
The logi
 and mathemati
s of o

asion senten
es

�

Pieter A. M. Seuren

y

Venanzio Capretta

z

Herman Geuvers

z

Abstra
t

The prime purpose of this paper is, �rst, to restore to dis
ourse-bound o

asion senten
es

their rightful 
entral pla
e in semanti
s and se
ondly, taking these as the basi
 propositional

elements in the logi
al analysis of language, to 
ontribute to the development of an adequate

logi
 of o

asion senten
es and a mathemati
al (Boolean) foundation for su
h a logi
, thus

preparing the ground for more adequate semanti
, logi
al and mathemati
al foundations of

the study of natural language. Some of the insights elaborated in this paper have appeared

in the literature over the past thirty years, and a number of new developments have resulted

from them. The present paper aims at providing an integrated 
on
eptual basis for this new

development in semanti
s. In Se
tion 1 it is argued that the redu
tion by translation of o
-


asion senten
es to eternal senten
es, as proposed by Russell and Quine, is semanti
ally and

thus logi
ally inadequate. Natural language is a system of o

asion senten
es, eternal sen-

ten
es being merely boundary 
ases. The logi
 has fewer tasks than is standardly assumed,

as it ex
ludes semanti
 
al
uli, whi
h depend 
ru
ially on information supplied by 
ognition

and 
ontext and thus belong to 
ognitive psy
hology rather than to logi
. For senten
es to

express a proposition and thus be interpretable and informative, they must �rst be properly

an
hored in 
ontext . A proposition has a truth value when it is, moreover, properly keyed

in the world , i.e. is about a situation in the world. Se
tion 2 deals with the logi
al proper-

ties of natural language. It argues that presuppositional phenomena require trivalen
e and

presents the trivalent logi
 PPC

3

, with two kinds of falsity and two negations. It introdu
es

the notion of �-spa
e for a senten
e A (or =A=, the set of situations in whi
h A is true)

as the basis of logi
al model theory, and the notion of =P

A

= (the �-spa
e of the presuppo-

sitions of A), fun
tioning as a `private' subuniverse for =A=. The trivalent Kleene 
al
ulus

is reinterpreted as a logi
al a

ount of vagueness, rather than of presupposition. PPC

3

and

the Kleene 
al
ulus are re�nements of standard bivalent logi
 and 
an be 
ombined into one

logi
al system. In Se
tion 3 the adequa
y of PPC

3

as a truth-fun
tional model of presup-

position is 
onsidered more 
losely and given a Boolean foundation. In a non
ompositional

extended Boolean algebra, three operators are de�ned: 1

a

for the 
onjoined presuppositions

of a, ea for the 
omplement of a within 1

a

, and ba for the 
omplement of 1

a

within Boolean 1.

The logi
al properties of this extended Boolean algebra are axiomati
ally de�ned and proved

for all possible models. Proofs are provided of the 
onsisten
y and the 
ompleteness of the

system. Se
tion 4 is a provisional exploration of the possibility of using the results obtained

for a new dis
ourse-dependent a

ount of the logi
 of modalities in natural language. The

overall result is a modi�ed and re�ned logi
al and model-theoreti
 ma
hinery, whi
h takes

into a

ount both the dis
ourse-dependen
y of natural language senten
es and the ne
essity

of sele
ting a key in the world before a truth value 
an be assigned.

�
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3

1 Truth and falsity for o

asion senten
es

In the 
lassi
al view, whi
h has been a

epted sin
e Aristotle's day, truth 
onsists in saying or

thinking of what is so, that it is so, and falsity in saying or thinking of what is not so that it is.

Truth and falsity are the truth values (TVs), and the bearers of these values, the obje
ts that have

the property of being true or false (whether they are obje
ts of spee
h or of thought) are 
alled

propositions. This is known as the 
orresponden
e theory of truth, and there is little one 
an say

against it, ex
ept that it does not give enough.

First of all, if truth is taken to result from 
orresponden
e between what is said or thought and

what is the 
ase, it is ne
essary to spe
ify what the 
orresponden
e 
onsists in. In other words,

an analysis must be provided of what is the 
ase on the one hand, and also of what is said or

thought on the other, and elements of the one analysis must then be mapped onto elements of the

other, in order to de�ne in pre
ise terms under what 
onditions there is 
orresponden
e. The task

of de�ning su
h a mapping pro
edure has o

upied many generations of philosophers, but it was

not until the 20th 
entury that it was undertaken in a formally pre
ise way, under the name of

model-theory, in the 
ontext of mathemati
al logi
.

Then there is the built-in ambiguity between saying and thinking: are true or false propositions

the result of spee
h a
ts or of thought pro
esses? As is argued in Stegm�uller (1957, pp. 16{17)

and Seuren (1998b, pp. 12{18), the 
orre
t answer is that a proposition, as a bearer of a TV, is

not a linguisti
 expression, but the result of a mental a
t of assigning a property to an entity

or n-tuple of entities (where both the property and the entities in question may be determinable

through a 
omplex pro
ess of interpretation). The main argument for this position is the well-

known fa
t that linguisti
 utteran
es, in prin
iple, heavily underdetermine their truth 
onditions,

and that the missing elements are supplied by available world and/or situational knowledge. This

applies in parti
ular to predi
ates, whose satisfa
tion 
onditions often involve world knowledge.

For example, the satisfa
tion 
onditions of the predi
ate 
at are di�erent in The front tire was


at and The road surfa
e was 
at. Or, to vary on Ryle (1949, p. 24), the prepositional predi
ate

in is satis�ed under quite di�erent 
onditions in, for example, She went out in a red hat and She

went out in a sports 
ar.

Truth thus seems to be primarily a 
ognitive, and not a verbal, notion. This point is important

be
ause logi
 has always, mainly due to the obvious diÆ
ulty of analysing thoughts as against the

relative a

essibility of linguisti
 stru
tures, operated with a verbal notion of truth, and we shall

see presently that this imposes 
ertain limitations.

A third problem lies in the fa
t that many senten
es of natural languages, if taken by themselves

and out of 
ontext, 
annot be assigned a TV. A senten
e like:

(1) The girl was right after all.

is a good grammati
al senten
e of English, with proper English lexi
al forms, with a subje
t term

and a �nite verb form in proper agreement with the subje
t term, in the simple past tense and

with an adjun
t of time. But it makes no sense to ask whether it is true or false, until it is known

what person is referred to by the subje
t term, when the event is said to have taken pla
e, and

what the issue was that the girl is said to have been right about. We say that this senten
e needs

a key in the real world before it 
an be assigned a TV.

Senten
es that need a key are 
alled o

asion senten
es, whereas senten
es that don't are 
alled

eternal senten
es (Quine 1960). Eternal senten
es are, in prin
iple, presented in a generi
 (present)

tense and 
ontain no de�nite but only quanti�ed terms. Thus, a senten
e like:

(2) All humans are mortal.

is an eternal senten
e and, 
onsequently, it makes perfe
t sense to ask whether it is true or false,

regardless of any 
ontext. No spe
i�
 key is needed in su
h 
ases.

Both Aristotelian and modern logi
 are based ex
lusively on eternal senten
es, the reason being

that o

asion senten
es turn out to pose a number of apparently intra
table problems for a sound

logi
, problems whi
h do not turn up with eternal senten
es. Aristotle de
ided (Metaph 1027

a-b

)
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to ban all o

asion senten
es from his metaphysi
s and his logi
, probably be
ause of the ba�ing


ompli
ations whi
h he saw 
oming with regard to o

asion senten
es. There is an alternative

logi
al tradition, running from the Stoa through the Middle Ages to the late 19th 
entury, where

attempts are made to take o

asion senten
es into a

ount as well, but this tradition has dried up

sin
e 1900, mainly be
ause it was shown in Russell and Whitehead's Prin
ipia Mathemati
a that

the new Predi
ate Cal
ulus, restri
ted as it is to eternal senten
es with its quanti�ers, variables

and logi
al 
onne
tives, is suÆ
ient to express any mathemati
al proposition. From then on,

attempts to a

ount for o

asion senten
es were given up and logi
 was ex
lusively about eternal

senten
es.

1.1 The translation method is inadequate as a solution for o

asion

senten
es

While the fa
t that all mathemati
al propositions 
an be expressed in terms of eternal senten
es

in the Russellian Language of Predi
ate Cal
ulus (LPC) is no doubt of extreme importan
e, the

question of how to determine truth and falsity for o

asion senten
es, as well as that of their

logi
al properties, remains. The answer provided by modern logi
 is, in prin
iple, that all o

asion

senten
es must be `translated' into eternal senten
es for whi
h su
h problems do not exist. This

is the basis of the programme initiated by Russell and 
ontinued by Quine, who dubbed it the

programme of `elimination of parti
ulars' (Quine 1960). This programme, whi
h underlies virtually

all the work done in present-day model-theoreti
 or `formal' semanti
s, is based on two (usually

impli
it) assumptions. The �rst is that the `translations' provided are semanti
ally equivalent

to the senten
es that have been translated, and the se
ond implies that the logi
al translations

provided will be powerful enough to express any proposition a speaker wishes to express when

using a natural language.

These two assumptions have not remained un
hallenged. One important problem, dire
tly

relevant to the se
ond assumption, but indire
tly also to the �rst, is posed by the so-
alled `donkey

senten
es', so 
alled be
ause of a number of example senten
es presented by the British philosopher

Walter Burley (�1275{after 1344) in the 
ontext of his theory of referen
e, all 
ontaining mention

of a donkey. Among Burley's examples is the following (Burley 1988, p. 92):

(3) Omnis homo habens asinum videt illum. (every man who has a donkey sees it)

Burley's problem was that a senten
e like (3) will still be true if some man has two donkeys, one

that he sees and one that he does not see, as long as every donkey owner has at least one donkey

he does see. This would mean that a senten
e like `Some man who has a donkey does not see it'

would be 
ompatible with (3) and not be its 
ontradi
tory. In modern times, the problem was

brought up by Gea
h (1962, pp. 116�), who re-used Burley's examples (speaking of `another sort

of medieval example', but without mentioning Burley). Gea
h's donkey-examples were in turn

pi
ked up by modern formal semanti
ists, who found that senten
es of the types:

(4) a. If George owns a donkey he feeds it.

b. Every farmer who owns a donkey feeds it.


. Either George does not own a donkey or he feeds it.


annot be translated into LPC, whi
h allows for only two kinds of terms, (bound) variables and


onstant terms that refer to a referen
e obje
t. The pronoun it in (4a{
) 
annot be a 
onstant

term sin
e it has no referen
e obje
t, so it must be a variable. But as a variable it 
annot be

bound, unless more radi
al logi
al translations are provided. Thus, (4a{
) might 
on
eivably be

translated as, respe
tively:

(5) a. 8x[Donkey(x)! [Own(George; x)! Feed(George; x)℄℄

b. 8x8y[[Farmer(x) ^ Donkey(y) ^Own(x; y)℄! Feed(x; y)℄


. :9x[Donkey(x) ^Own(George; x)℄ _ 9x[Donkey(x) ^Own(George; x) ^ Feed(George; x)℄
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Su
h translations, however, run into 
onsiderable problems. First, from a stri
tly linguisti
 point

of view, there is the problem of the nonuniformity of translations, sin
e a noun phrase like a donkey

is to be translated as an existentially quanti�ed expression in, for example, (4
) or George owns a

donkey, but as a universally quanti�ed expression in (4a,b). This would violate Russell's `parity

of form' 
riterion (1905,p. 483). Moreover, as was observed by Burley, (4b) allows for some farmer

to own two donkeys, one that he feeds and one he does not feed, whereas (5b) is false in su
h a


ase.

Furthermore, it does not seem tenable that the pronoun it in (4a{
) represents a bound variable.

This is so be
ause it is typi
al for pronouns that do represent bound variables that they 
annot be

repla
ed with a so-
alled epithet pronoun, like the great man or the idiot or the wret
hed animal.

Thus, in a senten
e like (6a) the bound variable pronoun they 
annot be repla
ed with an epithet,

as in (6b), without the binding relation being destroyed:

(6) a. Some people think that they will get ri
h without working.

b. 6= Some people think that the layabouts will get ri
h without working.

In (4a{
), however, the o

urren
es of it 
an all give way to an epithet without any referential


onsequen
es:

(7) a. If George owns a donkey he feeds the wret
hed animal.

b. Every farmer who owns a donkey feeds the wret
hed animal.


. Either George does not own a donkey or he feeds the wret
hed animal.

This strongly suggests that the o

urren
es of it in (4a{
) are not to be analysed as bound variables

but as referring expressions of some kind, even if this kind of referring expression is not known in

LPC.

Thirdly, translations of the type (5a{
) fail to satisfy when intensional operators are built into

the senten
es in question, as in:

(8) a. If John thinks that George owns a donkey, he is 
ertain that George feeds it.

b. Every farmer who is known to own a donkey, is thought to feed it.


. Either John thinks that George does not own a donkey or he is 
ertain that George feeds

it.

If the NP a donkey is translated as a universally quanti�ed expression, as in (5a,b), the meaning

of the senten
es in question is distorted beyond tolerable limits. If, on the other hand, existential

quanti�
ation is used, s
ope problems arise. (5
), moreover, is questionable, as it is not simply the

substitution of :A _ [A ^ B℄ for :A _ B, but involves the in
lusion of the propositional fun
tion

`Feed(George; x)' under the existential quanti�er. (8
) shows that there are serious problems

regarding the generality of this pro
edure.

This problem of donkey anaphora was the primary motivation behind Dis
ourse Representation

Theory (Kamp & Reyle 1993). A solution in terms of interpretative subdomains within the

framework of Dis
ourse Semanti
s is found in Seuren (1998a). Both approa
hes use LPC and

both have extended LPC with de�nite des
riptions and anaphori
 devi
es, thus reje
ting Russellian

translations for the 
ases at hand and reinstating o

asion senten
es as elements in the semanti
s.

Sin
e the logi
al properties of the stru
tures 
on
erned do not seem to be a�e
ted by these steps

in any but marginal ways, we shall leave the donkey anaphora problem undis
ussed in the sequel

of this paper, relegating its solution to a proper semanti
 theory. The emphasis of this paper is

on those phenomena that are typi
al of o

asion senten
es and lead to 
onsequen
es for the logi


of language, su
h as presuppositions.

A similar diÆ
ulty, showing the weakness of the �rst assumption, 
on
erns Russell's (1905)

redu
tion of de�nite NPs to existentially quanti�ed expressions as in (9a), translated by him as

(9b):

(9) a. The present king of Fran
e is bald.

b. 9x[Now[KoF(x)℄ ^ Bald(x) ^ 8y[Now[KoF(y)℄! x = y℄℄
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Clearly, a senten
e like (10a) is not equivalent to any of its possible Russellian translations (10b{

e):

(10) a. Carol thinks that there is a king of Fran
e, and she hopes that he is bald.

b. There is a king of Fran
e su
h that he is the only one and su
h that Carol thinks he is

there and su
h that she hopes he is bald.


. Carol thinks that there is a king of Fran
e su
h that she hopes that he is the only one

and that he is bald.

d. Carol thinks that there is a king of Fran
e, and there is a king of Fran
e su
h that he is

the only one and she hopes that he is bald.

e. Carol thinks that there is a king of Fran
e, and she hopes that there is a king of Fran
e

su
h that he is the only one and is bald.

Finally, logi
al translations in the manner of Russell or Quine fail to solve the referen
e prob-

lem, whi
h is posed by the fa
t that de�nite NPs often sele
t their referen
e obje
t in virtue of

situational or world knowledge, and not on the basis of a Russellian translation as given in (9b).

Under a Russellian translation, (11) is false in 
ases where there are several pubs. Yet for the

purpose of ordinary language (11) may well be true, as long as John and Harry met in a parti
ular

pub whose identity was known and taken for granted:

(11) John and Harry met in the pub after work.

This problem is quite general. For example, in a sequen
e of senten
es like:

(12) The book was published in 1968. The publisher was later sent to prison.

the de�nite NP the publisher must refer to the person who published the book in question in 1968,

not to just any (unique!) publisher. LPC is unable to �x that referen
e. For it to be able to do

that it must (a) be extended with a new 
ategory of intrinsi
ally referring terms 
onsisting of a

predi
ate and a de�nite determiner, and (b) be applied �rst to 
ontextually restri
ted 
ognitive

stru
tures that represent possible situations before any referen
e relation and hen
e TV 
an be

determined.

These and similar arguments point to the following 
on
lusions:

� O

asion senten
es 
annot be redu
ed to eternal senten
es but must be re
ognized in their

own right, both in semanti
s and in logi
.

� If LPC is to be used for the representation of semanti
 
ontent, it must be extended with at

least de�nite des
riptions and anaphori
 pronouns.

� Sin
e o

asion senten
es la
k a TV until a key has been sele
ted and referen
e values are

�xed, and sin
e these pro
esses involve an appeal to 
ognition, the primary bearers of TVs

are 
ognitive, not linguisti
, stru
tures. Linguisti
 utteran
es are TV-bearers only to the

extent that they express an underlying proposition (thought).

� Only utteran
e tokens, properly embedded in a 
ontext and a situation, 
an be said to have

a TV. Senten
e types have logi
al and semanti
 properties, but, in prin
iple, no TV. Eternal

senten
e types appear to have a TV, due to the fa
t that the 
ontextual and situational

embeddings required for them to have a TV are unrestri
ted. They therefore represent

boundary 
ases. (This 
on
lusion was rea
hed earlier in Strawson (1950).)

1.2 A programme for semanti
s and for logi


The 
on
lusions rea
hed in the previous se
tion imply a programme of resear
h for semanti
 theory.

First of all, a theory must be developed that spe
i�es the 
ognitive stru
tures that are taken to


ontain the primary bearers of TVs. This we 
all the Theory of Contextual An
horing.

Se
ondly, a Theory of Referential Keying, is needed to spe
ify how the 
ognitive stru
tures
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Utterance token
of sentence type

Situation
in world

REFERENTIAL KEYING
(truth value assignment)

intentional relation

Cognitive Discourse Domain

CONTEXTUAL ANCHORING
(meaning specification)

causal relation

Figure 1: The triangular relation of language, mind and world

at issue, and hen
e the senten
e tokens or utteran
es that express them, 
an be keyed to a given

situation. The overall ar
hite
ture into whi
h these theories are meant to �t is s
hemati
ally

rendered in �g. 1.

The double arrow on the left hand side signi�es a two-sided 
ausal relation, in the sense that

utteran
e tokens are produ
ed from, or integrated into, 
ognitive dis
ourse domains by means of


erebral and neuromus
ular pro
esses. The double arrow on the right hand side signi�es a relation

whose nature is 
on
eptually less 
lear. Philosophers often speak of an intentional relation, whi
h

means, in prin
iple, that the 
ognitive stru
ture is intended to be a representation of, or `be about',

an a
tual situation in the world. The notion of a 
ognitive representation or dis
ourse domain D

is far from unproblemati
 and requires a thorough analysis of basi
 
on
epts. Yet in prin
iple it

appears to be amenable to standard methods of s
ienti�
 analysis.

In essen
e, D is a stru
tured set of stru
tures (propositions) of the type P (e), where e is an

element symbol and P a property symbol, semanti
ally de�ned by satisfa
tion 
onditions. If e

stands for (refers to) an entity (in the widest possible sense) in the real worldW and P stands for

a well-de�ned property that real world entities may have, a parti
ular proposition P (e) is either

true or false, a

ording to whether the entity referred to by e does or does not have the property

that P stands for. D may also not be about any real situation in the world at all, in whi
h 
ase it is

not `keyed' and has no truth value. In that 
ase the P (e)-stru
tures of D are, though 
ontextually

an
hored, not keyed to a real world situation and are thus propositions without a TV. They are,

so to speak, representations in sear
h of a key.

Even more profound problems are raised by the notion of intention. To say that a proposition

P (e) is intended to be a representation of, or `be about', an a
tual world situation is 
ompre-

hensible in an intuitive sense, but is, as yet, not expressible in terms of 
ausal relations and not

implementable in an algorithmi
 model. Intentionality thus des
ribed is a mental phenomenon

that still es
apes the notions available in s
ien
e and mathemati
s. For that reason it is a 
entral

and highly problemati
 notion in the philosophy of mind.

The intentional relation of situational keying may, however, lead to 
ausal e�e
ts, in that the

world situation may 
odetermine the representation(s) of the dis
ourse domain (for example, when

a speaker wants to des
ribe a given situation), while, on the other hand, parti
ular 
on�gurations in

the dis
ourse domain may be a determining fa
tor in bringing about their real world 
ounterparts

(as when an order is followed).

One notes that there is no dire
t 
onne
tion, in �g. 1, between `Utteran
e token' and `Situation'.

In Ogden & Ri
hards (1923, p. 11) a similar triangular disposition is presented for the relation
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between language, the mind, and the world. There a dotted line, drawn between the linguisti


utteran
e and the world (situation), signi�es a non
ausal but merely `imputed' relation determining

the TV to be assigned. In the light of the arguments presented in se
tion 1.1, it is now 
lear that

this `imputed' relation is based on a purely verbal notion of truth whi
h 
an perhaps be made to

work for eternal senten
es but not for o

asion senten
es. It fails to take into a

ount the fa
t

that TVs 
an only be assigned to o

asion senten
es with the help of 
ognition.

Cognition, in the form of available world knowledge and dis
ourse stru
ture, supplies elements

that are missing from the spoken signal (the utteran
e of an o

asion senten
e) but are ne
essary

for a proper interpretation and for the assignment of a TV. These elements need not be expressed

verbally, be
ause the listener is taken to be in possession of the ne
essary world knowledge and

to be a parti
ipant in the dis
ourse stru
ture at hand. Compared to a language that allows only

for eternal senten
es, a language that 
ontains o

asion senten
es is thus seen to be superbly

fun
tional in that it saves an enormous amount of time and energy in the verbal expression of

propositions.

The relation between logi
, semanti
s and 
ognitive psy
hology is now di�erent from what it

was before. Traditionally, logi
 is the formal 
al
ulus of ne
essary 
onsequen
es (entailments) given

the truth of (sets of) propositions. In terms of this de�nition, there should be two kinds of logi
, a


ognitive logi
 based on thought stru
tures, and a verbal logi
 based on linguisti
 stru
tures. Sin
e


ognitive logi
 is still far beyond our rea
h, we shall, in the following, restri
t ourselves to verbal

logi
, as is standard pra
ti
e. But this means that if any verbal logi
 aims at handling o

asion

senten
es, it will be unable to provide a 
on
omitant formal theory assigning 
orre
t TVs. In other

words, there will be no 
ompositional 
al
ulus that assigns TVs to senten
es in a model merely on

the strength of senten
e stru
ture and model-theoreti
 interpretation, as is possible, in prin
iple,

for eternal senten
es. Truth 
onditions, moreover, will have to be formulated partly in terms of

parameters whose values are to be supplied by 
ognition.

For natural language with its o

asion senten
es, the pro
ess of TV-assignment is of a 
ognitive

nature and falls, stri
tly speaking, within the provin
e of 
ognitive psy
hology, outside logi
 and

its appli
ations in formal semanti
s. To the extent that established formal semanti
s involves a

formal pro
edure for the assignment of TVs to natural language senten
es, it must be 
onsidered

not viable. In the light of the properties of o

asion senten
es dis
ussed so far, it seems more

appropriate to restri
t semanti
s, in prin
iple, to the study of the 
ontextual an
horing properties

of senten
e types in dis
ourse stru
tures. Semanti
s, in other words, being the theory of linguisti



omprehension, studies the building up of 
ognitive stru
tures that 
onsist of propositions ea
h of

whi
h 
arries truth 
onditions but not ne
essarily a truth value. To de
ide how and when these


onditions are satis�ed in a given situation is a matter of 
ognitive psy
hology, whi
h has, so far,

not provided a formal theory.

Note that the term proposition will be used, from now on, for subje
t-predi
ate stru
tures that

are well-an
hored in 
ontext and thus 
ontribute to a meaningful text. If a proposition is also

properly keyed to a situation, it will have a TV, but it need not have one to be meaningful.

For an uttered senten
e token S to have a TV it must satisfy two global 
onditions: (a) S

must be 
ontextually an
hored, and (b) S must be keyed to a situation in the world. When only


ondition (a) is ful�lled but not 
ondition (b), S is part of a meaningful text thought up by an

author, but its TV is irrelevant. Or, in Frege's words:

Why is the thought not enough for us? Be
ause, and to the extent that, we are


on
erned with its truth value. This is not always the 
ase. In hearing an epi
 poem,

for instan
e, apart from the euphony of the language we are interested only in the sense

of the senten
es and the images and feelings thereby aroused. The question of truth

would 
ause us to abandon aestheti
 delight for an attitude of s
ienti�
 investigation.

Hen
e it is a matter of no 
on
ern to us whether the name Odysseus, for instan
e, has

referen
e, so long as we a

ept the poem as a work of art. It is the striving for truth

that drives us always to advan
e from the sense to the referen
e.

Frege (1892, p. 33) translation by Max Bla
k in Gea
h & Bla
k (1970, p. 63)
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When not even 
ondition (a) is ful�lled, S is unan
hored and hen
e uninterpretable, but still

meaningful in the general sense that it may play a role in the building up of 
ognitive stru
tures


onsisting of propositions and possibly 
arrying a TV. Although these 
onditions apply to o

asion

senten
es in parti
ular, we shall hen
eforth speak of senten
es in general, sin
e eternal senten
es

are 
onsidered boundary 
ases, whose an
horing and keying 
onditions are always met. In se
tion

1.3 
ondition (a) is dis
ussed. Condition (b) is dis
ussed in se
tion 1.4.

1.3 Contextual an
horing and presuppositions

For a senten
e S to be 
ontextually an
hored (or be part of a 
oherent dis
ourse) it must satisfy

at least the following ne
essary 
onditions:

a. Every de�nite term in S has a unique denotation (address) in the dis
ourse domain D.

b. All presuppositions of S are in
remented in D before S.

Following a by now widely a

epted view, we 
onsider a dis
ourse domain D to be a stru
tured

representation of an ordered set of senten
es. A D must 
ontain at least a number of `addresses'

representing possible obje
ts (singular or plural, natural individuals or rei�
ations). Every new

well-an
hored senten
e is in
remented in D in that the new information provided by S is added to

D. The pre
ise format in whi
h one may best take this to be done is not our 
on
ern here. Two main

strategies present themselves: either the predi
ate label expressing the property assigned by S is

added to the appropriate addresses that 
orrespond to the de�nite terms in S, or the appropriate

address labels are added to the predi
ate label. A 
ombination of both is also thinkable. New

addresses are introdu
ed by means of existential quanti�
ation.

Condition (a) requires that D be stru
tured in su
h a way that ea
h de�nite term in S 
or-

responds uniquely to an address in D. For de�nite des
riptions (e.g. the house) this means that

the determiner the seeks the unique address in D that is 
hara
terized by the predi
ate house.

De�nite pronouns need to �nd a proper ante
edent, i.e. an address re
ently a
tivated by expli
it

mentioning. If a de�nite des
ription fails to �nd an address in D, the missing address 
an be sup-

plied on grounds of knowledge-based inferen
e, as is demonstrated in (12) above for the de�nite

des
ription the publisher . For pronouns this is, normally speaking, not possible (try to read (12)

with he for the publisher).

Condition (b) is to do with presuppositions. We 
onsider a presupposition to be a proposition

P implied in, and stru
turally re
overable from, a senten
e S (its `
arrier senten
e') in su
h a way

that P must pre
ede S in D for S to be interpretable. A presupposition P of a 
arrier senten
e S

thus poses a 
ondition on D for the meaningfulness or interpretability of S or the simple negation

of S.

Four main 
ategories of presupposition 
an be distinguished:

i. Existential presuppositions, as in (`�' stands for `presupposes'):

(13) John took his son to the Zoo. � John exists; John has a son;

there is a Zoo

ii. Fa
tive presuppositions (presupposing the truth of the that-
lause), as in:

(14) John noti
ed that he was getting wet. � John was getting wet

iii. Categorial presuppositions, implied in the meaning of the predi
ate, as in:

(15) a. David is divor
ed. � David was married before

b. David has stopped beating his dog. � David has beaten his dog before

iv. Remainder 
ategory, to do with fo
using strategies and the parti
les only and even, as in:

(16) a. John didn't laugh, Harry did. � Somebody laughed

b. Only John laughed. � John laughed

It makes sense, however, to assume that for all 
ategories of presupposition the semanti
 sour
e

of the presuppositions of a senten
e S is, in prin
iple, lo
ated in the satisfa
tion 
onditions of the

highest predi
ate of S (see se
tion 2.3.1 below). In light of the observations made in 2.3.1 below,

it seems advisable, if not inevitable, to distinguish between two 
lasses of satisfa
tion 
onditions,
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the pre
onditions , whose nonsatisfa
tion results in radi
al falsity, and the update 
onditions ,

whose nonsatisfa
tion results in minimal falsity. Satisfa
tion of all 
onditions yields truth.

From a purely logi
al point of view, presupposition is then a lexi
ally driven entailment, indu
ed

by lexi
al pre
onditions. The redu
tion to lexi
al satisfa
tion 
onditions is straightforward for the


ategories (i){(iii). For 
ategory (iv) it is possible only if, at a level of semanti
 analysis, parti
les

like only or even are 
onsidered fo
using predi
ates and a spe
i�
 fo
using predi
ate is assumed

for 
ontrastive a

ents and other 
ontrastive or emphati
 fo
using strategies su
h as 
lefting. This

aspe
t of presuppositional analysis, however, will not be gone into further in the present 
ontext.

Sin
e a senten
e S

P

(i.e. S presupposing P ) requires P to be in
remented in D before S, a

speaker asserting S

P


annot be 
ommitted to the truth of S without also being 
ommitted to

the truth of P , on analyti
al grounds, i.e. grounds of meaning. It follows that if S � P , then

S � P . Moreover, sin
e under normal 
onditions the 
ontextual an
horing 
onditions of a senten
e

S are identi
al to those of its negation not-S, a speaker asserting not-S

P


annot be 
ommitted

to the truth of not-S without also being 
ommitted to the truth of P . Hen
e, if S � P , then

not-S � P . We thus formulate as a logi
al 
ondition for presupposition (appli
able under the

default 
onditions):

(17) If S � P , then S � P and not-S � P .

But this poses a problem for the logi
 of language, sin
e in standard logi
, if S � P and not-S � P ,

P must be a ne
essary truth. In language, however, presuppositions are as 
ontingent as any

other proposition. This problem is solved in se
tion 2.3.3 below, where the trivalent propositional


al
ulus PPC

3

is presented.

It is is important to realize that a des
ription of the logi
al properties of presupposition does

not automati
ally give a semanti
 de�nition. On the 
ontrary, a sound logi
 is a ne
essary but not

a suÆ
ient property for a sound natural language semanti
s (see se
tion 2.3.5). It is thus possible

for a pair of senten
es A and B to satisfy all the logi
al 
onditions of the semanti
 relation of

presupposition without the one presupposing the other. Conversely, however, if A � B, then A

and B must show the appropriate logi
al properties de�ned in PPC

3

. The semanti
 dimensions

that go beyond logi
 are not explored here.

It must be noted that existential presupposition di�ers from denotational an
horing (
ondition

(a)), in that the latter is required by de�nite terms looking for a unique address in D, whereas

the former is indu
ed by the predi
ate in question, whi
h may or may not require real existen
e

for one or all of its term referents. Thus, a senten
e like John is talking about the Abominable

Snowman requires the availability of a unique address for the des
ription the Abominable Snowman

(
ondition (a)), but it does not presuppose the existen
e of su
h a 
reature, sin
e the predi
ate

talk about does not require real existen
e of its obje
t term referent (it is intensional with respe
t

to its obje
t term). For D this implies that the expression the Abominable Snowman may seek

its denotation address in some intensional subdomain representing somebody's belief or story, in


ase the main (or truth) domain la
ks an appropriate address.

Sin
e presuppositions are stru
turally re
overable from their 
arrier senten
es, it is, in prin
iple,

not ne
essary to present presuppositions expli
itly, in the form of a
tual utteran
e tokens. For

any S

P

, it is suÆ
ient to pronoun
e only S, sin
e P 
an be, and very often is, 
ognitively `slipped

in' when S is pro
essed. This pro
ess is 
alled a

ommodation or Post Ho
 Insertion (PHI).

The pro
ess of PHI is blo
ked only in 
ases where it would result in an in
onsistent D or where

impli
it relations la
k suÆ
ient 
ognitive ba
king. The latter is illustrated in, for example,

(18) When John entered the house, the 
orridor started to pray.

Supposing that John and the house are already `in the story', the 
orridor is easily supplied by

PHI, sin
e it is normal for houses to have 
orridors and one may expe
t a listener to know that.

But it is not normal for 
orridors to pray, and any su
h relation will have to be explained �rst for

an utteran
e of (18) to be interpretable. Failing su
h an explanation, (18) is not interpretable.

Most normal texts 
ontain a multitude of presuppositions `slipped in' by PHI. Given the

relatively large amounts of time and energy involved in the a
tual produ
tion and 
omprehension
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of utteran
e tokens, the me
hanism of PHI 
onstitutes a powerful energy-saving devi
e. It is

important to realize, however, that this devi
e is 
ru
ially dependent on the 
ognitive ability to

dete
t in
onsisten
ies and on available ba
kground knowledge.

The presuppositions of a senten
e may be parallel or sta
ked. For example, a senten
e like:

(19) John realizes that Mary's best friend is divor
ed.

has the parallel presuppositions `There is a person 
alled \John"' and `Mary's best friend is

divor
ed'. The latter, however, again presupposes `Mary's best friend was married before', whi
h

presupposes `Mary has a best friend', whi
h again presupposes `There is a person 
alled \Mary"'.

These presuppositions thus stand in the stru
tural relationship to ea
h other shown in �g. 2 (where

`A ! B' means `A is presupposed by B'). All these presuppositions are re
overable from the

John realizes that Mary’s best friend is divorced

There is a person called ‘John’ Mary’s best friend is divorced

Mary’s best friend was married before

Mary has a best friend

There is a person called ‘Mary’

Figure 2: The presuppositional stru
ture of (19)


arrier senten
e (19) and 
an thus be `slipped in' by means of PHI, in the proper order. We

remark here that PHI inserts all hereditary presuppositions of the senten
e. For the example

senten
e (19) this implies that all senten
es in �g. 2 that are below senten
e (19) are inserted by

PHI. This 
onforms with the fa
t that the presuppositions of the presuppositions of a senten
e S

are themselves presuppositions of S.

Apart from a few late 19th 
entury admonitions (e.g Sidgwi
k 1895) to the e�e
t that 
ontext

and dis
ourse should be 
onsidered essential fa
tors in any adequate semanti
 theory of natural

language, the �rst modern proposals to this e�e
t go ba
k to the early 1970s, in parti
ular Seuren

(1972, 1975), Stalnaker (1973), Isard (1975). They were soon followed by a spate of theories

and proposals that share the property of being in
remental (and thus tend at least to 
onsider a

rehabilitation of o

asion senten
es) but di�er widely in other respe
ts, notably M
Cawley (1979),

Van den Auwera (1979), Ballmer (1979), Lewis (1979), Wunderli
h (1979), Karttunen & Peters

(1979), Gazdar (1979), Kamp (1981), Heim (1982, 1983), Barwise & Perry (1983), Fau
onnier

(1985), Landman (1986), Burton-Roberts (1989), Groenendijk & Stokhof (1991), Kamp & Reyle

(1993), and many others. While many of these do reinstate de�nite des
riptions in the (expli
it

or impli
it) logi
al analysis, thus opening the way towards satisfying 
ondition (a) mentioned at

the outset of this se
tion, only very few take 
ondition (b), whi
h is about presuppositions, into

a

ount. And to the extent that they do, only a few 
onsider the logi
al aspe
ts of presupposition,

the others being restri
ted either, rather myopi
ally, to so-
alled proje
tion phenomena (whi
h
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fall outside any logi
al analysis) or to largely informal pragmati
 analyses, or both. The only

remaining approa
h that 
onsiders both presuppositions and their stri
tly logi
al aspe
ts, Burton-

Roberts (1989), is only remotely in
remental and, moreover, just like all other approa
hes, fails to

take into a

ount the spe
i�
 observations presented in 2.3.1 below and published earlier in Seuren

(1985, 1988) and elsewhere (for a detailed 
ritique of Burton-Roberts 1989 see Seuren 1990). It is

pre
isely these fa
ts that 
all for a spe
i�
 trivalent logi
 with two kinds of falsity (PPC

3

). A similar


on
lusion was rea
hed in Dummett (1973, p. 421) on 
omparable but not identi
al grounds (see

below), but neither Dummett's nor Seuren's argument was ever a
knowledged in the literature on

presuppositions. Therefore, in spite of the many interesting aspe
ts of the literature at hand, none

of it is relevant for the present more restri
ted purpose, whi
h is to reinstate o

asion senten
es

and to investigate their logi
al and mathemati
al foundations in a way that takes a

ount of all

relevant fa
ts.

1.4 Situational keying and referen
e �xation

Every S has to be keyed to a situation for it to have a TV. A key 
onsists in the spe
i�
ation

of where to look for veri�
ation or falsi�
ation. No theory has been developed so far to a

ount

for either the speaker's intentional keying in to a parti
ular situation in the real world W, or the

listener's adequate pi
king up of the intended key. For the listener this appears not to be a stri
tly


ompositional pro
ess, but rather a matter of hypothesis and approximation. Unrestri
ted truth

is anyway not a suÆ
ient 
riterion. If it were, a 
omplete 
eshing out of all presuppositions of

an o

asion senten
e by means of PHI, as illustrated in �g. 2, would be suÆ
ient to provide all

o

asion senten
es with a TV without any intentional keying. It would then, for example, be

suÆ
ient for the truth of (19) that there be persons 
alled `John' and `Mary', respe
tively, that

Mary have a best friend who was married before but is now divor
ed, while John realizes all that.

But although there may be many situations in the a
tual world that satisfy these 
onditions, this

does not make (19) true. The truth or falsity of (19) requires a prior intentional fo
using on a

parti
ular situation shared by speaker and listener. As a matter of prin
iple, TVs are predi
ated

on prior keying, and this fa
t must be taken into a

ount in any theory of truth and meaning, as

well as in an adequate logi
 of natural language senten
es. Formal philosophi
al, semanti
 and

logi
al theories of natural languages are thus subservient more to formal analyses of 
ognition than

to mathemati
al logi
. The role of the latter is still highly relevant, but more restri
ted than is

standardly thought.

It is now 
lear that straightforward-looking instan
es of eternal senten
es, su
h as There isn't

a person 
alled `John' or Everybody wants lower taxes , 
an be true even if there is, somewhere in

the big wide world, a person 
alled `John' or someone of whom it is not true to say that he or she

wants lower taxes. To say that the truth or falsity of su
h statements is pragmati
ally restri
ted

to 
ertain situations may well be 
orre
t, under an appropriate de�nition of the term `pragmati
',

but it is not very enlightening unless the full 
onsequen
es are drawn for the theory of truth and

meaning, and for a proper logi
 of natural language senten
es.

It is probably 
orre
t to say that the �xation of referen
e 
omes after the �xation of a key,

i.e. the intentional fo
using on a spe
i�
 situation. This appears from the fa
t that key-restri
ted

truth is sometimes used as a means for the �xing of referen
e. This phenomenon, des
ribed in

Seuren (1985, pp. 459{464) as `nonspe
i�
 referen
e', is illustrated by a senten
e like:

(20) John owns a dog, and it bit him.

uttered with respe
t to a situation where a person 
alled `John' owns two dogs, one that bit him

and one that did not. In that situation (20) is true, and it is so in virtue of the fa
t that the de�nite

term it automati
ally sele
ts the dog that satis�es the 
onditions of the predi
ate bit him, so that

the se
ond 
onjun
t is true. That is, the referen
e of it (or of John's dog) is made dependent on

the truth of the proposition `it (John's dog) bit him'. This means that the senten
e:

(21) John owns a dog, and it did not bite him.



13

is likewise true in the same situation, be
ause in this 
ase the referen
e obje
t of it is the dog

that did not bite him. This fa
t is remarkable be
ause truth is here used as a 
riterion for the

�xing of referen
e given a situational key. For the se
ond 
onjun
ts of (20) and (21) to be true

it is suÆ
ient for there to be, in the situation at hand, a dog that did, or did not, bite John,

respe
tively.

This puzzling fa
t was noti
ed by Walter Burley, as was shown in 
onne
tion with example (3)

above, and is spe
i�
ally dis
ussed in Gea
h (1969) (though again without attribution). Beyond

that, however, it has es
aped the attention of modern philosophy, probably be
ause it has been as-

sumed that Gea
h's solution to the problem is adequate. Gea
h's solution amounts to `translating'

(20) and (21) not as a 
onjun
tion of two propositions, i.e. as A ^ B, but as, respe
tively

(22) a. 9x[Dog(x) ^Own(John; x) ^ Bite(x; John)℄

b. 9x[Dog(x) ^Own(John; x) ^ :Bite(x; John)℄

so that in
onsisten
y is avoided. It was shown, however, in Seuren (1977) that this solution is

inadequate sin
e it does not apply to 
ases where intensional operators are involved, as in:

(23) a. John must have owned a dog, and it may have bitten him.

b. John must have owned a dog, and it 
annot have bitten him.

Both (23a) and (23b) may be true at the same time, provided John owned at least two dogs.

But Gea
h's solution does not apply, due to s
ope problems. If it is taken to represent a variable

bound by an existential quanti�er 9x, as in (22a,b), then the operators `possible' in (23a) and `not-

possible' in (23b) must be in the s
ope of 9x. But 9x itself is in the s
ope of the ne
essity operator

must , in the normal interpretation of (23a,b). It follows that may and 
annot must likewise be in

the s
ope of must , whi
h is 
learly not what these senten
es mean. It is, therefore, impossible to

bind it in the 
ases quoted, whi
h makes Gea
h's solution invalid for these 
ases. This 
on
lusion

is reinfor
ed by the observation that the pronoun it in (20) and (21) 
an be repla
ed with an

epithet, as in :

(24) a. John owns a dog, and the animal bit him.

b. John owns a dog, and the animal did not bite him.

whi
h, as we have seen, appears to be impossible for pronouns representing bound variables.

The 
onsequen
es of the phenomenon of nonspe
i�
 referen
e are startling. First, the Language

of Predi
ate Cal
ulus must be extended at least with pronominal de�nite terms that are not bound

variables. Se
ondly, and more importantly, even if that is done, the standard model-theoreti



al
ulus by whi
h TVs are 
omputed on the basis of the extensions of terms and predi
ates in the

model 
annot be upheld, sin
e here the extension of some terms is determined by the assumed

value `true' for the proposition at hand, whi
h would make the pro
edure 
ir
ular.

The phenomenon of nonspe
i�
 referen
e shows that keying and referen
e �xation are 
ognitive

pro
esses in a game of hypothesis and approximation, and 
annot be part of logi
al model theory.

In fa
t, standard model-theoreti
 semanti
s, to the extent that it takes keying and referen
e rela-

tions into a

ount (toy models usually do), simply takes these for granted. But this means that the

empiri
al question of how language users 
ome to understand and interpret their senten
es remains

fundamentally unsolved in model-theoreti
 semanti
s. The Quinean programme of reformulating

o

asion senten
es as eternal senten
es is an attempt at 
ir
umventing this problem, but, as has

been shown, to no avail. We must 
on
lude that natural language semanti
s is basi
ally di�erent

from what is 
alled `semanti
s' in logi
.

2 The logi
 of o

asion senten
es

2.1 The logi
 of o

asion senten
es is restri
ted to prior sele
tion of key

and referen
e

It is now 
lear that a formal theory of entailments, i.e. a logi
, of natural language senten
es is

predi
ated on the prior sele
tion of a key K and of referen
e relations in K. In its simplest form,
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K is de�ned by a set I of individuals in W, within frames of time and pla
e. A dis
ourse is said

to be about K. A new senten
e in a dis
ourse may open up a new K, in whi
h 
ase the dis
ourse

is about more than one K. Normal dis
ourses are about sets of Ks forming a hyperkey . In the

present 
ontext hyperkeys will be left out of a

ount, and only simple Ks will be 
onsidered.

A key K realizes a parti
ular a
tual state of a�airs or situation s

a

, but other situations s might

have o

urred in K, depending on what relations obtain in I. We say that K is a set of situations

s, one of whi
h is the a
tual situation s

a

.

If a natural language L is 
onsidered to be a set of senten
es, not all senten
es of L are

interpretable given some K. Only the senten
es in a subset L

K

of L will be interpretable given

K. There is as yet no formal method for delimiting L

K

given some L and given some K (hardly

surprising when one realizes the negle
t of o

asion senten
es in modern logi
 and semanti
s).

Senten
es not belonging to some L

K

have no truth value and are, therefore, not obje
ts in any

logi
al 
al
ulus.

Ea
h senten
e A 2 L

K

is asso
iated with the set of situations � � K in whi
h A is true, or

the �-SPACE of A, also written as =A=. Every �-spa
e is a possible fa
t . When, for some A,

=A= = K, A is ne
essarily true in K. When =A= = ;, A is ne
essarily false in K. We 
all the

�-spa
e of a senten
e A, or =A=, the extension of A. A senten
e A 2 L

K

is true just in 
ase

s

a

2 =A=, and false just in 
ase s

a

=2 =A=.

2.2 Appli
ations of Boolean algebra to standard propositional 
al
ulus

In his famous arti
le (1892), Frege de
ided to apply the distin
tion between intension and exten-

sion, whi
h had so far been restri
ted to predi
ates, also to senten
es. He stipulated that the

extension of a senten
e A, or [[A℄℄, should be the truth value of A, whereas the intension of A

should be the thought underlying A in the minds of language users. His reason for taking TVs

as extensions of senten
es was one of 
onvenien
e. A

ording to Frege, the TV of a senten
e 
an

be 
omputed 
ompositionally from the extensions of its 
omponent parts (1892,p. 33-4). Thus, if

the extension of a senten
e is taken to be its TV, there is a 
ompositional 
al
ulus to 
ompute

the extension of a senten
e on the basis of the extensions of its parts and nothing else. The fa
t

that su
h a 
al
ulus is not available for the intension (underlying thought) of a senten
e makes

this extensional 
al
ulus all the more valuable (it is the basis of Montague's programme of `ex-

tensionalisation of intensions'). It has been shown above that it is not 
orre
t to say that the TV

of a senten
e 
an be 
omputed 
ompositionally from the extensions of its parts, not even if one

limits oneself (whi
h Frege did not do) to eternal senten
es, sin
e the satisfa
tion 
onditions of

predi
ates often require an appeal to world knowledge. But Frege did not take su
h ni
eties into

a

ount.

A further 
onvenien
e for Frege was the fa
t that if TVs are senten
e extensions, Boolean

algebra 
omputes the truth fun
tions. All that is needed is to de�ne `truth' as the value of

Boolean 1, and `falsity' as the value of Boolean 0. Negation (:) is now interpreted as Boolean


omplement, 
onjun
tion (^) as Boolean multipli
ation, and disjun
tion (_) as Boolean addition.

This is the origin of the widespread 
onvention to denote truth with the symbol `1', and falsity

with `0'.

The propositional truth-fun
tional operators now 
ompute as follows. For any senten
es A, B:

� A is true i� [[A℄℄ = 1; A is false i� [[A℄℄ = 0.

� :A is true i� [[A℄℄ = 0; :A is false i� [[A℄℄ = 1. That is, [[:A℄℄ = [[A℄℄.

� [[A ^B℄℄ = [[A℄℄ � [[B℄℄ and [[A _ B℄℄ = [[A℄℄ + [[B℄℄.

This gives the 
lassi
al truth tables of �g. 3. However, although this gives the 
orre
t 
omputations

for the standard truth fun
tions, it remains un
lear what is meant when one says that a senten
e

A is true, or false. All one 
an say, with Frege, is that a true senten
e refers to the verum

or `the True', whereas a false senten
e refers to the falsum or `the False'. However, as a basis

for a philosophi
ally sophisti
ated theory of truth (and meaning), this Fregean appli
ation is
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[[A℄℄ [[:A℄℄

1 0

0 1

[[A ^ B℄℄ [[B℄℄

� 1 0

[[A℄℄ 1 1 0

0 0 0

[[A _B℄℄ [[B℄℄

+ 1 0

[[A℄℄ 1 1 1

0 1 0

Figure 3: Frege's appli
ation of Boolean algebra to bivalent propositional 
al
ulus

unsatisfa
tory and thus open to revision. It requires that the truth values, being extensions,

be 
onsidered part of the world with respe
t to whi
h senten
es (propositions) are true or false.

But the verum and the falsum are hardly defensible as elements in any ontology, a fa
t widely

re
ognized in model-theoreti
 semanti
s but left unremedied.

There is, however, a di�erent though, as far as standard bivalent 
al
ulus is 
on
erned, logi
ally

equivalent notion of senten
e extension, sket
hed in se
tion 2.1 above and based on the notion

of �-spa
e. It was said there that the extension of a senten
e A is a possible fa
t, or the set of

situations in K in whi
h A is true. This we have de
ided to 
all the �-spa
e of A or =A=. The idea

originates with Boole (1847, pp. 49-50), but was never fully elaborated. Kneale & Kneale (1962,

p. 43) speak of a `perhaps more interesting' development. To the extent that one understands

Boole's few remarks on the matter, it seems that he had in mind an interpretation where Boolean

`1' is the algebrai
 expression for the universe U, or the set of all possible situations, of whi
h

the a
tual situation s

a

is one. `0' is the algebrai
 expression for the empty set or ;. For any

senten
e A of L, the extension of A, let us say again =A=, is the set of situations in whi
h A is

true. Apparently, Boole did not realize that most senten
es of any natural language are o

asion

senten
es, whi
h means that they are not true or false per se but only when properly an
hored

and keyed. This makes the notion of `set of possible situations in whi
h a senten
e A is true'

in
oherent. Yet, if this 
ompli
ation is disregarded by always applying the logi
al 
al
ulus modulo

K, Boole's notion provides an alternative to Frege's notion of senten
e extension, whi
h is logi
ally

equivalent as long as the logi
 is kept stri
tly bivalent.

Van Fraassen (1971, pp. 88�) was the �rst to provide a formal elaboration of Boole's idea,

still in terms of an unrestri
ted universe U, i.e. the set of all possible situations, without any


ontextual or keying restri
tions. For Van Fraassen, a situation is de�ned by a valuation, i.e. an

assignment of truth values to all senten
es of a language L. If L 
ontains n logi
ally independent

senten
es, then the number of valuations for L is 2

n

, with the two values T (`true') and F (`false').

The �-spa
e (for Van Fraassen the valuation spa
e) of a senten
e A, or =A=, is the set of valuations

in whi
h A gets the value T. Clearly, if A � B, then =A= � =B=. If A � B, any valuation where

A is valued T and B is valued F is inadmissible, in Van Fraassen's terms.

This allows for a Boolean interpretation of standard propositional 
al
ulus. Let ea
h 
onstant

term in the algebra stand for the �-spa
e of a senten
e in the language. Variables ranging over

terms thus stand for arbitrary �-spa
es. For any ne
essarily true senten
e N

t

in L, =N

t

= = U

(read `1'). For any ne
essarily false senten
e N

f

, =N

f

= = ; (read `0'). =A= is the set of valuations

(�-spa
e) in whi
h A is false. When A is true, the valuation v

a

des
ribing the a
tual situation is a

member of =A=: v

a

2 =A=. When A is false, v

a

=2 =A= and v

a

2 =A=. It follows that =:A= = =A=.

Thus, when A is false, v

a

2 =A=, or v

a

2 =:A=. We now de�ne:

=A ^ B= = =A= � =B= and: =A _ B= = =A=+ =B=

This likewise gives the 
lassi
al truth tables in �g. 4, with T for `true' and F for `false'.

=A= =:A=

T F

F T

=A ^ B= =B=

� T F

=A= T T F

F F F

=A _ B= =B=

+ T F

=A= T T T

F T F

Figure 4: �-spa
e appli
ation of Boolean algebra to bivalent propositional 
al
ulus

The truth tables are demonstrated more 
learly by means of set-theoreti
 diagrams (�g. 5). In



16 2 THE LOGIC OF OCCASION SENTENCES

these diagrams the �-spa
es and the 
orresponding values T and F are positioned in su
h a way

that the truth tables 
an be read dire
tly from the diagrams. The same method is followed in the

�gs. 9, 10 and 13 below.

U

/A/

/   A/

T

F

U

/B/

/A/ T

F

F

F

U

/B/

/A/ T

FT

T

=:A= = =A= =A ^ B= = =A= � =B= =A _ B= = =A=+ =B=

Figure 5: Set-theoreti
 interpretation of bivalent propositional 
al
ulus

In the following se
tion it will be shown that the logi
 of natural language must be at least

trivalent, as it distinguishes two di�erent kinds of falsity. In the light of that distin
tion, Frege's

notion of TVs as senten
e extension and his use of Boolean 1 for truth and Boolean 0 for falsity


annot be upheld, simply be
ause Boolean 0 does not allow for internal distin
tions. If, however,

truth and falsity are treated in terms of �-spa
es, there is no problem, sin
e �-spa
es, being sets,

allow for further internal distin
tions. From now on, therefore, we shall use Van Fraassen's �-

spa
e appli
ation of Boolean algebra as the formal foundation of propositional 
al
ulus, with one

important di�eren
e. Sin
e it makes no sense to say of o

asion senten
es that they are true or false

per se, for any given situation, without spe
ifying how they are an
hored and keyed, we shall not

speak of the universe U of all possible situations, but rather of the key K of all possible situations

in whi
h the senten
es of L

K

are true or false. The `universe of dis
ourse', in other words, is not

the unfathomable totality of all possible situations (`worlds'), with all the 
on
eptual, logi
al and

ontologi
al problems that 
ome with it, but the rather more manageable set of possible states of

a�airs within the restri
ted part of the world fo
used upon by means of the intentional mental a
t

of keying. Apart from that, Van Fraassen's analysis 
an be maintained in its entirety, sin
e the

underlying mathemati
s remains the same.

2.3 The logi
 of presupposition

2.3.1 Presupposition requires trivalen
e

In this se
tion an empiri
al argument is proposed to the e�e
t that the logi
 of natural language


annot be bivalent but must at least be trivalent, with two di�erent kinds of falsity. Before

the argument 
an be presented, the notion of bivalen
e has to be stated with some pre
ision.

The Aristotelian Prin
iple of Bivalen
e, also known as the Prin
iple of the Ex
luded

Third (PET), applies �rst and foremost to the Aristotelian theory of truth as 
orresponden
e.

Its appli
ation to logi
 is se
ondary. For Aristotle, truth and falsity are properties of proposi-

tions expressed in senten
es, in su
h a way that PET holds. PET 
onsists of the following two

independent subprin
iples:

i. Prin
iple of Complete Valuation: all propositions always have a truth value.

ii. Prin
iple of Binarity: there are exa
tly two truth values, `true' and `false'; there are

no values in between, and no values outside `true' and `false'. The Prin
iple of Binarity


omprises the Prin
iple of the Ex
luded Middle (PEM), whi
h says only that there

are no values between `true' and `false', and says nothing about possible values beyond

simply `true' and `false'.
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The Prin
iple of Complete Valuation holds trivially if one follows the tradition, whi
h says that

to have a truth value is a de�ning feature of a proposition. Then, obviously, it makes no sense to

speak of propositions without a truth value. Under our de�nition, however, of a proposition as a

subje
t-predi
ate stru
ture that is 
ontextually an
hored, it makes a great deal of sense. For now

the Prin
iple of Complete Valuation implies that keying is not ne
essary and that all an
hored

senten
es are automati
ally keyed. It has been argued that this must be 
onsidered in
orre
t.

The Prin
iple of Binarity, on the other hand, 
an be reje
ted in a number of ways. One

may, for example, wish to reje
t the Prin
iple of the Ex
luded Middle or PEM, and maintain

that the opposition between true and false is not, as Aristotle insisted it was, absolute, like that

between lo
ked and unlo
ked, but gradable, like that between polite and impolite. An elaboration

of this notion leads to what is known as `fuzzy logi
' (Zadeh 1975), whi
h allows for an in�nite

number of values between `true' and `false'. When all intermediate values are taken together as

one intermediate third value, the result is a trivalent logi
 with an intermediate value between

`true' and `false', su
h as the trivalent logi
 devised by Kleene (1938, 1952) (although Kleene did

not set up his trivalent logi
 with this purpose in mind). Su
h logi
s defy PEM and hen
e the

Prin
iple of Binarity.

A di�erent way of reje
ting the Prin
iple of Binarity, mentioned earlier in se
tion 1.3, 
onsists

in distinguishing di�erent kinds of falsity. An example may illustrate this. Suppose a quiz master

asks the question:

Whi
h of these four was the youngest president ever of the United States:

Reagan, Je�erson, Kennedy or De Gaulle?

The 
orre
t answer is, of 
ourse, `Kennedy. But of the three in
orre
t answers, one is somehow

more in
orre
t than the other two. The answer De Gaulle was the youngest president ever of the

US is somehow `worse' than the answers that mention Reagan or Je�erson, be
ause De Gaulle

does not even ful�ll the preliminary 
ondition of having been president of the US. It is possible,

or thinkable, to exploit this di�eren
e theoreti
ally by distinguishing two kinds of satisfa
tion


onditions, the pre
onditions and the update 
onditions. The extension of the predi
ate be

the youngest president of the US 
an thus roughly be spe
i�ed as follows:

[[be the youngest president of the US℄℄ = fx : x is or was president of the US j there is no y

su
h that y is or was president of the US and

y is or was younger than xg

The 
onditions between the 
olon and the upright stroke are the pre
onditions. Those after the

upright stroke are the update 
onditions. Failure to satisfy the pre
onditions results in radi-


al falsity (F

2

). Failure to satisfy the update 
onditions results in minimal falsity (F

1

).

Satisfa
tion of all 
onditions results in truth (T). The pre
onditions, moreover, determine the

presuppositions of the senten
e in question. In this perspe
tive, the senten
e De Gaulle was the

youngest president ever of the US presupposes that De Gaulle was president of the US. Sin
e this

presupposition is false, the senten
e is radi
ally false.

The argument here is that the behaviour of senten
e negation in natural language, in 
onne
tion

with presuppositions, makes it mandatory to distinguish between minimal falsity and radi
al falsity

in the way indi
ated. The �rst proposal to this e�e
t was made in Dummett (1973, p. 421),

also on grounds of presupposition and negation, though more from a philosophi
al than from an

observational angle. (Dummett also 
onsiders the possibility of two kinds of truth, a suggestion

that should be taken seriously but is not elaborated here.) An a
tual trivalent propositional


al
ulus (PPC

3

) was provided in Seuren (1985, 1988).

Sin
e, under the Prin
iple of Binarity, all situations (whether in U or inK) are su
h that either

A or :A is true, it follows that when A � B and also :A � B, B must be a ne
essary truth (true

in all situations of either U or K). In empiri
al terms this means that if it 
an be established that

in natural language a senten
e A as well as its negation not-A both entail a senten
e B whi
h is

not a ne
essary truth (in U or in K), then natural language not 
annot 
orrespond to the bivalent

negation operator : of standard propositional 
al
ulus. If not is to be rendered in the logi
 of
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language as a truth-fun
tional operator, room must be 
reated for a third option, besides standard

truth and falsity, the `third' ex
luded by PET.

The point now is that there are many senten
e pairs (A;not-A) in natural language, su
h that

both A and not-A entail a senten
e B whi
h is not a ne
essary truth in any sense of the term.

Examples are given in (25){(31) below (similar observations are presented and 
ommented upon

in mu
h grater detail in Seuren 1985, 1988, 2000). In all su
h 
ases the shared entailment B is a

presupposition of A as well as of not-A.

(25) a. All 
hildren laughed. � there were 
hildren

b. Not all 
hildren laughed. � there were 
hildren

(26) a. Only the 
hildren laughed. � the 
hildren laughed

b. Not only the 
hildren laughed. � the 
hildren laughed

(27) a. The butler killed Ja
k. � someone killed Ja
k

b. The butler didn't kill Ja
k (Joe did). � someone killed Ja
k

(28) a. It was the butler that killed Ja
k. � someone killed Ja
k

b. It wasn't the butler that killed Ja
k. � someone killed Ja
k

(29) a. Who killed Ja
k was the butler. � someone killed Ja
k

b. Who killed Ja
k wasn't the butler. � someone killed Ja
k

(30) a. That Joe died surprised Susan. � Joe died

b. That Joe died didn't surprise Susan. � Joe died

(31) a. She doesn't mind that Joe has left. � Joe has left

b. She does mind that Joe has left. � Joe has left

The senten
e pairs (25{31) distinguish themselves from the majority of pairs (A;not-A) in that

normally a senten
e not-A allows for the 
an
elling of presuppositional entailments if the negation

word not is given heavy a

ent and the whole senten
e is pla
ed under an e
ho-intonation. Thus,

in (32) the presuppositional impli
ation that there is a king of Fran
e 
an be 
an
elled under the

intonational 
onditions mentioned. Yet there remains a more or less strong suggestion or invited

inferen
e that there is a king of Fran
e, an inferen
e mistaken by many for an entailment:

(32) The present king of Fran
e is not bald.

In his famous (1905), Russell maintained that (32) does not entail that there is a king of Fran
e,

although it suggests it. His solution 
onsisted in analysing or `translating' (32) in two di�erent

ways:

(33) a. :9x[Now[KoF(x)℄ ^ Bald(x) ^ 8y[Now[KoF(y)℄! x = y℄℄

b. 9x[Now[KoF(x)℄ ^ :Bald(x) ^ 8y[Now[KoF(y)℄! x = y℄℄

(33a) is the ordinary full sentential negation of (9b), his translation of (9a), The present king of

Fran
e is bald , whereas in (33b) the negation is restri
ted to the propositional fun
tion `Bald(x)'.

For reasons best known to natural language speakers, Russell says, (33b) appears to be preferred

and (33a) appears to be the marked 
ase. Why speakers should have this preferen
e is left open by

Russell. That question was taken up in modern pragmati
s (whi
h has, however, failed to provide

an answer).

Leaving aside the question of whether Russell's `translations' (33a,b) are justi�able, we must

admit that he was right in 
laiming that (32) is open to two interpretations, one that saves the

presupposition of (9a), and one that 
an
els it. If this were the 
ase for all negative senten
es in

natural languages, then there would indeed be some point in saying that full sentential negation,

as in (33a), 
an
els all entailments, so that standard propositional 
al
ulus 
an stand. It is found,

however, Seuren (1985, pp. 118{238) that there are many 
ases where the reading expressed in

(33a) is not possible. These are, �rst, all 
ases where the senten
e negation is not in its `
anoni
al'

position, i.e. in 
onstru
tion with the �nite verb, as in (25b) and (26b). Su
h `out-of-pla
e'

negations, apparently, have no 
hoi
e but to preserve all presuppositional entailments. Yet the

only possible translation for these senten
es pla
es the negation at the top: in all these 
ases the

negation is full senten
e negation, even though the presuppositional entailments are preserved.

Sin
e this is not possible in standard bivalent logi
, something has to be done about the logi
.
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This fa
t is illustrated neatly by the following three English senten
es (where the ex
lamation

mark indi
ates 
ommuni
ational in
oheren
e):

(34) a. He did not only sell his 
olle
tion of rare books. He only sold his �rst edition of Milton.

b. ! Not only did he sell his 
olle
tion of rare books. He only sold his �rst edition of Milton.


. ! He not only sold his 
olle
tion of rare books. He only sold his �rst edition of Milton.

The senten
e He only sold his 
olle
tion of rare books presupposes that he sold his 
olle
tion of rare

books and asserts that he sold nothing else. This presupposition 
an be 
an
elled in (34a), where

not is in 
onstru
tion with the �nite verb did . However, in (34b,
) not is in di�erent positions,

allowed for by the grammar of English, and here the presupposition 
annot be 
an
elled, as is

borne out by the in
oheren
e of (34b,
). Nor is it possible to `translate' them in su
h a way that

not is no longer a full sentential negation.

Returning now to (25a,b), we see that the presupposition that there were 
hildren is maintained

under senten
e negation, apparently be
ause not does not o

ur in the 
anoni
al position for

senten
e negation. One realizes, of 
ourse, that in standard Predi
ate Cal
ulus (25a) does not

entail that there were 
hildren (though (25b) does on a

ount of the fa
t that `not all' is equivalent

to `some not', whi
h has existential import). Yet standard Predi
ate Cal
ulus does an injusti
e to

natural language in this respe
t, as was also re
ognized by Strawson (1952) and by Aristotle, whose

Predi
ate Cal
ulus had existential import as a valid inferen
e s
hema (the `subaltern'). As is well

known, the Aristotelian inferen
e from `all' to `some' leads to logi
al disaster when empty sets are

quanti�ed over, but it is all right as long as empty sets are avoided. In other words, Aristotelian

Predi
ate Cal
ulus presupposes the nonemptiness of the sets quanti�ed over. This means that

Aristotle impli
itly, and no doubt without realizing it, not only took proper an
horing and keying

for granted in his Predi
ate Cal
ulus, but also limited it to situations where presuppositions are

ful�lled. Under these restri
tions, Aristotelian Predi
ate Cal
ulus is sound.

The examples (27{29) are to do with fo
using in terms of three synta
ti
ally di�erent types of

topi
-
omment stru
ture. Apparently, for reasons not yet worked out (but surely to do with the

prin
iples of 
oherent dis
ourse) fo
using stru
tures 
annot give up their presuppositions under

negation.

Example (30) involves the predi
ate surprise whi
h is fa
tive with regard to its subje
t 
lause

(i.e. the truth of the subje
t 
lause is presupposed). As long as the subje
t 
lause stays in the

synta
ti
 position for subje
ts, the fa
tive presupposition 
annot be shed under negation. By way

of 
ontrast, 
onsider:

(35) a. It surprised Susan that Joe died. � Joe died

b. It did not surprise Susan that Joe died. 2 Joe died

where (35b) no longer entails that Joe died, sin
e now the `radi
al' interpretation of not is possible.

In (31) we have to do with the negative polarity item mind , whi
h requires either a

negative 
ontext or 
ontrastive a

ent, as in (31b), for the senten
e to be grammati
al. Negative

polarity items, likewise, do not allow for presuppositions to be dropped under negation.

Cases like (25{31) show that senten
e negation does not per se 
an
el presuppositional entail-

ments, but 
learly preserves them in 
ertain senten
e types. This fa
t shows that the 
lassi
al

bivalent paradigm 
annot be upheld, unless some external remedy is found. In the logi
-based the-

ory of model-theoreti
 semanti
s it has been hoped, for the past quarter 
entury, that pragmati
s

would provide su
h an external remedy. Yet no su
h remedy has been provided. That being so,

we feel justi�ed in saying that it makes sense to look for ways to extend standard bivalent logi


in su
h a way that the observations made above are a

ounted for in logi
al terms. The obvious

solution would then seem to 
onsist in adding a third truth value and making the logi
 trivalent.

2.3.2 Kleene's trivalent 
al
ulus

A �rst notable attempt to do just that was made in Kleene (1938, 1952), mentioned earlier.

Kleene's trivalent 
al
ulus is widely used in logi
-oriented presupposition resear
h (e.g. Blau 1978).
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Yet 
loser analysis reveals that it is un�t for that purpose, although it does serve the di�erent

purpose of a

ounting for phenomena to do with transitional values between true and false.

What Kleene had in mind was a logi
al a

ount of senten
es 
ontaining nonreferring terms,

i.e. terms whose proper semanti
 fun
tion is to refer to a world entity whereas the world does

not 
ontain su
h an entity, pre
isely as in Russell's famous senten
e (9a). Su
h `unde�ned terms'

would make the senten
e have the TV `unde�ned' or `u'. This trivalent 
al
ulus, with the values T,

u, and F, works a

ording to the truth tables shown in �gs. 6 and 7. One sees that under negation

T and F `toggle' in the 
lassi
al way, but that u is una�e
ted by negation, that under 
onjun
tion

(^) F takes pre
eden
e over all other values, and u over T, whereas under disjun
tion (_) T takes

pre
eden
e over all other values, and u over F. In �g. 6 this leads to the fan-like stru
ture in the

tables for ^ and _, with T as the root of the fan for ^, and F for _. In the equivalent tables of

�g. 7 where u is ordered as the third value, after T and F, the fan-like stru
ture has disappeared.

We shall see in a moment that this is signi�
ant: for a proper �-spa
e interpretation the fan-like

disposition of the values is mandatory.

A �A

T F

u u

F T

A ^ B B

T u F

A T T u F

u u u F

F F F F

A _ B B

T u F

A T T T T

u T u u

F T u F

Figure 6: Truth tables of Kleene's trivalent propositional 
al
ulus

A �A

T F

F T

u u

A ^ B B

T F u

A T T F u

F F F F

u u F u

A _ B B

T F u

A T T T T

F T F u

u T u u

Figure 7: Truth tables of Kleene's trivalent propositional 
al
ulus

This logi
 maintains all axioms of 
lassi
al bivalent logi
 with the negation operator `� ' for

standard `:', ex
ept � A _ �A. In parti
ular, De Morgan's Laws apply un
hanged:

(36) a. �(A ^B) � �A _ �B

b. �(A _B) � �A ^ �B

That the Kleene 
al
ulus fails to a

ount for presuppositions appears from the following. It is

assumed, in a

ordan
e with all theories of presupposition, that (37) is a de�ning logi
al property

of the presupposition relation. (Sin
e Kleene provides no operator yielding truth when v[A℄ = u

(A is valued u), we introdu
e the operator `u' and de�ne: v[uA℄ = T i� v[A℄ = u and v[uA℄ = F

otherwise.)

(37) If A� P , then A � P and �A � P and (�P _ uP ) � uA.

Moreover, in any reasonable notion of presupposition, it must be assumed that:

(38) A

C

^ B

D

� C ^D, where A and B are logi
ally independent (`X

Y

' : `X presupposing

Y ').

For neither A

C

^ B

D

nor �(A

C

^ B

D

) 
an be 
ontextually an
hored unless the presuppositions

of A and B, i.e. C and D, respe
tively, are part of the pre
eding dis
ourse (see 1.3). This means

that A

C

^ B

D

, provided A

C

and B

D

are well-keyed, 
an only have the values T or F if both C

and D are true. Here, the Kleene 
al
ulus poses a problem. Take a situation where C is true and

D is false and A

C

is false (and, of 
ourse, B

D

has the value u, sin
e its presupposition D is false).
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Now C ^D has the value F, whi
h should make it ne
essary for A

C

^B

D

to have the value u. Yet,

with F for A

C

and u for B

D

, the Kleene tables give F for A

C

^B

D

, and not the required value u.

The deeper reason why the Kleene 
al
ulus fails in this respe
t be
omes 
lear in the �-spa
e

interpretation. Sin
e, in general, if A � B, then =A= � =B=, it follows from (37) that if A � P ,

then =A= � =P= and =�A= � =P= and =P= � =uA=. In fa
t, if P

A

stands for the 
onjun
tion of all

presuppositions of A, then =�A=[ =A= must equal =P

A

=. We 
all =P

A

= the presuppositional

subuniverse of A.

If Kleene's 
al
ulus is to a

ount for the presupposition relation, =�A= must be de�ned as

=P

A

= � =A=, as in �g. 8 (left), where =P

A

= (the area within heavy lines) equals =A= [ =�A=.

Fig. 8 (right) shows that both A and �A entail their presupposition P (=P= is represented by the

dark grey area).

/ P /A

/uA/

K

/~A/

/A/

/uA/

K

/~A/

/A/

/P/

=�A= [ =A= = =P

A

= =A= � =P= and =�A= � =P=

Figure 8: If A� P , then =A= � =P= and =�A= � =P=

However, it is now impossible to set out the �-spa
es for �(A ^ B) and �(A _ B) in su
h a

way that De Morgan's Laws apply under the Kleene truth tables. De Morgan's Laws require that

=�(A ^ B)= = =�A= [ =�B= and =�(A _B)= = =�A= \ =�B=.

/ P A /\ B /

K

T F F

F F F

F F u

/B/

/A/

/~A/

/ PB

/ PA

/

/

/~B/

/ P /A /\ B

K

T

F u

u

/B/

/A/

/~A/

u

/ P

/ PA

B/

/

/~B/

F

F

u

u

/ P A \/ B /

K

T T T

T F u

T u

/B/

/A/

/~A/

u

/ P

/ PA

B/

/

/~B/

=A ^B= = =A= \ =B= =A ^B= = =A= \ =B= =A _B= = =A= [ =B=

=�(A _B)= = =�A= \ =�B=

Figure 9

In �g. 9 we have tried to pi
ture the situation where the requirements of De Morgan's Laws

are ful�lled, given the de�nition of presuppositional � as in �g. 8. The 
onjun
tion has been

represented twi
e, on
e with =P

A^B

= = =P

A

=[=P

B

= and on
e with =P

A^B

= = =P

A

=\=P

B

=. In

either 
ase, however it is not so that =�(A^B)= = =�A=[=�B=, quite apart from the fa
t that

the truth tables do not 
orrespond. Moreover, the diagram for =�(A_B)= in �g. 9 (right) violates

(37), sin
e nontruth of P

A_B

does not automati
ally result in the value u for A _ B. (The dark

grey areas 
ontain the situations in K that produ
e T, the light grey areas those that produ
e F,
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and the white areas those that produ
e u, for �A, A ^ B, and A _ B, respe
tively. The areas

within heavy lines represent =P

A

=, =P

A^B

=, and =P

A_B

=, respe
tively.) Therefore, De Morgan's

Laws 
annot be made to hold in the Kleene 
al
ulus under a presuppositional interpretation.

The only way to satisfy Kleene's 
al
ulus in a �-spa
e interpretation is to leave out the notion

of presupposition and 
onsider the value u as a transition between T and F, as in �g. 10. Now

De Morgan's Laws hold and the right truth tables result, but the presupposition relation 
annot

be expressed. The only way to de�ne =P

A^B

= is to take in �g. 10 (middle) the union of all the

non-white areas. Then, however, =P

A

= \ =P

B

= ( =P

A^B

=, where one would expe
t these to be

equal. But even if we take this inequality for granted, we still 
annot a

ept the de�nition of

=P

A^B

=, be
ause if A has the value F and B has the value u, then �(A ^ B) has the value T,

whereas the 
onjun
tion of the presuppositions of A and B has the value F, violating (37) and

(38). For that reason we have said, in se
tion 2.3.1, that the Kleene 
al
ulus seems appropriate

as a logi
al a

ount of a violation of PEM, if the value u is taken to in
orporate all intermediate

values between T and F. Note, in
identally, that while in �g. 10 =�(A ^ B)= = =�A= [ =�B=

and =�(A _ B)= = =�A= \ =�B=, the analogous equations with u for � are not valid. De

Morgan's Laws thus do not hold for the operator u.

K

F

/uA/ u

/~A/ T

/A/

F

u F

F F F

K

T

/B/

/A/

/uA/

/uB/

u

u

T

u u

T u F

K

T

/B/

/A/

/uA/

/uB/

T

T

=�A= = =P

A

=� =A= =A ^ B= = =A= \ =B= =A _ B= = =A= [ =B=

=�(A ^B)= = =�A= [ =�B= =�(A _ B)= = =�A= \ =�B=

Figure 10

2.3.3 The trivalent presuppositional 
al
ulus PPC

3

In order to satisfy the logi
al 
onditions (37) and (38) of the presupposition relation, it is ne
essary

to de�ne, for A

B

, where B is the 
onjun
tion of all presuppositions of A, a presuppositional

subuniverse or subkey P

A

su
h that =�A= = =P

A

=� =A= and =P

A

= := =B=.

Three values are distinguished: T, F

1

and F

2

, and two 
omplementary negations, the minimal

presupposition-preserving negation � and the radi
al presupposition-
an
elling negation ' . (The


lassi
al bivalent negation : has been thrown in for good measure.) We 
all =�A= the inner


omplement of A, and ='A= the outer 
omplement of A.

This gives the truth tables shown in �g. 11. (The impli
ation is left unde�ned in PPC

3

, be
ause


onditional senten
es in natural language are 
learly not truth-fun
tional but imply a modal notion

of ne
essity whi
h 
annot be expressed by means of a truth table. But if one wishes, an impli
ation

of the form A ! B 
an be de�ned as `(�A _ 'A) _ B', whi
h redu
es this impli
ation to the


lassi
al impli
ation. And analogously for the bi-impli
ation A � B.)

For PPC

3


onjun
tion, F

2

takes pre
eden
e over the other values and F

1

over T. For disjun
tion,

T takes pre
eden
e over the other values and F

1

over F

2

. Note that, for any proposition A,

(�A _ 'A) � :A (with the 
lassi
al bivalent negation :). PPC

3

is, therefore, equivalent to


lassi
al bivalent propositional 
al
ulus provided only : is used as negation. (In parti
ular, :(A^

B) � :A _ :B and :(A _B) � :A ^:B.) The negations � and ' are 
alled spe
i�
 negations,

be
ause they turn one spe
i�
 kind of falsity into truth. : is a nonspe
i�
 negation in PPC

3

.

PPC

3


an be extended to PPC

n

, with n � 1 kinds of falsity. Conjun
tion always sele
ts the

highest degree of falsity and truth only if there is no falsity at all. Disjun
tion always sele
ts
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A �A 'A :A

T F

1

F

1

F

1

F

1

T F

1

T

F

2

F

2

T T

A ^ B B

T F

1

F

2

A T T F

1

F

2

F

1

F

1

F

1

F

2

F

2

F

2

F

2

F

2

A _ B B

T F

1

F

2

A T T T T

F

1

T F

1

F

1

F

2

T F

1

F

2

Figure 11: Truth tables of PPC

3

truth over falsity, and lower degrees of falsity over higher degrees. For ea
h

i

� A (1 � i < n),

T and all values F

j

(j < i) are 
onverted to F

1

, F

i

is 
onverted to T, and all values F

k

(k > i)

are left un
hanged. For PPC

4

this is shown in �g. 12. Note that : is still the disjun
tion of all

spe
i�
 negations. An interesting 
orollary is that a propositional 
al
ulus, de�ned in terms of

f:;^;_g, may have any number of truth values. However, without further spe
i�
 negations for

spe
i�
 
omplements, all distin
tions between kinds or degrees of falsity are va
uous. E
onomy

then requires that all values 6= T be united into one value for falsity.

A

1

� A

2

� A

3

� A :A

T F

1

F

1

F

1

F

1

F

1

T F

1

F

1

T

F

2

F

2

T F

1

T

F

3

F

3

F

3

T T

A ^B B

T F

1

F

2

F

3

A T T F

1

F

2

F

3

F

1

F

1

F

1

F

2

F

3

F

2

F

2

F

2

F

2

F

3

F

3

F

3

F

3

F

3

F

3

A _B B

T F

1

F

2

F

3

A T T T T T

F

1

T F

1

F

1

F

1

F

2

T F

1

F

2

F

2

F

3

T F

1

F

2

F

3

Figure 12: Truth tables of PPC

4

In a �-spa
e interpretation, PPC

3

is represented as in �g. 13. This is an exa
t parallel of

�g. 10, ex
ept that the �-spa
es of �A and 'A (or uA in �g. 10) have 
hanged positions: in

�g. 10, =�A= is the outer 
omplement and =uA= the inner 
omplement of A, whereas in �g. 13

=�A= is the inner 
omplement, and ='A= the outer 
omplement of A. This means that in PPC

3

De Morgan's Laws hold for the operator ' (and, of 
ourse, for :), but not for � (unless the value

F

2

is disregarded).

F
2

/ P / = /A/ U /~A/A

~

K

/~A/

/A/

T

F
1

/  A/

F2

F2

F2 F2 F2

/ PA/

K

T

/B/

/A/

1F 1

1

F

F

/ P A /\ B / = / PB/

U

/ PB/

/ PA/

F2

/ PB/

K

T

/B/

/A/ T T

T

T

/ P / =A \/ B

1 1

1

F F

F

/ PA/ U

/ PB/

/ PA/

=�A= = =P

A

=� =A= =A ^ B= = =A= \ =B= =A _ B= = =A= [ =B=

Figure 13

Note that an eternal senten
e, and thus without any presuppositions, 
an still be regarded, from

a stri
tly logi
al point of view, as presupposing all ne
essary truths. An eternal senten
e has no

outer 
omplement and 
annot have the value F

2

. Its inner 
omplement is the 
lassi
al 
omplement

in K, and standard bivalent logi
 applies. Thus, a senten
e with the internal stru
ture A ^ B

A


an be read as A

K

^ B

A

. Its �-spa
e =A

K

^ B

A

= = =B

A

=, and =P

A

K

^B

A

= = =P

A

K

= \ =P

B

A

= =

K \ =A= = =A=.
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A further important point is the following. In se
tion 1.3 above, the logi
al 
ondition (17) was

formulated for the presupposition relation, saying that if A� B, then A j= B and not-A j= B. It

was stipulated there that this 
ondition does not de�ne presupposition but is merely a ne
essary


ondition, sin
e there may be 
ases where (17) is satis�ed but where we do not want to speak of

presupposition. This o

urs in parti
ular under the operator ^, and spe
i�
ally with 
onjun
tions

of the type A ^B

A

, whi
h are very frequent in language use, be
ause they are informative in the

sense that =B

A

= � =A=.

It follows from PPC

3

that both A ^ B

A

j= A and �(A ^B

A

) j= A. Yet we do not want to say

that A^B

A

� A. The reason is that in language a sequen
e A and B is pro
essed in any 
urrent

dis
ourse domainD as the in
rement of A followed by the in
rement of B. A temporal order is thus

involved in the pro
essing of A and B, whi
h 
annot be expressed in the stati
 truth-fun
tional

system PPC

3

. This temporal order is manifest in the presupposition relation in the manner shown

in �g. 14. Let A be a senten
e without presuppositions, so that =P

A

= = K. The left diagram

/ P /A

K

 

/A/

/ P /B

/B  /
A

K

 

/A/

/ P /B

K

 

/A/

/C   /
B

/B  /
A

A

/ P /C

Figure 14: Subsequent pro
essing of A, B

A

and C

B

A

shows K after A has been in
remented, or added, in K. The middle diagram shows K after the

in
rementation of B

A

, with =P

B

= = =A=, and the right diagram shows the situation after the

addition of C

B

A

, now with =P

C

= = =B=. That is, after ea
h su

essive in
rementation the spa
e

within whi
h the minimal negation operates gets more restri
ted, and previous presuppositional

subuniverses are 
an
elled. Sin
e linguisti
 and is an operator signalling a new in
rementation,

the use of a minimal negation over a 
onjun
tion of the type A and B

A

is logi
ally unde�ned: in

the middle diagram of �g. 14, the minimal negation operates within K for A but within =A= for

B

A

. For that reason a stru
ture like �(A^B

A

), though logi
ally sound in PPC

3

, has no logi
ally

equivalent translation in natural language. A senten
e like

(39) He did not marry a prin
ess and divor
e her after one year.

does not 
orrespond to the logi
al stru
ture �(A ^ B

A

). In fa
t, no logi
al translation of that

senten
e is available at present. This being so, we do not want to say that A and B

A

presupposes

A, whereas we do want to say that the logi
ally equivalent B

A

does.

One might 
onsider a system where K and =A= in the right diagram of �g. 14 are de�ned as

`higher order' subuniverses delimiting inner 
omplements under `higher order' negations. In that


ase the logi
 would 
u
tuate between 2 and n values a

ording to the number n + 2 of sta
ked

presuppositions, perhaps as shown for PPC

n

above. But su
h a system would not model natural

language, whi
h does not have a 
orresponding system of unlimited `higher order' negations.

So we are fa
ed with a situation where, although =P

C

= = =B=, the inner 
omplement of =B= is

di�erent from the inner 
omplement of =P

C

=, sin
e the inner 
omplement of =B= is delimited with

regard to =P

B

= = =A=, while that of =P

C

= is delimited with regard to K, without any intervening

presuppositional subuniverse. Phrased in other terms: a presuppositional proposition has no

presuppositions itself. For the extension of the proposition P

P

C

, this means that =P

P

C

= = K,

even though =P

C

= = =B= and =P

B

= = =A=. The 
onsequen
es for the 
al
ulus of presuppositional

subuniverses are explained in se
tion 3 below.
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2.3.4 Kleene's 
al
ulus and PPC

3


ombined into PPC

3

-K

PPC

3

and the Kleene 
al
ulus are 
ompatible and 
an be 
ombined into PPC

3

-K. The Kleenean

value `u' between two values x and y is interpreted as `vague between x and y'. Sin
e PPC

3


ontains three values, T, F

1

and F

2

, PPC

3

-K 
ontains two values u: u

1

and u

2

. The truth tables

of PPC

3

-K are as in �g. 15. The �-spa
e interpretation of PPC

3

-K is as in �g. 13 above, but with

A �A

e

�A

T F

1

F

1

u

1

u

1

F

1

F

1

T F

1

u

2

u

2

u

1

F

2

F

2

T

A ^ B B

T u

1

F

1

u

2

F

2

A T T u

1

F

1

u

2

F

2

u

1

u

1

u

1

F

1

u

2

F

2

F

1

F

1

F

1

F

1

u

2

F

2

u

2

u

2

u

2

u

2

u

2

F

2

F

2

F

2

F

2

F

2

F

2

F

2

A _ B B

T u

1

F

1

u

2

F

2

A T T T T T T

u

1

T u

1

u

1

u

1

u

1

F

1

T u

1

F

1

F

1

F

1
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Figure 15: Truth tables of PPC

3

�K

the boundary lines between =A= and =�A=, and between =�A= and ='A= blurred or repla
ed

with a transitional area. The value u

1

stands for the transitional area between =A= and its inner


omplement =�A=. This value is assigned when A is neither 
learly true nor 
learly minimally

false. The value u

2

stands for the transitional area between =P

A

= and ='A=. It is assigned when a

presupposition of A is neither 
learly true nor 
learly (minimally) false. In either 
ase the minimal

negation � has no e�e
t. The radi
al negation ' , whi
h says that A su�ers from presupposition

failure, yields (minimal) falsity when A is true, minimally false or somewhere in between, and

gives minimal unde�nedness (u

1

) when a presupposition of A is (radi
ally) unde�ned.

2.3.5 The relation between semanti
s and logi


It is probably 
orre
t to say that the tables of �g. 15, as far as they go, do partial justi
e to

the logi
 of natural language. They 
ertainly provide an answer to the an
ient paradoxes of

the Heap `Sorites' and the Horns (Seuren 1998b, p. 427). Yet standard bivalent logi
 remains

privileged, in that it is adequate for languages without vague predi
ates and whose an
horing and

keying 
onditions are automati
ally ful�lled so that presuppositions are either absent or irrelevant.

One su
h language is the language of mathemati
s, but many formal or te
hni
al uses of natural

language satisfy these 
onditions as well.

However, whether the tables of �g. 15 also do semanti
 justi
e to natural language as used

under normal 
onditions is another matter. From a logi
al point of view, natural language is more


omplex than standard bivalent logi
, due, in part, to its an
horing and keying 
onditions. But

besides this greater 
omplexity, whi
h is partly 
aught in the tables mentioned, there is also the

fa
t that logi
 and semanti
s are less 
losely related than is widely assumed in formal semanti
s.

Even when a 
orre
t and adequate logi
 of natural language is available, it does not follow au-

tomati
ally that the logi
al elements (quanti�ers, 
onne
tives) as des
ribed in the logi
 of language

provide a 
orre
t semanti
 analysis of their 
orresponding elements in language. Several aspe
ts

play a 
entral role in semanti
s but are absent from a logi
al analysis, whi
h is 
on
erned solely

with the preservation of truth through sets of senten
es. In Seuren (2000) it is argued that spee
h

a
t quality is an essential aspe
t of semanti
 theory, unjustly assigned to pragmati
s in standard

formal semanti
s. It is argued there that the propositional 
onne
tives, in
luding negation, are

more adequately a

ounted for in terms of di�erent forms of speaker's 
ommitment, and not in

terms of truth fun
tions.

It is likewise argued there that the logi
al 
onsequen
es of the fa
t that natural language

happily mixes obje
t language and metalanguage, apparently without the risk of paradoxes, have

been unjustly negle
ted in standard formal semanti
s and in the philosophy of language. The

linguisti
 
ounterpart of radi
al negation is ri
her than its logi
al representative ' , in that it has

a spe
i�
 metalinguisti
 fun
tion (Horn 1985), whi
h is not 
aptured by its logi
al de�nition. This

aspe
t, whi
h is analysed in detail in Seuren (2000), 
annot be further elaborated here.
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The logi
 of natural language, in other words, is 
onsidered to be a metaphysi
ally ne
essary

epiphenomenal aspe
t of the elements, stru
tures and pro
esses at issue. Questions of this nature

are profound and far from easy to understand, and it 
annot be the purpose of the present paper to

provide a �nal answer. What we wish to a
hieve here is, more modestly, to bring these questions to

the fore and show their importan
e. Formal semanti
s has, on the whole, overlooked or negle
ted

these questions. They are, however, highly relevant, if only be
ause the ma
hinery of logi
, no

matter how enlightening and inspiring from a variety of points of view, 
an hardly be 
onsidered to

provide or 
onstitute a realisti
 hypotheti
al re
onstru
tion of the mental stru
tures and pro
esses

involved in the understanding and interpretation of linguisti
 utteran
es.

In the following se
tion, the mathemati
al properties of PPC

3

are investigated, not be
ause

PPC

3

is regarded as a semanti
 theory, but rather be
ause it is essential for any semanti
 theory

that proof be given of the mathemati
al soundness of the logi
 emerging from it.

3 The Boolean foundation of PPC

3

3.1 Non
ompositionality

The fa
t that PPC

3

is representable by means of a set-theoreti
 diagram as in �g.13 means that

it must have a Boolean foundation. Sin
e this is not provided in the logi
al or mathemati
al

literature, it is developed in the present se
tion. It must likewise be possible to develop a Boolean

foundation for the Kleene 
al
ulus and for PPC

3

-K. In order not to 
ompli
ate matters unduly,

this is not attempted here: we shall limit ourselves to PPC

3

.

We anti
ipate immediately that one major problem in the mathemati
al theory of presuppo-

sitional logi
 is the non
ompositionality of the system. By 
ompositionality we mean here the

admissibility of substitution of equal terms inside a 
ontext. Let C(a

1

; : : : ; a

n

) be a 
ontext in

whi
h the terms a

1

, : : : , a

n

o

ur. The substitution property states that we 
an substitute equal

terms in pla
e of a

1

, : : : , a

n

, i.e. that if b

1

= a

1

, : : : , b

n

= a

n

, then C(b

1

; : : : ; b

n

) = C(a

1

; : : : ; a

n

).

If the substitution property holds the equality `=' is said to be a 
ongruen
e. This property fails

for PPC

3

be
ause two �-spa
es may be equal without having the same inner 
omplements, as was

explained at the end of se
tion 2.3.3 above. We 
an intuitively explain this phenomenon by saying

that the equality `=' is blind to presuppositions and 
an see only extensions of propositions. This

gives us the idea of de�ning a new equality `�' that is able to see presuppositions as well. That

is, a � b means that not only the extensions of a and b are the same, but also those of their

presuppositions. In the next se
tions we will formulate and study the system PPC

3

with the weak

equality `=' and as from se
tion 3.5 we will study a 
ompositional version, PPC




3

, whi
h uses the

strong equality `�'.

Consider a Boolean system where a term a stands for the �-spa
e of some senten
e A of a

language L, i.e. as =A=. The prin
ipal innovation with regard to standard Boolean algebra 
onsists

in the introdu
tion of an operator `1' su
h that 1

a

represents the presuppositional subuniverse

=P

A

= of A. The symbol `1' is here used as a unary operator that, when applied to the Boolean

term a representing the extension =A= of a propositionA, delivers the Boolean term 1

a

representing

=P

A

=.

The 
hoi
e of the symbol `1' for the operator at hand has been deliberate. It underlines the

fa
t that 1

a

is interpreted as a presuppositional subuniverse for the 
orresponding senten
e A. It

may look as if the symbol `1' is used ambiguously as (i) a Boolean 
onstant (a 
onstant in all

Boolean systems) and (ii) an operator over terms yielding terms. We 
an, however, generalize the

notion of 1 as an operator in su
h a way that the Boolean 
onstant 1 is seen as a spe
ial 
ase of the

operator 1. The operator 1 is thus taken to be basi
, the 
onstant 1 being derived from it. We do

this by de�ning 1 (without argument) as the 
ommon value for all 1

1

a

for any term a. Moreover,

1

1

= 1 (equation (e21) in Proposition 3.7 below) and 1

0

= 1 (axiom (D4) in De�nition 3.3).

There is a deeper signi�
an
e to this. The fa
t that the 
onstant 1 is now derived from the

non
ompositional fun
tion 1 makes an interpretation of 1 in a system, su
h as the system of �-

spa
es, less absolute. It is no longer ne
essarily the unwieldy `universe' of all that is or may be the
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ase, but rather a `universe' or key in so far as it is relevant to a given dis
ourse. It is now also

possible to have di�erent `universes' or keys side by side in a hypersystem of systems running in

parallel. It would seem that, in prin
iple at least, this opens new possibilities for a more adequate

logi
 to model dis
ourses.

As was shown at the end of se
tion 2.3.3, the operator 1 is non
ompositional, sin
e it is

possible for two senten
es in natural language to have identi
al �-spa
es yet to di�er in their inner


omplements. That is, we do not have in general a = b ! 1

a

= 1

b

. A 
on
rete example will

illustrate this.

Consider the propositions expressed in the following senten
es, 
orresponding exa
tly to A, B

and C, respe
tively, in �g. 14 above:

(40) A There is an island of Atlantis.

B There are inhabitants on the island of Atlantis.

C The inhabitants of the island of Atlantis have blue eyes.

One might think that, sin
e 1

=C=

= =B= and 1

=B=

= =A=, it would follow that 1

1

=C=

= =A=. This

would, however, 
ontradi
t the fa
t that presuppositional propositions have no presuppositions

themselves (see the remark at the end of se
tion 2.3.3), whi
h is stated formally in axiom (D1) of

de�nition 3.3 below: 1

1

=C=

= 1. What we have in fa
t is 1

=C=

= =B= � =A= = =B= (C presupposes

both that there is an island of Atlantis and that it is inhabited, i.e. that the island of Atlantis is

inhabited). But our troubles are not over yet: it would follow from 1

=B=

= =A= and 1

=A=

= 1 that

1

=B=

� 1

=A=

= =A=, whi
h would lead to the 
ontradi
tion

1 = 1

1

=C=

= 1

=B=�=A=

= 1

=B=

� 1

=A=

= =A=:

The mistake in this falla
ious argument lies in the fa
t that = is not a 
ongruen
e relation.

Therefore we 
annot repla
e 1

=C=

with =A= �=B= inside a 
ontext (espe
ially under the 1 operator).

A 
ounterexample in the formal system PPC

3

is the equality between 1

a

and a+ ea. (In PPC

3

, ea

is the minimal negation of a.) These two terms, although equal, 
annot be substituted for ea
h

other in a 
ontext. See se
tion 3.4 for a formal treatment.

3.2 The system PPC

3

We now de�ne the formal system of presupposition logi
 PPC

3

. It is an extension of ordinary


lassi
al (Boolean) proposition logi
 with presuppositions and two negations. The propositions

are built up from literals, Lit, using the binary 
onne
tives � and +, the unary 
onne
tives 1,

e

�

and

b

� and the 
onstants 0 and 1. The intended meaning of these 
onne
tives is this:

1

a

the 
onjoined presuppositions of the senten
e a

ea the minimal negation of a (negating a, aÆrming the presuppositions)

ba the radi
al negation of a (negating the presuppositions)

We use � (
omplement) and � (minus) as abbreviations for the 
omposite 
onne
tives a := ea+ ba

and a � b := a � b. The intended meaning of a is the ordinary Boolean negation, the 
omplement

of a. When writing propositions, we remove bra
kets by letting � bind more strongly than +.

We give the pre
ise mathemati
al de�nition of the language of PPC

3

. De�nition 3.1 says that

the terms of PPC

3

, forming the set T , are 
onstru
ted starting from the literals, elements of Lit,

and the 
onstants 0 and 1, and re
ursively applying the operators +, �, b, e and 1.

De�nition 3.1 The set of terms of PPC

3

, T , is de�ned re
ursively as follows.

T ::= Lit jT + T jT � T j 0 j 1 j

b

T j

e

T j 1

T

:

Remarks 3.2 1. The 
onne
tive � is not taken as a primitive, but is `de
omposed' in terms

of other (new) 
onne
tives. This means that we have to prove that we indeed have a Boolean

algebra.
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2. In Boolean algebra, we 
an take di�erent sets of 
onne
tives as basi
 (and then de�ne the

others in terms of the basi
 ones). The reason this 
an be done is that Boolean equality is

a 
ongruen
e with respe
t to the 
onne
tives. In PPC

3

, equality is not a 
ongruen
e, hen
e

the 
hoi
e of primitives is 
ru
ial. For example, if we de�ne a := ea + ba, as we have done

above, we 
an freely substitute ea + ba for a, whi
h is not allowed if a = ea + ba is a derived

equality. We have already pointed out this problem in se
tion 3.1. A formal analysis is given

in se
tion 3.4.

The Boolean 
onne
tives enjoy the well-known Boolean equations. That is, they form a dis-

tributive latti
e. We re
apitulate the axioms of a distributive latti
e.

a+ b = b+ a a � b = b � a

(a+ b) + 
 = a+ (b+ 
) (a � b) � 
 = a � (b � 
)

(a+ b) � 
 = a � 
+ b � 


a+ a = a a � a = a

a+ 1 = 1 a � 1 = a

a+ 0 = a a � 0 = 0

It is well-known that the following equations are now derivable: a � b + b = b, (a + b) � b = b,

a � b+ 
 = (a+ 
) � (b+ 
) and a+ b = 0! a = 0 & b = 0, a � b = 1! a = 1 & b = 1.

A property whi
h is usually left impli
it in the de�nition of distributive latti
e is that = is a


ongruen
e for the 
onne
tives � and +. As `=' is not a 
ongruen
e for the other 
onne
tives, we

need to require this property expli
itly by adding the axioms:

a = b and 
 = d ! a+ 
 = b+ d

a = b and 
 = d ! a � 
 = b � d:

De�nition 3.3 PPC

3

is the formal system for deriving equations from

1. the axioms for a distributive latti
e (in
luding the 
ongruen
e axioms for � and +, see above),

2. the following 10 spe
ial axioms

(A1) a+ ea = 1

a

(D1) 1

1

a

= 1

(A2) a � ea = 0 (D2) 1

ea

= 1

a

(B1) ba+ 1

a

= 1 (D3) 1

ba

= 1

(B2) ba � 1

a

= 0 (D4) 1

0

= 1:

(C1) 1

a�b

= 1

a

� 1

b

(C2) 1

a+b

= 1

a

+ 1

b

To denote that, for a; b 2 T , a = b is derivable in PPC

3

, we shall write

PPC

3

` a = b

Axioms A1 and A2 state that 1

a

is the union of a and ea and that a and ea are disjoint. So, a and

ea are ea
h other's 
omplement within 1

a

. Axiom B1 and B2 say something similar about ba and

1

a

: they are disjoint and their union is 1. This amounts to the �rst pi
ture in �g. 13, des
ribing

a � 1

a

� 1, ea � 1

a

and ba � 1 with a;ea disjoint and 1

a

;ba disjoint. Axioms C1 and C2 spe
ify that

the 1 operator 
ommutes with � and +. The D-axioms des
ribe how 
onne
tives (espe
ially 1,

e

�

and

b

�) operate under the 1 
onne
tive.

Lemma 3.4 Given a proposition a, a is the unique proposition for whi
h the Boolean laws for


omplement hold: a � a = 0 and a+ a = 1.

Proof We have to show two things:

1. The de�ned 
onne
tive � satis�es the axioms of Boolean logi
.
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2. If a � b = 0 and a+ b = 1, then b = a (i.e. a is unique).

The proof of the �rst is as follows.

a+ a = a+ ea+ ba = 1

a

+ ba = 1:

a � a = a � (ea+ ba) = a � ea+ a � ba = a � ba

= a � ba+ 0 = a � ba+ 1

a

� ba = (a+ 1

a

) � ba = (a+ a+ ea) � ba = 1

a

� ba = 0:

The se
ond is shown as follows. Suppose a � b = 0 and a+ b = 1. Then

a = a � 1 = a � (a+ b) = a � a+ a � b = a � b = a � b+ a � b = (a+ a) � b = b:

Theorem 3.5 PPC

3

is an extension of Boolean logi
.

Proof The only thing left to prove is that the equality = is a 
ongruen
e with respe
t to the

de�ned 
onne
tive �, i.e. if a = b, then a = b. So, suppose a = b. Then a � a = 0 and a+ a = 1.

But, due to the fa
t that = is a 
ongruen
e for � and +, we also have b � a = 0 and b+ a = 1. As

b satis�es these same equations, we 
on
lude that a = b (by the uniqueness stated in the previous

Lemma).

Remark 3.6 As PPC

3

satis�es the Boolean axioms, we 
an freely use notions from Boolean logi
.

In the following, we use the abbreviations a � b (and a � b for b � a):

a � b abbreviates a � b = a

or, equivalently, a+ b = b:

Proposition 3.7 The following equations are derivable in PPC

3

.

(e1) 1

a

+ a = 1

a

(e3) ba � a = 0

(e2) 1

a

� a = a (e4) ea � ba = 0

(e5) ea = 1

a

� a (e11) ba =

e

1

a

= 1

a

(e6)

e

ba = 1

a

(e12)

b

ea = ba

(e7)

e

ea = a (e13)

b

ba = 0

(e8) ea+ a = a (e14) ba+ a = a

(e9) ea � a = ea (e15) ba � a = ba

(e10)

e

1

a

= 1

a

(e16)

b

1

a

= 0

(e17)

℄

a+ b = ea �

e

b+ ea �

b

b+ ba �

e

b (e19)

[

a+ b = ba �

b

b = 1

a+b

(e18)

g

a � b = ea �

e

b+ ea � b+

e

b � a (e20)

d

a � b = ba+

b

b = 1

a�b

(e21) 1

1

= 1

(e22)

e

1 = 0 (e25)

e

0 = 1

(e23)

b

1 = 0 (e26)

b

0 = 0

(e24) 1 = 0 (e27) 0 = 1

Proof

(e1) 1

a

+ a

A1

= a+ ea+ a = ea+ a = 1

a

(e2) 1

a

� a

A1

= (a+ ea) � a = a+ 0 = a

(e3; e4) 0

B2

= 1

a

� ba

A1

= (a+ ea) � ba = a � ba+ ea � ba: Hen
e a � ba = ea � ba = 0:

(e5) 1

a

� a = 1

a

� (ea+ ba) = 1

a

� ea+ 1

a

� ba

B2

= 1

a

� ea

A1

= (a+ ea) � ea

A2

= 0 + ea = ea
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(e10)

e

1

a

e5

= 1

1

a

� 1

a

= 1� 1

a

= 1

a

(e11) Both ba and

e

1

a

are the 
omplement of 1

a

(and hen
e ba =

e

1

a

) :

ba � 1

a

B2

= 0 and ba+ 1

a

B1

= 1

e

1

a

� 1

a

A2

= 0 and

e

1

a

+ 1

a

A1

= 1

1

a

D1

= 1

(e12)

b

ea

e11

= 1

ea

D2

= 1

a

e11

= ba

(e6)

e

ba

e5

= 1

ba

� ba

D3

= 1� ba = ba

e11

= 1

a

= 1

a

(e7)

e

ea =

e

ea � 1 =

e

ea � (a+ a) =

e

ea � a+

e

ea � ea+

e

ea � ba

A2

=

e

ea � a+ 0 +

e

ea � ba

e12

=

e

ea � a+

e

ea �

b

ea

e4

=

e

ea � a+ 0 =

e

ea � a+ a � a =

(

e

ea+ ea+ ba) � a

A1

= (1

ea

+ ba) � a

D2

= (1

a

+ ba) � a

B1

= 1 � a = a

(e8) ea+ a = ea+ ea+ ba = ea+ ba = a

(e9) ea � a = ea � (ea+ ba) = ea+ ea � ba = ea � (1 + ba) = ea

(e13)

b

ba

e11

= 1

ba

D3

= 1 = 0

(e14) ba+ a = ba+ ea+ ba = ea+ ba = a

(e15) ba � a = ba � (ea+ ba) = ba+ ea � ba = ba � (1 + ea) = ba

(e16)

b

1

a

e11

= 1

1

a

D1

= 1 = 0

(e17)

℄

a+ b

e5

= 1

a+b

� (a+ b)

C2

= (1

a

+ 1

b

)� (a+ b) = ((1

a

� a)� b) + ((1

b

� a)� b))

A1

=

(a+ ea) � (ea+ ba) � (

e

b+

b

b) + (b+

e

b) � (ea+ ba) � (

e

b+

b

b)

A2;e3;e4

= ea �

e

b+ ea �

b

b+ ba �

e

b

(e18)

g

a � b

e5

= 1

a�b

� (a � b)

C1

= (1

a

� 1

b

)� (a � b) = (1

a

� 1

b

) � (a+ b) = (1

a

� a � 1

b

) + (1

b

� b � 1

a

)

e5

=

(ea � 1

b

) + (

e

b � 1

a

)

A1

= (ea � (b+

e

b)) + (

e

b � (a+ ea)) = ea �

e

b+ ea � b+

e

b � a

(e19)

[

a+ b

e11

= 1

a+b

C2

= 1

a

+ 1

b

= 1

a

� 1

b

e11

= ba �

b

b

(e20)

d

a � b

e11

= 1

a�b

C1

= 1

a

� 1

b

= 1

a

+ 1

b

e11

= ba+

b

b:

(e21) 1

1

A1

= 1 +

e

1 = 1

(e22)

e

1 =

e

1 � 1

A2

= 0

(e23)

b

1 =

b

1 � 1

e21

=

b

1 � 1

1

B2

= 0

(e24) 1 =

e

1 +

b

1 = 0 + 0 = 0

(e25)

e

0 =

e

0 + 0

A1

= 1

0

D4

= 1

(e26)

b

0

e11

= 1

0

D4

= 1

e24

= 0

(e27) 0 =

e

0 +

b

0 = 1 + 0 = 1.

The axioms for PPC

3

given above are still redundant as the 
onne
tive

b

� is de�nable in terms

of 1 and e.

Lemma 3.8 In PPC

3

, ba is de�nable: ba :=

e

1

a

:

Proof We have to show that, if we remove the 
onne
tive

b

� and the 
orresponding axioms, and

we de�ne ba as above, then all the laws of PPC

3

hold for this de�ned 
onne
tive. The only axioms

in whi
h

b

� o

urs are B1, B2 and D3.
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(B1) ba+ 1

a

=

e

1

a

+ 1

a

A1

= 1

1

a

D1

= 1.

(B2) ba � 1

a

=

e

1

a

� 1

a

A2

= 0.

(D3) 1

ba

= 1

f

1

a

D2

= 1

1

a

D1

= 1.

So a minimal 
al
ulus for PPC

3

would 
onsist of terms (propositions) built up from literals,

Lit, using the binary 
onne
tives � and +, the unary 
onne
tives 1 and

e

� and the 
onstants 0 and

1, satisfying the axioms for a distributive latti
e (in
luding 
ongruen
e axioms for � and +), in

addition satisfying the axioms (A1), (A2), (C1), (C2), (D1), (D2) and (D4).

3.3 Consisten
y and models

We 
an prove 
onsisten
y of PPC

3

by showing that standard Boolean algebra is a spe
ial 
ase

of it in whi
h we take 1

a

:= 1, ba := 0 and ea := a for every term a. Sin
e Boolean algebra is


onsistent, PPC

3

must be too. This also implies that the axiom 1

a

= 1 is a 
onsistent extension

of PPC

3

, yielding the maximal interpretation for 1. The parallel minimal interpretation 1

a

:= a is

not sound, sin
e it 
on
i
ts with axiom D1: a = 1

a

= 1

1

a

= 1, so all propositions would be equal

to 1. This shows that no proposition ex
ept for the ne
essarily true ones presupposes itself.

We now de�ne the semanti
s of PPC

3

, inspired by the notions presented in se
tion 2.3.3 and

visually displayed in �g. 13. We saw there that to every proposition we 
an asso
iate two subsets

of possible situations, the subset of situations in whi
h the presuppositions are ful�lled, and whi
h

we 
alled the subkey of the proposition, and the subset of situations in whi
h the proposition

proper is ful�lled. Similarly, we now de�ne two semanti
 obje
ts asso
iated with a term a of

PPC

3

, the interpretation of its presupposition, [[1

a

℄℄, and the interpretation of a proper, [[a℄℄. We

take a more abstra
t viewpoint than in se
tion 2.3.3, taking as model for the interpretation a

general Boolean algebra B = hB;u;t;?;>;�i. Intuitively, think of B as the family of all sets

of possible situations, i.e. the powerset of K, of ? as the empty set ;, of > as the set K of all

situations and of u, t and � as the operations of interse
tion, union and 
omplementation for

sets. We use the relation v, whi
h is de�ned by: p v q if p u q = p or, equivalently, p t q = q. In

the 
ase of a set model, v is the subset relation. We also write p w q for q v p.

We de�ne a general notion of PPC

3

model. The idea is that to every proposition a we asso-


iate two obje
ts, one giving the interpretation of a itself (its Boolean value) and one giving the

interpretation of the presuppositions of a (the value of 1

a

). An atomi
 proposition � (a literal)

therefore has two basi
 values, �(�) and �(�), representing these two interpretations. These basi


values are given by two assignments � ad �, whi
h are parameters of the model. An assignment

is a map � : Lit! B, from the literals to a Boolean algebra B.

De�nition 3.9 A PPC

3

-model is a tern (B; �; �), with B a Boolean algebra and � and � two

assignments su
h that � v �, i.e. �(�) v �(�) for every literal � 2 Lit.

De�nition 3.10 Given a PPC

3

-model (B; �; �), the interpretation fun
tion [[�℄℄

��

(taking a PPC

3

term and returning an element of B) is de�ned as follows.

[[0℄℄

��

= ?; [[1

0

℄℄

��

= >;

[[1℄℄

��

= >; [[1

1

℄℄

��

= >;

[[�℄℄

��

= �(�); [[1

�

℄℄

��

= �(�);

[[a � b℄℄

��

= [[a℄℄

��

u [[b℄℄

��

; [[1

a�b

℄℄

��

= [[1

a

℄℄

��

u [[1

b

℄℄

��

;

[[a+ b℄℄

��

= [[a℄℄

��

t [[b℄℄

��

; [[1

a+b

℄℄

��

= [[1

a

℄℄

��

t [[1

b

℄℄

��

;

[[ea℄℄

��

= [[1

a

℄℄

��

� [[a℄℄

��

; [[1

ea

℄℄

��

= [[1

a

℄℄

��

;

[[ba℄℄

��

= [[1

a

℄℄

��

; [[1

ba

℄℄

��

= >;

[[1

1

a

℄℄

��

= >:

Remark 3.11 Note that the interpretation fun
tion [[�℄℄ is well-de�ned, but not by indu
tion on

the length of a proposition, but by indu
tion on the measure m, de�ned as follows. m(�) = 1,

m(a+ b) = m(a) +m(b), m(a � b) = m(a) +m(b), m(1

a

) = 1 +m(a), m(ea) = m(ba) = 2 +m(a).
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3

The property that the interpretation of a proposition is always 
ontained in the interpretation

of its presuppositions is expressed by the following lemma.

Lemma 3.12 In a PPC

3

-model we have

[[1

a

℄℄

��

w [[a℄℄

��

:

Proof Remembering that in a Boolean algebra b

1

w b

2

is de�ned as b

1

u b

2

= b

2

or, equivalently,

as b

1

t b

2

= b

1

, we prove the 
laim by indu
tion on the stru
ture of a.

� [[1

�

℄℄

��

u [[�℄℄

��

= �(�) u �(�) = �(�) (be
ause � v �)

ea [[1

ea

℄℄

��

u [[ea℄℄

��

= [[1

a

℄℄

��

u [[1

a

℄℄

��

u [[a℄℄

��

= [[1

a

℄℄

��

u [[a℄℄

��

= [[ea℄℄

��

ba [[1

ba

℄℄

��

u [[ba℄℄

��

= > u [[ba℄℄

��

= [[ba℄℄

��

1

a

[[1

1

a

℄℄

��

u [[1

a

℄℄

��

= > u [[1

a

℄℄

��

= [[1

a

℄℄

��

a � b [[1

a�b

℄℄

��

u [[a � b℄℄

��

= [[1

a

℄℄

��

u [[a℄℄

��

u [[1

b

℄℄

��

u [[b℄℄

��

IH

= [[a℄℄

��

u [[b℄℄

��

= [[a � b℄℄

��

a+ b [[1

a+b

℄℄

��

t [[a+ b℄℄

��

= [[1

a

℄℄

��

t [[a℄℄

��

t [[1

b

℄℄

��

t [[b℄℄

��

IH

= [[1

a

℄℄

��

t [[1

b

℄℄

��

= [[1

a+b

℄℄

��

where

IH

= denotes an appli
ation of the indu
tion hypothesis , stating that the thesis already holds

for a and b. Note that only in the last 
ase do we use (for 
onvenien
e) b

1

tb

2

= b

1

as a formulation

for b

1

w b

2

.

The two main properties that we expe
t from a semanti
s are validity and 
ompleteness .

Validity states that every equality a = b that 
an be proved in the system is valid , i.e. the

interpretations of the two terms, [[a℄℄

��

and [[b℄℄

��

, are the same in every model. This guarantees

that what we derive formally is true. Completeness states that if two terms a and b are interpreted

in equal obje
ts in every model, then it must be possible to prove that they are equal, i.e. PPC

3

`

a = b is derivable. This guarantees that our formal system 
ompletely 
aptures all the properties

of the semanti
s.

Theorem 3.13 (Validity) The model notion of De�nition 3.9 is sound, i.e. if PPC

3

` a = b,

then [[a℄℄

��

= [[b℄℄

��

in all PPC

3

-models (B; �; �).

Proof We have to 
he
k that the axioms for a distributive latti
e and the 10 axioms of De�nition

3.3 hold in the model.

The axioms for a distributive latti
e are trivially proved from the fa
t that B is a distributive

latti
e.

That axioms (C1), (C2), (D1){(D4) hold in the model follows immediately from the de�nition

of the interpretation (3.10). Rules (A1){(B2) require slightly more work. We show (A2), (B1)

and (B2) in detail and then we dis
uss (A1).

(A2) [[a � ea℄℄

��

= [[a℄℄

��

u ([[1

a

℄℄

��

� [[a℄℄

��

) = [[a℄℄

��

u [[1

a

℄℄

��

u [[a℄℄

��

= ?

(B1) [[ba+ 1

a

℄℄

��

= [[1

a

℄℄

��

t [[1

a

℄℄

��

= >

(B2) [[ba � 1

a

℄℄

��

= [[1

a

℄℄

��

u [[1

a

℄℄

��

= ?

To prove that (A1) holds, we �rst re
all that [[1

a

℄℄

��

w [[a℄℄

��

for every a, or equivalently, that

[[1

a

℄℄

��

u [[a℄℄

��

= [[a℄℄

��

for every a. This was proved in Lemma 3.12. Given this result, we prove

(A1) as follows.

(A1) [[a+ ea℄℄

��

= [[a℄℄

��

t ([[1

a

℄℄

��

u [[a℄℄

��

) = ([[1

a

℄℄

��

u [[a℄℄

��

) t ([[1

a

℄℄

��

u [[a℄℄

��

) =

[[1

a

℄℄

��

u ([[a℄℄

��

t [[a℄℄

��

) = [[1

a

℄℄

��

To prove 
ompleteness we de�ne the PPC

3

-term-model . This is a PPC

3

-model 
onsisting of

the terms of PPC

3

(given by the set T , see De�nition 3.1) itself. This means that we have to 
ast

T into a Boolean algebra and de�ne � and � as required by De�nition 3.9.



3.3 Consisten
y and models 33

De�nition 3.14 The set B is de�ned by quotienting T with the PPC

3

-equality. In other words,

the elements of B are the equivalen
e 
lasses [t℄ (for t 2 T ), where

[t℄ := ft

0

2 T jPPC

3

` t = t

0

g:

The Boolean operations are de�ned as the 
orresponding operators of PPC

3

applied inside the

equivalen
e 
lasses:

? := [0℄; > := [1℄;

[a℄ u [b℄ := [a � b℄; [a℄ t [b℄ := [a+ b℄;

[a℄ := [a℄ = [ba+ ea℄:

It 
an be proved that these operations are well-de�ned and they determine a Boolean algebra.

The PPC

3

-term-model is now obtained by taking (B; �; �) with �(�) = [�℄ and �(�) = [1

�

℄ for

� 2 Lit.

Lemma 3.15 1. The PPC

3

-term-model ((B; �; �) in the previous De�nition) is indeed a PPC

3

-

model.

2. For all a; b 2 T , if [[a℄℄

��

= [[b℄℄

��

in the PPC

3

-term-model (B; �; �), then PPC

3

` a = b.

Proof 1. It has to be shown that B is a Boolean algebra and that � v �. The �rst follows from

Theorem 3.5. The se
ond follows from the fa
t that 1

a

�a = a is a derived rule in PPC

3

(rule

(e2) in Proposition 3.7).

2. This follows immediately from the fa
t that

[[a℄℄

��

= [a℄

for all a 2 T , whi
h 
an be shown by an easy indu
tion on the stru
ture of a.

Theorem 3.16 (Completeness) The model notion of De�nition 3.9 is 
omplete, i.e. if [[a℄℄

��

=

[[b℄℄

��

holds in all PPC

3

-models (B; �; �), then PPC

3

` a = b.

Proof Suppose a and b are two PPC

3

-terms su
h that

[[a℄℄

��

= [[b℄℄

��

holds in all PPC

3

-models. Then [[a℄℄

��

= [[b℄℄

��

holds in the PPC

3

-term-model (B; �; �) and hen
e

PPC

3

` a = b, due to Lemma 3.15.

Corresponding to the maximal interpretation of PPC

3

, we have trivial models in whi
h �(�) = >

for every � 2 Lit. We 
an 
onstru
t simple nontrivial models by 
hoosing any boolean algebra

B and any fun
tion � that is not 
onstantly > and letting �(�) = �(�) for every � 2 Lit. In

this model we have that for a literal � su
h that �(�) 6= >, also [[1

�

℄℄

��

= �(�) 6= > = [[1℄℄

��

and so the model is nontrivial (the interpretation of 1

A

is not just always >). Observe that this

model does not 
orrespond to the unsound minimal interpretation, be
ause the identi�
ation of

the presupposition of a term with the term itself is stipulated only for the literals and not for

every term. Notably, for a term 1

�

(� a literal), the presupposition of 1

�

is not identi�ed with

1

�

in the model. (Proof: we have seen that [[1

�

℄℄

��

6= >. It is also the 
ase that [[1

1

�

℄℄

��

= >,

so [[1

�

℄℄

��

6= [[1

1

�

℄℄

��

: the terms 1

�

and 1

1

�

are not identi�ed in this model.) It also follows from

validity that 1

�

= 1 is not derivable in PPC

3

. As a 
onsequen
e, the term model is also nontrivial.

Indeed, for a literal �, we have that [[1

�

℄℄

��

6= [[1℄℄

��

, be
ause the equality 1

�

= 1 is not derivable

in PPC

3

. As a 
on
lusion of this paragraph we state the following fa
t.

Fa
t 3.17 There are non-trivial models of PPC

3

, that is, models in whi
h [[1

a

℄℄

��

6= [[1℄℄

��

for some

term a.
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3

3.4 Compositionality in the 
al
ulus and the models

In se
tion 3.1 the non
ompositionality of the 
al
ulus has already been dis
ussed when we looked

at the example senten
es (40). It has been argued that the equality of PPC

3

is not a 
ongruen
e.

A 
ounterexample to 
ongruen
e in the formal system PPC

3

is given by the terms a + ea and 1

a

,

whi
h are equal but 
annot be substituted for ea
h other in a 
ontext. A

ording to axiom (A1),

1

a

= a+ ea. If the 
al
ulus were 
ompositional, we 
ould substitute one of the two terms for the

other when they appear as arguments of the 1 operator, yielding 1

1

a

= 1

a+ea

. But this equality is

not always valid. In fa
t, the left hand side is equal to the unity, 1

1

a

= 1 by (D1), whereas the

right hand side 
an be proved to be equal to the presupposition of a, 1

a+ea

= 1

a

+1

ea

= 1

a

+1

a

= 1

a

.

Unless the presupposition of a is trivially equal to unity, the supposed equality 
annot hold. This


learly shows that in PPC

3

equality is not a 
ongruen
e with respe
t to the 1 operator.

Similarly, equality is not a 
ongruen
e with respe
t the operators

e

� and

b

�. A 
ounterexample

is again given by the term a + ea: 1

a

= a + ea, but

e

1

a

=

℄

a+ ea is not generally true, be
ause

℄

a+ ea = ea �

e

ea+ea �

b

ea+ba �

e

ea = 0+ea �ba+ba �a = 0+0 = 0 (using e17, e12 and e7) and

e

1

a

= ba. Finally

1

a

= a + ea, but

b

1

a

=

[

a+ ea is not true in general, be
ause

[

a+ ea = ba �

b

ea = ba (using e19 and e12)

and

b

1

a

= 0.

In a model, the fa
t that equality is a 
ongruen
e with respe
t to the operators is 
alled


ompositionality : the interpretation of a formula is de�ned by stru
tural re
ursion. For the 1

operator, this would mean that [1

a

℄ is de�ned as U([a℄), with U the fun
tion that represents the

1 operator in the model. In a non-trivial model, we 
annot have su
h an operator U . Or, stated

di�erently, the operator U in the model (that represents the 
onne
tive 1) 
annot be a fun
tion.

De�nition 3.18 We 
all 
ompositionality the rule

a = b! 1

a

= 1

b

:

Fa
t 3.19 Compositionality is equivalent to the rule 1

a

= 1.

Proof Assume 
ompositionality. Then 1

a

= 1

ea

= 1

1

a

�
a

= 1

1

a

�1

a

= 1�1

ea+ba

= 1

ea

+1

ba

= 1

a

+1 = 1.

Proving 
ompositionality from 1

a

= 1 is easy.

So, 
ompositionality yields a trivial model. We have a way of 
onstru
ting non-trivial models:

If we take �(�) 6= >, then [[1

�

℄℄

��

6= >. In su
h a model 
ompositionality does not hold: 1

�

and � + e� are equal in a non-trivial model, but 1

1

�

and 1

�+e�

are not: [[1

1

�

℄℄

��

= >, whereas

[[1

�+e�

℄℄

��

= �(�).

Remarks 3.20 1. If we let �(�) = > for all literals, we have a trivial model (i.e. [[1

a

℄℄

��

= >

for all a).

2. There 
an be no model in whi
h [[a℄℄

��

= [[1

a

℄℄

��

for all a. Suppose that [[a℄℄

��

= [[1

a

℄℄

��

for all

a. Then [[a℄℄

��

= [[1

a

℄℄

��

= [[1

1

a

℄℄

��

= > for all a. This is a 
ontradi
tion be
ause at least 0 is

not interpreted as >.

3.5 A 
ompositional equality in PPC

3

We have already observed that in PPC

3

there is only one `level' of presuppositions: if a is a

senten
e, then 1

a

, the senten
e that expresses the presuppositions of a, is, in general, a senten
e

di�erent from 1. But 1

1

a

, the senten
e expressing the presuppositions of 1

a

(the presuppositions of

the presuppositions of a) is always 1. So, two senten
es a and b 
an be distin
t in their `
lassi
al'

Boolean interpretation (then a 6= b) or they 
an be distin
t in their presuppositions (then (1

a

6= 1

b

),

but in no other way: we always have 1

1

a

= 1

1

b

. This fa
t 
an also be observed in a di�erent way.

We �rst de�ne the strong equality a � b.

De�nition 3.21 The strong equality a � b in PPC

3

is de�ned as follows.

a � b if and only if a = b and 1

a

= 1

b

in PPC

3

:
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Lemma 3.22 Strong equality is a 
ongruen
e for all 
onne
tives. That is

a � b & 
 � d ! a+ 
 � b+ d (1)

a � b & 
 � d ! a � 
 � b � d (2)

a � b ! 1

a

� 1

b

(3)

a � b ! ea �

e

b (4)

a � b ! ba �

b

b (5)

a � b ! a � b: (6)

Proof Suppose a � b and 
 � d. Then a = b, 1

a

= 1

b

, 
 = d and 1




= 1

d

. Hen
e a+ 
 = b + d,

be
ause = is a 
ongruen
e for +. We also �nd

1

a+


C1

= 1

a

+ 1




= 1

b

+ 1

d

C1

= 1

b+d

;

and so a+ 
 � b+ d. The argument for � is analogous. Therefore we have proved (1) and (2).

Suppose a � b. Then a = b and 1

a

= 1

b

. As 1

1

a

= 1

1

b

by rule (D1), we �nd that 1

a

� 1

b

, whi
h

proves (3).

Suppose a � b. Then a = b and 1

a

= 1

b

. Now, ea

e5

= 1

a

� a = 1

b

� b

e5

=

e

b. Also 1

ea

D2

= 1

a

= 1

b

D2

= 1

e

b

,

whi
h proves (4).

Suppose a � b. Then a = b and 1

a

= 1

b

. Now, ba

e11

= 1

a

= 1

b

e11

=

b

b. Also 1

ba

D3

= 1

D3

= 1

b

b

, thus

proving (5).

Suppose a � b. Then a = b and 1

a

= 1

b

. Using (4) and (5) we �nd that a = ba + ea =

b

b +

e

b = b.

Using (3), (4) and (5), we also derive that 1

a

= 1

ea+ba

C2

= 1

ea

+ 1

ba

= 1

e

b

+ 1

b

b

C2

= 1

e

b+

b

b

= 1

b

, thus

proving (6).

3.6 A 
ompositional presentation of PPC

3

Building on the previous se
tion, we give a 
ompletely 
ompositional presentation of PPC

3

. That

is, we 
hara
terize the 
ompositional equality � independently. Moreover, we de�ne the (non-


ompositional) equality of PPC

3

in terms of this �. We 
all our new system PPC




3

, 
ompositional

PPC

3

.

There are two reasons for studying this new system. First, our aim in developing a formal

system for presuppositional senten
es is to 
apture the logi
 and semanti
s of presuppositions. The

meaning of a proposition 
ontains the meaning of its presuppositions. It is natural to say that two

propositions are equal when they have the same meaning. Sin
e there is no pre
ise mathemati
al

theory of meaning, this 
annot be done in a Boolean setting, in whi
h the equality \=" is taken to

be identity of extensions. Mu
h of the meaning of a proposition is lost in this interpretation. We

have made an e�ort to produ
e a mathemati
al theory that 
aptures a little more of the meaning

of senten
es. We are now in the position to give an interpretation of propositions whi
h is more

faithful to what really happens in natural language. Hen
e, we 
onsider two propositions to be

equal when not just their extensions, but also the extensions of their presuppositions 
oin
ide.

Se
ond, a 
ompositional theory has ni
er mathemati
al properties that fa
ilitate its study.

PPC




3

is a standard equational theory, that 
an be studied using 
lassi
al methods from Universal

Algebra. On
e the equivalen
e of PPC

3

and PPC




3

is established, it is easier, when trying to prove

something in PPC

3

, to translate the problem into the system PPC




3

and solve it there.

De�nition 3.23 The language of PPC




3

is almost the same as that of PPC

3

. There are two

additions. The �rst is the 
onstant �, whi
h indi
ates a proposition that presupposes a ne
essary

falsity. The se
ond is a new unary operation N that takes a proposition as argument and yields a

ne
essarily false proposition having the argument as presupposition.

The set of terms of PPC




3

, T




, is de�ned re
ursively as follows.

T




::= Lit jT




+ T




jT




� T




j � j 1 j

f

T




j 1

T




jN

T




:
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3

De�nition 3.24 The axioms of PPC




3

are the following.

1. The equality � is a 
ongruen
e relation, i.e. is an equivalen
e relation and is preserved under

appli
ation of the operations: if a

1

� a

2

and b

1

� b

2

then a

1

+ b

1

� a

2

+ b

2

, a

1

� b

1

� a

2

� b

2

,

ea

1

� ea

2

, 1

a

1

� 1

a

2

and N

a

1

� N

a

2

.

2. The operators + and � and the 
onstants � and 1 determine a distributive latti
e with a

bottom and a top element. This means that the following equations hold.

a+ b � b+ a a � b � b � a

a+ (b+ 
) � (a+ b) + 
 a � (b � 
) � (a � b) � 


(a � b) + b � b (a+ b) � b � b

(a+ b) � 
 � a � 
+ b � 
 (a � b) + 
 � (a+ 
) � (b+ 
)

a+ a � a a � a � a

a+ 1 � 1 a � � � �

a+� � a a � 1 � a

3. Spe
i�
 axioms for PPC




3

that determine the properties of the unary operators

e

�, 1 and N.

(A




1

)

f

1

�

� 1 (A




7

) 1

1

a

� 1

(A




2

)

e

ea � a (A




8

) 1

ea

� 1

a

(A




3

) a � ea � a � 1

�

(A




9

) 1

a

� a � a

(A




4

) a+ ea+ 1

�

� 1

a

(A




10

) 1

�

+

e

1

a

�

e

1

a

(A




5

) 1

a�b

� 1

a

� 1

b

(A




11

) 1

N

a

� a+ 1

�

(A




6

) 1

a+b

� 1

a

+ 1

b

(A




12

) a �

g

N

1

a

� 1

N

a

Note 3.25 The symbol � is not the usual zero, it does not 
orrespond to 0 in the original pre-

sentation of PPC

3

. It is rather an absolute zero 
orresponding to propositions that presuppose a

ne
essary falsity, like for example

John knows that ba
helors are married.

The operator N, when applied to a proposition a, gives a proposition N

a

whi
h is ne
essary

false and has a as presupposition. An example of su
h a 
onstru
tion in language 
ould be

Some living dead know that a.

Note 3.26 We do not require that our stru
ture is a Boolean algebra. Indeed the negation opera-

tion

e

� does not behave like the ordinary 
omplement in Boolean algebras. Spe
i�
ally the equation

a � ea � � is not satis�ed.

We want to prove that this theory is equivalent to the original one. We �rst de�ne the missing

symbols.

De�nition 3.27

0 := 1

�

ba :=

e

1

a

a := ba+ ea

a� b := a � b

and the (weak) equality

a = b

def

() a+ 0 � b+ 0:

Now we have to prove that with these de�nitions �, +, 0, 1, � and = form a Boolean algebra

and that the axioms of 3.3 are satis�ed.
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Lemma 3.28 �, + and = form a distributive latti
e.

Proof It is enough to sum 0 to both sides of the 
orresponding equations that express the fa
t

that �, + and � form a distributive latti
e. Of the two axioms involving 0, the �rst, a + 0 = a,

translates to a + 1

�

+ 1

�

� 1

�

, whi
h is trivially true. The se
ond, a � 0 = 0 translates to

a � 1

�

+ 1

�

� 1

�

and is proved by the following argument:

a � 1

�

+ 1

�

� a � 1

�

+ 1 � 1

�

� (a+ 1) � 1

�

� 1 � 1

�

� 1

�

:

Lemma 3.29 a � a = 0

Proof If we unfold the de�nitions we have to prove that a � (

e

1

a

+ ea) + 1

�

� 1

�

.

a � (

e

1

a

+ ea) + 1

�

� a �

e

1

a

+ a � ea+ 1

�

A




3

� a �

e

1

a

+ a � 1

�

+ 1

�

� a � (

e

1

a

+ 1

�

) + 1

�

A




10

� a �

e

1

a

+ 1

�

A




9

� a � 1

a

�

e

1

a

+ 1

�

A




3

� a � 1

a

� 1

�

+ 1

�

A




9

� a � 1

�

+ 1

�

� (a+ 1) � 1

�

� 1 � 1

�

� 1

�

:

Lemma 3.30 a+ a = 1.

Proof Unfolding the de�nitions, we have to prove that a+

e

1

a

+ ea+ 1

�

� 1.

a+

e

1

a

+ ea+ 1

�

� a+ ea+ 1

�

+

e

1

a

+ 1

�

A




4

� 1

a

+

e

1

a

+ 1

�

A




4

� 1

1

a

A




7

� 1:

We have thus proved that

Theorem 3.31 �, +, 1, 0, � and = determine a Boolean algebra.

We prove the spe
i�
 equalities of PPC

3

.

Proposition 3.32 The axioms A1{D4 of PPC

3

are satis�ed in PPC




3

.

Proof A1 a+ ea = 1

a

. Immediate from A




4

.

A2 a � ea = 0. We have to prove that a � ea+ 0 � 0 + 0, i.e. a � ea+ 0 � 0.

a � ea+ 0

A




3

� a � 1

�

+ 0 � a � 0 + 0 � (a+ 1) � 0 � 1 � 0 = 0.

B1 ba+ 1

a

= 1. Unfolding some of the de�nitions we have to prove that

e

1

a

+ 1

a

+ 1

�

� 1 + 0.

Now

e

1

a

+ 1

a

+ 0

A




4

� 1

1

a

A




7

� 1 = 1 + 0.

B2 ba � 1

a

= 0. Unfolding some of the de�nitions we have to prove that

e

1

a

� 1

a

+ 0 � 1 + 0. Now

e

1

a

� 1

a

A




3

� 1

a

� 1

�

A




5

� 1

a��

� 1

�

� 0, proving the 
laim.

C1 1

a�b

= 1

a

� 1

b

. Immediate from A




5

.

C2 1

a+b

= 1

a

+ 1

b

. Immediate from A




6

.

D1 1

1

a

= 1. Immediate from A




7

.

D2 1

a

= 1

ea

. Immediate from A




8

.

D3 1

ba

= 1. Unfolding the de�nitions we have to prove that 1

f

1

a

+ 0 � 1 + 0. Now the 
laim

follows from 1

f

1

a

A




8

� 1

1

a

A




7

� 1:
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3

D4 1

0

= 1. Unfolding the de�nitions we have to prove that 1

1

�

+ 0 � 1 + 0. This follows

immediately from (A




7

).

So the axioms of the original PPC

3

are satis�ed.

Theorem 3.33 PPC




3

with the de�ned weak equality satis�es the axioms of PPC

3

.

Vi
e versa, if we start with the original PPC

3

and we de�ne

a � b

def

() a = b and 1

a

= 1

b

we 
an prove that the axioms of PPC




3

are satis�ed, provided that we give the following de�nition

for the extra symbols.

� := 0 N

a

:= 0

1

�

:= 0 1

N

a

:= a

Note that in these de�nitions we must spe
ify not only the value of the de�ned term but also

that of its presupposition, owing to the non
ompositionality of the system. Sin
e these de�nitions

extend the domain of the operator 1, we must 
he
k that the axioms pertaining to it are still

satis�ed.

Theorem 3.34 PPC

3

with the de�ned strong equality satis�es the axioms of PPC




3

.

But these embedding theorems are still too weak. Suppose we start out with the system PPC




3

with the strong equality �. We now de�ne the weak equality = as

a = b

def

() a+ 0 � b+ 0:

We know that this equality satis�es the axioms of PPC

3

. From this equality we now de�ne a new

strong equality by

a �

0

b

def

() a = b and 1

a

= 1

b

We now want to prove that this strong equality 
oin
ides with the original one.

Lemma 3.35 1

a

+ 0 � 1

a

Proof Easy.

Theorem 3.36 a � b if and only if a �

0

b.

Proof From left to right, a � b! a �

0

b, is immediate by substitution.

From right to left, a �

0

b ! a � b, needs some reasoning. Assume that a �

0

b holds. If we

unfold the de�nition of �

0

we obtain that a = b and 1

a

= 1

b

. If we unfold also the de�nition of =

we obtain that a + 0 � b + 0 and 1

a

+ 0 � 1

b

+ 0. From these equalities we want to derive that

a � b. From the �rst equality and axiom A




11

we have that 1

N

a

� 1

N

b

. From the se
ond equality

and lemma 3.35 we have that 1

a

� 1

b

. Now by axiom A




12

we have that

a �

g

N

1

a

� 1

N

a

�

g

N

1

b

� 1

N

b

� b

as desired.

An interesting property is the following.

Lemma 3.37

℄

a+ b � ea � b+ a �

e

b.



3.7 Models of PPC




3

39

Proof The proof is given in the original system PPC

3

, i.e. we prove that

℄

a+ b = ea � b+ a �

e

b and

1

℄

a+b

= 1

ea�b+a�

e

b

.

℄

a+ b

e17

= ea �

e

b+ ea �

b

b+ ba �

e

b = ea � b+ a �

e

b

1

℄

a+b

D2

= 1

a+b

C2

= 1

a

+ 1

b

:

1

ea�b+a�

e

b

C1;C2

= 1

ea

� 1

b

+ 1

a

� 1

e

b

def

= 1

ea

� 1

b

b+

e

b

+ 1

ba+

e

b

� 1

e

b

C2

= 1

ea

� (1

b

b

+ 1

e

b

) + (1

ba

+ 1

ea

) � 1

e

b

D3

= 1

ea

� (1 + 1

e

b

) + (1 + 1

ea

) � 1

e

b

= 1

ea

� 1 + 1 � 1

e

b

= 1

ea

+ 1

e

b

D2

= 1

a

+ 1

b

Therefore 1

℄

a+b

= 1

ea�b+a�

e

b

and the se
ond part of the lemma is proved.

3.7 Models of PPC




3

De�nition 3.38 A PPC




3

-model is a pair hB; Æi, where B is a Boolean algebra B = hB;u;t;?;>;�i

and Æ is an assignment that maps every variable in the language to an element of the set

M := fhp; qi 2 B

2

j q v pg

where v indi
ates the order on B : q v p means q u p = q or, equivalently, q t p = p.

Given a model we de�ne the interpretation of every term of PPC




3

by an element of M

[[�℄℄

Æ

: T �!M

by indu
tion on the stru
ture of the term (the fun
tions �

1

and �

2

are the �rst and se
ond

proje
tion, respe
tively: �

1

hp; qi = p and �

2

hp; qi = q):

[[a℄℄

Æ

:= Æ(�) for every literal �

[[�℄℄

Æ

:= h?;?i

[[1℄℄

Æ

:= h>;>i

[[ea℄℄

Æ

:= h�

1

[[a℄℄

Æ

; �

1

[[a℄℄

Æ

u �

2

[[a℄℄

Æ

i

[[1

a

℄℄

Æ

:= h>; �

1

[[a℄℄

Æ

i

[[N

a

℄℄

Æ

:= h�

2

[[a℄℄

Æ

;?i

[[a+ b℄℄

Æ

:= h�

1

[[a℄℄

Æ

t �

1

[[b℄℄

Æ

; �

2

[[a℄℄

Æ

t �

2

[[b℄℄

Æ

i

[[a � b℄℄

Æ

:= h�

1

[[a℄℄

Æ

u �

1

[[b℄℄

Æ

; �

2

[[a℄℄

Æ

u �

2

[[b℄℄

Æ

i

The elementary relation � is interpreted as identity of the interpretations of the terms.

De�nition 3.39 a � b is valid in the PPC




3

-model hB; Æi if [[a℄℄

Æ

= [[b℄℄

Æ

.

Theorem 3.40 (Validity Theorem) If a � b is provable in PPC




3

then [[a℄℄

Æ

= [[b℄℄

Æ

for every

PPC

3

-model hB; Æi.

Proof By indu
tion on the length of the proof of a � b. It is enough to prove the validity of all

the axioms.

By the de�nition of the interpretation it follows that the de�ned symbols are interpreted in

the following way:

[[0℄℄

Æ

= h>;?i

[[ba℄℄

Æ

= h>; �

1

[[a℄℄

Æ

i

[[a℄℄

Æ

= h>; �

2

[[a℄℄

Æ

i
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3.8 Equivalen
e with PPC

3

-models

If we have a PPC




3

-model (i.e. one of the models of De�nition 3.38) we 
an obtain a PPC

3

-model

(i.e. a model in the sense of De�nition 3.9) by taking the same Boolean algebra B and de�ning

the maps � and � on the variables as

�(�) := �

2

(Æ(�));

�(�) := �

1

(Æ(�)):

Vi
e versa given a PPC

3

-model hB; �; �i we obtain a PPC




3

-model by taking the same Boolean

algebra B and de�ning the map Æ as

Æ(�) := h�(�); �(�)i:

3.9 Completeness of PPC




3

We prove now 
ompleteness of PPC




3

with respe
t to the de�ned models, deriving it from the


ompleteness of PPC

3

and the 
orresponden
e between the models of the two systems outlined in

subse
tion 3.8.

Theorem 3.41 Let a and b be two propositions. If for every PPC




3

-model hB; Æi, [[a℄℄

Æ

= [[b℄℄

Æ

, then

a � b is derivable in PPC




3

.

Proof Suppose the interpretations of a and b 
oin
ide in every model. We 
onstru
t a term

model by taking the Boolean algebra B := (T= =) of terms of de�nition 3.14 and de�ning the

assignment Æ as Æ(�) := h�(�); �(�)i = h[1

�

℄; [�℄i for every atomi
 proposition �. By lemma 3.15

and subse
tion 3.8, hB; Æi is a model of PPC




3

. Hen
e [[a℄℄

Æ

= [[b℄℄

Æ

by hypothesis. We prove a

preparatory lemma.

Lemma 3.42 For every proposition a, [[a℄℄

Æ

= h[[1

a

℄℄

��

; [[a℄℄

��

i:

Proof By indu
tion on the stru
ture of a.

Using the lemma we have that

h[[1

a

℄℄

��

; [[a℄℄

��

i = h[[1

b

℄℄

��

; [[b℄℄

��

i:

The two 
omponents must be equal, [[1

a

℄℄

��

= [[1

b

℄℄

��

and [[a℄℄

��

= [[b℄℄

��

. By lemma 3.15 we have

then that 1

a

= 1

b

and a = b, that is, a � b by theorem 3.36.

4 Further perspe
tives: modal logi


The 
on
ept of non
ompositional operator 
an be put to further use, e.g. in the logi
 of the modal-

ities possible (Poss) and ne
essary (Ne
). Natural language modalities di�er from metaphysi
al

modalities in that they are valuated relative to a given 
ontext or knowledge state, representable

as a given senten
e A

G

. Poss(B) means that B is 
onsistent with A

G

, and Ne
(B) means that B

is entailed by A

G

.

More formally, for every given senten
e A

G

there is a set of new senten
es P

A

G , the senten
es

that are possible relative to A

G

, de�ned as P

A

G := fB : =A

G

= \ =B= 6= ;g. If B 2 P

A

G , then

Poss(B) is true relative to A

G

.

For every given senten
e A

G

there is also a set of new senten
es N

A

G , the senten
es that are

ne
essary relative to A

G

, de�ned as N

A

G := fB : =A

G

= � =B=g. If B 2 N

A

G , then Ne
(B) is true

relative to A

G

.

What are =Poss(B)= and =Ne
(B)=? Note that Poss(B) and Ne
(B) are not senten
es in the

ordinary sense (where the interpretation of a senten
e is the set of situations in whi
h it is the


ase). The senten
es Poss(B) and Ne
(B) are just true or false and have no dire
t interpretation
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as a �-spa
e. A key of propositions is required, i.e. a parakey. (A metakey is a key of linguisti


elements, not propositions.) The elements of the parakey (PK) are dis
ourse domains, i.e.

propositions. The relation between modal propositions (e.g. Poss(B)) and dis
ourse domains (e.g.

A

G

in the previous 
ase) parallels the one between ordinary propositions and states in the world.

As we de�ne the extension of an ordinary proposition A as the set of situations s that make A

true, we 
an de�ne the extension of a modal proposition as the set of dis
ourse domains that make

it true.

Hen
e the extension of Poss(B) is the set of all those dis
ourse domains (propositions) A su
h

that A makes Poss(B) true, that is, the set of those A su
h that B is possible relative to A:

=Poss(B)= = fA jA makes Poss(B) trueg

= fA jB is 
onsistent with Ag

= fA jB 2 P

A

g

= fA j =A= \ =B= 6= ;g

as depi
ted in �gure 16, where we 
all PPK the universe 
ontaining the se
ond level (modal)

propositions.

K PK PPK

Poss(B)
/B/

/A/ A

B

/Poss(B)/

Figure 16: Set-theoreti
 interpretation of the modality of possibility.

Similarly the extension of Ne
(B) is the set of all those dis
ourse domains (propositions) A

su
h that A makes Ne
(B) true, that is, the set of those A su
h that B is ne
essary relative to A:

=Ne
(B)= = fA j A makes Ne
(B) trueg

= fA j A entails Bg

= fA j B 2 N

A

g

= fA j =A= � =B=g

as depi
ted in �gure 17.

Our arguments on presuppositions hold also at this se
ond level, on
e we spe
ify what the pre-

suppositions of modal senten
es are. Every proposition Poss(B) or Ne
(B) presupposes that B is

well-formed, well-an
hored and well-keyed (i.e. has a TV). This happens when the presuppositions

of B are ful�lled. Therefore the presupposition of Poss(B) (or of Ne
(B)) is satis�ed whenever

1

B

is true. However, we must be 
areful not to 
onfuse the two levels: the extension of 1

B

is a

subset of K, whereas we expe
t the extension of 1

Poss(B)

to be a subset of PK. In other words the

presupposition of Poss(B) 
annot be 1

B

, be
ause the latter is an element of PK, whereas 1

Poss(B)

needs to be an element of PPK. 1

Poss(B)

should be a para-proposition whose extension 
onsists of

all the dis
ourse domains in whi
h B is well-keyed and well-an
hored, i.e. all the dis
ourse domains

that entail 1

B

. In 
on
lusion we expe
t that

=1

Poss(B)

= = fA jA entails 1

B

g = =Ne
(1

B

)=

The natural de�nition is thus 1

Poss(B)

:= Ne
(1

B

). Similarly 1

Ne
(B)

:= Ne
(1

B

).
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K PK PPK

Nec(B)

/B/

/A/

A

B

/Nec(B)/

Figure 17: Set-theoreti
 interpretation of the modality of ne
essity.

This is not yet 
orre
t: the given de�nitions do not satisfy in general the property that for every

proposition B, the extension of B is 
ontained in the extension of its presupposition, =B= � =1

B

=

(�g. 18 left). The property holds for the ne
essity operator, =Ne
(B)= � =1

Ne
(B)

= = =Ne
(1

B

)=,

for every proposition B; but it fails for the possibility operator, as it is not in general true that

=Poss(B)= = fA j =A= \ =B= 6= ;g is 
ontained in =1

Poss(B)

= = =Ne
(1

B

)= = fA j =A= � =1

B

=g

(�g. 18 right).

B/1   /

/A/

K

/B/

B/1   /

K

/B/

/A/

A 2 =Ne
(B)=) A 2 =Ne
(1

B

)= A 2 =Poss(B)= but A 62 =Ne
(1

B

)=

Figure 18: Extension of the presuppositions of modal senten
es.

We must therefore 
hange the de�nition of =Poss(B)=. The 
orre
t de�nition is

=Poss(B)= = fA j =A= � =1

B

= and =A= \ =B= 6= ;g:

Then it is the 
ase that =A= � =1

A

= holds in general. For example, for A = Poss(B) we

�nd that =1

Poss(B)

= = =Ne
(1

B

)= = fA j =A= � =1

B

=g, whi
h is 
learly a superset of =Poss(B)=,

a

ording to the de�nition of =Poss(B)= that we have just given.

From these de�nitions the usual modal theorems Ne
(�B) = �(Poss(B)) and Poss(�B) =
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�(Ne
(B)) follow:

=Ne
(�B)= = fA j =A= � =�B=g

= fA j =A= � =1

B

=� =B=g

=�(Poss(B))= = =1

Poss(B)

=� =Poss(B)=

= =Ne
(1

B

)=� =Poss(B)=

= fA j =A= � =1

B

=g � fA j =A= � =1

B

= and =A= \ =B= 6= ;g

= fA j =A= � =1

B

= and =A= \ =B= = ;g

= fA j =A= � =1

B

=� =B=g

=Poss(�B)= = fA j =A= � =1

�B

= and =A= \ =�B= 6= ;g

= fA j =A= � =1

B

= and =A= \ (=1

B

=� =B=) 6= ;g

= fA j =A= � =1

B

= and =A=� =B= 6= ;g

=�(Ne
(B))= = =1

Ne
(B)

=� =Ne
(B)=

= =Ne
(1

B

)=� =Ne
(B)=

= fA j =A= � =1

B

=g � fA j =A= � =B=g

= fA j =A= � =1

B

= and =A= * =B=g

= fA j =A= � =1

B

= and =A=� =B= 6= ;g

Note that the modal theorems do not hold for the other negations:

=Ne
('B)= = fA j =A= � =1

B

=g

='Poss(B)= = fA j =A= 6� =1

B

=g

So, in general =Ne
('B)= 6= ='Poss(B)=. Similarly for the Boolean negation.
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