N ) n

(36)

(closed P)

free C (x ; y)

.

.

.

P )

p

lambda x ; y :C lambda z :M ) m

lambda z :M ) [lambda x ; y :C =P ]

pe

m

(37)

value n [Q=P ]

pe

(m � n)) p

([Q=P ]

pe

m) � n ) p

(38)

(P

0

)

p

Q)

.

.

.

free

c

C (x ; y) �

pe P

0

=P

M ) �

pe P

0

=P

m

[lambda x ; y :C =P ]

pe

M ) m

P

0

is a new ProcId

(39)

A.1.4 Rules for judgment >

hi > nil

(40)

D

l

> I

x = M ;D

l

> x :: I

(41)

A.1.5 Rules for judgment closed

closed m

m is a constant

(42)

closed M closed N

closed(MN )

(43)

closed m closed n

closed(m � n)

(44)

(closed x)

.

.

.

closed N closed M

closed(let x = N inM )

(45)

(closed f ); (closed x) (closed f )

.

.

.

.

.

.

closed N closed M

closed(letrec f (x) = N inM )

(46)

(closed x)

.

.

.

closed M

closed(lambda x :M )

(47)

(closed x)

.

.

.

closed n closed M

closed([n=x ]M )

(48)

closed m closed n

closed(m :: n)

(49)

D > I free C I closed [D jnop]M

closed [onD do C ]M

(50)

closed M

closed [hijnop]M

(51)

(closed x)

.

.

.

closed N closed [Rjnop]M

closed [x = N ;Rjnop]M

(52)
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(closed

p

P)

.

.

.

free C (x ; y) closed M

closed [lambda x ; y :C =P ]

pe

M

(53)

A.1.6 Rules for judgment free

free x (x ;m)

(54)

free x m

free x (y ;m)

(55)

free M m free N m

free (M N ) m

(56)

free M m free N x :: m

free (let x = M inN ) m

(57)

free M x :: m

free (lambda x :M ) m

(58)

free M m free N m

free (M �N ) m

(59)

free M m free N m

free (M :: N ) m

(60)

free n m free M x :: m

free ([n=x ]M ) m

(61)

free C (x ; y ;m)

(closed

p

P)

.

.

.

free M m

free ([lambda x ; y :C =P ]M ) m

(62)

free C m free M m

free ([C ]M ) m

(63)

free C m free D m

free (C ;D) m

(64)

free M m free C m free D m

free (ifM then C elseD) m

(65)

free M m free C m

free (whileM do C ) m

(66)

free M m free C x :: m

free (begin new x =M ;C end ) m

(67)

free C (x ; y ;m)

(closed

p

P)

.

.

.

free D m

free (proc P(x ; y) = C in D) m

(68)

closed

p

(P) free x m free M m

free (P(x ;M )) m

(69)

free n m free C x :: m

free ([n=x ]C ) m

(70)

free C (x ; y ;m)

(closed

p

P)

.

.

.

free D m

free ([lambda x ; y :C =P ]D) m

(71)

A.2 NOS of L

D

A.2.1 Rules for judgment value

R )

d

m

value m

(72)

A.2.2 Rules for judgment )

R )

d

r frgM ) m

let R inM ) m

(73)

M ) m

fnilgM ) m

(74)

[n=x ]M ) m

fx 7! ngM ) m

(75)

frg(fsgM )) m

fr :: sgM ) m

(76)

A.2.3 Rules for judgment )

d

(x

0

) n)

.

.

.

value n �

d x

0

=x

R )

d

�

x

0

=x

m

[n=x ]

d

R )

d

m

x

0

is a new variable

(77)

M ) m

x = M )

d

x 7! m

(78)

R )

d

r S )

d

s

R and S )

d

r :: s

(79)

R )

d

r frg

d

S )

d

s

R; S )

d

r :: s

(80)

R )

d

r

fnilg

d

R )

d

r

(81)

[n=x ]

d

R )

d

r

fx 7! ng

d

R )

d

r

(82)

frg

d

(fsg

d

R))

d

r

fr :: sg

d

R )

d

r

(83)
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A.2.4 Rules for judgment closed

closed M

closed fnilgM

(84)

closed [n=x ]M

closed fx 7! ngM

(85)

closed frgfsgM

closed fr :: sgM

(86)

closed m

closed x 7! m

(87)

R � m closed hmiM

closed(let R inM )

(88)

(closed x)

.

.

.

closed M

closed hxiM

(89)

closed hmi(hniM )

closed hm :: niM

(90)

A.2.5 Rules for judgment �

hi � nil

(91)

R � m S � n

R and S � m :: n

(92)

(closed x)

.

.

.

closed M R � n

x = M ;R � x :: n

(93)

A.3 NOS of L

M

F

A.3.1 Rules for judgment value

value(sig B

sig

)

(94)

A.3.2 Rules for judgment )

struct end ) nil

(95)

M ) m [m=x ]struct B

str

) l

struct x = M B

str

) (x 7! m; l)

(96)

M ) m N ) t proj m (t) n

M : N ) n

(97)

u ) m (x 7! p) in m

u:x ) p

(98)

u ) l flgM ) m

open u inM ) m

(99)

M ) m u ) l

upd l x m l

0

[u := l

0

]N ) n

[u:x :=M ]N ) n

(100)

A.3.3 Rules for judgment closed

closed sig B

sig

(101)

closed M closed N

closed M : N

(102)

closed struct end

(103)

(closed x)

.

.

.

closed M closed(structB

str

)

closed(struct x = M B

str

)

(104)

closed u

closed u:x

(105)

closed u closed M

closed(open u inM )

(106)

A.3.4 Rules for judgments in, proj, upd

m in (m :: l)

(107)

m in l

m in (p :: l)

(108)

proj l (sig end ) nil

(109)

(x 7! m) in l proj l (sig B

sig

) l

0

proj l (sig x B

sig

) (x 7! m; l

0

)

(110)

upd (x 7! n; l) x m (x 7! m; l)

(111)

upd l x m l

0

upd (y 7! n; l) x m (y 7! n; l

0

)

x 6= y

(112)

275



A.4 NOS of L

M

I

A.4.1 Rules for judgment )

M ) m free C (x ; y) free N (x)

0

B

@

R

0

)

m

(m;R

0

)

(R

0

;P))

mp

�x ; y :C

(R

0

; f ))

mf

�x :N

1

C

A

.

.

.

[�

mc R

0

=R

D ]N

0

) �

me R

0

=R

n

0

[moduleR is x = M ; proc P(y) = C ; func f = N in D ]N

0

) n

0

R

0

is a new ModId

(113)

R )

m

(p;R

0

) (R

0

;P))

mp

�x ; y :C M ) m [p=x ][m=y ][C ]x ) p

0

[p

0

=R]

m

N ) n

[R:P(M )]N ) n

(114)

(T )

m

(p;R

0

))

.

.

.

value p R )

m

( ;R

0

) �

me T=R

N ) �

me T=R

n

[p=R]

m

N ) n

T is a new ModId

(115)

R )

m

(p;R

0

) (R

0

; f ))

mf

lambda x :M [p=x ]M ) m

R:f ) m

(116)

A.4.2 Rules for judgment closed

closed T

closed T :f

(117)

A.4.3 Rules for judgment free

free M m free C (x ; y) free N (x) free D (R;m)

free (moduleR is x = M ; proc P(y) = C ; func f = N in D) m

(118)

free R m free M m

free R:P(M )

(119)

free R m

free R:f m

(120)

free p m free N (R;m)

free [p=R]

m

N m

(121)

A.4.4 Rules for judgment �

(closed T )

.

.

.

R � I

[p=T ]

m

R � I

(122)

B Denotational semantics
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B.1 Denotational semantics of L

P

B.1.1 Semantic domains

V= (N+T+U+P+ F)

>

?

N = Nat (the domain of natural numbers)

T= Truth (the domain of truth values)

U= Unit (the one-element domain)

P= V�V

F = V! V

E = ((Id ! V)� (ProcId ! Q))

>

Q = (Id ! V! E ! E)

>

B.1.2 Operators

newenv = (�x :>; �p:>) : E

update = �x :�n:�(�

v

; �

p

):([x 7! n]�

v

; �

p

) : Id ! V! E ! E

access = �x :�(�

v

; �

p

):�

v

(x) : Id ! E ! V

procupdate = �p:�q :�(�

v

; �

p

):(�

v

; [p 7! q ]�

p

) : ProcId ! Q! E ! E

procaccess = �p:�(�

v

; �

p

):�

p

(p) : ProcId ! E ! Q

overlay = ��

1

:��

2

:�x :if is>(�

2

(x))! �

1

(x) [] �

2

(x) : E ! E ! E

B.1.3 Semantic functions

E : Expr ! E ! V

C : Commands ! E ! E

D : Declarations ! E ! E

Q : Procedures ! E ! Q

E [[x ]] = ��:access[[x ]]� E [[0]] = ��:inN(zero) E [[nil]] = ��:inU()

E [[true]] = ��:inT(true) E [[false]] = ��:inT(false)

E [[succ]] = ��:inF(�v :cases v of

isN(m)! inN(plus m one)

[] isU()! >

[] isP(c)! >

[] isF(f )! >

end)

E [[plus]] = ��:inF(�v

1

:inF(�v

2

:cases v

1

of

isN(m

1

)!

cases v

2

of

isN(m

2

)! inN(plus m

1

m

2

)

[]>

end

[]>

end))

E [[hd]] = ��:inF(�v :cases v of

isP(c)! c#

1

[]>

end)
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E [[tl]] = ��:inF(�v :cases v of

isP(c)! c#

2

[]>

end)

E [[�]] = ��:inF(�v

1

:inF(�v

2

:cases v

1

of

isN(m

1

)!

cases v

2

of

isN(m

2

)! inT(islessorequal m

1

m

2

)

[]>

end

[]>

end))

E [[let x = M inN ]] = ��:let v = E [[M ]]� in E [[N ]](update [[x ]] v �)

E [[letrec f (x) = M in N ]] = ��:let g = �x(�g :�v :E[[M ]](update [[f ]] g �) in

E [[N ]](update [[f ]] g �)

E [[lambda x :M ]] = ��:inF(�v :E [[M ]](update [[x ]] v �))

E [[M N ]] = ��:cases E [[M ]]� of

isF(f )! f (E [[N ]]�)

[]>

end

E [[M :: N ]] = ��:let v

1

= E [[M ]]� in let v

2

= E [[N ]]� in inP((v

1

; v

2

))

E [[[m=x ]N ]] = ��:let v = E [[m]]� in E [[N ]](update [[x ]] v �)

E [[m � n]] = ��:cases E [[m]] of

isF(f )! f (E [[n]]�)

[]>

end

E [[[on �x =

�

M do C ]N ]] = ��:if (maxfree [[C ]](�x))! C[[C ]](D[[�x =

�

M ]]�)[]>

where maxfree : Commands ! Id

�

! T; the meaning of \maxfree [[C ]] s = true" is simply

\every free identi�er of C is in s". maxfree is trivially de�ned on the syntactic structure of

commands; we omit its de�nition. D[[hi]] = ��:newenv

D[[x = M ;R]] = ��:let v = E [[M ]]� in

let � = D[[R]](update [[x ]] v �) in

overlay � (update [[x ]] v newenv)

D[[[n=x ]

d

R]] = ��:let v = E [[n]]� in D[[R]](update [[x ]] v �)

C[[x :=M ]] = ��:let v = E [[M ]]� in update [[x ]] v �

C[[C ;D ]] = ��:let � = C[[C ]]� in C[[D ]]� = C[[D ]] � C[[C ]]

C[[ifM then C elseD ]] = ��:cases E [[M ]]� of

isT(t)! if t ! C[[C ]]� [] C[[D ]]�

[]>

end

C[[whileM do C ]] = �x(F )
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where F : (E ! E)! (E ! E) F = �f :��:cases E [[M ]]� of

isT(t)! if t ! f (C[[C ]]�) [] �

[]>

end

C[[begin new x = M ; C end]] = ��:let �

0

= update [[x ]] (E [[M ]]�) � in

let �

00

= C[[C ]]�

0

in

update [[x ]] (access [[x ]] �) �

00

C[[[n=x ]

c

C ]] = ��:let �

0

= update [[x ]] (E [[n]]�) � in

let �

00

= C[[C ]]�

0

in

update [[x ]] (access [[x ]] �) �

00

C[[procP(x ; y) = C inD ]] = ��:let �

0

= procupdate [[P ]] (Q[[lambda x ; y :C ]]�) � in

let �

00

= C[[D ]]�

0

in

procupdate [[P ]] (procaccess [[P ]] �) �

00

C[[P(x ;M )]] = ��:let v = E [[M ]]� in ((procaccess [[P ]] �) [[x ]] v �)

C[[[Q=P ]

pc

C ]] = ��:let �

0

= procupdate [[P ]] Q[[Q ]]� � in

let �

00

= C[[C ]]�

0

in

procupdate [[P ]] (procaccess [[P ]] �) �

00

Q[[lambda x ; y :C ]] = ��:ifmaxfree [[C ]] ([[x ]]; [[y ]])emptysign))!

�i :�v

y

:��:let v

x

= (access i �) in

let �

0

= C[[C ]](update [[y ]] v

y

(update [[x ]] v

x

�)) in

update i (access [[x ]] �

0

) �

[]>

E [[[Q=P ]

pe

M ]] = ��:E[[M ]](procupdate [[P ]] Q[[Q ]]� �)

B.2 Denotational semantics of L

D

B.2.1 Semantic functions

O : SyntEnvir! E ! E

E [[let R in N ]] = ��:E[[N ]](overlay (D[[R]]�) �)

E [[frgM ]] = ��:E[[M ]](O[[r ]]�) = E [[M ]] � O[[r ]]

D[[R and S ]] = ��:overlay (D[[S ]]�) (D[[R]]�)

O[[x 7! n]] = ��:update (E [[n]]�) �

O[[r :: s ]] = O[[s ]] � O[[r ]]

B.3 Denotational semantics of L

M

F

B.3.1 Semantic domains

V= (N+U+ P+ F + B +S)

>

?

U= Unit

P= V�V

F = V! V

B = Id �V

S= Id

�

= ES+ CS

ES= Unit

CS= Id �S
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B.3.2 Operators

emptystruct = inU() : V

consstruct = �x :�v :�c:inP(inB ([[x ]]; v); c) : Id ! V! V! V

emptysign = inES() : V

conssign = �i :�t :inCS((i ; t)) : Id ! S! S

accessstruct = see below : Id ! V! V

applystruct = see below : V! E ! E

projection = see below : V! S! V

longupdate = see below : LongId ! V! E ! E

projection = �s :�t :cases t of

isES()! inU()

[] isCS(i ; t

0

)!

let v = accessstruct i s in

let s

0

= projection s t

0

in consstruct i v s

0

end

accessstruct = �i :�s :cases s of

isU()! >

[] isP(b; s

0

)!

cases b of

isB (j ; v)! if (i = j )! v [] accessstruct i s

0

[]>

end

[]>

end

B.3.3 Semantic functions

E [[struct end ]] = ��:emptystruct

E [[x 7! n]] = ��:let v = E [[n]]� in inB ([[x ]]; v)

E [[struct x = M B

str

]] = ��:let v

1

= E [[M ]]� in

let v

2

= E [[structB

str

]](update [[x ]] v

1

�) in

consstruct [[x ]] v

1

v

2

applystruct = �s :��:cases s of

isU()! �

[] isP(b; s

0

)!

cases b of

isB (i ; v)! applystruct s

0

(update i v �)

[]>

end

[]>

end

E [[sig end ]] = ��:inS(emptysign)
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E [[sig x B

sig

]] = ��:cases E [[sig B

sig

]]� of

isS(s)! inS(conssig [[x ]] s)

[]>

end

E [[M : N ]] = ��:let s = E [[M ]]� in

cases E [[N ]]� of

isS(t)! projection s t

[]>

end

E [[open u inM ]] = ��:let s = E [[u]]� in E [[M ]](applystruct s �)

E [[u:x ]] = ��:accessstruct [[x ]] (E [[u]]�)

B.4 Denotational semantics of L

M

I

B.4.1 Semantic domains

E = (IM � PM � MM )

>

IM = Id ! V

PM = ProcId ! Q

Q = (Id ! V! E ! E)

>

MM = ModId ! M

M = (V� Q

M

� F

M

)

>

Q

M

= V! V! V

F

M

= V! V= F

B.4.2 Operators

newenv = (�x :>; �p:>; �r :>) : E

update = �x :�n:�(�

v

; �

p

; �

m

):([x 7! n]�

v

; �

p

; �

m

) : Id ! V! E ! E

access = �x :�(�

v

; �

p

; �

m

):�

v

(x) : Id ! E ! V

procupdate = �p:�q :�(�

v

; �

p

; �

m

):(�

v

; [p 7! q ]�

p

; �

m

) : ProcId ! Q! E ! E

procaccess = �p:�(�

v

; �

p

; �

m

):�

p

(p) : ProcId ! E ! Q

modupdate = �r :�q :�(�

v

; �

p

; �

m

):(�

v

; �

p

; [r 7! m]�

m

) : ProcId ! Q! E ! E

modaccess = �r :�(�

v

; �

p

; �

m

):�

m

(r) : ProcId ! E ! Q

B.4.3 Semantic functions

Q

0

: Q! E ! V! V! V

C[[moduleR is x = M ; proc P(y) = C ; func f = N in D ]] =

��:ifmaxfree [[C ]] (conssign [[x ]] (conssign [[y ]]emptysign))!

ifmaxfree [[N ]] (conssign [[x ]] emptysign)!

letm = E [[M ]]� in

let q = Q

0

[[lambda x ; y :C ]]� in

let g = �v

x

:E[[N ]](update [[x ]] v

x

�) in

let �

0

= modupdate [[R]] (m; q ; g) � in

modupdate [[R]] (modaccess [[R]] �) C[[D ]]�

0

[]>

[]>
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Q

0

[[lambda x ; y :C ]] = ��:�v

x

:�v

y

:access [[x ]] C[[C ]](update [[y ]] v

y

(update [[x ]] v

x

�))

C[[R:P(M )]] = ��:let (n; q ; g) = modaccess [[R]] � in

let n

0

= q n (E [[M ]]�) in

modupdate [[R]] (n

0

; q ; g) �

E [[R:f ]] = ��:let (n; q ; g) = modaccess [[R]] � in (g n)

E [[[n=R]

m

M ]] = ��:let ( ; q ; g) = modaccess [[R]] � in

letm

0

= E [[n]]� in E [[M ]](modupdate [[R]] (m

0

; q ; g) �)
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The ALF proof editor
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Abstract

Alf is an interactive proof editor. It is based on the idea that to prove a mathematical

theorem is to build a proof object for the theorem. The proof object is directly manipu-

lated on the screen, di�erent manipulations correspond to di�erent steps in the proof. The

language we use is Martin-L�of's monomorphic type theory. This is a small functional pro-

gramming language with dependent types. The language is open in the sense that it is easy

to introduce new inductively de�ned sets. A proof is represented as a mathematical object

and a proposition is identi�ed with the set of its proof objects.

Background

During the years we have learned that there is no such thing as \the logic of programming".

Di�erent kinds of programs require di�erent kind of reasoning. Programs are manipulating

di�erent kinds of objects, and it would be very awkward to code these objects into a �xed set of

objects. Objects have their own logic, it is for instance very di�erent to reason about ongoing

processes and �xed objects like natural numbers and lists. We also need a di�erent kind of logic

when we are interested in computational aspects of a program (like complexity and storage

requirements). I don't think we will ever �nd the logic of programming.

The idea behind a logical framework is to have a exible formal logic, in which it is possible

to introduce new kinds of objects, including objects for proofs. The logical framework we are

using is Martin-L�of's monomorphic type theory, which can be seen as a small functional language

with dependent types. We express problems as types and solutions (proofs) as programs.

The fundamental notion of proof is a process which leads to a conviction of something to hold

(an assertion, or equivalently, a judgement). You have a series of steps, in each step you make

an assertion which holds because earlier assertions have been made. A proof object should be

a mathematical object which represents this proof process. The proof object must be derivable

from the proof process. But we need something more: If a proof object represents a proof then it

must be possible to compute a proof process from the proof object. Here is a di�erence between

the polymorphic type theory and the monomorphic theory. In the monomorphic theory the

proof objects really represents a proof of its type.

The traditional way of using a computer for interactive proof checking is to formalize the

proof process and then letting the computer check each step. The user types in commands in

285



some imperative language and the e�ect of executing a command is to update some internal

data base which represents assertions being made. We call this indirect editing.

To directly build something with a computer is to have an impression that the objects

which are built (and changed) are directly manipulated on the screen using the keyboard and

the mouse. It is like we have a hand (represented by the cursor) on the screen to select parts

and to grasp for di�erent tools which can manipulate the object. A change of the object is

immediately shown on the screen.

To indirectly build something is to issue commands to the computer (either by typing or by

pointing). The command is performed and nothing happens on the screen. It is like we cannot

see the objects being built, instead we have to make experiments on it to see what we have.

Direct manipulation is better. You have an explicit picture of the object which you want to

build in front of you. And the object is manipulated by manipulation of the picture of it. Parts

of the object can be pointed to, deleted, moved and changed in various ways.

There is another distinction which we have to make, the one between interactive and batch-

wise building. To build an object batchwise is to build the entire object �rst and then check

that it is correct. Interactive building is to build an object piece by piece. You start with an

incomplete object and then �ll in some parts of it. Erroneous building steps are immediately

discovered.

The idea we use is to use a proof object as a true representative of a proof. The process of

proving the proposition A is represented by the process of building a proof object of A. There

is a close connection between the individual steps in proving A and the steps to build a proof

object of A. For instance the act of applying a rule is done by building an application of a

constant, to assume that a proposition A holds is to make an abstraction of a variable of the

type A and to refer to an assumption is to use the corresponding variable.

We are interested in an interactive direct proof checker. So if we represent the proof process

by the process of building a proof object it must be possible to deal with incomplete proof

objects, i.e. proof objects which represents incomplete proofs.

The proof editor we are using can be seen as an interactive structure-oriented editor for

Martin-L�of's monomorphic type theory. An object which has been created by the editor is

always meaningful (well typed), which means that the object really represents a proof. Before we

explain how a partial proof is represented, we will explain how a complete proof is represented.

To do this we need to explain Martin-L�of's monomorphic type theory.

The logical framework

There are four judgement forms in type theory:

� A type. We know that A is a type when we know what it means to be an object in A.

� A = B . Two types are equal when they have the same objects, so an object in A must

be an object of B and conversely. Identical objects in A must also be identical in B and

vice versa.

� a 2 A. a is an object in A.

� a = b 2 A. a and b are identical objects in A.

These judgements are decidable.
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How to form types

The type structure is very simple, there are two ways of forming ground types and one way

of forming function types. I will use the notation b[x := a] for the expression obtained by

substituting the expression a for all free occurrences of the variable x in the expression b.

� Set is a type. This is the type whose objects are (inductively de�ned) sets.

Set formation

Set type

� If A 2 Set, i.e. if A is a set, then El(A) is a type. The objects in this type are the elements

of the set A. I will write A instead of El(A), since it will always be clear from the context

whether we mean A as a set (i.e. as an object in Set) or as a type.

El-formation

A 2 Set

El(A) type

� If A is a type and B is a family of types for x 2 A then (x 2 A)B is the type which

contains functions from A to B as objects. All free occurrences of x in B become bound

in (x 2A)B .

Fun formation

A type B type [x 2 A]

(x 2A)B type

To know that an object c is in the type (x 2A)B means that we know that when we apply

it to an object a in A we get an object c(a) in B [x := a] and that we get identical objects

in B [x := a

1

] when we apply it to identical objects a

1

and a

2

in A.

How to form objects in a type

Objects in a type are formed from constants and variables using application and abstraction. I

already mentioned how to apply a function to an object:

Application

c 2 (x 2A)B a 2 A

c(a) 2 B [x := a]

Functions can be formed by abstraction, if b 2 B under the assumption that x 2 A then

[x ]b is an object in (x 2A)B . All free occurences of x in b become bound in [x ]b.

Abstraction

b 2 B [x 2 A]

[x ]b 2 (x 2A)B

The abstraction is explained by the ordinary �-rule which de�nes what it means to apply an

abstraction to an object in A.

� { rule

a 2 A b 2 B [x 2 A]

([x ]b)(a) = b[x := a] 2 B [x := a]
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The traditional �-, �- and �-rules can be justi�ed, i.e. under obvious type-restrictions the

following equalities hold if b

1

= b

2

:

[x ](c(x)) = c �

[x ]b = [y ](b[x := y ]) �

[x ]b

1

= [x ]b

2

�

I will sometimes use the notation (A)B or A! B when B does not contain any free occurrences

of x . I will write (x

1

2A

1

; : : : ; x

n

2A

n

)B instead of (x

1

2A

1

) : : :(x

n

2A

n

)B and b(a

1

; : : : ; a

n

)

instead of b(a

1

) : : :(a

n

) in order to increase the readability. Similarly, I will write [x

1

] : : : [x

n

]e

as [x

1

; : : : ; x

n

]e.

An object is saturated if it is not a function, i.e. if its type is Set or El(A), for A 2 Set. The

arity of an object is the number of arguments it can be applied to in order for the result to be

saturated. It is an important property that a well-typed object has a unique arity.

De�nitions

Most of the generality and strength of the language comes from the possibilities of introducing

new constants. It is in this way that we can introduce the usual mathematical objects like

natural numbers, integers, functions, tuples etc. It is also possible to introduce more complicated

inductive sets like sets for proof objects.

A distinction is made between primitive and de�ned constants. The value of a primitive

constant is the constant itself. So the constant has only a type, it doesn't have a de�nition. It

gets its meaning in other ways (outside the theory). Such a constant is also called a constructor.

Examples of primitive constants are N, succ and 0, they can be introduced by the following

declarations:

N 2 Set

succ 2 N! N

0 2 N

A de�ned constant is de�ned in terms of other objects. When we apply a de�ned constant

to all its arguments in an empty context, e.g. c(e

1

; : : : ; e

n

), then we get an expression which

is a de�niendum, i.e. an expression which computes in one step to its de�niens (which is a

well-typed object).

A de�ned constant can either be explicitly or implicitly de�ned. We declare an explicitly

de�ned constant c by giving an abbreviation for it:

c � a 2 A

The constant c is a de�niendum in itself, not only when it is applied to its arguments. For

instance we can make the following explicit de�nitions:

1 � succ(0)) 2 N

I

N

� [x ]x 2 N! N

I � [A][x ]x 2 (A2Set;A)A

The last example is the monomorphic identity function which when applied to an arbitrary set

A yields the identity function on A.
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It is easy to check whether an explicit de�nition is correct, you just check that the de�niens

is an object in the correct type.

We declare an implicitly de�ned constant by showing what de�niens it has when we apply it

to its arguments. This is done by pattern-matching and the de�nition is sometimes recursive.

Whether this kind of de�nition is meaningful can in general only be checked outside the theory.

We must be sure that all well-typed expressions of the form c(e

1

; : : : ; e

n

) is a de�niendum with

a unique welltyped de�niens. Here are some examples:

+ 2 N! N! N

+(0; y) � y

+(succ(x); y) � succ(+(x ; y))

natrec 2 N! (N! N! N)! N! N

natrec(d ; e; 0) � d

natrec(d ; e; succ(a)) � e(a; natrec(d ; e; a))

The last example is a specialized version of the recursion operator, a more general form will be

given later.

The representation of proofs, theories, theorems, derived rules

etc.

We are representing proofs as mathematical objects, the type of a proof object represents the

proposition which is the conclusion of the proof. Variables are used as names of assumptions

and constants are used as rules. To apply a rule to a number of subproofs is done by applying

a constant to the corresponding subproof objects.

A theory is presented by a list of typings and de�nitions of constants. When we read the

constant as a name of a rule, then a primitive constant is usually a formation or introduction

rule, an implicitly de�ned constant is an elimination rule (with the contraction rule expressed

as the step from the de�niendum to the de�niens) and �nally, an explicitly de�ned constant is

a lemma or derived rule. As an example of this, consider the de�nition of conjunction.

The formation rule for conjunction expresses that A&B is a proposition if A and B are

propositions:

A prop B prop

A&B prop

We express this by introducing the primitive constant & by the following typing:

& 2 (Set; Set)Set

We use the type of sets to represent the type of propositions. A canonical proof of the problem

A&B is on the form &I(a; b), where a is a proof of A and b a proof of B . This reects the

explanation that a proof of A&B consists of a proof of A and a proof of B . If we are in a context

where A and B are propositions we can de�ne A&B by introducing the primitive constant

&I 2 (A;B)A&B
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Another notation for this is:

A B

A&B

This is the introduction rule for conjunction. If we are in an empty context we must declare

the parameters A and B explicitly:

&I 2 (A2Set; B 2Set; A; B)A&B

The elimination rules for conjunction

A&B

A

A&B

B

are expressed by introducing the implicitly de�ned constants &E

l

and &E

l

by the following

declarations:

&E

l

2 (A2Set; B 2Set; A&B)A

&E

r

2 (A2Set; B 2Set; A&B)B

&E

l

(A;B ;&I(a; b)) = a

&E

r

(A;B ;&I(a; b)) = b

The two last rules are the contraction rules for & and these are essential for the correctness

of the elimination rule. Since all proofs of A&B is equal to a proof on the form &I(a; b), where

a is a proof of A and b a proof of B , we know from the contraction rule that we get a proof of

A if we apply &E

r

to an arbitrary proof of A&B , and similarly for &E

l

.

To summarize, we have the following declarations and de�nitions for conjunction.

& 2 (Set; Set)Set

&I 2 (A2Set; B2Set; A; B)A&B

&E

l

2 (A2Set; B2Set; A&B)A

&E

r

2 (A2Set; B2Set; A&B)B

&E

l

(A;B ;&I(a; b)) = a

&E

r

(A;B ;&I(a; b)) = b

The appendix contains a formalization of Martin-L�of's monomorphic set theory.

Representation of incomplete objects

When we are proving a proposition A in a theory then we are building a proof object of type

A in an environment consisting of a list of declaration of constants. This is presented on the

screen by having two windows, a theory window containing declarations of constants and a

scratch area containing objects being edited. The scratch area contains di�erent kind of bu�ers

to build types and objects. A type bu�er is used to build a type. The objects which are being

built in the scratch area are always correct relative to the current theory.
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Editing objects

When we are making a top-down proof of a proposition A, then we try to reduce the problem

A to some subproblems B

1

; : : : ;B

n

by using a rule c which takes proofs of B

1

; : : : ;B

n

to a proof

of A. Then we continue by proving B

1

; : : : ;B

n

. For instance, we can reduce the problem A to

the two problems C � A and C by using modus ponens. In this way we can continue until we

have only axioms and assumptions left. This process corresponds exactly to how we can build

a mathematical object from the outside and in. Suppose that we want to build an object like

f (g

1

(a

1

; a

2

); g

2

(b)):

Then we start from its outer form to build f (?

1

; ?

2

), where ?

1

and ?

1

are placeholders for

not yet �lled-in objects, then continue to �ll in g

1

or g

2

etc. This means that the type or the

problem to solve is constant while the solution to it is edited. It is an important property of

the formal system that it is possible to compute the expected type of the placeholders. It is

because of this that we can look at the editing operations as a way of decomposing a problem

into subproblems.

Let's see what kind of structure we need to represent incomplete objects. We will �rst

introduce placeholders ?

1

; : : :?

n

to be used for parts of the objects which are to be �lled in. The

expression

? 2 A

expresses a state of an ongoing process of �nding an object in the type A. We say that the

expected type of ? is A. Objects are built up from variables and constants using application

and abstraction. Therefore there are four ways of re�ning a placeholder:

� The placeholder is replaced by a constant c. This is correct if the type of c is equal to A.

� The placeholder is replaced by a variable x . This is correct if the type of x is equal to A

and if the expression replacing the placeholder may depend on x .

� The placeholder is replaced by an abstraction [x ]?

1

. We must have that

[x ]?

1

2 A

which holds if A is equal to a functional type (y 2 B)C . The type of the variable x must

be B and we must remember that ?

1

may be substituted by an expression which may

depend on the variable x . We say that the local context of ?

1

contains the typing x 2 B .

So after this re�nement we have that

?

1

2 C [y := x ]

and ?

1

has a local context which contains x 2 B . This corresponds to making a new

assumption, when we are constructing a proof. We reduce the general problem (y2B)C

to the problem C [y := x ] under the assumption that x 2B . The assumed object x can be

used to construct a solution to C , i.e. we may use the knowledge that we have a solution

to the problem B when we are constructing a solution to the problem C .

Notice that the placeholder will in general be replaced by an open term, this is a motivation

for having open terms as �rst-class objects.
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� Finally, the placeholder can be replaced by an application c(?

1

; : : :?

n

) where c is a con-

stant, or x(?

1

; : : :?

n

), where x is a variable. In the case that we have a constant, we must

have that c(?

1

; : : :?

n

) 2 A, which holds if the type of the constant c is equal to (x

1

2

A

1

; : : : ; x

n

2 A

n

)B and ?

1

2 A

1

; ?

2

2 A

2

[x

1

:=?

1

]; : : : ; x

n

2A

n

[x

1

:=?

1

; : : : ; x

n�1

:=?

n�1

]

and

B [x

1

:=?

1

; : : : ; x

n�1

:=?

n�1

] = A

So, we have reduced the problem A to the subproblems A

1

;A

2

[x

1

:=?

1

]; : : : ;A

n

[x

1

:=

?

1

; : : : ; x

n�1

] and further re�nements must satisfy the constraint B [x

1

:=?

1

; : : : ; x

n�1

:=

?

n�1

] = A. The number n of new placeholders can be computed from the arity of the

constant c and the expected arity of the placeholder.

As an example, if we start with ? 2 A and A is not a function type and if we apply the constant

c of type (x 2B)C , then the new term will be

c(?

1

) 2 A

where the new placeholder ?

1

must have the type B (since all arguments to c must have that

type) and furthermore the type of c(?

1

) must be equal to A, i.e. the following equality must

hold:

C [x :=?

1

] � A:

As will be described later, these kind of constraints will in general be simpli�ed by the system.

To summarize, the editing step from ? 2 A to c(?

1

) 2 A is correct if ?

1

2 B and C [x :=?

1

] � A.

This operation corresponds to applying a rule when we are constructing a proof. The rule c

reduces the problem A to the problem B .

Editing types top-down

A type bu�er is initialized with a placeholder and this can be re�ned in three ways (correspond-

ing to the three ways of forming types). One way is to re�ne it to Set. Another way is to re�ne

it to a function type (x 2?

1

)?

2

where ?

1

and ?

2

are new placeholders standing for types (and ?

2

may contain occurrences of the variable x). In this case, the place holder ?

1

must be replaced

by a complete expression before we go on to edit the placeholder ?

2

. Finally a type placeholder

can be re�ned to C (?

1

; : : : ; ?

n

) where C is an n-ary set forming operation (i.e. a constant of

type (x

1

2A

1

; : : : ; x

n

2A

n

)Set). In this case the new placeholders stand for objects and we can

re�ne them using the commands for editing objects.

Bottom-up bu�ers

A bottom-up bu�er is used to edit (hypothetical) proofs (programs) bottom up. As the proof-

term is edited, the type of it is computed by the system. When we want to build a term

like

f (g

1

(a

1

; a

2

); g

2

(b))

then we start to build a

1

, a

2

or b and then continue with g

1

(a

1

; a

2

) or g

2

(b) etc.

There are di�erent ways of building an application c(a

1

; : : : ; a

n

) from its parts. You can

either update one of the arguments or update the expression c(?

1

; : : : ; ?

n

). In the �rst case, the

bu�er is initialized with one of the arguments and there are ways to edit it. So, given an object

a the bu�er is initialized to

a 2 A
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where A is the type of a. It is now possible to use the object a as the �rst argument in an

application, i.e. by pointing to a constant c replacing a with c(a; ?

2

; : : : ; ?

n

) where ?

2

; : : : ; ?

n

are

new placeholders, the number of which is decided by the arity of c. The editor then computes

the type of the new object (and reject the editing operation if there is no typing). Of course,

the type of the object depends in general on the placeholders.

Another way of building this object is to �rst build the term c(?

1

; : : : ; ?

n

) and then re-

place the �rst placeholder with a. So instead of updating the object a, we update the object

c(?

1

; : : : ; ?

n

). The disadvantage of this is that there will be more bu�ers left after the �nal

expression have been created. But only experience will tell what is best.

The theory window

A theory is a list of declarations of constants. Each constant has a type and the de�ned constants

also have a de�nition (which is a well typed object). A theory can be edited by moving constant

declarations between the scratch area and the theory. It is also possible to include declarations

from a �le. Declarations from an included �le may not be changed without invoking the editor

on that �le.

Editing de�ned constants

Suppose that we are going to build an object with name c of type A. A bu�er is then initialized

to

c 2?

1

c =?

2

[]

and we can �ll in the type A for the �rst placeholder using the commands for editing types.

When we edit the de�nition of c we can choose to edit the lefthand side or the righthand side.

If we double click on the lefthand side then it will change to

c(x

1

; : : : ; x

n

) =? [x

1

2 A

1

; : : : ; x

n

2 A

n

]

if A is de�nitionally equal to (x

1

2A

1

; : : : ; x

n

2A

n

)B . If we now double click on the variable x

i

,

and if the type of x

i

is a set, then the lefthand side will expand to

c(x

1

; : : : ; c

1

(y

1

; : : : ; y

m

); x

i+1

; : : : ; x

n

) =?

1

c(x

1

; : : : ; c

k

(z

1

; : : : ; z

u

); x

i+1

; : : : ; x

n

) =?

k

where c

1

; : : : ; c

k

are all the constructors for the type of x

i

. In this way we can create a de�ni-

tion by pattern matching and the system will guarantee that the patterns are exhaustive and

mutually distinct.

When editing the righthand side of a de�ning equation it is possible to use a case construct

on the outer level of the expression. This replaces the current placeholder with an expression

of the form

case a of

c

1

(y

1

; : : : ; y

m

) =>?

1

j c

k

(z

1

; : : : ; z

u

) =>?

k
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Appendix: De�nition of Martin-L�of 's theory of sets

I will use the symbol # in front of arguments which are not printed. These arguments can almost

always be �lled in automatically.

Cartesian product of a family of sets

The elements in the set �(A;B) are functions which takes an argument x in A to an element

in B(x). The set is used to express universal quanti�cation and implication.

� 2 (A2Set; (A)Set) Set

� 2 (# A2Set; # B 2(A)Set; (x 2A)B(x))

�(A;B)

apply 2 (# A2Set; # B2(A)Set; �(A;B); x 2A)

B(x)

apply(�(b); a) = b(a)

We will write �x 2A:C instead of �(A; [x ]C ). We get the ordinary function set by making the

explicit de�nition

A! B = �(A; [x ]B)) 2 Set [A2Set;B2Set]

As usual, the following de�nitions are made:

8 � �

8I � �

8E � �E

� � !

� I � �

MP � apply

Disjoint union of a family of sets

The elements in the set �(A;B) are pairs consisting of an element a in in A and an element in

B(a). The set is used to express existential quanti�cation, the cartesian product between two

sets and conjunction.

� 2 (A2Set; (A)Set) Set

�I 2 (# A2Set; # B 2(A)Set; x 2A;B(x))
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�(A;B)

�E 2 (# A2Set; # B 2(A)Set; # C 2(�(A; B))Set;

(x 2A; y2B(x))C (�I (x ; y));

p2�(A; B))

C (p)

�E(d ;�I (a; b)) = d(a; b)

The usual cartesian product is de�ned by

A� B = �(A; [x ]B) 2 Set [A 2 Set;B 2 Set]

We also make the following de�nitions:

�I � �I

�E � �E

& � �

& I � �I

&E � �E

9 � �

9I � �I

9E � �E

Equality sets

The set Id(A; a; b) is the least reexive relation, it is used to express that the elements a and b

in A are equal.

Id 2 (A2Set;A;A) Set

re 2 (# A2Set; x 2A) Id(A; x ; x)

idpeel 2 (# A2Set; x 2A; y2A; # C 2(x 2A; y2A; Id(A; x ; y)) Set;

(z 2A)C (z ; z ; id(z ));

p 2 Id(A; x ; y))

C (x ; y ; p)

idpeel(A; a; b;C ; d ; id(A; a)) = d(a)

Finite sets

We introduce the empty set and the one element set as examples of �nite sets. The empty set

is introduced by declaring the constants

? 2 Set

case

?

2 ((C 2?)Set; p2?)C (p)

Notice that there is no de�nition of the non-primitive constant case

?

.
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The one element set is introduced by declaring the constants

> 2 Set

tt 2 >

case

>

2 (# C 2(>)Set; C (tt); p2>)C (p)

case

>

(b; tt) = b(tt)

Natural numbers

The set of natural numbers is introduced by declaring the constants

N 2 Set

0 2 N

succ 2 (N)N

natrec 2 (# C 2(N) Set;

C (0);

(x 2N;C (x))C (succ(x));

p2N)

C (p)

natrec(d ; e; 0) = d

natrec(d ; e; succ(a)) = e(a; natrec(d ; e; a))

Lists

List 2 (Set) Set

nil 2 (A2Set) List(A)

cons 2 (# A2Set;A; List(A)) List(A)

listrec 2 (# A2Set; # C 2(List(A)) Set;

C (nil(A));

(x 2A; y2List(A);C (x))C (cons(x ; y));

p2List(A))

C (p)

listrec(d ; e; nil) = d

listrec(d ; e; cons(a; b)) = e(a; b; listrec(d ; e; b))
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Abstract

The system Coq is an environment for proof development based on the Calculus of

Constructions extended by inductive de�nitions. Functional programs can be extracted from

constructive proofs written in Coq. The extracted program and its corresponding proof are

strongly related. The idea in this paper is to use this link to have another approach: to

give a program and to generate automatically the proof from which it could be extracted.

Moreover, we introduce a notion of annotated programs.

1 Introduction

The system Coq is a proof development environment based on the Calculus of Constructions

with inductive de�nitions [PM93, DFH

+

93]. It uses the Curry-Howard isomorphism [How80],

more precisely the fact that one can identify the notion of proofs and programs and the notion

of types and speci�cations. It follows Heyting's semantics of constructive proofs : a proof of

8x :P(x) ) 9y :Q(x ; y) gives a method to transform an object i and a proof of P(i) into an

object o and a proof of Q(i ; o). Systems following this interpretation like Coq can be seen as

programming languages. Indeed, in a system like Coq, a proof of a speci�cation is developed

and can be represented as a program corresponding to the method in the Heyting's sense.

In fact, a proof contains a lot of redundant informations : there are informations about the

way of calculating the result (i.e. the interesting part) and informations about the way of

calculating the correctness proof (i.e. the uninteresting part). So, following this idea that

informations need to be removed, programs can be extracted from proofs in Coq, using a notion

of realizability [PM89a]. Realizability is an interpretation of the computational contents of

intuitionistic proofs as programs satisfying a given speci�cation. Such a program is called a

realization of the speci�cation. Realizability allows to eliminate non computational parts of

proofs (to extract programs from proofs) and to certify extracted programs to be still correct

with respect to the initial speci�cation. Indeed, from proofs written in Coq, programs can be

extracted [PM89b] into a typed functional language like ML. Some other systems like PX and

NuPrl o�er similar possibilities of extraction [HN88, Con86]. Both of them are using untyped

�
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theories. More precisely, PX uses an untyped theory and, in NuPrl, the theory is typed but

the extracted terms are untyped. PX uses a notion of proofs-as-programs which is not the

Curry-Howard one but there is two di�erent levels (0 for proofs and 1 for programs). Then, a

process of extraction is de�ned using a special notion of realizability called the px-realizability.

A di�erence between the realizability used for the Coq extraction and the px-realizability is

that the px-realizers are allowed not to terminate. In NuPrl, there is no distinction between

proofs and programs. But, a process of extraction can be expressed : redundant informations

can be hidden using the fact that if a is of type fx : AjP xg then a is as well of type A, but a

consequence of this is that typing becomes undecidable.

A problem when extracting programs from proofs is that proofs are �rst developed and,

then, programs are extracted. This is not the case of other methods [BM92, Pol92] where

proofs and programs are developed hand-by-hand. The aim here is based on the idea that a

proof is developed di�erently if one waits for a program or another (for instance, di�erent proofs

of a same speci�cation lead to di�erent sort algorithms). A program can then be considered as

a skeleton of its proof containing exactly all its computational contents. The aim in this paper

is to develop a program and then to try to generate automatically using the program the proof

of its speci�cation. In fact, a program can be supposed to be a realization of its speci�cation

and, using this information, its proof can be generated almost automatically. But, two types

of propositions have two be distinguished : speci�cations which have computational contents

and are typically existential formulas such as 8x :P(x) ) 9y :Q(x ; y) describing the properties

to prove; logical assertions which have no computational contents (for instance, the pre and

postconditions P and Q). Speci�cations can be automatically proved using the program but

logical assertions can be arbitrarily complex and one cannot hope to solve them mechanically.

The �nal aim is so to solve speci�cations and leave logical assertions to the user representing

logical properties the program has to verify. Then, it can be certi�ed that the program is correct

if these properties are veri�ed.

The method to develop automatically the proof from the program will use the structure

of the program (which are variable, constant, abstraction, application or recursion). Each

structure will give a certain method of proof.

The paper is organized as follows. In a �rst part, an example is developed in the system

Coq in order to illustrate the program development method and introduce what we would like

to obtain. In a second part, we give the methodology for automating the proof development.

Then, we discuss some optimizations and conclude.

2 An example of development in Coq

Let us consider the division algorithm as an example of a development in Coq. A division

program would take two arguments a and b and give as outputs q and r such that they verify

a = b � q + r ^ b > r . But, a necessary condition is that b > 0, otherwise the condition on r

cannot be satis�ed. So, a speci�cation of a division algorithm should be :

8b:b > 0) 8a:9q :9r :(a = b � q + r ^ b > r) (1)

Every constructive proof of such a speci�cation gives an algorithm by extraction (see [PMW92]).

If one gives a program, one gets the existence of such an algorithm and one has a skeleton of

a possible proof. This skeleton allows to do the computational parts of the proof (i.e. to solve

speci�cations). If the left logical assertions can be solved (e.q. prove that loop invariants are
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preserved), then the initial program can be certi�ed correct with respect to the initial speci�-

cation.

A program (in ML) for our example could be :

let div b a = divrec a where rec divrec = function

0 -> (0,0)

| Sn -> let (q,r) = divrec n in

if (Sr<b) then (q,Sr) else (Sq,0) ;;

Let us do a mathematical proof of our speci�cation and see the link with the ML program.

One wants to prove 8b:b > 0) 8a:9q :9r :(a = b �q+r ^ b > r). Given b, b > 0, one wants

to prove 8a:9q :9r :(a = b�q+r ^ b > r). Let us do an induction on a. First case : a = 0. Then,

one needs to prove 9q :9r :(0 = b�q+r ^ b > r). The values q = 0 and r = 0 are good candidates

since 0 = b �0+0 ^ b > 0. Second case : one assumes 9q :9r :(n = b �q+ r ^ b > r) for a given

n, and one wants to prove 9q :9r :(Sn = b � q + r ^ b > r). Given q and r from the induction

hypothesis, let us look for q

0

and r

0

such that (Sn = b � q

0

+ r

0

^ b > r

0

). Two subcases : if

Sr < b then let us take q

0

= q and r

0

= Sr . Then, one has to prove (Sn = b � q + Sr ^ b > r).

But, b > Sr by hypothesis and one knows by the induction hypothesis that n = b � q + r . So,

this case is solved. If Sr � b then let us take q

0

= Sq and r

0

= 0. Then, one has to prove

(Sn = b � q + b ^ b > 0). The second part of the conjunction is trivial. For the �rst one, one

knows b > r and Sr � b, so one can conclude b = Sr . And the second case is solved.

Remark that the structure of the proof is closely related to the structure of the program :

induction on a, recursive call on n in the second case of the induction : : : .

Let us now see how this proof can be developed in Coq and how a program can be extracted.

Then, the link between proofs and programs will appear once more. First, Coq allows the

interactive development of proofs. One gives a speci�cation as above (1) and then one can

use prede�ned tactics to develop a proof. The reasoning follows a natural deduction style.

There are introduction (Intro) and elimination (Elim) tactics and resolution tactics (Apply or

Exists). All the steps of the mathematical proof can be expressed with these tactics : the

introductions by Intro, the inductions by Elim, the introductions of the existential quanti�ers

by Exists : : :The proof of our example can then be expressed only using Intro, Elim and

Exists. Comments are expressed between (* and *).

Intros b H a. (* H : b>0 *)

Elim a.

Exists 0. Exists 0. (* b>0 and 0=b*0+0 *)

Auto.

Intros n H0. (* H0 : induction hypothesis *)

Elim H0. (* getting back q *)

Intros q H1.

Elim H1. (* getting back r *)

Intros r H2.

Elim (inf b (S r)). (* deciding of the order of b and Sr *)

Intros Le. (* Le : b<=Sr *)

Exists (S q). Exists 0. (* subgoal easy to resolve : b>0 and Sn=b*(Sq)+0 *)

Intros Gt. (* Gt : b>Sr *)

Exists q. Exists (S r). (* subgoal easy to resolve : b>Sr and Sn=b*q+Sr *)
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This proof is close to the mathematical one in the sense that one can retrieve the steps of

introductions, inductions : : : . Moreover, if one extracts the computational part from this Coq

proof, one gets the program above. Our aim is now to take this program and to retrieve the

computational parts of its corresponding proof.

Let us explain �rst how proofs and programs are represented in Coq. Proofs are typed

�-terms marked with informations on their computational contents (i.e. if they are informative

or logical). The process of extraction consists in forgetting from the proof term all the logical

parts to obtain a program term, so a typed �-term with only informative parts. The extraction

function is a forgetful function. Our aim is to inverse this function to obtain a proof term from

a program term. The extraction function is de�ned on the structure of the proof terms. Thus,

we have to de�ne a function (that we will call the automation function) on the structure of the

program terms. Now we describe the strategy of this automation function.

3 Automation method

As we said before, the principle is to give a speci�cation and a program and to prove it is correct

with respect to the speci�cation. The method consists in associating the program to the current

speci�cation.

Then, an automatic proof (step-by-step) consists in applying the good tactic, giving as a

result a new speci�cation (or more) which is associated to a good new program (or more), which

has to be a subprogram(s) of the previous program. Our method deals with partial programs,

associated to partial speci�cations and builds partial proofs.

We �rst need to check that the type of the program is indeed convertible to the extraction

of its speci�cation (this property is kept as an invariant by our method). Indeed, one wants the

program p to be the extraction E(P) of a proof P of the speci�cation S ; but, from the condition

P : S , one gets p : E(S). One has to keep in mind this important information that the type of

the program has to be the extraction of the speci�cation.

Now, we explain how it will be done by cases on the structure of programs : �-abstraction,

application, recursion, variable and constant. We describe some heuristics and explain more

precisely why annotated programs are sometimes necessary.

3.1 Programs

Programs are typed �-terms given in a F

!

Ind

form (we consider that they are in normal form

without apparent redexes). Their structure can be a �-abstraction, an application, a recursion,

a variable or a constant. Note that constants have a particular state. They can be considered

like variables. But, in fact, they are programs already proved and they hide the structure of

this program. In some cases, this information can be needed. If, they are just considered like

variables, the information they hide is lost. So, when it is useful, constants are expanded to

retrieve the structure of the program they correspond to and to use this important information.

In order to explain the method, we need to de�ne what we call coarse programs.

De�nition 1 A program is coarse with respect to a speci�cation S if it is exactly a proof of the

speci�cation S.

Such programs are said to coarsely resolve the speci�cation. They are interesting because they

represent exactly the proof of their speci�cation. They contain all the information useful for
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the proof. With such programs, a complex research of the corresponding proof can be avoided

since it is directly in the program.

3.1.1 �-abstractions

Let us �rst consider a typical example what kind of situations could appear. Consider the

previous division algorithm written in the Coq syntax

1

[b:nat][a:nat]

<nat*nat>Match a with

(* O *) <nat,nat>(O,O)

(* S *) [n:nat][H:nat*nat]

<nat*nat>let (q,r:nat) = H in

<nat*nat> if (inf b (S r)) then

<nat,nat>((S q),O)

else <nat,nat>(q,(S r)).

whose speci�cation is 8b:b > 0 ) 8a:9q :9r :(a = b � q + r ^ b > r). The program is a

�-abstraction. This indicates to introduce the b. This case is very simple. One introduces

the b and then generates a new speci�cation b > 0 ) 8a:9q :9r :(a = b � q + r ^ b > r)

for the program [a:nat].... Now, to mimic the program, one would like to introduce the

symbol a. But this introduction cannot be performed as the speci�cation has not the shape

8a:9q :9r :(a = b � q + r ^ b > r) but the shape b > 0 ) 8a:9q :9r :(a = b � q + r ^ b > r).

In such a situation, one has to introduce the non-computational hypothesis (b > 0) before

the computational variable a. More generaly, before introducing a computational variable

(corresponding to a variable of the program), one has to introduce all the non-computational

hypotheses that have no equivalent in the program.

More formally, as one knows the correspondence between the program p and the speci�cation

S , one knows that if the program is a �-abstraction (p � [x : E(I )]p

0

) then the speci�cation is a

product (S � (~y :

~

L)(x : I )S

0

with

~

L representing a vector of logical terms and I an informative

term), since the type of the program is (x : E(I ))A and is convertible to the extracted type

of S . One has to do introductions. As we saw on the example, the problem is that one

cannot be sure to have to do only one introduction. Indeed, a �-abstraction in a program

([x : E(I )]p

0

) corresponds to a product in the speci�cation ((x : I )S

0

), but an informative

one. The speci�cation can contain non-informative products ((~y :

~

L): : :). So, the method

consists in this case in doing as many introductions as they are non-informative products in

the speci�cation and then one last introduction. This last introduction is about the proof term

which corresponds to the �-abstraction in the program.

This way, all the logical introductions of the proof that cannot appear in the program

and then the \real" informative introduction the program indicates us are done. The new

program associated to the new speci�cation is the previous program without the corresponding

�-abstraction.

3.1.2 Applications

This case is more complex than the previous one. Let us take an example on parametric lists.

Suppose one wants to prove 8l :8n:9m:(n + (length l) = m). A trivial proof is to explicitly give

1

The notation [x:A]B is for the �-term �x : A:B , and <P>Match x with is the case analysis
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(n + (length l) as a witness that 8l :8n:9m:(n + (length l) = m). But, one wants to give a

realizer to keep constructivity. So, a corresponding algorithm written in Coq could be :

[l:list]<nat->nat>Match l with

[n:nat]n

[a:A][m:list][H:nat->nat][n:nat](H (S n))

Let us look at the last part of this program (H (S n)) where H is the induction hypothesis.

The corresponding goal to prove is 9m:(n + (length (cons a l)) = m). The speci�cation of

H is 8n:9m:(n + (length l) = m) since H is the induction hypothesis. So, the speci�cation of

(H (S n)) is 9m:(Sn + (length l) = m). This resolves the goal since (length (cons a l)) =

S(length l). Let us call this lemma Length_l.

Let us now show how programs already proved can be used in other programs. Suppose

one wants to prove 8l :9m:((length l) = m). One can use the previous program and the associ-

ated program can be [l:list](Length_l l O). Then, the speci�cation of (Length_l l O) is

9m:(0 + (length l) = m). And this trivially resolves the goal.

Let us describe the method that is used. Let us write the program (c a

1

: : :a

n

) where c is

not an application. Then, c is either a variable, a constructor or a recursion. Consider �rst

when c is a variable or a constructor. The head symbol of the corresponding proof term is the

same variable

2

. The proof has the shape (c b

1

: : :b

p

). Let (x

1

: B

1

) : : :(x

p

: B

p

)B be the type of

c. One wants to generate the proof terms b

1

: : :b

p

of type B

1

: : :B

p

. B

i

with non-computational

contents are left to the user, the others are associated to their extracted terms a

1

: : :a

n

. Then,

one applies to them the same method recursively.

Coarse programs can here be used as an optimization. If the speci�cation is exactly the

type of the program (coarse programs), then non-computational terms will never appear in the

previous method. The proof is exactly the extracted term. So, one can use this extracted term

for the proof term.

When c is a recursion. Then, there is no unique solution for the corresponding proof

term. So, one chooses the following heuristic : if c is a recursion Rec

I

(m;P ; lf )

3

then its

corresponding proof term is a recursion. Retrieving the proof terms corresponding to I and P

is not easy because there are many solutions. But, in fact, �nding the value of I is not very

di�cult since one can use the type of m. P is de�nitely a problem. Let us take the terms

(Rec

I

(m; �x : L:P ; lf ) x) and Rec

I

(m;P ; lf ). They are both in an �-long form and equivalent

in terms of programs if x is a logical argument. So it is impossible to decide from programs

which predicate one needs to take at the level of proof. To avoid failure, one has an heuristic

corresponding to the following inference rules :

Rec

I

(m;P ; lf ) : (x : A) B a : A

(Rec

I

(m;P ; lf ) a) : B [x=a]

Rec

I

(m;P ; lf ) : A! B a : A

(Rec

I

(m;P ; lf ) a) : B

One applies a generalization. The generalization of name, if name is a term on which

depends the speci�cation, replace it by the same speci�cation quanti�ed by the variable name.

2

If c is a constructor Constr(i ; ind) then its corresponding proof term is a constructor Constr(i ; Ind) and,

with respect to the Coq representation of inductive types, the current goal is an inductive type : (y

1

: B

1

) : : : (y

l

:

B

l

)(Ind t

1

: : : t

k

). Then, Ind is known from the current goal.

3

Rec

I

(m;P ; lf ) is a notation for the Coq term : <P>Match m with lf
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So, we use the previous inference rules to obtain two subproblems : one for the head of the

application corresponding to a generalized speci�cation, another for the argument (obviously,

more if they are more than one arguments), corresponding to the speci�cation of the argument

(trivially solved if the argument is a coarse program).

So, one comes back to a case of recursion (see 3.1.3).Note it is not trivial to retrieve the

speci�cation of a program. This motivates the introduction of annotations in programs (see 4).

In the foregoing, one explained a method to resolve application cases whatever the head sym-

bol of the application is. But, the problem of possible non-computational introductions (like in

3.1.1) has not been considered. The head of the speci�cation can contain non-computational

products. Logical introductions have to be done since they have no correspondent in the pro-

gram. Let us take the example of the division algorithm at the step ((Sq),0). The speci�cation

is (b � (Sr))! 9q :9r :(Sn = b � q + r) ^ (b > r). It is clear that one wants �rst to introduce

(b � (Sr)) and then to resolve the goal with ((Sq),0). Thus, do all the logical introductions

need to be done or not ?

Two kinds of introductions can be distinguished, dependent and non dependent ones. One

says dependent introductions for introductions depending on the head of the speci�cation, non

dependent for the others. Consider the case of a bounded predicate variable as head symbol

of the speci�cation corresponding to induction principles. In such a case, one do not want to

introduce non-computational hypotheses depending on the predicate variable (dependent hy-

potheses) since they could change after the induction. So, if the head symbol of the speci�cation

of c is not bounded then all the logical introductions are performed, else (bounded predicate

variables case) only the logical non dependent introductions. Indeed, considering for example

proofs by induction, since a proof of A ! P(n) (with n 62 A) is equivalent and harder than

a proof of P(n) in the context of A, one chooses the second one. The equivalence of the two

propositions is obvious but not the fact that the �rst could be harder than the second. Let us

take the �rst case. Then, the transformation of the goal can give (A! P(n))! (A! Q(n)).

The same transformation gives P(n)! Q(n) in the second case. And, it is clear, that the �rst

case is harder and even sometimes impossible. Having explained why the logical hypotheses

have to be introduced, we explain why dependent hypotheses should not be introduced. The

reason is to keep the link between the hypothesis and the conclusion. Indeed, if the hypothesis

is put in the context, then it can no more be modi�ed though the conclusion can, and the link

can be lost. And, the most probable situation is that this link needs to be used in the proof.

Finally, one can remark the description of the method for the application can be applied for

a variable (remind that a constant is considered like a variable but expanded in case of failure).

Moreover, note the importance of retrieving the speci�cation of a part of a program and the

fact that, if it is not possible, then the use of annotations ise motivated.

3.1.3 Recursions

This case is very similar to the previous one. But, let us see on a very simple example what

could happen.

Suppose one wants to prove 8n:8m:(n � m) _ (n > m) with the following associated

program

4

4

Note that the speci�cation of a function which returns a boolean value is a disjunction (and not an existential).

305



[n:nat](<nat->bool>Match n with

[m:nat] true

[n':nat][H:nat->bool][m:nat]

(<bool> Match m with

false

[m':nat][H':bool](H m'))).

Suppose one introduces the n. Then, one has an induction on n. The result has to be two new

subspeci�cations for each case of the induction (the basic case and the induction case) associated

to two new subprograms corresponding to the di�erent cases (i.e. the di�erent constructors of

the inductive type of the induction element). The two speci�cations will be :8m:(0 � m)_ (0 >

m) and 8n

0

:(8m:(n

0

� m) _ (n

0

> m))! (8m:(Sn

0

� m) _ (Sn

0

> m)) with the two associated

programs : [m:nat] true

and

[n':nat][H:nat->bool][m:nat]

(<bool>Match m with

false

[m':nat][H':bool](H m'))

So, if the program is Rec

I

(m;P ; lf ), one wants to eliminate the proof corresponding to the

program m. If m is coarse (previous example) then it is trivial else one needs to retrieve the

speci�cation of m by the previous method in order to eliminate it.

But note here the problem of logical introductions. The heuristics are the following. If the

speci�cation depends on m, then only all the logical non dependent introductions are done (like

for the application). Otherwise, all the logical introductions are done.

But, there is another problem which we can illustrate with the following example. Let us

take one more time our example of division algorithm. Suppose we take the subprogram (inf

is a boolean funtion deciding the order of two natural numbers) :

<nat*nat>if (inf b (S r)) then <nat,nat>((S q),O)

else <nat,nat>(q,(S r))

The corresponding speci�cation is (b > r) ! (n = b � q + r) ! 9q9r (Sn = b � q + r) ^

(b > r). The program suggests to do a case analysis on (inf b (S r)). First, the previous

heuristic clearly appears to be necessary : (b > r) and (n = b � q + r) are introduced as

logical non dependent hypothesis. Second, the speci�cation does not depend on (inf b (S r)).

Then, the case analysis will generate the two following identical subgoals (since the link with

(inf b (S r)) is lost) :

9q9r (Sn = b � q + r) ^ (b > r)

9q9r (Sn = b � q + r) ^ (b > r)

But, these subgoals are not useful since the information about wether (inf b (S r)) is true

or not is lost. The subgoals one would like to generate would rather be :

((inf b (S r)) = true) ! 9q9r (Sn = b � q + r) ^ (b > r)

((inf b (S r)) = false)! 9q9r (Sn = b � q + r) ^ (b > r)
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That is to introduce a dependency in the speci�cation if the speci�cation does not depend on the

term of induction. So, if S is the current speci�cation and t the proof term corresponding to m,

then S is modi�ed into (t = t)! S . This just introduces a dependency without modifying the

speci�cation and allows to obtain probably more useful subgoals. Indeed, the problem comes

from the fact that one looks for an adequate generalization of the goal and there are many ways

of doing it. This choice is so only a heuristic.

Finally, one obtains as many subgoals as constructors of m and the di�erent programs

corresponding to the di�erent constructors of the type of m are the elements of lf . Note, one

more time, the importance of retrieving the speci�cation of a part of a program since, if the

speci�cation of m cannot be retrieved, then the speci�cation cannot be generalized.

4 Adding annotations

We saw the importance of retrieving a speci�cation. Because it cannot always be done auto-

matically, one would like to help the system. One need to add informations in the program. In

fact, one wants to annot the program with comments which can be interpreted by the system.

Let us add a new syntax for programs : one can annot any part of a program with the syntax (:

a speci�cation :). Between (: and :), one gives the speci�cation one likes the program to have.

This forces the system to take this information as a speci�cation. Note that these annotations

are available in a context of programs, that is to say that annotations are informations on a part

of a program but can use programs variables. But, one can want to have a context of logical

variables. So, one has to introduce another new syntax for �-abstractions on logical variables

[{x:L}].

Let us give an example. Suppose we take the example of the division algorithm and partic-

ularly the step taken in 3.1.3. The speci�cation is (b > r) ! (n = b � q + r) ! 9q9r (Sn =

b�q+r)^(b > r) and the program is if (Sr<b) then (q,Sr) else (Sq,0). In fact, in Coq, it

is written <nat*nat>if (inf b (Sr)) then <nat,nat>((Sq),O) else <nat,nat>(q,(Sr))

with the constant inf being the decidability of the ordering relation on natural numbers.

Suppose �rst inf is declared as a variable without any speci�cation, i.e. it is just a boolean

value. Then, the generated subgoals are :

(inf b (Sr)) = true)! 9q9r (Sn = b � q + r) ^ (b > r)

(inf b (Sr) = false)! 9q9r (Sn = b � q + r) ^ (b > r)

But, then, one has to prove that :

(inf b (Sr)) = true)! (b � (Sr))

(inf b (Sr)) = false)! (b > (Sr))

which is not easy if inf has no speci�cation.

In a second case, if inf is declared as a program already speci�ed by 8n:8m:(n � m)_ (n >

m), then the generated subgoals are :

(b � (Sr))! 9q9r (Sn = b � q + r) ^ (b > r)

(b > (Sr))! 9q9r (Sn = b � q + r) ^ (b > r)

which are directly usable.

So, if inf is just a boolean function, one can explicitly indicate in the program the speci�-

cation one wants for it by giving an annotation to this part of the program :
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<nat*nat>if (inf b (Sr)) (: {(le b (Sr))}+{(gt b (Sr))} :)

then <nat,nat>((Sq),O) else <nat,nat>(q,(Sr))

Then, this will generate the same subgoals as in the second case plus one needed to verify that

the annotated program is consistent with its annotation. This last subgoal is the following :

(b � (Sr))_ (b > (Sr))

associated to the program (inf b (Sr)).

Now that we give this example, it is clear that the interpretation of annotations is that

the speci�cation of an annotated term is the annotation itself. So, let us give the following

de�nition.

De�nition 2 A program p is said to computationally solve a speci�cation S if there exist logical

assertions L such that, if the set L is proved, then there exists a proof T of S such that the

program p is an extraction of T .

Then one can state the following claim :

Claim 3 Every su�ciently annotated program can be computationally solved using the automa-

tion method described above, assuming some reasonable conditions on the dependencies in the

speci�cations.

Indeed, annotations allow to give speci�cations which cannot be retrieved automatically. So, if

a program is su�ciently annotated then it can be computationally solved.

5 Optimizations

The method described above has been added to the system Coq (see [DFH

+

93]). The entire

library of Coq examples has been tested [Par92]. But, programs are written in a F

!

Ind

form

which is not always very practical. We would like to have a language closer to ML. We have so

introduced some optimizations in the formulation of the input program.

5.1 Recursive programs

The basic notion of Coq induction follows a primitive recursive scheme (or structural induction).

But usual programs use a general recursion. Coq de�nes a well founded induction principle,

which can be realized by a recursive program :

8P 8R (wellfounded R)! (8x (8y (R y x)! (P y))! (P x))! 8a:(P a)

The �rst optimization introduces a notion of recursive programs (general induction). A new

syntax allows to write directly general recursive programs and it is translated in the previous

well founded induction principle. So one needs an ordering relation R on which the induction

is based and that has to be explicitly given. Indeed, this ordering relation cannot be retrieved

automatically from the program and is the base of the well-foundness of the induction. With

this new syntax, one gives the ordering relation and uses directly general recursive programs.

The syntax is <P>rec H (: order :) for the ML let rec H x = ... H y ... with P the

type of the result and order the ordering relation on which the well-founded induction is based.
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Example : Euclidean division algorithm.

An Euclidean division algorithm can be expressed by the following program :

[b:nat](<nat*nat>rec div (: lt :)

[a:nat](<nat*nat>if (inf b a) then

(<nat*nat>let (q,r:nat) = (div (minus a b)) in

<nat,nat>((S q),r))

else <nat,nat>(O,a))).

if lt is the natural strict ordering relation on natural integers, div and minus the division and

subtraction on natural integers and inf the decidability on the ordering relation on natural

numbers.

5.2 Eliminations

This optimization is in fact the inversion of an optimization done during the extraction. Sup-

pose you have an elimination in a recursive program. An optimization of the extraction method

is the following : if an hypothesis appears in each di�erent case of the elimination, the program

is transformed by taking this hypothesis o� from each case and placing it just before the elimi-

nation. It is the current way of writing programs. If the extracted program is <A->B>Match n

with [x:A]t1 ... [x:A]tm, then the more natural optimized program has a di�erent shape :

[x:A]<B>Match n with t1 ... tm. So, our optimization is to consider that every hypothesis

which is external regarding an elimination and used in this elimination has to be placed back

into each case of the elimination. This optimization is important because, if it is not done, it

can generate much harder proofs.

Let us take an example. Suppose one has an hypothesis x before an elimination on a

variable n (like previously), the speci�cation of x can depend on n. If x is not moved inside

the elimination then there are many chances that the hypothesis will not be the one expected,

because, probably, one wants a di�erent hypothesis for each di�erent cases of the elimination

and the proof should be more complicated and even impossible.

5.3 Contraction of expressions

The purpose here is to allow programs to be given in a natural form.

Let us take the case of expressions like if b then true else false. These expressions

are not natural in programs, that is to say that a programmer writes only b, but the proof

has to be explicitly given like this to correspond to the good speci�cations. For example, if b

is correct with respect to A, it can be correct with respect to another speci�cation B . But,

the proof C from which b is extracted is of type A, but not of type B . For example, if A is

n = m _ n 6= m and B is Sn = Sm _ Sn 6= Sm, the program b realizes A and B but proves A

and does not prove B . But, the program if b then true else false can be extracted from

a proof of B . One has then to prove that n = m ! Sn = Sm and n 6= m ! Sn 6= Sm.

So, the optimization consists in writing natural programs without if b then true else false

and transforming them when necessary. This is just explained on this simple example but can

be generalized and, then, automatic transformations of programs are generated.

5.4 Singleton types

Let us take the example of the Ackerman function to explain the problem of singleton types.
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The de�nition of the function is the following :

ack(0; n) = n + 1

ack(n + 1; 0) = ack(n; 1)

ack(n + 1;m + 1) = ack(n; ack(n + 1;m))

To express this de�nition we use in fact a ternary predicate :

Inductive Definition Ack : nat->nat->nat->Prop =

AckO : (n:nat)(Ack O n (S n))

| AcknO : (n,p:nat)(Ack n (S O) p)->(Ack (S n) O p)

| AckSS : (n,m,p,q:nat)(Ack (S n) m q)->(Ack n q p)->(Ack (S n) (S m) p).

Suppose now we want to prove that 8n:8m:9p:Ack(n;m; p). The type extracted from this

expression is : nat ! nat ! sig nat

5

. Suppose we want to give the program corresponding to

this proof. It will be (in a CAML form) :

let rec ack n m = match n with

0 -> (fun m -> m+1)

| n'+1 -> (match m with

0 -> ack n' 1

| m'+1 -> ack n' (ack (n'+1) m')) ;;

This program written in a F

!

form

6

is :

[n:nat](<nat->nat>Match n with

[m:nat](S m)

[y:nat][H:nat->nat][m:nat]

(<nat>Match m with

(H (S O))

[m':nat][H':nat](H H')))

The type of these last programs is : nat ! nat ! nat .

It is clear this type is not the same as the one extracted from the speci�cation. But, suppose

one develops the proof by hand of this speci�cation, then the proof term will be (the Li represent

logical parts which are not interesting from the program point of view) :

[n:nat](<[n0:nat](m:nat){p:nat|(Ack n0 m p)}>Match n with

[m:nat](exist (x:nat)([p:nat](Ack O m p) x) (S m) L1)

[y:nat][H:(m:nat){p:nat|(Ack y m p)}][m:nat]

(<[n0:nat]{p:nat|(Ack (S y) n0 p)}>Match m with

<[s:{p:nat|(Ack y (S O) p)}]{p:nat|(Ack (S y) O p)}>let

(x:nat,p:(Ack y (S O) x)) = (H (S O)) in

(exist (x0:nat)([p0:nat](Ack (S y) O p0) x0) x L2)

[m':nat][H':sig nat]<[s:{p:nat|(Ack (S y) y0 p)}]{p:nat|(Ack (S y) (S y0) p)}>let

(x:nat,p:(Ack (S y) y0 x)) = H' in

<[s:{p0:nat|(Ack y x p0)}]{p0:nat|(Ack (S y) (S y0) p0)}>let

(x':nat,p':(Ack y x x0)) = (H x) in

(exist (x1:nat)([p1:nat](Ack (S y) (S y0) p1) x1) x' L3)))

5

sig nat is the notation for the singleton type corresponding to nat , that is to say the inductive type with one

constructor of type nat ! (sig nat).

6

The notation [x : A]t denotes the �-term �x : A:t
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with exist being the constructor of the inductive type sig . This proof has the same type as

the speci�cation. But, if one uses an isomorphism between A and sig A, one would like the

proof and the program to have the same structure. And, this is not the case, since there are

eliminations in the proof corresponding to the extraction of the structure of some terms of type

sig nat which do not appear in the natural program (since there are only terms of type nat).

So, there are many transformations to do on the program to obtain a program able to generate

the proof.

We de�ne now a new notion of convertibility, a convertibility modulo A � sig A (that we

will call weak convertibility). The sense is larger than the usual convertibility (that we will

call strong convertibility) and allows to accept programs that have just to be modi�ed. The

method of transformation is based on a comparison of the program and its speci�cation.

A �rst typical case is when the program is a �-abstraction whose type is A ! B when its

speci�cation type is sig A ! C

7

. The program is then transformed in a new �-abstraction of

type sig A ! B . For our example, let us take H of type nat ! nat but the corresponding

speci�cation 8m:9p:Ack(y ;m; p) is of type nat ! sig nat . So, the program is transformed with

[H:nat->(sig nat)]. This implies that parts of programs will be no more well typed and this

fact will help us to transform programs.

Another case of transformation is when the program is an application. There are two cases :

1. the program is ill typed. This implies that arguments are not of the good type A but

of type sig A and have to be replaced. For our example, let take (H H'). H' is of type

sig nat and H of type nat ! sig nat . This term is ill typed. So, it is transformed into :

<sig nat>let (x:nat) = H' in (exist nat (H x)).

We see the transformation is not complete. This is because of another problem. If we

look at the speci�cation of (H x) which is 9p:Ack(y + 1;m

0

; p) and at the speci�cation

it is associated to which is 9p:Ack(y + 1;m

0

+ 1; p), we see there are not identical. The

program is then one more time transformed into :

<sig nat>let (x:nat) = H' in <sig nat>let (x':nat) = (H x) in (exist nat x').

This is in fact analogous to the transformation described in 5.3.

2. the program is well typed but of type A when its speci�cation is of type sig A. For our

example, let us take (S m). It has type nat when its speci�cation has type sig nat . The

program is transformed into (exist nat (S m)).

This gives some typical cases of a method to transform programs which are weakly convert-

ible but not strongly convertible to the speci�cation. This allows to write programs in a more

convivial form.

6 Comparaison with other works

As we said in the introduction, this method can be compared to the approach of [Pol92] and

to the deliverables of [BM92]. [Pol92] describes a development of proofs and programs hand by

hand. There is a separation of the programming language and of the logic language, which are

two versions of the Calculus of Constructions. So, this is close to our approach but di�erent in

the sense that we �rst give the program and then develop automatically the proof. Moreover,

7

C because it is B modulo A � sig A.

311



there is a possibility of annotating programs to represent properties of these programs. With the

deliverables approach, proofs and programs are too developed hand by hand. But, there is no

separation between the programming language and the logical language. Proofs and programs

are developed together using strong sums in the Luo's Extented Calculus of Constructions

[Luo90]. This is what are called deliverables. There is a distinction between two kinds of

deliverables : �rst-order ones which do not allow to express a relation between the input and

the output, and second-order ones, which allow the expression of such a relation. Moreover,

deliverables are more rigid than our approach in the sense that one cannot consider speci�cations

not of the form 8x :(P x):9y :(Q x y).

7 Conclusion

The method presented above allows to obtain a system in which one can write programs and

prove them automatically to be correct with respect to a speci�cation. In fact, this method is

not completely automatic since one usually has to solve logical assertions on the program by

hand. Moreover, one has to comment programs with annotations, not in all cases but often.

This allows to guide the proof but is not always trivial. One should have a more natural way of

writing annotated programs, for example a possibility to suppress the type information in the

programs and to replace it by annotations. Moreover, the future versions of Coq with existential

variables [Dow91, Dowar] would allow to delay the instantiation of some parameters (like the

ordering relation in the recursive programs) which could be �xed by the user when he solves

the logical lemmas. Moreover, one could increase the synthesis power by using uni�cation.
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Abstract

We propose a re�nement of the type theory underlying the LF logical framework by

a form of subtypes and intersection types. This re�nement preserves desirable features

of LF, such as decidability of type-checking, and at the same time considerably simpli�es

the representations of many deductive systems. A subtheory can be applied directly to

hereditary Harrop formulas which form the basis of �Prolog and Isabelle.

1 Introduction

Over the past two years we have carried out extensive experiments in the application of the LF

Logical Framework [HHP93] to represent and implement deductive systems and their metathe-

ory. Such systems arise naturally in the study of logic and the theory of programming languages.

For example, we have formalized the operational semantics and type system of Mini-ML and

implemented a proof of type preservation [MP91] and the correctness of a compiler to a vari-

ant of the Categorical Abstract Machine [HP92]. LF is based on a predicative type theory

with dependent types. It has proved to be an excellent language for such formalization e�orts,

since it allows direct representation of deductions as objects and judgments as types and sup-

ports common concepts such as variable binding, substitution, and generic and hypothetical

judgments. The logic programming language Elf [Pfe91a] implements LF and gives it an oper-

ational interpretation so that LF signatures can be executed as logic programs. It also provides

sophisticated term reconstruction, which is important for realistic applications.

Despite its expressive power, certain weaknesses of LF emerged during these experiments.

One of these is the absence of any direct form of subtyping. Clearly, this is not a theoretical

problem: what is informally presented as subtyping can be encoded either via explicit coercions

or via auxiliary judgments as we will illustrate below. In practice, however, this becomes a

signi�cant burden, and encodings are further removed from informal mathematical practice

than desirable.

An obvious candidate for an extension of the type system are subset types as they are

used for example in Martin-L�of type theory [SS88]. In a logical framework, however, they are

problematic, because they lead to an undecidable type-checking problem. The methodology of

LF reduces proof checking in the object language to type checking in the meta-language (the LF

type theory), and thus decidability is important. Looking elsewhere, we �nd an extensive body

315



of work on order-sorted �rst-order calculi and their use in logic programming and automated

theorem proving (see, for example, [Smo89, SS89]). However, it is not clear how to generalize

these calculi to logics or type theories with higher-order functions, although recently some

interesting work in this direction has begun [Koh92, NQ92]. Similar systems of simple subtypes

have been used in programming languages, in particular in connection with record types and

object-oriented programming, but such systems are not expressive enough for our purposes.

More promising are enhancements of simple subtypes with intersection types [CDCV81], which

have been applied to programming languages [Rey91] and recently also in type theory [Hay91].

General decidability of type-checking or inference in such calculi is problematic, but under

certain restrictions type checking is decidable and principal types exist [Rey88, FP91, CG92].

In this paper we tie together ideas from these threads of research and propose a re�nement

of the LF type theory by a version of bounded intersection types, or re�nement types, as we

call them. The resulting type theory �

�&

allows more direct encodings of deductive systems in

many examples. We show that it has a decidable type-checking problem and is thus useful as

a logical framework. We have not yet implemented this system, but experience with a related

implementation of re�nement types for ML [FP91] and the current Elf term reconstruction

algorithm leads us to believe that type-checking will be practical. While similar in spirit to

the work on re�nement types for ML [FP91], the technical and practical issues in both systems

are very di�erent. In ML, we are concerned with the decidability of type inference in the

presence of general recursion and polymorphism. Here, we have to deal with type checking in

a language without recursion or polymorphism, but with dependent types. Furthermore, in

ML re�nement types are de�ned inductively; here re�nement types are open-ended in the same

way that signatures are essentially open-ended (they can be extended with further declarations

without invalidating earlier declarations).

The system we propose is relevant not only to LF and its Elf implementation, but a restricted

version can be applied directly to �Prolog [MNPS91] and Isabelle [PN90] with similar bene�ts.

A uni�cation algorithm for this restricted �-calculus, �

!&

is described in [KP93].

In future work, we plan to consider the operational aspects of this type theory so that it can

be fully embedded into the current Elf implementation. This includes extending the constraint

solving algorithm in [KP93] to account for dependencies in the style of [Pfe91a, Pfe91b], type re-

construction, and search. Based on experience from �rst-order logic programming we conjecture

that subtyping constraints can lead to improved operational behavior of many programs.

2 Two Motivating Examples

In this section we give two prototypical examples which motivate our extension of the LF type

theory. Space only permits a rather sketchy discussion of these examples; the interested reader

may �nd additional explanation in the indicated references.

Hereditary Harrop Formulas. Here we consider, as an object logic, the language of heredi-

tary Harrop formulas [MNPS91], a fragment of logic suitable as a basis for a logic programming

language. For the sake of brevity we restrict ourselves to the propositional formulas.

Formulas F ::= A j F

1

^ F

2

j F

1

� F

2

j F

1

_ F

2

Here A ranges over atomic formulas. We now de�ne legal program and goal formulas.

Programs D ::= A j D

1

^D

2

j G � D

Goals G ::= A j G

1

^ G

2

j G

1

_G

2

j D � G
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How do we represent these de�nitions in LF? The de�nition of formulas given here in the

concrete syntax of Elf, is straightforward.

form : type.

=> : form -> form -> form. %infix right 10 =>

|| : form -> form -> form. %infix right 12 ||

&& : form -> form -> form. %infix right 14 &&

Atomic formulas are not explicitly declared, but we assume that declarations for predicate

constants are added to this basic signature as they are introduced. The next question is how to

represent programs and goals. Here we can go two ways: one is to introduce explicit judgments

atom F , prog F , and goal F which can be used to prove that a given formula F is either an

atom, program, or goal. That is, showing only the rules for programs:

atom : form -> type.

goal : form -> type.

prog : form -> type.

p_atom : atom A -> prog A.

p_imp : goal A -> prog B -> prog (A => B).

p_and : prog A -> prog B -> prog (A && B).

Here, free variables in a declaration are implicitly �-quanti�ed.

A judgment, such as P ` G (program P entails goal G) must now carry explicit evidence

that the constituents P and G are in fact legal programs and goals. We call this judgment

solve P G , indicating its use as a logic program. It requires backchain as an auxiliary judgment.

{x:A} K is Elf's concrete syntax for �x :A: K .

solve : {P:form} prog P -> {G:form} goal G -> type.

backchain : {P:form} prog P -> {A:form} atom A -> {G:form} goal G -> type.

The rules de�ning these judgments lead to a very awkward and ine�cient implementation of

proof search, since solve is now a type family indexed by four arguments instead of only two.

Another possibility is to declare separate types for programs and goals. Unfortunately,

this means that we have to introduce separate instances of the shared connectives, and the

connection to an overarching language of formulas is lost and would have to be axiomatized

separately.

Both alternatives illustrate general techniques available within the LF type theory. While

feasible for relatively small examples, they become very di�cult to manage for larger examples

and obscure the representations greatly compared to the relative simplicity of the informal

de�nition. In contrast, with re�nement types we can declare a type of formulas and then

atoms, programs, and goals as subtypes.

Natural Deductions in Normal Form. The next example illustrates that we often want to

make subtype distinctions at the level of deductions and not only at the level of syntax. We

follow the usual representation of natural deduction in LF [HHP93] and Felty's trick to enforce
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normal forms [Fel89]. We restrict ourselves to the purely implicational fragment.

x

A

.

.

.

B

� I

x

A � B

A � B A

� E

B

The deduction in the premise of the implication introduction rule discharges the hypothesis

A labelled x and is represented as a function from deductions of A to deductions of B . The

derivability judgment is represented by the family pf which is indexed by a formula.

o : type.

imp : o -> o -> o.

pf : o -> type.

impi : (pf A -> pf B) -> pf (imp A B).

impe : pf (imp A B) -> pf A -> pf B.

Again, quanti�ers over A and B are implicit. A type of the form pf A is the type of all

natural deductions of A. A natural deduction is normal if no introduction of an implication

is immediately followed by its elimination. An equivalent formulation essentially says that we

can only reason with elimination rules from hypotheses and with introduction rules from the

conclusion. We implement this via two judgments, elim and nf , on deductions. This has the

same drawbacks as in the previous example: it is more verbose, and arguments proliferate in

judgments which depend on elim and nf . Here is how this alternative could be written:

nf : pf A -> type.

elim : pf A -> type.

impi_nf : {Q:pf A -> pf B} ({P:pf A} elim P -> nf (Q P)) -> nf (impi Q).

impe_elim : {P:pf (imp A B)} {Q:pf A} elim P -> nf Q -> elim (impe P Q).

elim_nf : {P:pf A} elim P -> nf P.

Implicit arguments (to nf , elim, impi , and impe) and type reconstruction in Elf go a long way

towards making this option feasible, but it is still awkward. Felty's solution introduces new

families elim and nf indexed by formulas. Again, the connection to pf remains informal and

one then has to prove that every normal natural deduction is in fact a natural deduction. Using

re�nement types, we will be able to declare deductions in normal form as a subtype of natural

deductions.

3 The Re�nement Type System

In this section we present a re�nement of the LF type theory (�

�

) to accomodate commonly

used forms of subtypes. We refer to this system as �

�&

. We have to ensure that the basic,

necessary properties of the LF type theory are not destroyed: in particular, we need to preserve

decidability of type-checking and the adequacy of encodings. These requirements have led us to
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a number of basic design decision which we review here before the technical development. The

examples will draw upon Section 2.

Sorts and Proper Types. Semantically, a sort may be best thought of as describing a subset

of a proper type as it exists in LF. This extends through the type hierarchy in straightforward

fashion; for example, the sort (elim A ! nf B) will describe a subset of the functions of type

(pf A! pf B), namely those that map a deduction of A by elimination rules to a normal form

deduction of B . Thus we think of sorts as a re�nement of the structure of types, and similary

for sort families indexed by objects. Sorts are not distinguished syntactically, but via a new

form of declaration that speci�es a sort re�ning a type. For example, goal :: form declares the

sort goal of legal goals as a re�nement of the type form of formulas.

Subsorts and Intersection Types. The space of sorts that re�ne a given proper type must

possess structure to be useful. We thus introduce new declarations of the form a � a

0

that

specify that sort a is a subsort of sort a

0

. This will only be considered well-formed when both

a and a

0

re�ne some proper type b. At the level of functions, simple subsorting is insu�cient,

since a given �-expression may have a number of di�erent sorts. For example, (�x :pf A: x) has

type pf A ! pf A, and also sorts elim A ! elim A and nf A ! nf A. In order to express all

these properties directly we use intersection types:

(�x :pf A: x) : (elim A! elim A)

&

(nf A! nf A)

&

(pf A! pf A):

Again, in keeping with the basic re�nement philosophy, sorts may only be conjoined if they

re�ne a common type (pf A! pf A, in this example).

Objects. We also make a basic decision not to change the space of objects, but merely to

classify them more accurately than in �

�

. This may seem rather drastic insofar as types occur

in objects (labelling �'s) and one might thus expect them to change as the language of types

changes. Through the typing rules we enforce that �-abstractions are labelled by proper types.

The typing rules then allow analysis of the body of the term �x :A:M for every sort that re�nes

the type A. This restriction may not be necessary to obtain a decidable system, but it a�ords a

tremendous simpli�cation of the meta-theory of our calculus without a�ecting its expressiveness

in any essential way. It is also consistent with the philosphy behind re�nement types.

3.1 Syntax

We maintain LF's three levels and augment families and kinds by intersections. Objects

and contexts remain basically the same, although we have eliminated family-level abstractions

�x :A

1

: A

2

, since they do not occur in normal forms and are thus not important in practice.

Kinds K ::= Type j �x :A: K j K

1

&

K

2

Families A ::= a j AM j �x :A

1

: A

2

j A

1

&

A

2

Objects M ::= c j x j �x :A:M jM

1

M

2

Contexts � ::= � j �; x :A

Signatures may now contain two additional forms of declarations: re�nement declarations a

1

::

a

2

and subsort declarations a

1

� a

2

.

Signatures � ::= � j �; a:K j �; c:A j �; a

1

:: a

2

j �; a

1

� a

2

We now also drop the restriction that a constant may be declared at most once in a signature

(where a:K , a

1

:: a

2

, and c:A declare a, a

1

, and c, respectively). Instead we impose other validity

conditions in the next section. As usual, we consider �-convertible terms to be identical.
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3.2 Judgments

In our approach, it is extremely important that sorts and sort families can be recognized, and

that a sort re�nes a unique type. Thus we begin by de�ning the re�nement judgment. Since it

must be applied uniformly through all levels (kinds, families, objects) with essentially the same

rules, we use the meta-variables U and V to range over terms from any of the three levels and

d to range over object-level or family-level constants. For an instance of a rule schema to be

valid it must be sensible according to the strati�cation imposed above. Variables occurring in

the terms involved in this judgment are treated uniformly, so we omit the context here.

`

�

Type :: Type

`

�

U

1

:: V

1

`

�

U

2

:: V

2

`

�

�x :U

1

: U

2

:: �x :V

1

: V

2

`

�

U

1

:: V

1

`

�

U

2

:: V

2

`

�

U

1

U

2

:: V

1

V

2

`

�

U

1

:: V `

�

U

2

:: V

`

�

U

1

&

U

2

:: V

`

�

x :: x

`

�

U

1

:: V

1

`

�

U

2

:: V

2

`

�

�x :U

1

: U

2

:: �x :V

1

: V

2

d :U in �

`

�

d :: d

a :: a

0

in �

`

�

a :: a

0

Note that the re�nement relation is neither transitive nor reexive. The conditions on valid

signatures will guarantee that exactly one of the last two cases is applicable for any declared

constant, and the second only for a unique a

0

. This implies that in a valid signature � for a

given U there exists at most one V such that `

�

U :: V .

The validity judgments have the following form. Here, Kind is a special token to allow a

uniform presentation of the validity judgments at the three levels.

` � Sig � is a valid signature

`

�

� Ctx � is a valid context

� `

�

K : Kind K is a valid kind

� `

�

A : K A is a valid family of kind K

� `

�

M : A M is a valid object of type A

We also need the auxiliary judgments

U � V U is ��-convertible to V

`

�

U � V U is a subsort of V

where the subsorting judgment only applies at the levels of families and kinds. Here are the

rules for valid signatures.

` � Sig

` � Sig `

�

K : Kind `

�

K :: K

0

`

�

K

i

:: K

0

for any a:K

i

in � no a :: a

0

in �

` �; a:K Sig

` � Sig `

�

A : Type `

�

A :: A

0

`

�

A

i

:: A

0

for any c:A

i

in �

` �; c:A Sig
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` � Sig a

2

:K in � a

1

not declared in �

` �; a

1

:: a

2

Sig

` � Sig a

1

:: a

3

in � a

2

:: a

3

in �

` �; a

1

� a

2

Sig

A declaration of the form a :: b declares a sort family a which inherits its kind from the type

family b it re�nes. Valid contexts are straightforward.

`

�

� Ctx

`

�

� Ctx � `

�

A : Type

`

�

�; x :A Ctx

The rules for valid terms are uniform throughout the levels (as long as they apply), so we

give them in schematic form for terms. Note that we do not check validity of signatures or

contexts at the leaves, but require their validity in the theorems and take care to propagate

this property. Where there is no ambiguity we use the usual conventions for the names of

meta-variables. Here, S stands for either Type or Kind.

� `

�

Type : Kind

x :A in �

� `

�

x : A

d :U in �

� `

�

d : U

a :: b in � b:K in �

� `

�

a : K

� `

�

U : V

1

� `

�

U : V

2

(1)

� `

�

U : V

1

&

V

2

� `

�

U : V `

�

V �W � `

�

W : S

(2)

� `

�

U :W

� `

�

A : Type �; x :A `

�

U : S

� `

�

�x :A: U : S

� `

�

U

1

: S � `

�

U

2

: S `

�

U

1

:: V `

�

U

2

:: V

� `

�

U

1

&

U

2

: S

� `

�

U : �x :A: V � `

�

M : A

� `

�

U M : [M =x ]V

`

�

B :: A � `

�

A : Type � `

�

B : Type �; x :B `

�

M : C

(3)

� `

�

�x :A:M : �x :B : C

� `

�

U : V V �W � `

�

W : S

(4)

� `

�

U : W

Note that we need a subsorting rule (2) and a type conversion rule (4), since we have formulated

them as separate judgments which interact very little (formally). In the rule for �-abstraction

(3) one can see that the type label acts as a bound: we can analyze the expression for each sort

B which re�nes A and conjoin the results using the introduction rule for

&

(1).

Finally, the rules for subsorting. The rules enforce the restriction that sorts and sort families
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can only be compared if they re�ne a common type.

`

�

U ::W `

�

V ::W

`

�

U

&

V � U

`

�

U ::W `

�

V ::W

`

�

U

&

V � V

`

�

U � V

1

`

�

U � V

2

`

�

U � V

1

&

V

2

a � b in �

`

�

a � b

`

�

�x :A: U

1

::W `

�

�x :A: U

2

::W

`

�

(�x :A: U

1

)

&

(�x :A: U

2

) � (�x :A: U

1

&

U

2

)

`

�

Type � Type

`

�

B � A `

�

U � V

`

�

�x :A: U � �x :B : V

`

�

A � B

`

�

AM � B M

`

�

U ::W

`

�

U � U

`

�

U � V `

�

V �W

`

�

U �W

The subsorting relationship is contravariant in the domain of a function type, as expected.

Indexed sort families may only be compared if the indices are identical, which may require some

applications of the type conversion rule (4) in a typing derivation before the subsumption rule

(2) can be applied.

3.3 Properties of �

�&

We begin by de�ning a forgetful mapping k:k from �

�&

to �

�

. It ignores the distinctions

introduced by sorts by collapsing them to the type they re�ne. The result of interpreting a

signature � is a signature �

0

in �

�

and a substitution � mapping terms over � into terms over

�

0

. We use �(U ) as a notation for the result of applying � to U with the special provision that

�(U

1

&

U

2

) =

(

V if �(U

1

) = �(U

2

) = V

unde�ned otherwise

The application of � to a context � distributes into the constituent terms. The empty substi-

tution is denoted by [] and the extension of a substitution � mapping the new constant d to d

0

is written as � � [d 7! d

0

].

k � k = h�; []i

k�; d :U k = k�k if d declared in �

k�; d :U k = h�

0

; d :�(U ); �� [d 7! d ]i if d not declared in � and h�

0

; �i = k�k

k�; a

1

:: a

2

k = h�

0

; � � [a

1

7! a

2

]i where h�

0

; �i = k�k

k�; a

1

� a

2

k = k�k

Lemma 1 If � is valid and `

�

U � V then there exists a (unique) W such that `

�

U ::W and

`

�

V ::W .

Lemma 2 (Re�nement) Let � be a valid signature, � be a valid context, and k�k = h�

0

; �i.

Then:

(i) if `

�

U :: V then �(U ) = �(V ), (ii) if `

�

U � V then �(U ) = �(V ),

(iii) if U � V then �(U ) � �(V ), (iv) if � `

�

U : V then �(�) `

�

0

�(U ) : �(V ).

322



Proof: By straightforward inductions over the derivations of the given judgments, employing

uniqueness of bounds and Lemma 1.

We call a �

�&

term canonical if it is in long ��-normal form, as in LF.

Lemma 3 The judgment U � V is decidable on valid terms and every valid term U has a

unique equivalent canonical form.

Proof sketch: The corresponding judgment on LF is decidable on valid LF terms (see, for ex-

ample, [Geu92]). Equivalence on types and kinds is structural and therefore trivially decidable,

except for conversions among the embedded objects. But labels of �-abstractions are restricted

to terms which remain unchanged under the forgetful interpretation, and thus conversions in

�(U ) and �(V ) can be lifted to conversions in U and V .

The equivalence relation

�

=

is de�ned by U

�

=

V i� U � V and V � U . It is easily shown

that this is a congruence. Also, the following properties are easily proved.

Lemma 4 (Basic Properties of Sorts) We assume implicitly that both sides of each of the

equivalences below re�ne the same type.

(i) U

&

V

�

=

V

&

U, (ii) U

&

(V

&

W )

�

=

(U

&

V )

&

W ,

(iii) U

&

U

�

=

U, (iv) (�x :A: U

1

)

&

(�x :A: U

2

)

�

=

(�x :A: U

1

&

U

2

).

Theorem 5 (Decidability of Subsorting) The subsorting judgment `

�

U � V is decidable for

valid signatures �.

Proof sketch: By an interpretation into the subtyping problem for Forsythe, for which a

decidability proof has been given by Reynolds [personal communication, 1991]. The proof can

be found in [Pie91] in a slightly di�erent form. Each atomic type of the form a M

1

: : :M

n

is

interpreted as a simple type a M

1

: : :M

n

which inherits its subsorting property from a. The

main observation in the correctness proof of this interpretation is that AM � B N i� A � B

and M = N .

We call a type A a minimal type for the object M in context � if A is canonical and for

every canonical B such that � `

�

M : B we have `

�

A � B . A similar de�nition applies to

minimal kinds.

Theorem 6 (Decidability of �

�&

) The validity of signatures and contexts and the typing judg-

ment � `

�

U : V are decidable. Furthermore, every valid term U has a minimal type or kind.

Proof sketch: Using the forgetful interpretation and the soundness and completeness of the

algorithmic version of LF in [HHP93] we can show that each derivation can be transformed into

one which eagerly applies normalization on types, but otherwise requires no type conversion.

Secondly we show that applications of the subsorting rule in such a derivation can be pushed

up to the leaves, except for �-abstractions and applications, where we can directly calculate

a minimal type from minimal types of the constituents. The completeness of this calculation

relies on the fact that only �nitely many sorts (modulo

�

=

) re�ne a given type.
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4 Examples Revisited

Now that the �

�&

calculus has been de�ned, we revisit the earlier examples. We use the concrete

syntax :: for :: and <: for �.

Hereditary Harrop formulas. Following the previous and unchanged de�nitions of the

connectives, we declare atoms, goals, and programs as re�nements of formulas. Then we declare

sorts for the constructors.

atom :: form. % atoms

goal :: form. % legal goals

prog :: form. % legal programs

atom <: goal. % every atom is a legal goal

=> : prog -> goal -> goal.

|| : goal -> goal -> goal.

&& : goal -> goal -> goal.

atom <: prog. % every atom is a legal program

=> : goal -> prog -> prog.

&& : prog -> prog -> prog.

The entailment and backchaining judgments can now be declared naturally. Their de�nition

(not shown here) is also simple and intuitive.

solve : prog -> goal -> type.

backchain : prog -> atom -> goal -> type.

Normal Natural Deductions. Here, both elim and nf become sort families which re�ne

pf . Following the previous declarations for pf , impi , and impe we complete the de�nition as

follows.

nf :: pf. % normal form deductions

elim :: pf. % pure elimination deductions from hypotheses

elim <: nf. % every elim deduction is in normal form

impi : (elim A -> nf B) -> nf (imp A B).

impe : elim (imp A B) -> nf A -> elim B.

Below we show the obvious deduction of p � (q � p) for parameters p and q . Terms of the

form �x :A:M are written as [x:A] M in concrete syntax.

([p:o] [q:o] impi ([P:pf p] impi ([Q:pf q] P))

: {p:o} {q:o} nf (imp p (imp q p)).

These small examples should help to illustrate how re�nement types provide a natural and

direct means to express subtyping in the context of a logical framework. Many of the case

studies of deductive systems in LF that we and others have carried out would bene�t similarly.
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5 Conclusion and Further Work

We plan to implement the system �

�&

as an extension of Elf. This requires a generalization

of the constraint solving algorithm in [KP93] to dependent types, and the development of a

feasible type reconstruction algorithm. The type-checking algorithm which arises out of the

proof of Theorem 6 works by bottom-up synthesis and is not practical. However, a top-down

type-checking algorithm as in the implementation of re�nement types for ML [FP91] promises

to be of acceptable e�ciency, especially since our language lacks recursion at the level of terms.

We would also like to consider relaxing some of the restrictions currently in place to enforce

orthogonality of conversion and subsorting. In particular, it is intuitively appealing to allow

sorts (to be interpreted as bounds) in the labels of �-abstractions, but we believe that this

necessitates a form of typed or sorted conversion and our decidability proof no longer applies

directly. This slightly di�erent version of �

�&

also appears to be better suited for an extension

to the Calculus of Constructions with re�nement types. It is consistent with our system to

allow re�nement kinds, that is, declarations of the form k :: Type. This leads to a system which

encompasses ELF

+

[Gar92] and could also yield a new view of type classes in the context of type

theory. We plan to investigate the meta-theoretic properties of a type theory with re�nement

types and re�nement kinds.

One might also consider promotion of sorts to types and demotion of types to sorts which

sometimes further economizes representations without making them less intuitive. We plan to

investigate this in the context of the module system for LF described in [HP99].

Finally, there is the question of adequacy proofs for representations in �

�&

. The normal form

theorem is useful here, but we would also like to give an interpretation which maps a signature

in �

�&

into an equivalent signature in �

�

. We conjecture that there is such a mapping which

interprets re�nement by relativizing �-quanti�ers and subsorting by coercions.

Acknowledgments. We would like to thank Michael Kohlhase and Tim Freeman for discus-

sions regarding re�nement types and Nevin Heintze, Benjamin Pierce, and Ekkehard Rohwedder

for comments on a draft of this extended abstract.

Appendix: The �-Cube

In this appendix we give a uniform and very elegant presentation of Barendregt's �-cube and in

particular of LF and the calculus of constructions in which the levels (objects, families, kinds)

are re�nements of a proper type of terms. This example also shows why it is useful to allow

K

1

&

K

2

in �

�&

. We omit the rules for type conversion for the sake of brevity.

term : type.

tp : term.

pi : term -> (term -> term) -> term.

lm : term -> (term -> term) -> term.

ap : term -> term -> term.

%% Levels

sup :: term. % super-kind

knd :: term. % kinds

fam :: term. % families
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obj :: term. % object

%% The LF declarations.

tp : sup.

tp : knd.

pi : fam -> (obj -> knd) -> knd.

pi : fam -> (obj -> fam) -> fam.

lm : fam -> (obj -> fam) -> fam.

ap : fam -> obj -> fam.

lm : fam -> (obj -> obj) -> obj.

ap : obj -> obj -> obj.

In order to obtain the calculus of construction, we add the following declarations.

pi : knd -> (fam -> knd) -> knd.

lm : knd -> (fam -> fam) -> fam.

ap : fam -> fam -> fam.

pi : knd -> (fam -> fam) -> fam.

lm : knd -> (fam -> obj) -> obj.

ap : obj -> fam -> obj.

The typing judgment is now uniform across the levels.

of : knd -> sup -> type

& fam -> knd -> type

& obj -> fam -> type.

of_tp : of tp tp.

of_pi : of (pi T1 T2) tp

<- of T1 tp

<- {x:term} of x T1 -> of (T2 x) tp.

of_lm : of (lm T1 T2) (pi T1 T3)

<- of T1 tp

<- {x:term} of x T1 -> of (T2 x) (T3 x).

of_ap : of (ap T1 T2) (T4 T2)

<- of T1 (pi T3 T4)

<- of T2 T3.
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1 Introduction

Consider an informal presentation of simply typed �-calculus as in [Bar92]. Leaving out some

of the details, let �, � range over simple types, x , y range over a class of term variables, and M ,

N , range over the Church-style terms. A statement has the form M : �, where M is the subject

of the statement and � is its predicate. A context, ranged over by �, is a list of statements with

only variables as subjects. A context is valid if it contains only distinct variables as subjects.

A statement, M : �, is derivable from valid context �, notation � ` M : �, if � ` M : � can be

produced using the following rules.

var � ` x : � if (x :�) 2 �

lda

�; x :� ` M : �

� ` [x :�]M : �! �

app

� ` M : �! � � ` N : �

� ` M N : �

Such a presentation is usually considered formal enough for everyday reasoning. It can be

implemented literally as a type synthesis algorithm for �!: to compute a type for a variable,

look it up in the context; to compute a type for a lambda abstraction, compute a type for its

body in an extended context; to compute a type for an application, compute types for its left

and right components, and check that they match appropriately. Now lets use the algorithm to

compute a type for a = [x :� ][x :�]x .

x :�; x :� ` x : �

x :� ` [x :�]x : �! �

` [x :� ][x :�]x : �! �! �

Surely this is not right; the type should be �! �! � because we intended the rightmost x

to be bound by the second lambda, not by the �rst lambda. What went wrong? In directly

implementing this system we are taking informal notation more literally than intended: there

is no \x" in [x :� ][x :�]x ; the names of bound variables are not meant to be taken seriously. The

rule lda should be read as \in order to type [x :�]M , choose some suitable alpha-representative

of [x :�]M , : : :".

Here is a more concrete presentations of �!. First we state what it means to be a valid

context:
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nil-valid � valid

cons-valid

� valid

�; x :� valid

x 62 Dom (�)

Now we can �x the informal system in several ways. The most conservative approach is to

change the var rule to look up a variable in a valid context:

var

� valid

� ` x : �

x :� 2 �

lda

�; x :� ` M : �

� ` [x :�]M : �! �

app

� ` M : �! � � ` N : �

� ` M N : �

This system does not derive any type for a:

FAILURE: no rule applies because x 2 Dom (x :�)

x :�; x :� valid

x :�; x :� ` x : ?

x :� ` [x :�]x : �! ?

` [x :� ][x :�]x : �! �! ?

(1)

While it doesn't derive the unintended type �! �! � , this system also fails to derive the

intended type �! �! �. Notice that ` [x :� ][y :�]y : �! �! � is derivable, but the system is

not closed under alpha-conversion of subjects.

Formal systems with variable binding are implemented on machines as the basis of pro-

gramming languages and proof checkers, among other applications. It is clear that the concrete

syntax that users enter into such implementations, and see printed by the implementation in

response, should be formally related to the implemented formal system. Further, users and

implementors need an exact and concise description of such a system; informal explanation is

not good enough.

The concrete syntax should have good properties. Users of such implemented systems will

construct large formal objects with complex binding. The implementation should help in this

task, and anamolies of naming such as the small example above make the job more di�cult.

What do you say to an ML implementation that claims fn x => fn x => x is not well typed?

There are several approaches to naming in implementations of formal systems. Perhaps

the best known is the use of explicit names, and Curry-style renaming in the de�nition of

substitution. This technique can (probably) be formalized. The di�culty arises when we ignore

the distinction between alpha-convertible terms, and treat then as equal.

It is well known that one solution to the problems of alpha-conversion is the use of de

Bruijn \nameless variables" [dB72]. Although nameless variables have their partisans for use

in metatheoretic study, even those partisans admit that the explanation of substitution of a

term for a given variable is painful in such a presentation, although it can be, and has been,
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carried out elegantly [Alt93, Hue93]

1

. However, the direct use of nameless variables is not a

real possibility in pragmatic applications because human users �nd it di�cult to write even

small expressions using nameless variables. It is necessary to translate from named syntax to

nameless, and then back again to named syntax for pretty printing, and this translation itself

must be formalized.

I know of two recent proposals that take names seriously, but avoid the need for alpha-

conversion. One proposal, by Coquand [Coq91], follows a style in logic to distinguish between

free variables (parameters) and bound variables (variables). This idea has been used to formalize

a large theory of Pure Type Systems, including reduction, conversion and typing [MP93]. This

formalization does distinguish between alpha-convertible terms, and the typing judgement is

indeed closed under alpha-conversion. The other proposal, by Martin-L�of [Tas93] goes much

further, not only using explicit names, but also explicit substitutions, i.e. making the notion of

substitution a part of the formal system (as originally proposed for nameless terms in [ACCL91]).

Unfortunately the system of [Tas93], in its current formulation, is not closed under alpha-

conversion.

Finally, there is a recent proposal [Gor93] of a formalization mixing nameless terms and

named variables in such a way that named terms are equal up to alpha-conversion.

1.1 The Constructive Engine

The Constructive Engine [Hue89] is an abstract machine for type checking the Calculus of

Constructions. It is the basis for the proofcheckers Coq [DFH+93] and LEGO [LP92]. Among

its interesting aspects are:

1. converting the non-deterministic typing rules of the underlying type theory into a deter-

ministic, syntax-directed program

2. optimizations in the size of derivations

3. translating from external concrete syntax, with explicit variable names, into internal ab-

stract syntax of locally nameless terms, that is, local binding by de Bruijn indexes, and

global binding by explicit names

4. an e�cient technique for testing conversion of locally nameless terms (with special atten-

tion to the treatment of de�nitions)

The basic ideas of the �rst and second of these points appeared in early writing of Martin-

L�of. The �rst point has been studied extensively [Pol92, vBJMP93] for the class of Pure Type

Systems. The fourth point (which is clearly the limiting factor in pragmatic implementations of

proof checkers) has not received any theoretical attention to my knowledge, although [Hue89,

dB85] have interesting ideas.

In this note I will discuss the third item above, the relationship between concrete syntax

and abstract syntax in the Constructive Engine. The use of locally nameless style for internal

representation of terms is one of the basic decisions of the Constructive Engine, but perhaps

reects more Huet's interest in experimenting with de Bruijn representation than any ultimate

conviction that they are the \right" notation for implementing a type checker. I do not want to

study the pros and cons of this representation for e�cient typechecking, but only to muse over

1

For an example of metatheory where nameless variables are very inconvenient, see the discussion of the

Thinning Lemma in [MP93]
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the relationship between concrete terms, their abstract representations, and their (abstract)

types.

In the next section we discuss simply-typed lambda calculus, �!. After presenting several

concrete and abstract presentations of its typing rules, we derive a Constructive Engine for �!,

and consider some variations.

In section 3 we consider the same issue for Pure Type Systems (PTS). There is one new

problem in the case of dependent types. We explain a constructive engine for dependent types,

and show how to make it closed under alpha-conversion of terms.

2 Simply typed lambda calculus

There is a crude way to close the relation ` of the Introduction under alpha-conversion of

subjects, by adding a rule

alpha

� ` M : �

� ` N : �

M

�

= N

where M

�

= N , alpha-conversion, must also be de�ned by some inductive de�nition. Such so-

lutions are heavy, and not ideal for either implementation or formal meta-reasoning. Instead

of reasoning about three or �ve rules, we'll have to reason about all the rules for

�

= as well.

Further, rules such as alpha, that are not syntax-directed, are hard to reason about: being non-

deterministic, they allow many derivations of the same judgement, which sometimes prevents

proof by induction on the structure of derivations.

2.1 A concrete presentation closed under alpha-conversion

Another approach is to formalize the informal meaning of the lda rule suggested above: choose

a su�ciently fresh variable name to substitute for x . Informally, replace lda by

�; y :� `

s

M [y=x ] : �

� `

s

[x :�]M : �! �

y 62 M

Substitution of y for x in M must still be de�ned, and the usual de�nition involves alpha-

conversion. We give a formulation suggested in [Coq91] and formalized in detail in [MP93]. Let

p, q , r , range over an in�nite set of parameters, and x , y , z over variables as before. Parameters

and variables are disjoint sets

2

. De�ne two operations of replacement. Replacing a parameter

by a term is entirely textual:

x [M =p] = x

q [M =p] = if p = q then M else q

([x :�]N )[M =p] = [x :�]N [M =p]

(N

1

N

2

)[M =p] = (N

1

[M =p]) (N

2

[M =p])

2

Another informality! What is required is that the terms p and x be distinguishable, not necessarily that the

underlying objects be. Depending on the formalization of terms we might use weaker conditions
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Replacing a variable by a term does respect the scope of variable binding but does not rename

variables to prevent capture:

x [M =y ] = if y = x then M else x

q [M =y ] = q

([x :�]N )[M =y ] = [x :�](if y = x then N else N [M =y ])

(N

1

N

2

)[M =y ] = (N

1

[M =y ]) (N

2

[M =p])

Now replace lda by

s-lda

�; p:� `

s

M [p=x ] : �

� `

s

[x :�]M : �! �

p 62 M

(where p 2 M means textual occurrence). In the side condition of this rule, it's not necessary to

check that p 62 Dom (�) because failure of that condition prevents completing a derivation; just

choose another parameter, since p does not occur in the conclusion of the rule. It is necessary

to check p 62 M so that the premiss doesn't bind instances of p that do not arise from x .

We could de�ne beta-reduction, beta-conversion, prove Church-Rosser, subject reduction,

etc. [MP93], but for our purposes alpha-conversion is enough:

�-refl M

�

= M

�-lda

M [p=x ]

�

= M

0

[p=y ]

[x :�]M

�

= [y :�]M

0

p 62 M ; 62 M

0

�-app

M

�

= M

0

N

�

= N

0

M N

�

= M

0

N

0

Now we can state and prove `

s

is closed under alpha-conversion

Lemma 1 (Closure of `

s

under alpha-conversion)

If � `

s

M : � and M

�

= M

0

then � `

s

M

0

: �

The proof follows the same outline as a proof of subject reduction (closure under beta-reduction).

`

s

still treats parameters seriously: `

s

[x :� ][x :�]x : �! �! � but P :�;P :� 6`

s

P : �. This

is a di�erent problem, if it's a problem at all. In `

s

we have analysed the transition from local

variable to global parameter, while the treatment of parameters themselves is the same as in `.

An interesting variation on the previous idea is to use generalized induction to truly remove

the fresh name from derivations. Replace lda by

g-lda

8p 62 Dom (�) : �; p:� `

g

M [p=x ] : �

� `

g

[x :�]M : �! �

Notice again the \side condition", this time appearing as an antecedent of the generalized

premiss. We don't exclude those p that happen to occur in M , because we must derive

�; p:� `

g

M [p=x ] : � for in�nitely many p (using that the class of variables is in�nite), while M

can contain only �nitely many p. On the other hand, for p 2 Dom (�), �; p:� `

g

M [p=x ] : � is

not derivable for reasons having nothing to do with M or � .

Both `

s

and `

g

derive more judgements than `; in fact `

s

and `

g

are equivalent. Since

this is not completely obvious (and because I have a better proof than previuosly published

in [MP93]) I will prove it here.
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Lemma 2 For all �, M and �,

� `

s

M : � , � `

g

M : �

Proof The direction ( is trivial by induction on a derivation of � `

g

M : �.

In order to prove direction ) we introduce the machinary of renaming. A renaming (ranged

over by �) is an almost-everywhere-identity function from parameters to parameters. We ex-

tend the action of renamings compositionally to terms and contexts. It's easy to see that

bijective renamings respect both `

s

and `

g

; in particular, if � is bijective and � `

g

M : �, then

�� `

g

�M : �. It's a little di�cult to construct bijective renamings in general, because they

must be almost-everywhere-identity, i.e. not only the parameters that get moved have to be

considered, but also those that are �xed; a combinatorial nightmare. However it's clear that

any renaming that only swaps parameters, e.g. fq 7! p; p 7! qg, is bijective.

Now we prove � `

g

M : � by structural induction on a derivation of � `

s

M : �. All cases

are trivial except the rule s-lda

s-lda

�; p:� `

s

M [p=x ] : �

� `

s

[x :�]M : �! �

p 62 M

By induction hypothesis �; p:� `

g

M [p=x ] : � . In order to show � `

g

[x :�]M : �! � by g-lda

we only need to show 8r 62 Dom (�) : �; r :� `

g

M [r=x ] : � , so

let r 62 Dom (�) and show �; r :� `

g

M [r=x ] : � :

Taking � = fp 7! r ; r 7! pg, we have �(�; p:�) `

g

�(M [p=x ]) : � is derivable by renaming the

induction hypothesis. Thus we are �nished if we can show

�(�; p:�) = �; r :� and �(M [p=x ]) = M [r=x ]:

Notice p 62 Dom (�) (or the premiss of s-lda could not be derivable), and we also know p 62 M

and r 62 Dom (�). From these observations it's clear that the �rst equation holds. For the second

equation, notice that if r = p then � is the identity renaming, and we are done, so assume r 6= p,

and hence r 62 M [p=x ] (again, from the premiss of s-lda). Now

�(M [p=x ]) = fp 7! rg(M [p=x ]) = (fp 7! rgM )[fp 7! rgp=x ]) = M [r=x ]

as required.

You may wonder why we are interested in `

g

given that it has the same judgements as `

s

, but

is clearly less \concrete", involving in�nitely branching trees as it does. In fact `

g

allows some

arguments by induction over the structure of derivations that I do not know how to do using `

s

.

The proof of the thinning lemma for Pure Type Systems detailed in [MP93] is an example of

this, and there are many others in the work outlined in that paper. Its clear that while there are

in�nitely many derivations of, for example, `

s

[x :�]x : �! �, each containing some particular

variable not occurring in the conclusion, `

g

[x :�]x : �! � has only one derivation that does not

not depend on any particular variable not occurring in the conclusion. Loosly speaking, `

g

has

a \subformula property" that `

s

lacks.

2.2 Some other systems for �!

We are now working towards a Constructive Engine for �!, and this will be a system for typing

concrete terms with named variables that is closed under alpha-conversion. First we present an

optimization that suggests a new idea for handling global variables. Following this idea we will

see a presentation of �! not mentioning substitution, that is closed under alpha-conversion.
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An optimization I think this optimization �rst appears in early writing of Martin-L�of, and

it is also used in the Constructive Engine. It is interesting for our present purposes because

it distinguishes between the variables that have always been global, i.e. bound by the context

part of the judgement, and those that have only \locally" become global during construction of

a derivation.

The inductive de�nition of ` is very ine�cient in duplicating the test that � valid on each

branch of a derivation. For example

.

.

.

x :�! �; y :� valid

x :�! �; y :� ` x : �! �

.

.

.

x :�! �; y :� valid

x :�! �; y :� ` y : �

x :�! �; y :� ` x y : �

We can optimize ` by moving the test for a valid context outside the typing derivation, that

is, test once and for all that the given context is in fact valid, and then whenever a derivation

extends the context (using the lda rule), check that the extension preserves validity.

o-var � `

o

x : � x :� 2 �

o-lda

�; x :� `

o

M : �

� `

o

[x :�]M : �! �

x 62 Dom (�)

o-app

� `

o

M : �! � � `

o

N : �

� `

o

M N : �

Comparing with `, notice that o-var does not check that � is valid, but o-lda does maintain

this property during derivations.

The sense in which `

o

is correct is given by

Lemma 3 (Correctness of `

o

for `)

� ` M : � , (� valid and � `

o

M : �)

Proof The direction ) is trivial by induction on a derivation of � ` M : �.

The direction ( says there is a terminating algorithm for putting back all the redundant

information removed from a `-derivation

3

. For systems of dependent types, where correctness

of a context and the typing judgement are mutually inductive, this is not completely trivial.

The present case can be proved by induction on the structure of a derivation of � `

o

M : �.

In the tiny example above, we only need to check

.

.

.

x :�! �; y :� valid and

x :�! �; y :� `

o

x : �! � x :�! �; y :� `

o

y : �

x :�! �; y :� `

o

x y : �

3

I owe this observation to Stefano Berardi.
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The root of the problem We can view the systems presented so far as leaving unspeci�ed

how a context is searched for the type of a variable. This leaves open the possibility for various

implementations, such as linear search, or hash-coding. The price we pay is the requirement

for only one binding occurrence of a variable in a valid context. This is actually the root of

our problem about closure under alpha-conversion, since we don't restrict to only one binding

instance for a variable in a term. Informally our idea is to replace the rule o-var, which does

not specify how to search � for an assignment to x , by

� ` x : assoc x �

which searches � linearly (assoc x � returns the type of the �rst occurrence of x in �, viewing �

as a list that conses on the right). More precisely, we replace o-var with two rules that search

� from right to left.

i-start �; x :� `

i

x : �

i-weak

� `

i

x : �

�; y :� `

i

x : �

x 6= y

i-lda

�; x :� `

i

M : �

� `

i

[x :�]M : �! �

x 62 Dom (�)

i-app

� `

i

M : �! � � `

i

N : �

� `

i

M N : �

`

i

has fewer judgements than `

o

, for example x :�; x :� `

o

x : � but x :�; x :� 6`

i

x : �. However

only judgements of `

o

that are incorrect for ` are excluded: if � is valid, the order of search

doesn't matter.

Lemma 4 (Correctness of `

i

for `) If � valid then

� `

o

M : � , � `

i

M : �

Closure under alpha-conversion The system `

i

seems strange: why would we be more

operational in presenting an abstract relation than required? The payo� is that now the side

condition x 62 Dom (�) of rule i-lda can also be dropped, giving the system of \liberal terms":

lt-start �; x :� `

lt

x : �

lt-weak

� `

lt

x : �

�; y :� `

lt

x : �

x 6= y

lt-lda

�; x :� `

lt

M : �

� `

lt

[x :�]M : �! �

lt-app

� `

lt

M : �! � � `

lt

N : �

� `

lt

M N : �

We can consider two new relations now, `

lt

and (� valid and `

lt

).
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Notation 5 For relation `

x

, write � `

l

x

M : � for (� valid and � `

x

M : �), the local version

of `

x

Clearly

` = `

l

i

� `

l

lt

� `

lt

where all the containments are proper, as suggested by the following examples

y :&; x :� ` ([z :� ][w :�]w) x : �! �

y :&; x :� `

l

lt

([x :� ][x :�]x) x : �! �

x :&; x :� `

lt

([x :� ][x :�]x) x : �! �

Notice that � `

lt

M : � i� `

lt

�M : � (where by if � = x :�; y :�; : : :, then �M = [x :�][y :� ] : : :M ),

while `

l

lt

doesn't have this property, which is why `

l

lt

is called the local system of liberal terms.

With `

lt

and `

l

lt

we have systems for typing �! which are closed under alpha-conversion

and require no notion of substitution. (But of course we are also interested in reduction and

conversion on the typed terms, and these require substitution.)

A criticism of `

lt

As I suggested above, the non-operational abstraction \x 2 �" that

requires x is bound at most once in a valid context, is not well matched to our goal of presenting

the typing relation, for the informal notion of term allows the same variable name to be bound

more than once, and implicitly contains the idea of \linearly" searching fram a variable instance

through enclosing scopes to �nd the one binding that variable instance.

In fact, presentations of type systems in the style of our presentation of `, where validity of

a context means any variable name is bound at most once, are very common in the literature

(for example [Bar92, Luo90, HHP92]). Why do type theory designers not use presentations in

the style of `

lt

? The problem is that `

lt

has bad properties of weakening. If � ` M : � and

�

0

contains all the bindings of �, and is also valid, then �

0

` M : � but `

lt

doesn't have this

property. This is a logical property which shows that global bindings should not be treated

the same as local bindings. Both ` and `

lt

treat local and global bindings uniformly: ` is

unsatisfactory because it is too restrictive with local bindings, so is not closed under alpha-

conversion; `

lt

is unsatisfactory because it is too liberal with global bindings, so is not closed

under weakening. Is `

l

lt

just right?

2.3 �! with nameless variables

A well-known technique to avoid questions of variable names is the use of de Bruijn nameless

variables.

Pure nameless terms Here is a presentation of �! for pure nameless (de Bruijn) terms.
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db-start �; � `

db

0 : �

db-weak

� `

db

n : �

�; � `

db

n

0

: �

db-lda

�; � `

db

M : �

� `

db

[�]M : �! �

db-app

� `

db

M : �! � � `

db

N : �

� `

db

M N : �

Notice that there are no real choices to be made: there are no restrictions on the context, and

we \search" it linearly.

locally nameless terms Now consider terms whose local binding is by de Bruijn indexes, but

whose global binding is by named variables. As before, x , y range over a class of variables that

will be used for global, or free, variables. As usual, we de�ne two operations of \substitution"

(see [Hue89])

M [N =k ] replaces the k

th

free index with appropriately lifted instances of N , and lowers all free

indexes higher than k since there is no longer a \hole" at k .

M [k=x ] replaces name x with the k

th

free index, lifting indexes greater or equal to k to make

room for a new free index.

Here is a system for �! typing of locally nameless terms.

ln-var

� valid

� `

ln

x : �

x :� 2 �

ln-lda

�; x :� `

ln

M [x=0] : �

� `

ln

[�]M : �! �

x 62 M

ln-app

� `

ln

M : �! � � `

ln

N : �

� `

ln

M N : �

This system is very similar in spirit to `

s

of section 2.1. Its handling of global names is identical

to that of `

s

(and `), and its central feature, the analysis of how a local variable becomes

global, is very reminiscint of `

s

. Of course `

ln

is closed under alpha-conversion, because alpha-

conversion and identity are the same for locally nameless terms. The Constructive Engine uses

`

ln

as the \kernel" of a system for typing conventional named terms that inherits closure under

alpha-conversion from `

ln

.

Remark 6 `

db

is essentially the same as `

lt

in some way not yet made clear, and similarly

`

ln

is essentially the same as `

l

lt

. To make sense of this we should give translations back and

forth between named and nameless terms, and show that typing on the named terms and their

translations coincides. I have no time to do this at the present writing.
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2.4 A Constructive Engine for �!

Since `

ln

treats global names just as ` does, we may use the optimization and transformations

of section 2.2 on `

ln

. Analogous to `

i

we have `

iln

iln-start �; x :� `

iln

x : �

iln-weak

� `

iln

x : �

�; y :� `

iln

x : �

x 6= y

iln-lda

�; x :� `

iln

M [x=0] : �

� `

iln

[�]M : �! �

x 62 M ; x 62 Dom (�)

iln-app

� `

iln

M : �! � � `

iln

N : �

� `

iln

M N : �

Similar to lemmas 3 and 4,

� `

ln

M : � , (� valid and � `

iln

M : �)

Again as in section 2.2 we de�ne a system of \liberal terms" by replacing iln-lda with

ltln-lda

�; x :� `

ltln

M [x=0] : �

� `

ltln

[�]M : �! �

x 62 M

In section 2.2 the step from `

i

to `

lt

changed the derivable judgements; in fact `

lt

is closed

under alpha-conversion, while `

i

is not. In the present case `

iln

is already closed under alpha-

conversion, so the step to `

ltln

does not change the derivable judgements. The main point is

that x occurs in the conclusion of i-lda but not in the conclusion of iln-lda.

Lemma 7 (Correctness of `

ltln

)

� `

ln

M : � , � `

ltln

M : �

Proof It su�ces to show � `

iln

M : � , � `

ltln

M : �. Direction) is trivial. Prove direction

( by induction on a derivation of � `

ltln

M : �. For the case ltln-lda, if x 2 Dom (�), just

choose another x .

The Constructive Engine We are almost ready to present the Constructive Engine for �!.

It is (a system of rules for) an inductive relation of the shape � ` M ) M : �. � and M are

concrete objects with named variables, which we think of as inputs to the engine. M and � are

the outputs, respectively the translation of M into locally nameless form, and the �-type of M

in `

ltln

. For example, the rule for application terms is

ce-app

� ` M ) M : �! � � ` N ) N : �

� ` M N ) M N : �

This is read \to translate and compute a type for the named term M N in context � (i.e. to

evaluate the conclusion of the rule given its inputs), translate and compute types for M and N

(i.e. evaluate the premisses of the rule, whose inputs are computed from the given inputs to the
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conclusion), and return a result computed from the results of the premisses". We have called

such systems translation systems [Pol90].

There is one di�culty remaining, with the rule for lambda terms. Following the ce-app

example, it should be

�; x :� ` M ) M [x=0] : �

� ` [x :�]M ) [�]M : �! �

x 62 M

but it is not clear how to compute [�]M from M [x=0]. Reading ltln-lda algorithmicly the

term [�]M is the input: to compute its type, strip o� the lambda, put a variable x in the

hole thus created, (i.e. M [x=0]) and compute a type for this in an extended context. In the

translation system this is dualized: given the named term [x :�]M , translate the named term M

to locally nameless term M , and then somehow construct a locally nameless version of [x :�]M .

To �x this problem, we consider one more system, the same as `

ltln

except that ltln-lda is

replaced by

pce-lda

�; x :� `

pce

N : �

� `

pce

[�](N [0=x ]) : �! �

(pce is for pre-constructive-engine) and claim:

Lemma 8 (Correctness of `

pce

)

� `

ltln

M : � , � `

pce

M : �

Proof First, we have the equations

M [0=x ][x=0] = M (2)

M [x=0][0=x ] = M if x 62 M (3)

Direction ( is easy, for if a pce-derivation ends with

pce-lda

�; x :� `

pce

N : �

� `

pce

[�](N [0=x ]) : �! �

just apply ltln-lda with M = N [0=x ], using equation (2) and the fact that x 62 N [0=x ] no

matter what N is.

Conversely, assume a ltln-derivation ends with

ltln-lda

�; x :� `

ltln

M [x=0] : �

� `

ltln

[�]M : �! �

x 62 M

Since x 62 M , using equation (3), apply pce-lda with N = M [x=0].

Now we can give the Constructive Engine for �!:

340



ax � ` s

1

: s

2

Ax(s

1

:s

2

)

start

� ` A : s

�[x :A] ` x : A

x 62 Dom (�)

weak

� ` � : C � ` A : s

�[x :A] ` � : C

� is a sort or a variable, x 62 Dom (�)

pi

� ` A : s

1

�[x :A] ` B : s

2

� ` fx :AgB : s

3

Rule(s

1

; s

2

; s

3

)

lda

�[x :A] ` M : B � ` fx :AgB : s

� ` [x :A]M : fx :AgB

app

� ` M : fx :AgB � ` N : A

� ` M N : B [N =x ]

conv

� ` M : A � ` B : s A ' B

� ` M : B

Table 3: The typing judgement of a PTS.

ce-start �; x :� ` x ) x : �

ce-weak

� ` x ) x : �

�; y :� ` x ) x : �

x 6= y

ce-lda

�; x :� ` M ) M : �

� ` [x :�]M ) [�](M [0=x ]) : �! �

ce-app

� ` M ) M : �! � � ` N ) N : �

� ` M N ) M N : �

This system has a clear operational reading. Given a derivation of � ` N ) N : �, just erase

the named terms to get a derivation of � `

pce

N : �. If we show that the translation from

named terms to locally nameless terms is correct (I will not do so now) the correctness of this

engine is established.

One �nal point: we have the choice of removing the side condition x 62 Dom (�) from rule

cons-valid, or not. In the �rst case we get `

lt

, in the second case `

l

lt

.

3 Dependent Types

We will work with the familiar class of Pure Type Systems [Bar91, Bar92, GN91, Ber90, MP93,

vBJMP93, vBJ93], which, without further ado, we present as the system of rules in Table 3.
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A new di�culty arises with alpha-conversion in dependent types: the binding dependency

of a term and its type may be di�erent. For example, we expect to be able to derive

A:�;P :A!� ` [x :A][x :Px ]x : fx :Agfy :PxgPx

but not to derive

A:�;P :A!� ` [x :A][x :Px ]x : fx :Agfx :PxgPx

This example suggests that the rule

lda

�[x :A] ` M : B � ` fx :AgB : s

� ` [x :A]M : fx :AgB

using the same bound variable for the term and its type is not exactly what we intend.

A formalization of PTS that distinguishes between parameters and variables, along the lines

discussed in section 2.1, is described in [MP93]. We use the following lda rule:

lda

�; p:A ` M [p=x ] : B [p=y ] � ` fy :AgB : s

� ` [x :A]M : fy :AgB

p 62 M ; p 62 B

I recently proved that this system is closed under alpha-conversion, but the proof is not com-

pletely satisfactory, as it uses the rule conv only for alpha-conversion in several cases. (After

all, a presentation of PTS using nameless terms will never use conv for alpha-conversion.) I

hope a better, more intensional, proof can be found, but it is not clear how to do it.

In section 2.2 we derived a system, `

lt

, for �! without any variable renaming that was

closed under alpha-conversion. I don't think we can do the same for PTS. If we follow the

transformations of section 2.2, �rst optimizing to only check context validity once, then lin-

earizing context search, we arrive at the system of Table 4. This system is correct, in the

sense

� ` M : A , (� `

vc

and � `

vc

M : A)

If we now try to drop the side conditions x 62 Dom (�) from vc-pi and vc-lda, as in section 2.2,

(call this system `

bad

) we �nd the following incorrect derivation

�; x :A; x :Px `

bad

x : Px

�; x :A `

bad

[x :Px ]x : fx :PxgPx

� `

bad

[x :A][x :Px ]x : fx :Agfx :PxgPx

3.1 The Constructive Engine

I remind you that this paper is not addressing the issue of making PTS syntax directed; the

Constructive Engine we will derive now is not yet a program for typechecking PTS, but does

explain the interaction between named and nameless variables of an operational Constructive

Engine.

Table 5 is a correct presentation of PTS using locally nameless terms, corresponding to `

iln

of section 2.4. Now, as in section 2.4, we may drop the side condition x 62 Dom (�) from rules

iln-pi and iln-lda (getting the system `

ltln

), just as in lemma 7. Here we are using the locally

nameless representation in an essential way for dependent types!

Continuing as in section 2.4, we use the argument of lemma 8 to replace ltln-pi and

ltln-lda by
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vc-srt � `

vc

s

1

: s

2

Ax(s

1

:s

2

)

vc-var � `

vc

x : assoc x �

vc-pi

� `

vc

A : s

1

�; x :A `

vc

B : s

2

� `

vc

fx :AgB : s

3

Rule(s

1

; s

2

; s

3

)

x 62 Dom (�)

vc-lda

�; x :A `

vc

b : B � `

vc

fx :AgB : s

� `

vc

[x :A]b : fx :AgB

x 62 Dom (�)

vc-app

� `

vc

a : fx :BgA � `

vc

b : B

� `

vc

a b : A[b=x ]

vc-cnv

� `

vc

a : A � `

vc

B : s A ' B

� `

vc

a : B

nil-vc � `

vc

cons-vc

� `

vc

� `

vc

A : s

�; x :A `

vc

x 62 Dom (�)

Table 4: The system of valid contexts.

iln-srt � `

iln

s

1

: s

2

Ax(s

1

:s

2

)

iln-var � `

iln

x : assoc x A

iln-pi

� `

iln

A : s

1

�; x :A `

iln

B [x=0] : s

2

� `

iln

fAgB : s

3

Rule(s

1

; s

2

; s

3

)

x 62 B ; x 62 Dom (�)

iln-lda

�; x :A `

iln

b[x=0] : B [x=0] � `

iln

fAgB : s

� `

iln

[A]b : fAgB

x 62 b; x 62 B

x 62 Dom (�)

iln-app

� `

iln

a : fBgA � `

iln

b : B

� `

iln

a b : A[b=0]

iln-cnv

� `

iln

a : A � `

iln

B : s A ' B

� `

iln

a : B

iln-nil � `

iln

iln-cons

� `

iln

� `

iln

A : s

�; x :A `

iln

x 62 Dom (�)

Table 5: The intermediate system of locally nameless terms.
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ce-srt � ` s

1

) s

1

: s

2

Ax(s

1

:s

2

)

ce-var � ` x ) x : assoc x A

ce-pi

� ` A) A : s

1

�; x :A ` B ) B : s

2

� ` fx :AgB ) fAg(B [0=x ]) : s

3

Rule(s

1

; s

2

; s

3

)

ce-lda

�; x :A ` b ) b : B � ` fx :AgB ) fAgB : s

� ` [x :A]b ) [A](b[0=x ]) : fAg(B [0=x ])

ce-app

� ` a ) a : fBgA � ` b ) b : B

� ` a b ) a b : A[b=0]

ce-cnv

� ` a ) a : A � ` B ) B : s A ' B

� ` a ) a : B

ce-nil � `

iln

ce-cons

� `

iln

� ` A) A : s

�; x :A `

iln

x 62 Dom (�)

Table 6: The Constructive Engine for PTS.

pce-pi

� `

pce

A : s

1

�; x :A `

pce

B : s

2

� `

pce

fAg(B [0=x ]) : s

3

Rule(s

1

; s

2

; s

3

)

pce-lda

�; x :A `

pce

b : B � `

pce

fAgB : s

� `

pce

[A](b[0=x ]) : fAg(B [0=x ])

giving a system, `

pce

, that can be made into a Constructive Engine as in section 2.4. This

Constructive Engine (Table 6) is closed under alpha-conversion.
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Machine Deduction
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Abstract

We present in this paper a new type system which allows to extract code for an abstract

machine instead of lambda-terms. Thus, we get a framework to compile correctly programs

extracted from proof by translating their proof in our system and then extracting the code.

Moreover, we will see that we can associate programs to classical proofs.

1 Introduction.

The proof as program paradigm, using the Curry-Howard isomorphism [4], gives a way to

associate a program to an intuitionistic proof. This program is almost always a functional

program (in general a lambda-term [1]) which has to be compiled before being executed [11].

This ensures some correctness about the functional program extracted from the proof. But the

correctness of the compiled code is relative to the proof of the compiler.

The usual way to ensure this kind of correctness is to de�ne a semantics for the functional

language, and to verify that the compiler preserves this semantics.

We study in this paper a type system for the code of an abstract machine (S.E.C. machine).

This approach authorizes a new kind of compilation: we translate the proof in natural deduction

to a proof in our system and we extract the code from this new proof.

The two kinds of compilation can be represented by the following diagram:

Proof

in

natural deduction

�!

Proof translation

�!

Proof

in

M.D.

#

Term

extraction

# #

Code

extraction

#

Lambda-terms

�!

Compilation

�!

Code

To achieve this goal we de�ne a deduction system MD

SEC

, for intuitionistic logic. This

system is a second order system specially tailored to a translation of Leivant and Krivine's

system AF

2

[6, 7, 9, 8].

x

cr@dcs.ed.ac.uk
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Secondly, we de�ne an S.E.C. machine and an interpretation for intuitionistic logic in terms

of the machine. Then, we show how to extract code from a proof in our system and we prove

this code correct for our interpretation: the extracted code belongs to the interpretation of its

type.

Next, we show how to deal with data types and optimization, and how the interpretation

notion ensures the correctness of the code.

Finally we give one proof translation for call-by-name (in Krivine's style). This means that

we can �nd a proof translation such that the previous diagram commutes for call-by-name

compilation.

If the reader is not familiar with second order stu� and system AF

2

, he could read this paper

forgetting all about �rst order to use only its propositional part (This restriction of system AF

2

gives the Curry's system F [3]). But doing this, the reader will lose the argument about the

correctness of programs in Section 6, because the type characterizes the function in system AF

2

but not in system F.

2 The deduction system.

We use classical second order formulas. First we de�ne �rst order terms from a language L

de�ned by an algebraic signature �. We choose an in�nite set of predicate variables (in�nite for

each arity) and we construct formulas from atomic formulas, false, true, negation, conjunction,

second order and �rst order existential quanti�cation (? j > j X (t

1

; : : : ; t

n

) j F ^ G j :F j

9XF j 9xF ). Let F be this set of formulas.

De�nition 2.1 We choose a partition of second order variables into stack variables (V

�

) and

value variables (V

�

). We de�ne value formulas (F

�

) and stack formulas (F

�

) as the least

subsets of F verifying:

X (t

1

; : : : ; t

n

) 2 F

�

if X 2 V

�

A(t

1

; : : : ; t

n

) 2 F

�

if A 2 V

�

F ^ P 2 F

�

if F 2 F

�

and P 2 F

�

9�P 2 F

�

if P 2 F

�

and � is any kind of variable

:P 2 F

�

if P 2 F

�

In all this paper, we will use the following notation to write formulas:

� M ;N for any formulas.

� F ;G for value formulas.

� P ;Q ;R for stack formulas.

� X ;Y for stack variables.

� A;B for value variables.

� x ; y for �rst order variables.

� t ; u for �rst order terms.
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� �;� for multiset of value formulas.

� M [t=x ] for the substitution of the �rst order variable x with a term t in the formula M .

� M [�x

1

: : : �x

n

N =X ] for the substitution of the the second order variable X of arity n with

a formula N in the formula M . This substitution is de�ned as usual, but to be compatible

with the de�nition of stack formulas and value formulas, we will substitute only stack

formulas to stack variables and value formulas to value variables.

� � for any kind of variable (�rst order, stack or value variables).

� ', associated to �, for an expression which is substitutable to �:

{ ' is a term if � is a �rst order variable

{ ' = �x

1

: : :�x

n

P where P is a stack formula if � is a stack variable or arity n

{ ' = �x

1

: : :�x

n

F where F is a value formula if � is a value variable or arity n

We will consider only sequents of the following form, with F

1

; : : : ;F

n

2 F

�

and P 2 F

�

:

F

1

; : : : ;F

n

j P `

In such a sequent, the \;" and \j" must be understand as conjunction. So F

1

; : : : ;F

n

j P `

means that we get a contradiction from F

1

^ : : :^ F

n

^ P .

Here are the rules of the deduction system MD

SEC

:

Ax

�

F

1

; : : : ;F

m�1

;:P ;F

m+1

; : : : ;F

n

j P `

F

1

; : : : ;F

m

; : : : ;F

n

j (F

m

^ P) `

Co

F

1

; : : : ;F

m

; : : : ;F

n

j P `

F

1

; : : : ;F

n

j P `

^

i

� j F

1

^ : : :^ F

n

^ P `

� j :Q ^ P ` � j Q `

:̂

e

� j P `

� j > `

>

e

� j P `

� j :(:P ^ >) ^ P `

>

0

e

� j P `

� j P ` � 62 �

9

i

� j 9�P `

� j 9�P `

9

e

� j P ['=�] `

?

s

� j ? `

Note: the > connective is not useful when we use existential quanti�er. If we replace > by

9X X the rule >

e

is derivable and the rule ?

s

is still correct. We give a system using > to have

also a complete propositional version.

Proposition 2.2 We remark that this deduction system is correct for intuitionistic logic. This

means that if we prove � j P ` in our system then �;P ` is a valid sequent in intuitionistic

logic.

proof: The proof is done by induction on the proof of � j P `. In fact, it's su�cient to remark

that all rules are correct (the rule >

0

e

could seem classical. But because formulas are to the left,

this rule is in fact equivalent to :(::P ^ P)! :P which is intuitionisticaly true). �
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3 Programs and machine.

In this section, we de�ne an S.E.C. machine. We de�ne the set of instructions I, the set of

programs P , the set of environments E , the set of values V and the set of stacks S as the least

sets verifying the following conditions:

Jump

n

2 I if n 2 IN

Pop

n

2 I if n 2 IN

Push[p] 2 I if p 2 P

Push

n

2 I if n 2 IN

Erase 2 I

Stop 2 I

Save 2 I

Rest 2 I

P = I

(IN)

(P is the set of �nite sequences of instructions)

E = V

(IN)

(E is the set of �nite sequences of values)

V = P � E

S = V

(IN)

(S is the set of �nite sequences of values)

We will use the following notation:

� i ;p for the concatenation of the instruction i at the beginning of the program p. we won't

use the empty program and we will denote i the program using only one instruction i .

� ('

1

; '

2

; : : : ; '

n�1

; '

n

) for an environment of length n.

� () for an empty environment.

� hp=ei for a value with the program p and the environment e.

� ' � � for the concatenation of the value ' at the beginning of the stack �.

� " for the empty stack.

Now, we de�ne the transition function \tr" (this is a partial function), from P � E � S to

itself. We give this de�nition by the table 1.

For instructions Save and Rest, we use the canonical isomorphism between S and E to store

a stack in place of an environment.

De�nition 3.1 We de�ne the partial function ex('; �) from V � S to S. Given a value ' =

hp=ei and a stack �, let be fS

n

g

n2IN

the sequence de�ned by

� S

0

= (p; e; �)

� S

n+1

= tr(S

n

)

Then,ex('; �) is de�ned if the previous sequence is well de�ned and if exists an integer N such

that S

N

= (Stop;p

0

; e

0

; �

0

). In this case, we de�ne ex('; �) = �

0

.

Proposition 3.2 If tr(p; e; �) = (p

0

; e

0

; �

0

) then ex(hp=ei ; �)) = ex(hp

0

=e

0

i ; �

0

).

proof: the proof comes from the de�nitions of tr and ex. �
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Table 7: Here is the complete transition table for the S.E.C. machine:

input code input environment input stack

output code output environment output stack

Pop

m

;p e '

1

� � �'

m

� �

p ('

1

; : : : ; '

m

) �

Push[p

0

];p e �

p e hp

0

=ei � �

Push

m

;p ('

1

; : : : ; '

n

) �

p ('

1

; : : : ; '

n

) '

m

� �

Jump

m

;p ('

1

; : : : ; '

m�1

; hp

0

=e

0

i ; '

m+1

; : : : ; '

n

) �

p

0

e

0

�

Erase;p e �

p e "

Stop;p e �

Stop;p e �

Save;p e �

p e hRest=�i � �

Rest;p e = �

0

hp

0

=e

0

i � �

p

0

e

0

�

0

4 Semantics.

De�nition 4.1 An interpretation �, is given by:

� A mapping x 7! jx j

�

from �rst order variables to V.

� A mapping x 7! jf j

�

from function constants of arity n to V

n

! V.

� A mapping A 7! jAj

�

from program variables of arity n to V

n

! P(V).

� A mapping X 7! jX j

�

from stack variables of arity n to V

n

! P(S).

� An element j?j

�

of S

�

.

De�nition 4.2 Given � 2 P(V) and � 2 P(S), we de�ne

�� � = f' � �;' 2 � and � 2 �g

De�nition 4.3 Given � in P(S), we de�ne the set � in P(V) by:

� = f' 2 V ; for all � 2 � ex('; �) 2 j?j

�

g

We note that ' 2 � implies that ex('; �) is well de�ned for all � 2 �.

It is very important to note that the de�nition of � depends of j?j

�

which is in fact the set

of all legal stacks when a program stops.
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Given such an interpretation, we de�ne by induction the interpretation for all �rst order

terms, stack formulas and value formulas. The interpretation of a term is an element of V , the

interpretation of a stack formula is an element of P(S) and the interpretation of a value formula

is an element of P(V):

jf (t

1

; : : : ; t

n

)j

�

= jf j

�

(jt

1

j

�

; : : : ; jt

n

j

�

)

jX (t

1

; : : : ; t

n

)j

�

= jX j

�

(jt

1

j

�

; : : : ; jt

n

j

�

)

jA(t

1

; : : : ; t

n

)j

�

= jAj

�

(jt

1

j

�

; : : : ; jt

n

j

�

)

j>j

�

= f"g

j:P j

�

= jP j

�

jF ^ P j

�

= jF j

�

� jG j

�

j9XP j

�

=

S

�2V

n

!P(S)

jP j

�[�=X ]

(n is the arity of X )

j9AP j

�

=

S

�2V

n

!P(V)

jP j

�[�=A]

(n is the arity of A)

j9xP j

�

=

S

'2V

0

jP j

�['=x ]

We introduce also the following notation:

� If � = F

1

; : : : ;F

n

, we will denote j�j

�

= f('

1

; : : : ; '

n

);'

i

2 jF

i

j

�

g.

� For any interpretation �, we will denote �[�=�] for the usual modi�cation of the inter-

pretation of only one variable.

� To deal with second order, we will also denote j�x

1

: : : �x

n

M j

�

(withM 2 F

�

orM 2 F

�

)

for the function de�ned '

1

; : : : ; '

n

7! jM j

�['

1

=x

1

]:::['

n

=x

n

]

.

Proposition 4.4 We have the usual proposition: for all interpretation �, for all value formula

F , and for all stack formula P, we have:

jF ['=�]j = jF j

�[j'j

�

=�]

jP ['=�]j = jP j

�[j'j

�

=�]

proof: The proof is done by induction on the formulas F and P . �

5 The type system.

We can also use proof to associate programs to formulas. As in the Krivine's and Leivant's

system AF

2

, we choose a set E of equational axioms on �rst order terms and add a rule for

these equations. Here are the rules with their algorithmic contents:

Ax

�

Jump

m

: F

1

; : : : ;F

m�1

;:P ;F

m+1

; : : : ;F

n

j P `

p : F

1

; : : : ;F

n

j (F

m

^ P) `

Co

Push

m

;p : F

1

; : : : ;F

n

j P `

p : F

1

; : : : ;F

n

j P `

^

i

Pop

n

;p : � j F

1

^ : : :^ F

n

^ P `

p : � j :Q ^ P ` q : � j Q `

:̂

e

Push[q];p : � j P `

p : � j > `

>

e

Erase;p : � j P `

p : � j :(:P ^ >) ^ P `

>

0

e

Save;p : � j P `
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p : � j P ` � 62 �

9

i

p : � j 9�P `

p : � j 9�P `

9

e

p : � j P ['=�] `

?

s

Stop : � j ? `

p : � j P [t=x ] ` E ` t = u

Eq

p : � j P [u=x ] `

Proposition 5.1 Let � be an interpretation verifying: E ` t = u implies jt j

�

= juj

�

for all

�rst order terms. If we prove p : � j P ` then for all e 2 j�j

�

, we have

hp=ei 2 j:P j

�

proof: We prove this result by induction on the proof:

� If the last rule is Ax

�

:

Ax

�

Jump

m

: F

1

; : : : ;F

m�1

;:P ;F

m+1

; : : : ;F

n

j P `

Let e = ('

1

; : : : ; '

n

) 2 V be such that '

i

2 jF

i

j

�

. We have ex(hJump

m

=ei ; �) =

ex(hp

0

=e

0

i ; �) with '

m

= hp

0

=e

0

i. So hJump

m

=ei 2 j:P j

�

, because '

m

2 j:P j

�

.

� If the last rule is Co

p : F

1

; : : : ;F

m

; : : :F

n

j (F

m

^ P) `

Co

Push[m];p : F

1

; : : : ;F

m

; : : :F

n

j P `

We denote � = F

1

; : : : ;F

n

. We have to prove hPush

m

;p=ei 2 j:P j

�

. We choose e 2 j�j

�

and � 2 jP j

�

. By de�nition, we have e = h'

1

: : :'

m

: : :'

n

i with for all i , '

i

2 jF

i

j

�

. Thus,

if we denote �

0

= '

m

� � we get ex(hPush

m

;p=ei ; �) = ex(hp=ei ; �

0

). Hence, we get the

expected result using hp=ei 2 j:(F

m

^P)j

�

(by induction hypothesis) and �

0

2 jF

m

^P j

�

.

� If the last rule is ^

i

p : F

1

; : : : ;F

n

j P `

^

i

Pop

n

;p : � j F

1

^ : : :^ F

n

^ P `

We denote �

0

= F

1

; : : : ;F

n

. We have to prove hPop

n

;p=ei 2 j:(F

1

^ : : : ^ F

n

^ P)j

�

for

all e 2 j�j

�

. We choose e 2 j�j

�

and � 2 jF

1

^ : : : ^ F

n

^ P j

�

. By de�nition, we have

� = '

1

� � �'

n

� �

0

with for all i , '

i

2 jF

i

j

�

and �

0

2 jP j

�

. Then, ex(hPop

n

;p=ei ; �) =

(hp=e

0

i ; �

0

) with e

0

= ('

1

; : : : ; '

n

), and we get the result using e

0

2 j�

0

j

�

, hp=e

0

i 2 j:P j

�

(induction hypothesis) and �

0

2 jP j

�

.

� If the last rule is :̂

e

p : � j :Q ^ P ` q : � j Q `

:̂

e

Push[q];p : � j P `

We have to prove hPush[q];p=ei 2 j:P j

�

. We choose e 2 j�j

�

and � 2 jP j

�

. We have

ex(hPush[q];p=ei ; �) = ex(hp=ei ; hq=ei � �). Thus, we get the result because by induction

hypothesis we have hp=ei 2 j:(:Q ^ P)j

�

and hq=ei 2 j:Q j

�

, so we have hq=ei � � 2

j:Q ^ P j

�

.
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� If the last rule is >

e

p : � j > `

>

e

Erase;p : � j P `

Let e 2 j�j

�

be, we have to prove hErase;p=ei 2 j:P j

�

. By de�nition, for all � 2 jP j

�

, we

have ex(hErase;p=ei ; �) = ex(hp=ei ; "). Hence, we get the wanted result because hp=ei 2

j:>j

�

(induction hypothesis).

� If the last rule is ?

s

?

Stop : � j ? `

For all e 2 j�j

�

and � 2 j?j

�

, we have ex(hStop=ei ; �) = � 2 j?j

�

. So we have hStop=ei 2

j:?j

�

.

� If the last rule is >

c

p : � j :(:P ^ >) ^ P `

>

c

Save;p : � j P `

Let e 2 j�j

�

be, we have to prove that hSave;p=ei 2 j:P j

�

. Let � 2 jP j

�

be, so we have

ex(hSave;p=ei ; �) = ex(hp=ei ; ' � �), with ' = hRest=�i. If we prove ' 2 j:(:P ^>)j

�

, we

get ' � � 2 j:(:P ^>)^P j

�

and with the induction hypothesis, we get the wanted result.

Now let us prove that ' 2 j:(:P ^ >)j

�

. Let us choose �

0

2 j:P ^ >j

�

. By de�nition,

�

0

= hp

0

=e

0

i � " with hp

0

=e

0

i 2 j:P j

�

. But we have ex(hRest=�i ; �

0

) = ex(hp

0

=e

0

i ; �). Hence

we get the expected result because hp

0

=e

0

i 2 j:P j

�

and � 2 jP j

�

.

� If the last rule is 9

i

p : � j P ` � 62 �

9

i

p : � j 9�P `

Let � be an interpretation and choose e 2 j�j

�

, we have to prove that hp=ei 2 j:9�P j

�

.

But this signify that for all possible interpretation ' for the variable �, we have hp=ei 2

jP j

�['=�]

, and this is true by induction hypothesis.

� If the last rule is 9

e

p : � j 9�P ` Q

9

e

p : � j P ['=�] ` Q

By induction hypothesis, for all interpretation � and for all e 2 j�j

�

, hp=ei 2 j:9�P j

�

, so

we have hp=ei 2 jP j

�[j'j

�

=�]

, for all expression ' substitutable to �, and by the proposition

4:4, we have jP ['=�]j

�

= jP j

�[j'j

�

=�]

. Hence we get hp=ei 2 j:P ['=�]j

�

.

� If the last rule is Eq

p : � j P [t=x ] ` E ` t = u

Eq

p : � j P [u=x ] `

By hypothesis on � and by 4.4, we get jP [t=x ]j

�

= jP [u=x ]j

�

. So we get the wanted result.

�
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De�nition 5.2 We will say that M is a control formula, if jM j

�

is independent of the inter-

pretation � (we can apply this de�nition if M is a stack or a value formula). In this case we

note jM j the interpretation of M .

We can see that > is a control stack formula.

Proposition 5.3 Let F

1

; : : : ;F

n

be value control formulas and P,Q control stack formulas.

If we prove p : F

1

; : : : ;F

n

j :Q ^ P `, then for all � 2 jP j and e 2 jF

1

; : : : ;F

n

j, we have

ex(hp=ei ; ' � �) 2 jQ j, with ' = hStop=()i.

proof: Let F

1

; : : : ;F

n

be value control formulas and P , Q control stack formulas. We assume

p : F

1

; : : : ;F

n

j :Q ^ P `. We can choose an interpretation � such that j?j

�

= jQ j. So we get

' = hStop=()i 2 j:Q j, and we can apply the proposition 5.1, and we get hp=ei 2 j:(:Q ^ P)j

for all e 2 jF

1

; : : : ;F

n

j. So we have ex(hp=ei ; ' � �) 2 j?j

�

= jQ j for all � 2 jP j. �

6 Data types.

It is easy to add data types in this system. Let us show how to add integers. This example is

demonstrative enough to show how to do with any kind of data types.

To add Integers, we follow these steps:

� We add a second order value constant of arity one: N ( ). We will use theN symbol without

parenthesis to simplify writing. We add the formula Nt to the set of value formulas.

� We add the following symbols to the language: 0, s( ), add( ; ), mul( ; ) : : : . We will

use the s symbol without parenthesis to simplify writing. We identify all the elements of

the data type with the set of logical terms obtain with its constructors. For integer, this

means that the element of the data type N are the logical terms of the form s

n

0.

� We add to the set of equations E some equations to de�ne add( ; ), mul( ; ) : : : .

� We add all the integers to the set of Value V . So we can put some integers in the the

stack or in the environment. We will denote i the value associated to an element i of the

data type N .

� We add Push

IN

[i ] (for each integer i), Rec

IN

[p

0

][p

s

] (for each program p

0

and p

s

) and Inc

IN

to the set of instructions I and we gives the following transition tables:

input code input environment input stack

output code output environment output stack

Push

IN

[i ];p e �

p e i � �

Inc

IN

;p e i � �

p e i + 1 � �

Rec

IN

[p

0

][p

s

] (0) �

p

0

() �

Rec

IN

[p

0

][p

s

] (i + 1) �

p

s

(i)




Rec

IN

[p

0

][p

s

]=(i)

�

� �
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� We add the following rules to the type system:

p : � j N (i) ^ P `

IN

e

x

Push

IN

[i ];p : � j P `

p : � j N (s i) ^ P `

IN

s

Inc

IN

;p : � j N (i) ^ P `

p

0

: j P(0) ` p

s

: N (j ) j (:P(j )^ P(s j )) `

IN

r

Rec

IN

[p

0

][p

s

] : N (i) j P(i) `

� And �nally we extend the notion of interpretation by jN j

�

(i) = fig if i is an element of

the data type N and jN j

�

(u) = ; in all the other cases. With this de�nition it is not

di�cult to extend the proof of proposition 5.1.

As an example, here is a derivation for the addition program, using the usual equation for

addition, add(0; j ) = j and add(s i ; j ) = s add(i ; j ). To simplify the proof we use this notation:

P

j

(i) = :(N (add(i ; j ))^Q) ^ N (j ) ^Q

�

j

(i) = :P

j

(i);:(N (add(s i ; j ))^ Q)

Here is the proof:

Ax

�

:(N add(0; j )^Q) j N add(0; j )^Q `

Eq

:(N add(0; j )^ Q) j Nj ^Q `

^

i

j P

j

(0) `

Ax

�

�

j

(k) j P

j

(k) `

Ax

�

�

j

(k) j N add(s k ; j )^ Q `

Eq

�

j

(k) j N s add(k ; j )^ Q `

IN

s

�

j

(k) j N add(k ; j )^Q `

:̂

e

�

j

(k) j Nj ^Q `

^

i

Nk j :P

j

(k) ^ P

j

(s k) `

IN

r

Ni j P

j

(i) `

Ax

�

Ni ;Nj ;:(N add(i ; j )^Q) j Nj ^Q `

Ax

�

Ni ;Nj ;:(N add(i ; j )^ Q) j Q `

^

i

j Ni ^Nj ^ :(N add(i ; j )^Q) ^ Q `

And the program extracted from this proof:

Pop

3

;Push

2

;Push

3

;Rec

IN

[Pop

1

;Jump

1

][Pop

2

;Push[Inc

IN

;Jump

2

];Jump

1

]

We may comment on this proof:

� The conclusion of the proof: j Ni ^Nj ^:(N add(i ; j )^Q)^Q ` is a type for an addition

program in continuation passing style. This program waits, on the stack, for two integers

of type N (i) and N (j ), a \continuation" of type :(N add(i ; j )^Q) and the rest of the stack

of type Q . Then, this program computes the sum of i and j , and calls the continuation .

� We may distinguish three parts in this proof, separated by the recursion rule: The 0 and

the successor case and, at the bottom of the proof, some manipulations on the stack to

put things in the right order.
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7 Correctness and optimizations.

We are going to show how the use of data types as above implies the correctness of the program.

In fact we use the fact that by de�nition data types are control formulas. We can write this

proposition:

Proposition 7.1 If D

0

;D

1

; : : : ;D

n

are some data types, if f is a function symbol of arity n

and if we can �nd a model for our equations E (this means that our equations don't implies that

some distinct elements of a data type are equal). Then if we have a proof of

p : j D

1

(x

1

) ^ : : :^D

n

(x) ^ :(D

0

(f (x

1

; : : : ; x

n

))^ >) ^ > `

the program p is a program for the function f in the sense that for all i

1

; : : : ; i

n

respectively

elements of the data types D

1

; : : : ;D

n

, we have

ex(hp=()i ; i

1

� � � i

n

� ' � ") = �(i

1

� � � � � i

n

) � " with ' = hStop=()i

where � is a function from D

1

; : : : ;D

n

to D

0

verifying for all i

0

; i

1

; : : : ; i

n

in D

0

;D

1

; : : : ;D

n

,

E ` f(i

1

; : : : ; i

n

) = i

0

implies �(i

1

; : : : ; i

n

) = i

0

.

proof: First, we remark that if we can �nd a model for our equations E , then we can �nd an

interpretation � such that for all �rst order terms, E ` u = v implies juj

�

= jv j

�

. To prove that

we use standard method to extend the model de�ned only on the data to the set of all values.

After this, we may apply the proposition 5.3 to the previous proof (because D

0

;D

1

; : : : ;D

n

and > are control formula). We get

ex(hp=()i ; i

1

� � � i

n

� ' � �) 2 jD

0

(f (x

1

; : : : ; x

n

))^ Q j

�[x

1

=i

1

]:::[x

n

=i

n

]

Thus by de�nition of the interpretation �, we can de�ne the function � with �(i

1

; : : : ; i

n

) 2

jD

0

(f (i

1

; : : : ; i

n

))j

�

and

ex(hp=()i ; i

1

� � � i

n

� ' � ") = �(i

1

� � � � � i

n

) � "

But, by de�nition of the interpretation of a data type, there is an unique element in

jD

0

(f (i

1

; : : : ; i

n

))j

�

. Hence we have jf (i

1

; : : : ; i

n

)j

�

= �(i

1

; : : : ; i

n

). So E ` f(i

1

; : : : ; i

n

) = i

0

implies �(i

1

; : : : ; i

n

) = i

0

.

�

To prove that a program is correct we use only the proposition 5.1 and its corollary 5.3.

Then, we can give a very general de�nition of optimization which preserve these properties.

First we remark that if we add some instructions to the machine (by adding elements to the

set I), because the system doesn't use them, all the previous results are preserved. Now, if we

consider a derived rule:

p : � j P ` Q

p

0

: �

0

j P

0

` Q

0

We may use some new instructions to produce a better programs p

00

. We preserve the result

of the proposition 5.1 using p

00

instead of p

0

if for all interpretation �, all e 2 j�j

�

and all

e

0

2 j�

0

j

�

we have hp=ei 2 jP ! Q j

�

implies hp

00

=e

0

i 2 jP

0

! Q

0

j

�

.
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In this case we will say that the following rule is an optimized rule:

p : � j P ` Q

p

00

: �

0

j P

0

` Q

0

An important remark is that we don't impose that p

0

and p

00

be \equivalent" programs in

any sense. In fact p

0

and p

00

can do totally di�erent things.

This notion of derived rules says that p

00

is compatible with the notion of interpretation,

this means that it do the same thing than p

0

only if used with data types in a \well typed

environment".

8 Call by name compilation of system AF

2

.

The principle of this compilation is to translate a proof from system AF

2

in MD

SEC

(You can

�nd the de�nition of system AF

2

in annex A). The �rst thing is to remark that we can replace

the original introduction of implication rule by this multiple introduction:

M

1

; : : : ;M

n

`

AF

2

M

!

n

i

� `

AF

2

M

1

! (M

2

! : : :(M

n

! M ))

The translation of a proof in order to use this rule instead of the original one is in fact the

lambda lifting. This �rst translation is left to the reader. (We need to put a non empty context

in the conclusion of the rule because there is no weakening in the system).

Now we translate the formula of system AF

2

:

De�nition 8.1 We de�ne by induction on a formula M of system AF

2

, a formula M

0

2 F

�

,

and M 2 F

�

by

� M = :M

0

� X (t)

0

= X (t) where X 2 V

�

� (M ! N )

0

= M ^N

0

� (8x M )

0

= 9x M

0

� (8X M )

0

= 9X M

0

Note: All the variables are translated in stack variables, so we identify the set of variables

of system AF

2

to the set of stack variables.

Proposition 8.2 For all formulas M and N of system AF

2

and all variable X of arity n, we

have

(M [�x

1

: : :�x

n

N =X ])

0

= M

0

[�x

1

: : :�x

n

N

0

=X ]

proof: We prove this by induction on the formula M . �

Now it is possible to translate the proof (For any environment � = M

1

; : : : ;M

n

we will note

� = M

1

; : : : ;M

n

):

358



Proposition 8.3 For all environment � and all formula M of system AF

2

,

� `

AF

2

M implies � jM

0

`

proof: We prove this by induction on the proof of � `

AF

2

M :

� If the last rule is an axiom: We have M = M

i

with � = M

1

; : : : ;M

n

. Hence, we get the

expected result using the Ax

�

rule, because M

i

= :M

0

i

.

� If the last rule is the elimination of implication, by induction hypothesis, we get � `

AF

2

N ! M implies � j :N

0

^ M

0

` and � `

AF

2

N implies � j N

0

`. Hence, we get the

expected result using the :̂

e

rule.

� If the last rule is the multiple introduction of implication, we have M = N

1

! (N

2

!

: : :(N

p

! N )) and by induction hypothesis we getN

1

; : : : ;N

p

`

AF

2

N implies N

1

; : : : ;N

p

j

N

0

`. Hence, we get the expected result using the ^

i

.

� If the last rule is the elimination of a universal quanti�er, we have M = N ['=�]. By

induction hypothesis we get � `

AF

2

8�N implies � j 9�N

0

`. If � is a �rst order

variable then ' is a term and M

0

= N

0

['=�]. If � is a second order variable then we get

M

0

= N

0

['

0

=�] by proposition 8.2. Hence, we have the expected result using the 9

e

rule.

� If the last rule is the introduction of a universal quanti�er, we have M = 8�N and by

induction hypothesis we get � `

AF

2

N implies � j N

0

`. Moreover, we know that � is

not free in �. Hence, we get the expected result using the 9

i

rule.

� If the last rule is the equational rule, the induction hypothesis and the rule Eq rule give

directly the expected result.

�

Now, if we compare the term extracted from the proof in natural deduction (with the

multiple implication introduction rule) and the code extracted from the translated proof, we

obtain the following compilation for the lambda-calculus using super-combinator (we use t to

denote the code of a term t):

� x

i

7! Jump

i

(axiom rules are translated with the Ax

�

rule)

� �x

1

: : :�x

n

t 7! Pop

n

;t (multiple implication introduction rule are translated with the ^

i

rule)

� (t u) 7! Push[u];t ( implication elimination rule are translated with the :̂

e

rule)

� Nothing more, because all other rules of system AF

2

have no algorithmic contents and

are translated in non-algorithmic rules of MD

SEC

.

This sounds like a good call by name compilation. Moreover, one can easely obtain usual

optimization. For instance we can translate an elimination of implication on an axiom with the

Co rule instead of using :̂

e

and Ax

�

rules. So we get a well known optimization which gives

(t x

i

) 7! Push

i

;t instead of (tx

i

) 7! Push[Jump

i

];t .
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Moreover, if we add to system AF

2

the ? formula with both intuitionist or classical absur-

dity:

� `

c

t : ?

� `

c

(A t) : M

� `

c

t : (M ! ?)! M

� `

c

(C t) : M

We can always translate the proof: we extend the translation of formulas with ?

0

= > (we

get ((M ! ?) ! M )

0

= :(:M

0

^ >) ^M

0

. The two previous rules are translated using the

>

e

and >

c

. This gives the following compilation for the A and C operator: (A t) 7! Erase;t and

(C t) 7! Save;t . This is a possible compilation for the following reduction rules (in call-by-name)

for these operators:

(A t t

1

: : : t

n

) . t

(C t t

1

: : : t

n

) . (t �x (x t

1

: : : t

n

) t

1

: : : t

n

)

Corollary 8.4 We have: � `

AF

2

M in system AF

2

with the previous rule added if and only if

� jM

0

` in MD

SEC

.

proof: The left-right implication is a consequence of the previous translation. The right-left

implication is easy to prove and left to the reader (it's a consequence of the proposition 2.2). �

9 Conclusion and further outlook.

This new type system shows how it is possible to use the proof as program paradigm for

something really di�erent from the lambda-calculus: some code for an abstract machine.

Moreover, it's a good system to translate second order classical logic into intuitionistic

logic with an explicit algorithmic content. In fact, we could see a relation between a kind of

A-translation and the call-by-name compilation.

A question is to know how this depends on the type system. I have also design another type

system for an S.E.C.D. machine (In fact this is the original type system I have found and the

actual S.E.C. version is simply a restriction of this system as the machine is). I have proved

this system complete for classical logic ! In fact there is only one rule which give classical logic:

a rule to save the dump (like the >

0

e

rule in MD

SEC

is used to save the stack). Hence the

relations between classical logic and compilation for an abstract machine seems not so clear.

Another problem is the unsymmetrical character of the system: we can only add instructions

to the beginning of a program. Hence, some compilations are not possible. For instance, it's

possible to compile call-by-value but you don't get the expected code. (because one of the

natural compilation of (u v) is u ;v ;Apply, so you need to be able to add instructions to the both

sides of v). It seems not to di�cult to write a symmetrical system with both left and right rules

to add instructions respectively to the beginning and to the end of a program, and a true cut

rule to compose two programs. This kind of system could be powerful enough to really reach

most of the compilations for a given machine.

The last possible direction for further work is about optimization. Because we use only

the notion of interpration to ensure the correctness, we have more facilities to manipulate the

code. Moreover, because we have a lot of information inside the proof we could expect a lot of

opimizations which are usually very di�cult or impossible to do. One possibility could be to

save only the position of the stack when we use this feature only as an exception mechanism
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(this means when we restore the stack only \inside" the procedure which has saved it). Another

possibility could be to optimize a program automaticaly using some physical manipulation. This

direction of work is perhaps very promising but is not so easy.

A De�nition of system AF

2

.

System AF

2

uses classical second order formulas construct with �rst order terms from a lan-

guage L, atomic formulas, implication, second order and �rst order universal quanti�cation

(X (t

1

; : : : ; t

n

) j F ! G j 8X F j 8x F ).

It uses also a set of equations on �rst order terms E . Sequent are of the form x

1

: F

1

; : : : ; x

n

:

F

n

` t : F where x

1

; : : : ; x

n

are lambda-variables and where t is a lambda-term (whose free

variables are among x

1

; : : : ; x

n

). This sequent may be proved using the following rules:

� Axiom and equational rules:

Ax

x : F ;� ` x : F

� ` t : F [x=u] E ` u = v

Eq

� ` t : F [x=v ]

� Implication rules:

x : F ;� ` t : G

!

i

� ` �x t : F ! G

� ` t : F ! G � ` u : F

!

e

� ` (t)u : G

� First order abstraction rules:

� ` t : F � 62 �

8

i

� ` t : 8�F

� ` t : 8�F

8

e

� ` t : F ['=�]

The reader could �nd more information about system AF

2

in [9], [7] and [6].
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Type theory and the informal language of mathematics
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In the �rst comprehensive formalization of mathematics, the Begri�sschrift (1879), Frege

gave up the structure of informal language, in order to reveal the structure of mathematical

thought itself. Attempts to apply Frege's formalism to informal discourse outside mathematics

followed in this century, e.g. by Russell, Carnap, Quine, and Davidson. In this tradition, the

application of logical formalism to informal language is an exercise of skill, rather than an

algorithmic procedure, precisely because the linguistic structure is di�erent from the logical

structure.

It was Chomsky (1957) who started the study of natural language itself as a formal system,

inductively de�ned by the clauses of a generative grammar. But the structure he gave to his

fragment of English was quite di�erent from the structure of a logical formalism.

Finally, Montague (1970) uni�ed the enterprises of Frege and Chomsky in an attempt to

give a systematic logical formalization to a fragment of English. His grammar applies to a piece

of informal discourse outside mathematics. But as modern logic, even in the form employed

by Montague, stems from Frege, who designed it for mathematics, a grammar like Montague's

should be applicable, if at all, to the language of mathematics.

Following roughly the format of Montague grammar, I have been working within the con-

structive type theory of Martin-L�of. (See Martin-L�of 1984 and Nordstr�om& al. 1990 for the type

theory, and Ranta 1991 and 1993 for the grammar.) Type theory has proved to be structurally

closer to natural language than predicate calculus at least at the following points.

First, type theory makes a distinction between substantival and adjectival terms, e.g. be-

tween number and prime. These are formalized as N : set P : (N )prop, respectively, whereas

in predicate calculus they are both formalized as one-place propositional functions.

Second, type theory has quanti�er phrases, like every number| in type theory,

�(N ) : ((N )prop)prop

and every prime number| in type theory,

�(�(N ;P)) : ((�(N ;P))prop)prop:

Predicate calculus dissolves these quanti�er phrases, because it does not have expressions cor-

responding to them.

Third, type theory has progressive connectives, i.e. a conjunction and an implication of the

type

(X : prop)((X )prop)prop:

Such connectives are abundant in informal language, in sentences like
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if this equation has a root it is negative.

To express this in type theory, �rst look at the implicans this equation has a root . It is an

existential proposition, of the form

�(R;E):

To form the implicandum, use the propositional function x is negative de�ned for x : R, i.e.

N : (R)prop

in the context of a proof of the implicans,

z : �(R;E):

Left projection gives p(z ) : R, whence

N (p(z )) : prop

by application,

(z )N (p(z )) : (�(R;E))prop

by abstraction, and �nally

�(�(R;E); (z)N (p(z ))) : prop

to express the implication. Predicate calculus, which only has connectives of type

(prop)(prop)prop;

cannot compose the sentence from the implicans and the implicandum, but must use something

like

(8x)(R(x)&E(x) � N (x));

which does not have constituents formalizing the two subclauses of the sentence in question.

This lack of compositionality has been �rst noted in the discussion of so-called donkey sentences,

e.g.

if John owns a donkey he beats it

which has the same form as our mathematical example. Some linguists think such sentences

are arti�cially complicated, but they are certainly abundant in the informal language of math-

ematics.

1 Formalization and sugaring

There are two directions of grammatical investigation. One can ask:

How is this sentence / mode of expression / fragment of discourse represented in the

formalism?

Questions put in this way, starting with what is given in the informal language, are questions

of formalization. But one can also start with what is given in the formalism and ask:

How is this proposition / logical constant / theory expressed in natural language?
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These questions will be called questions of sugaring.

A special case of formalization is parsing: given a string of words belonging to an inductively

de�ned set of such strings, �nd the grammatical structure. This notion of parsing is of course

secondary to the notion of generation, the inductive de�nition of the set of strings. Furthermore,

as we can think of generation as the composition of (1) the de�nition of the formalism and (2)

the sugaring of the formalism, we see that parsing is secondary to sugaring in the conceptual

order.

2 Basic expressions of geometry

In what follows we shall, even if not de�ne a complete sugaring algorithm, look at mathematics

expressed in type theory from the sugaring point of view. We shall apply the sugaring principles

of Ranta 1991, 1993, originally presented for everyday discourse (like the donkey sentences), to

the language of axiomatic geometry such as in Hilbert 1899 and, within type theory, von Plato

1993.

Start with simple set terms,

point : set,

line : set,

plane : set.

The sugaring of simple set expressions into common nouns is simple (in the absence of the

singular and plural number of nouns),

point > point ,

line > line,

plane > plane.

We use the form F > E to express the relation

F can be sugared into E .

Thus it is not an expression for a clause in a deterministic sugaring algorithm.

Then some propositional functions sugared into verbs and adjectives.

lie PL : (point)(line)prop;

lie PL(a; b) > a lies on b,

lie PPl : (point)(plane)prop;

lie PPl(a; b) > a lies in b,

lie LPl : (line)(plane)prop;

lie LPl(a; b) > a lies in b,

parallel : (line)(line)prop;

parallel(a; b) > a is parallel to b,

equal : (A : set)(A)(A)prop;

equal(A; a; b) > a is equal to b.

Observe how sugaring overloads the English expressions lies in and equal . The adjective equal

is fully polymorphic, the verb lies in has two uses. The adjective parallel and the verb lies on

are, in this fragment at least, uniquely typed.
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3 Logical constants

There are quanti�er words like

every : (X : set)((X )prop)prop,

Indef : (X : set)((X )prop)prop,

some : (X : set)((X )prop)prop.

A quanti�ed proposition is sugared by replacing the bound variable by a quanti�er phrase,

every(A; (x)B) > B [every A=x ],

Indef(A; (x)B) > B [INDART(A) A=x ],

some(A; (x)B) > B [some A=x ].

INDART(A) is the inde�nite article corresponding to the sugaring of A, either a or an. Observe

that if the number of occurrences of x in B is other than one, we may get odd results like

every(line; (x)parallel(x ; x))

> every line is parallel to every line.

The uniqueness of replacements can be attained e.g. by using pronouns (see Section 6). It is

one of the central problems of the logical formalization of natural language, stemming from

the apparently quite di�erent modes of expression of quanti�cation in them. Following Frege

(1879, x 9), we shall use the word main argument for the occurrence of x to be replaced by the

quanti�er phrase. (See Ranta 1991, Section 5, for a de�nition of the main argument.)

Another di�culty with the replacement procedure in the sugaring of quanti�ers is that the

relative scopes of the quanti�ers get lost. The rules give e.g.

some(point; (x)every(line; (y)lie PL(x ; y)))

every(line; (y)some(point; (x)lie PL(x ; y)))

)

> some point lies on every line;

and such sentences are indeed considered ambiguous in Montague grammar. But it seems that

the mathematician would without hesitation interpret the sentence as the �rst proposition,

although it is a plainly false proposition. He would follow the principle according to which the

scopes of the quanti�ers get narrower from left to right. (On this rule of precedence, as well as

some other ones, cf. Ranta 1993, Chapters 3 and 9.)

As for connectives, we introduce two progressive ones and one that is not progressive.

if : (X : prop)((X )prop)prop;

if(A; (x)B) > if A;B [�=x ],

and : (X : prop)((X )prop)prop;

and(A; (x)B) > A and B [�=x ],

or : (prop)(prop)prop;

or(A;B) > A or B ,

where � is the ellipsis, the empty morph.

Connective and quanti�er words are not type-theoretical primitives, but have the de�nitions
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every = � : (X : set)((X )prop)prop,

Indef = � : (X : set)((X )prop)prop,

some = � : (X : set)((X )prop)prop,

if = � : (X : prop)((X )prop)prop,

and = � : (X : prop)((X )prop)prop,

or = + : (prop)(prop)prop.

The main di�erence between quanti�ers and progressive connectives is in the sugaring of

the �rst argument: for quanti�ers, it is a common noun, and for connectives, a sentence. But

there is another di�erence, which has to do with the expressive capacities of the two modes of

expression in English. We noted before that the sugaring of a quanti�ed proposition Q(A; (x)B)

requires there to be precisely one main argument occurrence of x in B . For connectives, there

is no such restriction. Thus for instance the vacuous quanti�cation

�(equal(N ; 0; 1); (x)equal(N ; 1; 10000))

gives, by the sugaring rule for every, the falsity one is equal to ten thousand , and it is the rule

for if that gives the right true proposition,

if zero is equal to one, one is equal to ten thousand.

Thus connectives provide a more widely applicable means of expressing propositions than quan-

ti�ers.

4 Objects and expressions

Sugaring is not a function on type-theoretical objects, such as propositions, but on expressions

for those objects. For by the extensionality of functions, a proposition would be then sugared

in the same way, in whatever way expressed. But we certainly want to sugar every(A;B)

di�erently from if(A;B), although they are both equal to �(A;B). Even more clearly, if we

introduce an abbreviatory expression by explicit de�nition, we want to sugar the de�niendum

di�erently from the much longer de�niens. Consider, for instance,

triangle = �(line; (x)�(point; (y)outside PEl(y ; extended(x)))) : set;

where outside PEl(a; b) says that the point a lies outside the extended line b, and extended(a)

is the in�nite extension of the �nite line a.

In general, we want to introduce so many de�nitional variants of type-theoretical expressions

that there is a one-to-one correspondence between English and type-theoretical expressions.

The propositions as types principle is, analogously, assumed for the objects of type theory

only. We want the type prop to correspond to sentences, and the type set to common nouns.

For type-theoretical objects. we have

prop = set : type;

but for expressions, this equation is not e�ective, whereas we assume the transformation

there = (X )X : (set)prop
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sugared

there(A) > there is INDART(A) A:

It may happen that some expression cannot be sugared, e.g. if it contains a quanti�er with

no or multiple main arguments. In such a case, the sugaring of the proposition expressed must

proceed by �nding a de�nitional variant that can be sugared.

5 Relative pronouns

To form complex set terms, we can use relative pronouns, e.g.

that = � : (X : set)((X )prop)set;

that(A; (x)B) > A that B [�=x ],

such that = � : (X : set)((X )prop)set;

such that(A; (x)B) > A such that B [�=x ].

These de�nitions accord with Martin-L�of's (1984) explanation of such that as forming a set of

elements of the basic set paired with witnessing information. This treatment is necessary for

a compositional formalization of quanti�er phrases whose domains are given by using relative

clauses, and reference is also made to the witnessing information; cf. Section 7 below. But at

the same time, we will have to sugar e.g.

every(that(A;B); (x)C ) > C [that(A;B)=p(x)];

i.e. not replace x but p(x). This can be accomplished by the general rule

p(x) > x :

The slight unnaturalness of the solution is, so it seems to me, one instance of the problems we

have in formalizing separated subsets by � and trying to get rid of the extra information in

some cases, while having to keep it in some other cases.

The di�erence between that and such that is analogous to the di�erence between quanti�ers

and connectives: that requires there to be exactly one main argument in the relative clause,

but such that does not. such that is thus more widely applicable than that.

6 Anaphoric expressions

Pronouns are introduced to our fragment of English by the rules

Pron = (X )(x)x : (X : set)(X )X ;

Pron(A; a) > PRO(A).

In mathematical language, we do not need he or she, so PRO(A) is always it , and we could as

well have

it = (X )(x)x : (X : set)(X )X ;

it(A; a) > it .
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Observe that our de�nition of it as the polymorphic identity mapping whose argument is sugared

away is very similar to the it of ML. The main di�erence is the interpretation rule stating in

what situations it may replace a singular term. In ML, it always refers to the value of the latest

value declaration. But this rule is too simple for the informal language of mathematics, where

it can have di�erent|yet de�nite|interpretations in one and the same clause, e.g.

if the function f has a maximum, it reaches it at least twice.

Our main rule regulating the use of pronouns (and other anaphoric expressions; see below)

is that

the interpretation of an anaphoric expression is an object of appropriate type given

in the context in which the expression is used.

Context here is, in the technical sense of type theory, a list of declarations of variables assumed

when the expression is formed. For instance, the proposition B in �(A; (x)B) is formed in the

context x : A. To these variables we add the constant singular terms used in the same sentence.

Moreover, we close the \universe of discourse" based on the context under selector operations

(cf. Ranta 1993, Chapter 4, for more details).

An interpretation a : A of a pronoun E in the English expression ���E ��� must thus

ful�l the following two conditions.

Pron(A; a) > E ,

there is a propositional function B(x) : prop (x : A)

such that B(a) > �� � a � ��.

As the only pronoun in the mathematical fragment is it , the �rst condition is always satis�ed.

If there are many objects given in context, it is the second condition that saves the uniqueness

of reference, expressed by the principle that

the interpretation of an anaphoric expression must be unique in the context in which

it is used.

There are other anaphoric expressions besides pronouns, more speci�c in the sense that they

do not suppress all information about the object referred to. A de�nite noun phrase formed by

the de�nite article the preserves the type of the object. A modi�ed de�nite phrase formed by

Mod makes explicit some more information given about the object in the context.

the = (X )(x)x : (X : set)(X )X ;

the(A; a) > theA.

Mod = (X )(Y )(x)(y)x : (X : set)(Y : (X )prop)(x : X )(Y (x))X ;

Mod(A;B ; a; b) > the A that B [�=x ].

7 Example: the axiom of parallels

To see how the sugaring principles work, take as an example the axiom of parallels in the

formulation (written in lower level notation for readability)

(�z : (�x : point)(�y : line)outside PL(x ; y))DAP(p(z ); p(q(z)));

where
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outside PL(a; b) > a lies outside b,

DAP(a; b) = (9!x : line)(lie PL(a; x)&parallel(x ; b)) : prop for a : point; b : line;

DAP(a; b) > a determines a parallel to b.

To �nd the di�erent possibilities to express the axiom of parallels in English provided by our

grammar, recall the de�nitional variants

every and if for �,

Indef, some, and, that, and such that for �,

A and there(A) for A : set,

Pron(A,a) and the(A,a) for a : A.

Start sugaring from the outermost form of the proposition. First choose the de�nitional

variant every for �. Then you must sugar the domain of quanti�cation

(�x : point)(�y : line)outside PL(x ; y)

into a set expression. The only choice for the �rst � is a relative pronoun, that or such that.

The domain of this � must be sugared into the common noun point . The remaining part must

be found a sentence-like expression. All ways of sugaring � are usable: if you choose the relative

pronoun, just apply there. The domain of quanti�cation of the axiom of parallels thus has the

following sugarings, among others.

point that lies outside a line,

point that lies outside some line,

point such that there is a line and it lies outside it.

The third sugaring is a little strange, because the interpretation of the two occurrences of it

seems not to be unique. The language of geometry overloads the verb lie outside, so that

outside PL(x ; y)

outside LP(x ; y)

)

> x lies outside y ;

whence it lies outside it has two interpretations that, although equivalent, are distinct proposi-

tions. We cannot tell whether the sentence says that the point lies outside the line or that the

line lies outside the point. But this explanation of the strangeness already contains the solution,

which is to use de�nite noun phrases instead of pronouns,

point such that there is a line and the point lies outside the line.

To �nish the �rst way of sugaring the axiom of parallels, we replace the �rst argument in

DAP(p(z ); p(q(z)))

by the quanti�er phrase, as explained in Section 5, and the second argument by a pronoun or

a de�nite phrase of the type line. Applying the sugaring rules for DAP and Pron and choosing

the expression for the domain to be the �rst one cited above, gives

every point that lies outside a line determines a parallel to it
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as an unambiguous statement of the axiom of parallels. The word-to-word formalization of this

sentence is the de�nitional variant

every(that(point; (x)Indef(line; (y)outside PL(x ; y))); (z )DAP(p(z );Pron(line; p(q(z )))))

of the original proposition.

The reader can check that the proposition also has the following variants, and �nd some

more of them.

if a point lies outside a line, it determines a parallel to it,

if there is a point such that there is a line such that the point lies outside the line

the point determines a parallel to the line.

Observe that the two occurrences of it in the �rst variant are uniquely interpretable, because

determines a parallel to is not overloaded. An early implementation of sugaring, written in

Prolog by Petri M�aenp�a�a, found 1128 variants of a donkey sentence with the same structure as

the axiom of parallels.

8 Some uses of the plural

In the informal language of mathematics, it is often possible to �nd clear and unambiguous

usages of linguistic structures that appear as hopelessly complex, if an unlimited fragment of

natural language is taken under consideration. One such structure is the plural, which has been

a persistent problem in logical semantics of Montague style. It has several uses that, when

cooccurring, lead to multiple ambiguities. Mathematical texts still make unambiguous use of

the plural, e.g. in the sentences

points A and B lie on the line a,

A and B are equal points,

all lines that pass through the center of a circle intersect its circumference.

The �rst of these sentences shows what von Plato (1993) de�nes as the term conjunction,

C (a:b) = C (a)&C (b) : prop for A : set, A : (A)prop, a : A, b : A.

It is thus propositionally equal to the sentence

the point A lies on the line a and the point B lies on the line a,

in which no plural form occurs. In this case, the plural is just used for �nding a more concise

expression.

The second sentence does not employ the term conjunction, but it is propositionally equal

to the singular sentence

A is equal to B

The di�erence between the �rst sentence and this one is an instance of the distinction between

what is called distributive and nondistributive plural in linguistics. The distributive plural can

be analyzed as a conjunction of singular instances, but the nondistributive plural cannot. For

this particular sentence, we do have a nonplural equivalent, but I am not sure whether we always

do.

The third sentence is propositionally equal to

371



every line that passes through the center of a circle intersects its circumference.

Here there is no di�erence between all lines and every line, except the number agreement of

the verb.

We have formulated a sugaring algorithm producing these uses of the plural (Ranta 1993,

Chapter 9). In each of these cases, the plural forms of nouns and verbs are only produced

in the sugaring process, and there is no type-theoretical operator corresponding to the plural.

The rules we have discussed do not yet cover all uses of the plural in the informal language of

mathematics. (But as long as we work in the direction of sugaring only, it makes no harm that

all uses of an English mode of expression are not produced.) For instance, we do not yet quite

understand the nondistributive use of the quanti�er word all as in

all lines that pass through the center of a circle converge.

Nor do we quite understand the use of the plural pronoun they , which is sometimes distributive,

paraphrasable by the term conjunction, e.g.

if A and B do not lie outside the line a, they are incident on it,

but sometimes used on the place of the \surface term conjunction", so that it fuses together

the arguments of a predicate, e.g.

if a and b do not converge, they are parallel.

9 Problems and prospects

As indicated in the beginning of this paper, very little linguistic work has been done concerning

the informal language of mathematics. To capture the essential structure of mathematical

text, a grammatical representation of it should, at least, be able to express the mathematical

propositions precisely. This can hardly be expected from all grammars in standard linguistics,

but requires a grammatical formalism that comprises logic. Moreover, the formal and the

informal language should be tied together by sugaring and parsing algorithms that satisfy the

following condition.

A correct informal proof results, when parsed, in a correct formal derivation, and

vice versa.

There are two properties concerning ambiguity that can be stated. First,

all expressions of the informal fragment are unambiguous.

But this is maybe too severe a condition. It makes little harm if the English fragment recognized

contains ambiguities, if only the parser can detect them and ask the user to disambiguate.

Instead, one can pose the weaker condition that

every proposition of the formal theory can be expressed by an unambiguous English

sentence.

A sugaring program satisfying this condition can provide a natural language interface to a

formal proof system, stating theorems and their proofs in an easily readable form.

When considering mathematical language, instead of the fragment of everyday language

familiar to the linguist, one soon realizes both a higher demand of unambiguity and a higher
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complexity of the propositions. There is still work to be done to �nd a sugaring algorithm that

gives unambiguous expressions for all propositions of a formal theory. One particular problem

is that the context in which a proposition is formed can be arbitrarily large, so that there are

not enough anaphoric expressions to refer to each object uniquely. A very simple such context

is created by the opening

given two lines, : : :

formalizable by the quanti�er

(�z : (�x : line)line)

The anaphoric expressions that can be used for an arbitrary line are it and the line, but neither

of these refers uniquely in this context. One way to solve this problem is to use the expressions

the �rst line, the second line. Another one, much more idiomatic in mathematical language, is

to introduce variables,

given two lines a and b, : : :

whereafter reference can be made to the line a and to the line b. But this opening cannot be

formalized as a quanti�er, because the variable names are not usable outside the scope of the

quanti�er. The axiom of parallels in the formulation

if a point A lies outside a line a, A determines a parallel to a.

cannot thus be given the logical form we gave it in Section 7.

A more general defect of our Montague style grammar is that it only concerns propositions

and not judgements, of which type theory has several forms that are all needed in precise

formalization of mathematics. What we have done here only su�ces for expressing axiomatic

theories, in the format familiar from the metamathematical thinking of this century. Going

beyond this format in mathematics, type theory also shows a model for grammar in general, to

extend its views from propositions to judgements and other linguistic acts.
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Semantics for Abstract Clauses

D.A. Wolfram

University of Oxford

�

Abstract

We give declarative and operational semantics for logics that are expressible as �nite sets of

abstract clauses. The declarative semantics for these sets of generalized Horn clauses uses

inductively de�ned sets and �xed points. It is shown to coincide with the operational semantics

for successful and �nitely failed derivations. The Abstract Clause Engine (ACE) implements

proofs with abstract clauses. The semantics given here provide criteria for ACE's correctness

and completeness.

1 Abstract Clauses

The approach here to the semantics of abstract clauses was presented �rst for two concrete

examples: pure �rst-order logic programming [15], and the logic programming language based

on the higher-order logic called The Clausal Theory of Types [17].

Experiments with the Abstract Clause Engine (ACE) [16], which implements abstract

clauses, suggested that apart from logic programming, a generalization could be made which

would also encompass simpler combinatorial problems and some relatively elaborate logical

frameworks in a uniform way.

The semantics for this generalization relates the theorems of a logic expressed by abstract

clauses to proof procedures for such a logic. It does not involve extra models such those of the

�rst-order predicate calculus, Henkin-Andrews general models [2], or categorical models of the

Calculus of Constructions [9]. Soundness and completeness results for logics which are based on

such extra models can be combined with the results here, but we do not provide a general means

to do so. Our concern is with whether a proof procedure for a logic expressed with abstract

clauses can recursively derive just the theorems of the logic, and detect as non-theorems those

formulas which can e�ectively be shown as such.

2 Terms and Substitutions

The meta-logic of abstract clauses is based on the monomorphic simply typed �-calculus. This

is not essential, but it seems to be su�ciently expressive for encoding calculi with dependent

types and polymorphic type theories [12].

To de�ne the meta-logic, we �rst provide some notations and de�nitions which are based

on those of the simply typed �-calculus [2, 3, 7]. We denote the sets of variables, and simply

�
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typed �-terms in �-normal form by X , and T , respectively, and the type of a term t 2 T by

�(t). The set of free variables of a term t 2 T is denoted by F(t).

De�nition 2.1 A substitution is a function � : X ! T which is written in post�x notation,

and where 8x 2 X : �(x) = �(x�).

Notation 2.2 The domain of a substitution � is written D(�).

Notation 2.3 The symbols ; �; �; �; �; �, possibly with subscripts, denote substitutions. A

substitution �, for example, is represented by a set of the form fhx ; x�i j x 2 D(�)g.

De�nition 2.4 If for all x 2 D(�), x� is a variable which is not x , then � is a renaming

substitution.

De�nition 2.5 Let V be any set of variables, and � be any substitution. The restriction of �

to V is �dV = fhx ; x�i j x 2 D(�) \V g.

As a consequence of the Strong Normalization Theorem and the Church-

-Rosser Theorem, we can extend the de�nition of substitution to an endomorphism on T .

De�nition 2.6 The instance t� of a term t by a substitution � where

�dF(t) = fhx

1

; t

1

i; : : : ; hx

m

; t

m

ig

is the �-normal form of (�x

1

� � �x

m

:t)(t

1

; : : : ; t

m

).

A closed instance t� of a term t is one where F(t�) = ;.

De�nition 2.7 If � and � are substitutions then their composition �� is the substitution

fhx ; x��i j x 2 Xg.

3 Clausal Labelling Problems

We call the general form of problem encodable with abstract clauses a clausal labelling problem.

Abstract clauses encode sequents:

u

1

u

2

� � � u

n

l

where the u

i

are hypotheses and l is the conclusion. Such a sequent is represented by the

abstract clause l : � u

1

; : : : ; u

n

. Similarly, the formula to be proved is a sequent of the form

u

1

u

2

� � � u

n

which is represented by the clause : � u

1

; : : : ; u

n

.

Proofs are built up by composing sequents subject to a consistency test on the compositions.

This partly involves pairing the conclusion of a sequent with an hypothesis of another sequent.

A proof built from clauses is an �nite collection of such pairs which collectively meet the

consistency test. Building proofs can be seen as searching for conclusions of sequents, or labels,

which enable such a collection to be formed.

We introduce some notations for such pairs before giving more formal de�nitions.
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De�nition 3.1 A constraint is a pair hu; li where u; l 2 T . A system is a �nite set of con-

straints.

De�nition 3.2 A positive clause has the form l : � u

1

; : : : ; u

n

where l ; u

i

2 T , and 0 � i � n.

The term l is called the head of the clause, and the �nite sequence u

1

; : : : ; u

n

is called the body

of the clause. The head and the terms u

i

in the body of a positive clause are called the terms

of the clause. The set of free variables of such a clause is the set F(l)[ (

S

1�i�n

F(u

i

)). When

n = 0, the positive clause is written l .

A negative clause is a headless positive clause. It has the form : � u

1

; : : : ; u

n

. The terms u

i

are called the terms of the negative clause. The set of free variables of such a clause is the set

S

1�i�n

F(u

i

). When n = 0, the negative clause is written 2.

An abstract clause or clause is either a positive clause or a negative clause.

Using these de�nitions of clauses, we can now formally de�ne clausal labelling problems and

the consistency test.

De�nition 3.3 A clausal labelling problem is a tuple (U ;H ;P ;G

0

) where

� U � T , and for every free variable x which occurs in a term in U where �(x) 2 T

0

, there

is a constant symbol c which occurs in a term in U such that �(x) is �(c).

� H is a test which is a function whose domain is the set of all systems each of whose

constraints is a pair of the form hu; li where u; l 2 U , and whose range is the set of all

countably in�nite sets of substitutions each of which is an endomorphism on U . It also

satis�es the following conditions for every such system S .

{ H is hereditary : HS is non-empty if and only if for every subset R � S , HR is

non-empty.

{ H is sound : for every � 2 HS , H fhu�; l�i j hu; li 2 Sg = f;g.

{ H is complete: for every substitution � such that

H fhu�; l�i j hu; li 2 Sg = f;g

there is � 2 HS and a substitution � such that � = ��.

� P is a �nite set of positive clauses. The terms of every clause in P are elements of U .

� G

0

is a negative clause each of whose terms is an element of U .

Notation 3.4 We shall sometimes abbreviate a positive clause of the form l : � u

1

; : : : ; u

n

to

l : � B and possibly add subscripts, where B is syntactically identical to u

1

; : : : ; u

n

and n � 0.

Many combinatorial problems are examples of clausal labelling problems.

Example 3.5 The distinct representatives problem is the problem of �nding all tuples of

choices of elements from �nite sets so that in any tuple all of its elements are distinct.

As a clausal labelling problem, the terms in the goal are names of �nite sets, P is the set

of all pairings of a set name with an element from that set, and the test H ensures that the

elements chosen from the set are distinct.
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Example 3.6 Another such problem is the eight queens problem. The goal G

0

is : � r

1

; : : : ; r

8

which represents the eight columns of a chessboard. P is the set f1; 2; 3; 4; 5; 6; 7; 8g which

represents the rows of a chessboard. The test H ensures that no two queens placed on the board

attack. For example H fhr

1

; 1i; hr

2

; 3i; hr

3

; 5i; hr

4

; 2i; hr

5

; 4i; hr

6

; 6ig = ; because the queens in

the �rst and sixth columns attack each other.

However,

H fhr

1

; 1i; hr

2

; 7i; hr

3

; 5i; hr

4

; 8i; hr

5

; 2i; hr

6

; 4i; hr

7

; 6i; hr

8

; 3ig = f;g

because this is one of its ninety-two solutions

More generally, logic programming languages and some logical frameworks provide further

examples.

Example 3.7 A pure �rst-order logic programP with a goal clause G

0

can be a clausal labelling

problem provided that there is at least one 0-ary constant symbol in the terms of the program

or goal.

The set U is the Herbrand Universe [5] for the program and goal, and the test H is �rst-order

uni�ability.

Example 3.8 An object logic with a theorem to be proved which is expressed using the meta-

logic of Isabelle [11] is an example of a clausal labelling problem.

The program P is the set of rules of inference for the logic expressed as abstract clauses,

and the goal G

0

represents the theorem to be proved. The signature of the logic must contain

constant symbols whose types are the same as the types of the variables in the terms of P and

G

0

.

Higher-order uni�cation corresponds to the test H , and higher-order uni�cation procedures

usually satisfy the soundness and completeness properties of De�nition 3.3, (see Huet [7], for

example).

4 Operational Semantics

We now de�ne derivations for a clausal labelling problem. They involve renamed clauses.

De�nition 4.1 A renamed form of a clause of the form l : � u

1

; : : : ; u

n

is the clause l� : �

u

1

�; : : :; u

n

� where � is a renaming substitution. Two clauses c

1

and c

2

are renamed apart if

and only if F(c

1

) \ F(c

2

) = ;.

De�nition 4.2 A derivation for P [ fG

0

g of a clausal labelling problem

(U ;H ;P ;G

0

) is a sequence (G

0

;W

0

); (G

1

;W

1

); : : : of pairs of goals and systems which is de-

�ned as follows.

Suppose that G

k

is : � u

1

; : : : ; u

n

where k � 0 and n � 0. If k = 0 then W

0

is ;.

� If n = 0, the derivation is a successful derivation of length k , and the set of answer

substitutions is H (

S

0�i�k

W

k

)g.

� If n > 0, and there is an input list I

k

of m

k

clauses l

j

: � B

j

where 1 � j � m

k

� n, which

are
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{ any m

k

clauses of P to which a renaming substitution has been applied so that they

are renamed apart, and each is renamed apart from G

i

and each clause in I

l

where

0 � i � k and 1 � l < k , and

{ H ([

0�i�k

W

i

[ fhw

1

; l

1

i; : : : ; hw

m

k

; l

m

k

ig) 6= ; where w

1

; : : : ;w

m

k

are m

k

distinct

terms in the terms of G

k

which are called the selected terms of G

k

then, G

k+1

is the goal clause formed by replacing w

j

by B

j

where 1 � j � m

k

, and W

k+1

is the system fhw

1

; l

1

i; : : : ; hw

m

k

; l

m

k

ig

� Otherwise, the derivation is a failed derivation of length k .

The de�nition of derivation above has two special cases.

De�nition 4.3 A derivation is a concurrent breadth-�rst or BF-derivation when m

k

equals the

number of terms of G

k

where k � 0. It is depth-�rst or DF-derivation when m

k

= 1. A fair

derivation is either a failed derivation, or one in which every term of a goal is a selected term

after a �nite number of derivation steps.

A derivation tree represents a search space for a successful derivation.

De�nition 4.4 The derivation tree for P [ fG

0

g of a clausal labelling problem (U ;H ;P ;G

0

)

is de�ned as follows.

1. The root of the derivation tree is (G

0

; ;).

2. The children of (G

k

;W

k

) where k � 0 are all pairs of goal clauses and disagreement sets

(G

k+1

;W

k+1

) which can be derived from (G

k

;W

k

) in one step.

De�nition 4.5 A successful branch or failed branch of a derivation tree is a successful or failed

derivation, respectively. If every branch of a derivation tree is a failed derivation, then the

derivation tree is a �nitely failed derivation tree.

A derivation tree is a fair derivation tree if every branch of it is a fair derivation. A derivation

tree is a �nitely failed derivation tree if every branch of it is a failed derivation.

A derivation tree is the BF-tree if every branch of it is a BF-derivation. A derivation tree is

a DF-tree if every branch of it is a DF-derivation.

4.1 Derivation Tree Equivalences

We shall show equivalences of derivation trees de�ned in De�nition 4.4.

Let T

1

and T

2

be derivation trees for a clausal labelling problem. The following algorithm

traces a derivation (G

0

;W

0

); (G

1

;W

1

); : : : in T

2

from a given fair non-failed derivation in T

1

.

These derivations are called equivalent derivations.

Tracing Algorithm

Step i � 0.

Set I to the set of all immediate descendants of (G

i

;W

i

).

For every selected term u in G

i

of T

2

:

� If u appears in G

0

then trace the corresponding term down the given derivation in T

1

until it is a selected term which is replaced by a sequence B of terms and an equation

u = l .
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� Otherwise, u is introduced in some goal G

k

of T

2

where k � i in a body of a clause

which replaces a term v . Find the corresponding term v in T

1

(this must have been done

already) and trace down the given derivation in T

1

to where u is selected and replaced by

a body B of a clause and an equation u = l .

� Delete from I all immediate descendants of (G

i

;W

i

) which do not have l

0

: � B

0

in their

input lists and u = l

0

2W

i

where l

0

: � B

0

is either a renamed form of l : � B , or l : � B .

Call this new set I .

The single element in I is (G

i+1

;W

i+1

).

De�nition 4.6 Two systems V and W are equal up to a renaming of variables if and only if

there is a renaming substitution � such that the function f : V ! W where f hu; li = hu�; l�i

is a bijection.

Two substitutions �

1

and �

2

are equal up to a renaming of variables if and only if there is a

renaming substitution � such that �

1

= �

2

�.

Similarly, two sets �

1

and �

2

of answer substitutions are equal up to a renaming of variables

if and only if there is a renaming substitution � such that the function g : �

1

! �

2

where

g� = �� is a bijection.

Remark 4.7 For simplicity, from now on we shall say that two systems, two substitutions, or

two sets of answer substitutions are equal if and only if they are equal up to a renaming of

variables.

Tracing a term down the derivation in T

1

terminates because it is a fair derivation. If the

derivation in T

1

is a successful derivation, then the traced derivation must also be �nite. It is

easy to verify that in this case, the union of all of the systems of the derivation in T

1

, and the

union of all of the systems of the traced derivation in T

2

are equal, and that the set of answer

substitutions of both derivations are also equal. If the given derivation is an in�nite derivation,

then so is the traced derivation.

Lemma 4.8 Let T

1

and T

2

be derivation trees for a clausal labelling problem.

� If T

1

has a successful branch then so does T

2

.

� If T

1

has an in�nite fair branch then T

2

has an in�nite branch.

These equivalences allow us to concentrate on the BF-tree.

Corollary 4.9 The following statements are equivalent for derivations trees of a clausal la-

belling problem.

� The BF-tree has a successful derivation with a system which is equal to W .

� There is a derivation tree with a successful derivation with a system which is equal to W .

� Every derivation tree has a successful derivation with a system which is equal to W .

The equivalence of fair derivation trees with respect to �nite failure is shown by the following

lemma which is a consequence of Lemma 4.8.
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Lemma 4.10 Let T

1

and T

2

be derivation trees for a clausal labelling problem. If T

1

is �nitely

failed and T

2

is a fair, then T

2

is �nitely failed.

Proof : Suppose that T

2

has a successful or (fair) in�nite branch. As T

2

is fair, T

1

must have

a successful or in�nite branch by Lemma 4.8. This is a contradiction, and T

2

must be �nitely

failed. 2

Corollary 4.11 The following statements are equivalent for a given clausal labelling problem.

� The BF-tree is �nitely failed.

� There is a �nitely failed derivation tree.

� Every fair derivation tree is �nitely failed.

5 Declarative Semantics

The declarative semantics of a clausal labelling problem are characterized by two inductively

de�ned sets, and also by �xed points.

5.1 Inductive De�nitions

We shall de�ne the declarative semantics of a clausal labelling problem, and show that this

semantics is equivalent to the operational semantics discussed above.

De�nition 5.1 A clause is a closed clause if and only if its set of free variables is the empty

set.

Let (U ;H ;P ;G

0

) be a clausal labelling problem. The set jP j is the set of all closed clauses

of the form l� : � u

1

�; : : : ; u

n

� where l : � u

1

; : : : ; u

n

is in P and � is a substitution which is an

endomorphism on U .

De�nition 5.2 Given a clausal labelling problem (U ;H ;P ;G

0

), its base, b(P), is the set of all

terms of the form l� such that l� 2 jP j and there is a clause of the form l : � B in P .

By the �rst part of De�nition 3.3 of clausal labelling problem, such a base is never the empty

set. We now de�ne T

P

.

De�nition 5.3 Let (U ;H ;P ;G

0

) be a clausal labelling problem, and D � jP j. T

P

is the

function 2

b(P)

! 2

b(P)

such that

T

P

(D) = fa j (l : � u

1

; : : : ; u

n

2 jP j) ^ (F(a) = ;) ^

H fha; li; hu

1

; d

1

i; : : : ; hu

n

; d

n

ig 6= ; ^

(d

i

2 D) where 1 � i � ng:

We now relate a clausal labelling problem to an inductive de�nition.

De�nition 5.4 The success set is

S

P

= [

i�0

T

P

i

;

where T

P

0

; = ;, and T

P

k+1

; = T

P

(T

P

k

;) and 0 � k < !.
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Kernels are the duals of such inductive de�nitions [1]. Here is the kernel of the preceding

de�nition which de�nes another set of closed terms.

De�nition 5.5 The �nite failure set is

F

P

= [

i�0

F

i

P

;

where F

0

P

; = ;, and F

k+1

P

; = b(P)� T

P

(b(P)� (F

k

P

;)) and 0 � k < !.

5.2 Fixed Points

A �xed point characterization of declarative semantics for clausal labelling problems uses clas-

sical results of Tarski [14] and Kleene [10] which are based on monotonic functions on complete

lattices. It is de�ned here by using a set of closed positive clauses.

Proposition 5.6 T

P

is a monotonic function on 2

b(P)

: if X � Y , then

T

P

(X ) � T

P

(Y ) where X ;Y 2 2

b(P)

.

Proposition 5.7 (2

b(P)

;�) is a complete lattice, with b(P) as top element, ; as bottom ele-

ment, [ as join, and \ as meet.

We shall use the following result [14].

Theorem 5.8 (Tarski.) Let T be a monotonic function on elements of a complete lattice.

Then T has a least �xed point lfp(T ), and a greatest �xed point gfp(T ).

Corollary 5.9 The function T

P

on the complete lattice (2

b(P)

;�) has a least �xed point lfp(T

P

)

and a greatest �xed point gfp(T

P

).

De�nition 5.10 Let L be a complete lattice and T : L! L be a mapping.

� T " 0 is the bottom element of L.

� T " ! is lubfT " � j � < !g.

� T # 0 is the top element of L.

� T # ! is glbfT # � j � < !g.

De�nition 5.11 A function T on elements of a complete lattice L is a continuous function

if T (lub(X )) = lub(T (X )) for every subset X of L all of whose �nite subsets have an upper

bound in X under the ordering �.

Proposition 5.12 T

P

is a continuous function on (2

b(P)

;�).

The next theorem is the First Recursion Theorem [10]. It will link the inductive de�nition

of the success set to the �xed point treatment.

Theorem 5.13 (Kleene.) lfp(T ) = T " ! where T is a continuous function on elements of a

complete lattice.

As a result, we have:

Corollary 5.14 lfp(T

P

) = T

P

" !.

The next de�nition links the �nite failure set to the �xed point treatment.

De�nition 5.15 T

P

# ! = b(P)� (T

P

# !).
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5.3 Summary

The following theorem states the equivalence between the inductively de�ned sets and �xed

point constructions which were discussed above to de�ne the declarative semantics of clausal

labelling problems.

Theorem 5.16 These are identities:

� S

P

= [

i�0

S

i

P

= lfp(T

P

) = T

P

" !.

� F

P

= [

i�0

F

i

P

= T

P

# !.

6 Soundness and Completeness

De�nition 5.4 of success set, and De�nition 5.5 of �nite failure set correspond to successful

and �nitely failed BF-trees respectively. We shall prove the soundness and completeness of the

BF-tree for successful and �nitely failed derivations, and so the coincidence of operational and

declarative semantics.

The following lemma is used in proving the completeness of the BF-tree for success, and

its soundness for �nite failure. Since the production of an element of T

i

P

;, and b(P)� F

i+1

P

;

where i � 0, is tantamount to a closed BF-derivation, by lifting such a derivation to the form

of a BF-derivation, the results can be proved directly.

From now on, the symbols U , H , P , and G

0

refer to an arbitrary but �xed clausal labelling

problem (U ;H ;P ;G

0

). We also introduce the following notations.

Notation 6.1 We abbreviate

� T

k

P

; to S

k

,

� F

k+1

P

; to F

k

, and

� Y

k

uniformly stands either for S

k

, or for b(P)� F

k

.

Lemma 6.2 (Lifting Lemma.) Let (G

0

;W

0

); : : : ; (G

j

;W

j

) be an initial sequence of a BF-

derivation, G

j

be the goal clause : � u

1

; � � � ; u

n

, and �

i

2 HW

i+1

where 0 � i < j . If there is a

substitution �

j

such that the terms of G

j

�

0

� � ��

j�1

�

j

are in Y

k�j

where k � j > 0, then there

is a BF-derivation step from (G

j

;W

j

) to (G

j+1

;W

j+1

) and a substitution �

j+1

such that the

terms of G

j+1

�

j

�

j+1

are in Y

k�j�1

and �

j

�

j

= �

j

�

j+1

.

Proof : By de�nition of Y

k�j

, there are n closed instances of clauses of P , l

h



h

: � B

h



h

for

1 � h � n, where l

h

: � B

h

is a clause of P and the 

h

are closed substitutions such that

H fhu

1

�

0

; l

1



1

i; : : : ; hu

n

�

0

; l

n



n

ig 6= ;, and when l > 0 the terms of B

h



h

are in Y

k�j�1

.

Let �

j

= 

1

: : : 

n

and I = fl

h

: � B

h

j 1 � h � ng. We can assume that the clauses in I are

renamed apart, and each of them is renamed apart from all of the goal clauses G

0

; : : : ;G

j

.

This implies that u

h

�

j

�

j

is u

h

�

j

, and l

h

�

j

�

j

is l

h



h

for every h : 1 � h � n. Therefore,

H fhu

1

�

j

�

j

; l

1

�

j

�

j

i; : : : ; hu

n

�

j

�

j

; l

n

�

j

�

j

ig 6= ;.

By the completeness of H from De�nition 3.3 there is is �

j

2 HW

j+1

and a substitution

�

j+1

such that �

j

�

j

= �

j

�

j+1

.

Hence, by De�nition 4.3 of BF-derivation, there is a derivation step from (G

j

;W

j

) to

(G

j+1

;W

j+1

) with input list I

0

= I , and when k � j > 0,

G

j+1

�

0

� � ��

j�1

�

j

is : � B

1

�

0

� � ��

j�1

�

j

; : : : ;B

n

�

0

� � ��

j�1

�

j

and fB

1

�

0

� � ��

j�1

�

j

; : : : ;B

n

�

0

� � ��

j�1

�

j

g � Y

k�1

. 2
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6.1 Success Set

Suppose that the terms of a closed goal clause G

0

are in S

k

. They are produced from elements

in S

k�1

which are in turn produced from elements in S

k�2

and so on. From the de�nition of

S

P

, it is easy to construct a BF-derivation for P [ fG

0

g.

The following soundness theorem states that all terms of any closed instance of G

0

� belong

to S

P

where � is an answer substitution for this derivation.

Theorem 6.3 If P [ fG

0

g has a successful BF-derivation of length k, then the terms of any

closed instance G

0

�� of G

0

� are in S

k

, where � is any answer substitution of the derivation.

Proof : Apply �� to all the goal clauses of the derivation and apply any substitution so that

all terms are closed. By De�nition 4.3 of BF-derivation, and De�nition 5.4 of S

P

, if all terms

of the instantiated goal clause G

n

are in S

i�1

, then all terms of G

n�1

are in S

i

.

As G

k

is the empty goal clause, its terms are in ; = S

0

. 2

The following theorem states the completeness of the BF-tree.

Theorem 6.4 If there is a substitution �

0

such that the terms of G

0

�

0

are in S

k

for a least

k > 0, then P [ fG

0

g has a successful BF-derivation of length k such that G

0

�

0

= G

0

�, for

an answer substitution � and a substitution .

Proof : Since the terms of G

0

�

0

2 S

k

, by the leastness of k , after k repeated applications of

the Lifting Lemma (Lemma 6.2), there are k BF-derivation steps from (G

0

; ;) to (G

k

;W

k

) and

substitutions �

j

such that the terms of G

j

�

0

� � ��

j�1

�

j

are in S

k�j

for 0 � j � k .

From the Lifting Lemma, we have that �

i

�

i

= �

i

�

i+1

where 1 � i < k . Therefore,

�

i

�

i

�

i+1

= �

i

�

i+1

�

i+1

, and �

i

�

i+1

�

i+1

= �

i

�

i+1

�

i+2

. It follows, using the associativity

of the composition of substitutions [8], that G

0

�

0

= G

0

�

0

�

0

� � ��

k�1

and G

0

�

0

�

0

� � ��

k�1

=

G

0

�

0

� � ��

k�1

�

k

. The substitution � = �

0

� � ��

k�1

is an answer substitution, and  = �

k

, as

required. 2

6.2 Finite Failure Set

The following theorem states the soundness of the BF-tree for �nite failure.

Theorem 6.5 If every BF-derivation for P [ fG

0

g is failed by length � k, then every closed

instance of G

0

contains a term in F

k

.

Proof : The proof is by induction on k . If every BF-derivation for P [ fG

0

g is failed by length

zero, then by de�nition of F

0

every closed instance of G

0

contains a term in F

0

.

The induction hypothesis is that the theorem is true for all BF-derivations of length k � 1.

If every BF-derivation for G

0

is failed by length � k then, by the induction hypothesis, every

closed instance of every G

1

contains a term in F

k�1

. Suppose there is a substitution �

0

such

that the terms of G

0

�

0

are in b(P)� F

k

. Then by the Lifting Lemma, there is a BF-derivation

step from (G

0

; ;) to (G

1

;W

1

) and a substitution �

1

such that the terms of G

1

�

0

�

1

are in

b(P)� F

k�1

. This is a contradiction. Therefore every closed instance of G

0

contains a term in

F

k

. 2

The next theorem states that the BF-tree is complete for �nite failure.
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Theorem 6.6 If every closed instance of G

0

contains a term in F

k

, then every BF-derivation

for P [ fG

0

g is failed by length � k.

Proof : The proof is by induction on k . If every closed instance of G

0

contains a term in F

0

,

then every BF-derivation for P [ fG

0

g is failed by length zero. Otherwise, by the de�nitions of

BF-derivation and F

0

, a closed instance of G

0

could be found which does not contain a term in

F

0

.

The induction hypothesis is that the theorem is true for all BF-derivations of length k � 1.

Let every closed instance of G

0

contain a term in b(P)�F

k

. If there is a descendant (G

1

;W

1

) of

(G

0

; ;) and a substitution � such that the terms of G

1

�

0

� are in b(P)�F

k�1

, by the de�nitions

of BF-derivation and F

k

, the terms of a closed instance of G

0

�

0

� are in b(P) � F

k

where

�

0

2 HW

1

.

This is a contradiction. Hence every closed instance of every descendant goal clause G

1

contains a term in F

k�1

and by the induction hypothesis, every BF-derivation for P [ fG

0

g is

failed by length � k . 2

6.3 Operational and Declarative Semantics

We now combine Theorem 5.16 for declarative semantics of clausal labelling problems with

Theorems 6.3- 6.6 of the soundness and completeness of the BF-tree for successful and �nitely

failed derivations to show the coincidence of their operational and declarative semantics. This

coincidence is extended to derivation trees in general by using Corollaries 4.9 and 4.11.

Theorem 6.7 The following statements are equivalent.

� There is a substitution � such that the terms of G

0

� are in S

P

.

� There is a least k > 0 such that the terms of G

0

� are in S

k

.

� The BF-tree for P [ fG

0

g has a successful branch of length k with answer substitution

equal to �, and there is a substitution � such that G

0

� is G

0

��.

� There is a derivation tree for P [fG

0

g which has a successful branch with answer substit-

ution equal to �, and there is a substitution � such that G

0

� is G

0

��.

� Every derivation tree for P [ fG

0

g has a successful branch with answer substitution equal

to �, and there is a substitution � such that G

0

� is G

0

��.

Theorems 6.5 and 6.6 are now used in a similar way to characterize goals which do not have

refutations.

Theorem 6.8 The following statements are equivalent.

� Every closed instance of G

0

contains a term in F

P

.

� There is a least k > 0 such that every closed instance of G

0

contains a term in F

k

.

� The BF-tree for P [ fG

0

g is �nitely failed, and the length of none of its branches exceeds

k.

� There is a �nitely failed derivation tree for P [ fG

0

g.

� Every fair derivation tree for P [ fG

0

g is �nitely failed.
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7 Implementing Abstract Clauses

The Abstract Clause Engine (ACE) [16] implements proof searches for clausal labelling prob-

lems. It has been used for concrete problems such as combinatorial searches, �rst-order logic

programming, and equational �rst-order logic programming with equational uni�cation.

The tree that ACE searches is DF-tree. The user can specify how terms should be selected

from goals. Theorems 6.7 and 6.8 provide implementation rules for ensuring that it is sound and

complete with respect to the set of solutions to a clausal labelling problem, and with respect to

the terms which can e�ectively be shown not to be solutions.

We expect that logical frameworks other than Isabelle [11] might be expressed as clausal

labelling problems [4, 6, 13].

An advantage of working with ACE is that prototype proof procedures can be constructed

relatively quickly. One just needs to implement the test, specify the syntax of the object logic,

and sometimes to provide parsers and printers. ACE incorporates ten generic search methods

and allows the depth of searches, number of solutions to be found, and number of nodes visited

to be selected or recorded. These features should enable comparisons of search methods for an

object logic to be made easily before a speci�c proof system is designed.
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