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Abstract

The prime purpose of this paper is, first, to restore to discourse-bound occasion sentences
their rightful central place in semantics and secondly, taking these as the basic propositional
elements in the logical analysis of language, to contribute to the development of an adequate
logic of occasion sentences and a mathematical (Boolean) foundation for such a logic, thus
preparing the ground for more adequate semantic, logical and mathematical foundations of
the study of natural language. Some of the insights elaborated in this paper have appeared
in the literature over the past thirty years, and a number of new developments have resulted
from them. The present paper aims at providing an integrated conceptual basis for this new
development in semantics. In Section 1 it is argued that the reduction by translation of oc-
casion sentences to eternal sentences, as proposed by Russell and Quine, is semantically and
thus logically inadequate. Natural language is a system of occasion sentences, eternal sen-
tences being merely boundary cases. The logic has fewer tasks than is standardly assumed,
as it excludes semantic calculi, which depend crucially on information supplied by cognition
and context and thus belong to cognitive psychology rather than to logic. For sentences to
express a proposition and thus be interpretable and informative, they must first be properly
anchored in contert. A proposition has a truth value when it is, moreover, properly keyed
in the world, i.e. is about a situation in the world. Section 2 deals with the logical proper-
ties of natural language. It argues that presuppositional phenomena require trivalence and
presents the trivalent logic PPCs, with two kinds of falsity and two negations. It introduces
the notion of Y-space for a sentence A (or /A/, the set of situations in which A is true)
as the basis of logical model theory, and the notion of /PA/ (the X-space of the presuppo-
sitions of A), functioning as a ‘private’ subuniverse for /A/. The trivalent Kleene calculus
is reinterpreted as a logical account of vagueness, rather than of presupposition. PPC3 and
the Kleene calculus are refinements of standard bivalent logic and can be combined into one
logical system. In Section 3 the adequacy of PPC3 as a truth-functional model of presup-
position is considered more closely and given a Boolean foundation. In a noncompositional
extended Boolean algebra, three operators are defined: 1, for the conjoined presuppositions
of a, a for the complement of a within 1,, and a for the complement of 1, within Boolean 1.
The logical properties of this extended Boolean algebra are axiomatically defined and proved
for all possible models. Proofs are provided of the consistency and the completeness of the
system. Section 4 is a provisional exploration of the possibility of using the results obtained
for a new discourse-dependent account of the logic of modalities in natural language. The
overall result is a modified and refined logical and model-theoretic machinery, which takes
into account both the discourse-dependency of natural language sentences and the necessity
of selecting a key in the world before a truth value can be assigned.
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1 Truth and falsity for occasion sentences

In the classical view, which has been accepted since Aristotle’s day, truth consists in saying or
thinking of what is so, that it is so, and falsity in saying or thinking of what is not so that it is.
Truth and falsity are the truth values (TVs), and the bearers of these values, the objects that have
the property of being true or false (whether they are objects of speech or of thought) are called
propositions. This is known as the correspondence theory of truth, and there is little one can say
against it, except that it does not give enough.

First of all, if truth is taken to result from correspondence between what, is said or thought and
what is the case, it is necessary to specify what the correspondence consists in. In other words,
an analysis must be provided of what is the case on the one hand, and also of what is said or
thought on the other, and elements of the one analysis must then be mapped onto elements of the
other, in order to define in precise terms under what conditions there is correspondence. The task
of defining such a mapping procedure has occupied many generations of philosophers, but it was
not until the 20th century that it was undertaken in a formally precise way, under the name of
model-theory, in the context of mathematical logic.

Then there is the built-in ambiguity between saying and thinking: are true or false propositions
the result of speech acts or of thought processes? As is argued in Stegmiiller (1957, pp. 16-17)
and Seuren (1998b, pp. 12-18), the correct answer is that a proposition, as a bearer of a TV, is
not a linguistic expression, but the result of a mental act of assigning a property to an entity
or n-tuple of entities (where both the property and the entities in question may be determinable
through a complex process of interpretation). The main argument for this position is the well-
known fact that linguistic utterances, in principle, heavily underdetermine their truth conditions,
and that the missing elements are supplied by available world and/or situational knowledge. This
applies in particular to predicates, whose satisfaction conditions often involve world knowledge.
For example, the satisfaction conditions of the predicate flat are different in The front tire was
flat and The road surface was flat. Or, to vary on Ryle (1949, p. 24), the prepositional predicate
in is satisfied under quite different conditions in, for example, She went out in a red hat and She
went out in a sports car.

Truth thus seems to be primarily a cognitive, and not a verbal, notion. This point is important
because logic has always, mainly due to the obvious difficulty of analysing thoughts as against the
relative accessibility of linguistic structures, operated with a verbal notion of truth, and we shall
see presently that this imposes certain limitations.

A third problem lies in the fact that many sentences of natural languages, if taken by themselves
and out of context, cannot be assigned a TV. A sentence like:

(1)  The girl was right after all.

is a good grammatical sentence of English, with proper English lexical forms, with a subject term
and a finite verb form in proper agreement with the subject term, in the simple past tense and
with an adjunct of time. But it makes no sense to ask whether it is true or false, until it is known
what person is referred to by the subject term, when the event is said to have taken place, and
what the issue was that the girl is said to have been right about. We say that this sentence needs
a key in the real world before it can be assigned a TV.

Sentences that need a key are called occasion sentences, whereas sentences that don’t are called
eternal sentences (Quine 1960). Eternal sentences are, in principle, presented in a generic (present)
tense and contain no definite but only quantified terms. Thus, a sentence like:

(2)  All humans are mortal.

is an eternal sentence and, consequently, it makes perfect sense to ask whether it is true or false,
regardless of any context. No specific key is needed in such cases.

Both Aristotelian and modern logic are based exclusively on eternal sentences, the reason being
that occasion sentences turn out to pose a number of apparently intractable problems for a sound

logic, problems which do not turn up with eternal sentences. Aristotle decided (Metaph 1027a—b)



4 1 TRUTH AND FALSITY FOR OCCASION SENTENCES

to ban all occasion sentences from his metaphysics and his logic, probably because of the baffling
complications which he saw coming with regard to occasion sentences. There is an alternative
logical tradition, running from the Stoa through the Middle Ages to the late 19th century, where
attempts are made to take occasion sentences into account as well, but this tradition has dried up
since 1900, mainly because it was shown in Russell and Whitehead’s Principia Mathematica that
the new Predicate Calculus, restricted as it is to eternal sentences with its quantifiers, variables
and logical connectives, is sufficient to express any mathematical proposition. From then on,
attempts to account for occasion sentences were given up and logic was exclusively about eternal
sentences.

1.1 The translation method is inadequate as a solution for occasion
sentences

While the fact that all mathematical propositions can be expressed in terms of eternal sentences
in the Russellian Language of Predicate Calculus (LPC) is no doubt of extreme importance, the
question of how to determine truth and falsity for occasion sentences, as well as that of their
logical properties, remains. The answer provided by modern logic is, in principle, that all occasion
sentences must be ‘translated’ into eternal sentences for which such problems do not exist. This
is the basis of the programme initiated by Russell and continued by Quine, who dubbed it the
programme of ‘elimination of particulars’ (Quine 1960). This programme, which underlies virtually
all the work done in present-day model-theoretic or ‘formal’ semantics, is based on two (usually
implicit) assumptions. The first is that the ‘translations’ provided are semantically equivalent
to the sentences that have been translated, and the second implies that the logical translations
provided will be powerful enough to express any proposition a speaker wishes to express when
using a natural language.

These two assumptions have not remained unchallenged. One important problem, directly
relevant to the second assumption, but indirectly also to the first, is posed by the so-called ‘donkey
sentences’, so called because of a number of example sentences presented by the British philosopher
Walter Burley (+£1275—after 1344) in the context of his theory of reference, all containing mention
of a donkey. Among Burley’s examples is the following (Burley 1988, p. 92):

(3)  Omnis homo habens asinum videt illum. (every man who has a donkey sees it)

Burley’s problem was that a sentence like (3) will still be true if some man has two donkeys, one
that he sees and one that he does not see, as long as every donkey owner has at least one donkey
he does see. This would mean that a sentence like ‘Some man who has a donkey does not see it’
would be compatible with (3) and not be its contradictory. In modern times, the problem was
brought up by Geach (1962, pp. 116ff), who re-used Burley’s examples (speaking of ‘another sort
of medieval example’, but without mentioning Burley). Geach’s donkey-examples were in turn
picked up by modern formal semanticists, who found that sentences of the types:

(4) a. If George owns a donkey he feeds it.
b. Every farmer who owns a donkey feeds it.
c. Either George does not own a donkey or he feeds it.

cannot be translated into LPC, which allows for only two kinds of terms, (bound) variables and
constant terms that refer to a reference object. The pronoun it in (4a—c) cannot be a constant
term since it has no reference object, so it must be a variable. But as a variable it cannot be
bound, unless more radical logical translations are provided. Thus, (4a—c) might conceivably be
translated as, respectively:

(5) a. Vz[Donkey(z) — [Own(George, x) — Feed(George, x)]]
b. VaVy[[Farmer(z) A Donkey(y) A Own(z,y)] — Feed(z,y)]
c. —Jz[Donkey(z) A Own(George, z)] V Jz[Donkey(z) A Own(George, z) A Feed(George, )]
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Such translations, however, run into considerable problems. First, from a strictly linguistic point
of view, there is the problem of the nonuniformity of translations, since a noun phrase like a donkey
is to be translated as an existentially quantified expression in, for example, (4c) or George owns a
donkey, but as a universally quantified expression in (4a,b). This would violate Russell’s ‘parity
of form’ criterion (1905,p. 483). Moreover, as was observed by Burley, (4b) allows for some farmer
to own two donkeys, one that he feeds and one he does not feed, whereas (5b) is false in such a
case.

Furthermore, it does not seem tenable that the pronoun it in (4a—c) represents a bound variable.
This is so because it is typical for pronouns that do represent bound variables that they cannot be
replaced with a so-called epithet pronoun, like the great man or the idiot or the wretched animal.
Thus, in a sentence like (6a) the bound variable pronoun they cannot be replaced with an epithet,
as in (6b), without the binding relation being destroyed:

(6) a. Some people think that they will get rich without working.
b. # Some people think that the layabouts will get rich without working.

In (4a—c), however, the occurrences of it can all give way to an epithet without any referential
consequences:

(7) a. If George owns a donkey he feeds the wretched animal.
b. Every farmer who owns a donkey feeds the wretched animal.
c. Either George does not own a donkey or he feeds the wretched animal.

This strongly suggests that the occurrences of it in (4a—c) are not to be analysed as bound variables
but as referring expressions of some kind, even if this kind of referring expression is not known in
LPC.

Thirdly, translations of the type (5a—c) fail to satisfy when intensional operators are built into
the sentences in question, as in:

(8) a. If John thinks that George owns a donkey, he is certain that George feeds it.
b. Every farmer who is known to own a donkey, is thought to feed it.
c. Either John thinks that George does not own a donkey or he is certain that George feeds
it.

If the NP a donkey is translated as a universally quantified expression, as in (5a,b), the meaning
of the sentences in question is distorted beyond tolerable limits. If, on the other hand, existential
quantification is used, scope problems arise. (5¢), moreover, is questionable, as it is not simply the
substitution of =A V [A A B] for =A V B, but involves the inclusion of the propositional function
‘Feed(George, )’ under the existential quantifier. (8c) shows that there are serious problems
regarding the generality of this procedure.

This problem of donkey anaphora was the primary motivation behind Discourse Representation
Theory (Kamp & Reyle 1993). A solution in terms of interpretative subdomains within the
framework of Discourse Semantics is found in Seuren (1998a). Both approaches use LPC and
both have extended LPC with definite descriptions and anaphoric devices, thus rejecting Russellian
translations for the cases at hand and reinstating occasion sentences as elements in the semantics.
Since the logical properties of the structures concerned do not seem to be affected by these steps
in any but marginal ways, we shall leave the donkey anaphora problem undiscussed in the sequel
of this paper, relegating its solution to a proper semantic theory. The emphasis of this paper is
on those phenomena that are typical of occasion sentences and lead to consequences for the logic
of language, such as presuppositions.

A similar difficulty, showing the weakness of the first assumption, concerns Russell’s (1905)
reduction of definite NPs to existentially quantified expressions as in (9a), translated by him as
(9b):

(9) a. The present king of France is bald.
b. Jz[Now[KoF(z)] A Bald(z) A Vy[Now[KoF(y)] — = = y]]
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Clearly, a sentence like (10a) is not equivalent to any of its possible Russellian translations (10b—

e):

(10) a. Carol thinks that there is a king of France, and she hopes that he is bald.

b. There is a king of France such that he is the only one and such that Carol thinks he is
there and such that she hopes he is bald.

c. Carol thinks that there is a king of France such that she hopes that he is the only one
and that he is bald.

d. Carol thinks that there is a king of France, and there is a king of France such that he is
the only one and she hopes that he is bald.

e. Carol thinks that there is a king of France, and she hopes that there is a king of France
such that he is the only one and is bald.

Finally, logical translations in the manner of Russell or Quine fail to solve the reference prob-
lem, which is posed by the fact that definite NPs often select their reference object in virtue of
situational or world knowledge, and not on the basis of a Russellian translation as given in (9b).
Under a Russellian translation, (11) is false in cases where there are several pubs. Yet for the
purpose of ordinary language (11) may well be true, as long as John and Harry met in a particular
pub whose identity was known and taken for granted:

(11)  John and Harry met in the pub after work.
This problem is quite general. For example, in a sequence of sentences like:
(12)  The book was published in 1968. The publisher was later sent to prison.

the definite NP the publisher must refer to the person who published the book in question in 1968,
not to just any (unique!) publisher. LPC is unable to fix that reference. For it to be able to do
that it must (a) be extended with a new category of intrinsically referring terms consisting of a
predicate and a definite determiner, and (b) be applied first to contextually restricted cognitive
structures that represent possible situations before any reference relation and hence TV can be
determined.

These and similar arguments point to the following conclusions:

e QOccasion sentences cannot be reduced to eternal sentences but must be recognized in their
own right, both in semantics and in logic.

e If LPC is to be used for the representation of semantic content, it must be extended with at
least definite descriptions and anaphoric pronouns.

e Since occasion sentences lack a TV until a key has been selected and reference values are
fixed, and since these processes involve an appeal to cognition, the primary bearers of TVs
are cognitive, not linguistic, structures. Linguistic utterances are TV-bearers only to the
extent that they express an underlying proposition (thought).

e Only utterance tokens, properly embedded in a context and a situation, can be said to have
a TV. Sentence types have logical and semantic properties, but, in principle, no TV. Eternal
sentence types appear to have a TV, due to the fact that the contextual and situational
embeddings required for them to have a TV are unrestricted. They therefore represent
boundary cases. (This conclusion was reached earlier in Strawson (1950).)

1.2 A programme for semantics and for logic

The conclusions reached in the previous section imply a programme of research for semantic theory.
First of all, a theory must be developed that specifies the cognitive structures that are taken to
contain the primary bearers of TVs. This we call the THEORY OF CONTEXTUAL ANCHORING.
Secondly, a THEORY OF REFERENTIAL KEYING, is needed to specify how the cognitive structures
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Cognitive Discourse Domain

REFERENTIAL KEYING
(truth value assignment)
intentional relation

CONTEXTUAL ANCHORING
(meaning specification)
causal relation

Utterance token Situation
of sentence type inworld

Figure 1: The triangular relation of language, mind and world

at issue, and hence the sentence tokens or utterances that express them, can be keyed to a given
situation. The overall architecture into which these theories are meant to fit is schematically
rendered in fig. 1.

The double arrow on the left hand side signifies a two-sided causal relation, in the sense that
utterance tokens are produced from, or integrated into, cognitive discourse domains by means of
cerebral and neuromuscular processes. The double arrow on the right hand side signifies a relation
whose nature is conceptually less clear. Philosophers often speak of an intentional relation, which
means, in principle, that the cognitive structure is intended to be a representation of, or ‘be about’,
an actual situation in the world. The notion of a cognitive representation or discourse domain D
is far from unproblematic and requires a thorough analysis of basic concepts. Yet in principle it
appears to be amenable to standard methods of scientific analysis.

In essence, D is a structured set of structures (propositions) of the type P(e), where e is an
element symbol and P a property symbol, semantically defined by satisfaction conditions. If e
stands for (refers to) an entity (in the widest possible sense) in the real world W and P stands for
a well-defined property that real world entities may have, a particular proposition P(e) is either
true or false, according to whether the entity referred to by e does or does not have the property
that P stands for. D may also not be about any real situation in the world at all, in which case it is
not ‘keyed’ and has no truth value. In that case the P(e)-structures of D are, though contextually
anchored, not keyed to a real world situation and are thus propositions without a TV. They are,
so to speak, representations in search of a key.

Even more profound problems are raised by the notion of intention. To say that a proposition
P(e) is intended to be a representation of, or ‘be about’, an actual world situation is compre-
hensible in an intuitive sense, but is, as yet, not expressible in terms of causal relations and not
implementable in an algorithmic model. Intentionality thus described is a mental phenomenon
that still escapes the notions available in science and mathematics. For that reason it is a central
and highly problematic notion in the philosophy of mind.

The intentional relation of situational keying may, however, lead to causal effects, in that the
world situation may codetermine the representation(s) of the discourse domain (for example, when
a speaker wants to describe a given situation), while, on the other hand, particular configurations in
the discourse domain may be a determining factor in bringing about their real world counterparts
(as when an order is followed).

One notes that there is no direct connection, in fig. 1, between ‘Utterance token’ and ‘Situation’.
In Ogden & Richards (1923, p. 11) a similar triangular disposition is presented for the relation
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between language, the mind, and the world. There a dotted line, drawn between the linguistic
utterance and the world (situation), signifies a noncausal but merely ‘imputed’ relation determining
the TV to be assigned. In the light of the arguments presented in section 1.1, it is now clear that
this ‘imputed’ relation is based on a purely verbal notion of truth which can perhaps be made to
work for eternal sentences but not for occasion sentences. It fails to take into account the fact
that TVs can only be assigned to occasion sentences with the help of cognition.

Cognition, in the form of available world knowledge and discourse structure, supplies elements
that are missing from the spoken signal (the utterance of an occasion sentence) but are necessary
for a proper interpretation and for the assignment of a TV. These elements need not be expressed
verbally, because the listener is taken to be in possession of the necessary world knowledge and
to be a participant in the discourse structure at hand. Compared to a language that allows only
for eternal sentences, a language that contains occasion sentences is thus seen to be superbly
functional in that it saves an enormous amount of time and energy in the verbal expression of
propositions.

The relation between logic, semantics and cognitive psychology is now different from what it
was before. Traditionally, logic is the formal calculus of necessary consequences (entailments) given
the truth of (sets of) propositions. In terms of this definition, there should be two kinds of logic, a
cognitive logic based on thought structures, and a verbal logic based on linguistic structures. Since
cognitive logic is still far beyond our reach, we shall, in the following, restrict ourselves to verbal
logic, as is standard practice. But this means that if any verbal logic aims at handling occasion
sentences, it will be unable to provide a concomitant formal theory assigning correct TVs. In other
words, there will be no compositional calculus that assigns TVs to sentences in a model merely on
the strength of sentence structure and model-theoretic interpretation, as is possible, in principle,
for eternal sentences. Truth conditions, moreover, will have to be formulated partly in terms of
parameters whose values are to be supplied by cognition.

For natural language with its occasion sentences, the process of T'V-assignment is of a cognitive
nature and falls, strictly speaking, within the province of cognitive psychology, outside logic and
its applications in formal semantics. To the extent that established formal semantics involves a
formal procedure for the assignment of TVs to natural language sentences, it must be considered
not viable. In the light of the properties of occasion sentences discussed so far, it seems more
appropriate to restrict semantics, in principle, to the study of the contextual anchoring properties
of sentence types in discourse structures. Semantics, in other words, being the theory of linguistic
comprehension, studies the building up of cognitive structures that consist of propositions each of
which carries truth conditions but not necessarily a truth value. To decide how and when these
conditions are satisfied in a given situation is a matter of cognitive psychology, which has, so far,
not provided a formal theory.

Note that the term proposition will be used, from now on, for subject-predicate structures that
are well-anchored in context and thus contribute to a meaningful text. If a proposition is also
properly keyed to a situation, it will have a TV, but it need not have one to be meaningful.

For an uttered sentence token S to have a TV it must satisfy two global conditions: (a) S
must be contextually anchored, and (b) S must be keyed to a situation in the world. When only
condition (a) is fulfilled but not condition (b), S is part of a meaningful text thought up by an
author, but its TV is irrelevant. Or, in Frege’s words:

Why is the thought not enough for us? Because, and to the extent that, we are
concerned with its truth value. This is not always the case. In hearing an epic poem,
for instance, apart from the euphony of the language we are interested only in the sense
of the sentences and the images and feelings thereby aroused. The question of truth
would cause us to abandon aesthetic delight for an attitude of scientific investigation.
Hence it is a matter of no concern to us whether the name Odysseus, for instance, has
reference, so long as we accept the poem as a work of art. It is the striving for truth
that drives us always to advance from the sense to the reference.

Frege (1892, p. 33) translation by Max Black in Geach € Black (1970, p. 63)
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When not even condition (a) is fulfilled, S is unanchored and hence uninterpretable, but still
meaningful in the general sense that it may play a role in the building up of cognitive structures
consisting of propositions and possibly carrying a TV. Although these conditions apply to occasion
sentences in particular, we shall henceforth speak of sentences in general, since eternal sentences
are considered boundary cases, whose anchoring and keying conditions are always met. In section
1.3 condition (a) is discussed. Condition (b) is discussed in section 1.4.

1.3 Contextual anchoring and presuppositions

For a sentence S to be contextually anchored (or be part of a coherent discourse) it must satisfy
at least the following necessary conditions:

a. Every definite term in S has a unique denotation (address) in the discourse domain D.
b. All presuppositions of S are incremented in D before S.

Following a by now widely accepted view, we consider a discourse domain D to be a structured
representation of an ordered set of sentences. A D must contain at least a number of ‘addresses’
representing possible objects (singular or plural, natural individuals or reifications). Every new
well-anchored sentence is incremented in D in that the new information provided by S is added to
D. The precise format in which one may best take this to be done is not our concern here. Two main
strategies present themselves: either the predicate label expressing the property assigned by S is
added to the appropriate addresses that correspond to the definite terms in S, or the appropriate
address labels are added to the predicate label. A combination of both is also thinkable. New
addresses are introduced by means of existential quantification.

Condition (a) requires that D be structured in such a way that each definite term in S cor-
responds uniquely to an address in D. For definite descriptions (e.g. the house) this means that
the determiner the seeks the unique address in D that is characterized by the predicate house.
Definite pronouns need to find a proper antecedent, i.e. an address recently activated by explicit
mentioning. If a definite description fails to find an address in D, the missing address can be sup-
plied on grounds of knowledge-based inference, as is demonstrated in (12) above for the definite
description the publisher. For pronouns this is, normally speaking, not possible (try to read (12)
with he for the publisher).

Condition (b) is to do with presuppositions. We consider a presupposition to be a proposition
P implied in, and structurally recoverable from, a sentence S (its ‘carrier sentence’) in such a way
that P must precede S in D for S to be interpretable. A presupposition P of a carrier sentence S
thus poses a condition on D for the meaningfulness or interpretability of S or the simple negation
of S.

Four main categories of presupposition can be distinguished:

i. Existential presuppositions, as in (>’ stands for ‘presupposes’):
(13) John took his son to the Zoo. > John exists; John has a son;
there is a Zoo
ii. Factive presuppositions (presupposing the truth of the that-clause), as in:
(14) John noticed that he was getting wet. > John was getting wet
iii. Categorial presuppositions, implied in the meaning of the predicate, as in:
(15) a. David is divorced. > David was married before
b. David has stopped beating his dog. > David has beaten his dog before
iv. Remainder category, to do with focusing strategies and the particles only and even, as in:
(16) a. JoHN didn’t laugh, HARRY did. >  Somebody laughed
b.  Only John laughed. > John laughed

It makes sense, however, to assume that for all categories of presupposition the semantic source
of the presuppositions of a sentence S is, in principle, located in the satisfaction conditions of the
highest predicate of S (see section 2.3.1 below). In light of the observations made in 2.3.1 below,
it seems advisable, if not inevitable, to distinguish between two classes of satisfaction conditions,
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the preconditions, whose nonsatisfaction results in RADICAL FALSITY, and the update conditions,
whose nonsatisfaction results in MINIMAL FALSITY. Satisfaction of all conditions yields truth.
From a purely logical point of view, presupposition is then a lexically driven entailment, induced
by lexical preconditions. The reduction to lexical satisfaction conditions is straightforward for the
categories (i)—(iii). For category (iv) it is possible only if, at a level of semantic analysis, particles
like only or even are considered focusing predicates and a specific focusing predicate is assumed
for contrastive accents and other contrastive or emphatic focusing strategies such as clefting. This
aspect of presuppositional analysis, however, will not be gone into further in the present context.

Since a sentence Sp (i.e. S presupposing P) requires P to be incremented in D before S, a
speaker asserting Sp cannot be committed to the truth of S without also being committed to
the truth of P, on analytical grounds, i.e. grounds of meaning. It follows that if S > P, then
S F P. Moreover, since under normal conditions the contextual anchoring conditions of a sentence
S are identical to those of its negation not-S, a speaker asserting not-Sp cannot be committed
to the truth of not-S without also being committed to the truth of P. Hence, if S > P, then
not-S E P. We thus formulate as a logical condition for presupposition (applicable under the
default conditions):

(17) If S>> P, then SE P and not-S F P.

But this poses a problem for the logic of language, since in standard logic, if S F P and not-S F P,
P must be a necessary truth. In language, however, presuppositions are as contingent as any
other proposition. This problem is solved in section 2.3.3 below, where the trivalent propositional
calculus PPCj is presented.

It is is important to realize that a description of the logical properties of presupposition does
not automatically give a semantic definition. On the contrary, a sound logic is a necessary but not
a sufficient property for a sound natural language semantics (see section 2.3.5). It is thus possible
for a pair of sentences A and B to satisfy all the logical conditions of the semantic relation of
presupposition without the one presupposing the other. Conversely, however, if A > B, then A
and B must show the appropriate logical properties defined in PPC3. The semantic dimensions
that go beyond logic are not explored here.

It must be noted that existential presupposition differs from denotational anchoring (condition
(a)), in that the latter is required by definite terms looking for a unique address in D, whereas
the former is induced by the predicate in question, which may or may not require real existence
for one or all of its term referents. Thus, a sentence like John is talking about the Abominable
Snowman requires the availability of a unique address for the description the Abominable Snowman
(condition (a)), but it does not presuppose the existence of such a creature, since the predicate
talk about does not require real existence of its object term referent (it is intensional with respect
to its object term). For D this implies that the expression the Abominable Snowman may seek
its denotation address in some intensional subdomain representing somebody’s belief or story, in
case the main (or truth) domain lacks an appropriate address.

Since presuppositions are structurally recoverable from their carrier sentences, it is, in principle,
not necessary to present presuppositions explicitly, in the form of actual utterance tokens. For
any Sp, it is sufficient to pronounce only S, since P can be, and very often is, cognitively ‘slipped
in’ when S is processed. This process is called ACCOMMODATION or PosT Hoc INSERTION (PHI).
The process of PHI is blocked only in cases where it would result in an inconsistent D or where
implicit relations lack sufficient cognitive backing. The latter is illustrated in, for example,

(18)  When John entered the house, the corridor started to pray.

Supposing that John and the house are already ‘in the story’, the corridor is easily supplied by
PHI, since it is normal for houses to have corridors and one may expect a listener to know that.
But it is not normal for corridors to pray, and any such relation will have to be explained first for
an utterance of (18) to be interpretable. Failing such an explanation, (18) is not interpretable.
Most normal texts contain a multitude of presuppositions ‘slipped in’ by PHI. Given the
relatively large amounts of time and energy involved in the actual production and comprehension
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of utterance tokens, the mechanism of PHI constitutes a powerful energy-saving device. It is
important to realize, however, that this device is crucially dependent on the cognitive ability to
detect inconsistencies and on available background knowledge.

The presuppositions of a sentence may be parallel or stacked. For example, a sentence like:

(19)  John realizes that Mary’s best friend is divorced.
has the parallel presuppositions ‘There is a person called “John”’ and ‘Mary’s best friend is

divorced’. The latter, however, again presupposes ‘Mary’s best friend was married before’, which

presupposes ‘Mary has a best friend’, which again presupposes ‘There is a person called “Mary”’.

These presuppositions thus stand in the structural relationship to each other shown in fig. 2 (where
‘A — B’ means ‘A is presupposed by B’). All these presuppositions are recoverable from the

John realizes that Mary’ s best friend is divorced

There is a person called ‘ John’ Mary’s best friend is divorced

A

Mary’s best friend was married before

A

Mary has a best friend

Thereisaperson called ‘Mary’
Figure 2: The presuppositional structure of (19)

carrier sentence (19) and can thus be ‘slipped in’ by means of PHI, in the proper order. We
remark here that PHI inserts all hereditary presuppositions of the sentence. For the example
sentence (19) this implies that all sentences in fig. 2 that are below sentence (19) are inserted by
PHI. This conforms with the fact that the presuppositions of the presuppositions of a sentence S
are themselves presuppositions of S.

Apart from a few late 19th century admonitions (e.g Sidgwick 1895) to the effect that context
and discourse should be considered essential factors in any adequate semantic theory of natural
language, the first modern proposals to this effect go back to the early 1970s, in particular Seuren
(1972, 1975), Stalnaker (1973), Isard (1975). They were soon followed by a spate of theories
and proposals that share the property of being incremental (and thus tend at least to consider a
rehabilitation of occasion sentences) but differ widely in other respects, notably McCawley (1979),
Van den Auwera (1979), Ballmer (1979), Lewis (1979), Wunderlich (1979), Karttunen & Peters
(1979), Gazdar (1979), Kamp (1981), Heim (1982, 1983), Barwise & Perry (1983), Fauconnier
(1985), Landman (1986), Burton-Roberts (1989), Groenendijk & Stokhof (1991), Kamp & Reyle
(1993), and many others. While many of these do reinstate definite descriptions in the (explicit
or implicit) logical analysis, thus opening the way towards satisfying condition (a) mentioned at
the outset of this section, only very few take condition (b), which is about presuppositions, into
account. And to the extent that they do, only a few consider the logical aspects of presupposition,
the others being restricted either, rather myopically, to so-called projection phenomena (which
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fall outside any logical analysis) or to largely informal pragmatic analyses, or both. The only
remaining approach that considers both presuppositions and their strictly logical aspects, Burton-
Roberts (1989), is only remotely incremental and, moreover, just like all other approaches, fails to
take into account the specific observations presented in 2.3.1 below and published earlier in Seuren
(1985, 1988) and elsewhere (for a detailed critique of Burton-Roberts 1989 see Seuren 1990). It is
precisely these facts that call for a specific trivalent logic with two kinds of falsity (PPCs3). A similar
conclusion was reached in Dummett (1973, p. 421) on comparable but not identical grounds (see
below), but neither Dummett’s nor Seuren’s argument was ever acknowledged in the literature on
presuppositions. Therefore, in spite of the many interesting aspects of the literature at hand, none
of it is relevant for the present more restricted purpose, which is to reinstate occasion sentences
and to investigate their logical and mathematical foundations in a way that takes account of all
relevant facts.

1.4 Situational keying and reference fixation

Every S has to be keyed to a situation for it to have a TV. A key consists in the specification
of where to look for verification or falsification. No theory has been developed so far to account
for either the speaker’s intentional keying in to a particular situation in the real world W, or the
listener’s adequate picking up of the intended key. For the listener this appears not to be a strictly
compositional process, but rather a matter of hypothesis and approximation. Unrestricted truth
is anyway not a sufficient criterion. If it were, a complete fleshing out of all presuppositions of
an occasion sentence by means of PHI, as illustrated in fig.2, would be sufficient to provide all
occasion sentences with a TV without any intentional keying. It would then, for example, be
sufficient for the truth of (19) that there be persons called ‘John’ and ‘Mary’, respectively, that
Mary have a best friend who was married before but is now divorced, while John realizes all that.
But although there may be many situations in the actual world that satisfy these conditions, this
does not make (19) true. The truth or falsity of (19) requires a prior intentional focusing on a
particular situation shared by speaker and listener. As a matter of principle, TVs are predicated
on prior keying, and this fact must be taken into account in any theory of truth and meaning, as
well as in an adequate logic of natural language sentences. Formal philosophical, semantic and
logical theories of natural languages are thus subservient more to formal analyses of cognition than
to mathematical logic. The role of the latter is still highly relevant, but more restricted than is
standardly thought.

It is now clear that straightforward-looking instances of eternal sentences, such as There isn’t
a person called ‘John’ or Everybody wants lower tazes, can be true even if there is, somewhere in
the big wide world, a person called ‘John’ or someone of whom it is not true to say that he or she
wants lower taxes. To say that the truth or falsity of such statements is pragmatically restricted
to certain situations may well be correct, under an appropriate definition of the term ‘pragmatic’,
but it is not very enlightening unless the full consequences are drawn for the theory of truth and
meaning, and for a proper logic of natural language sentences.

It is probably correct to say that the fixation of reference comes after the fixation of a key,
i.e. the intentional focusing on a specific situation. This appears from the fact that key-restricted
truth is sometimes used as a means for the fixing of reference. This phenomenon, described in
Seuren (1985, pp. 459-464) as ‘nonspecific reference’, is illustrated by a sentence like:

(20)  John owns a dog, and it bit him.

uttered with respect to a situation where a person called ‘John’ owns two dogs, one that bit him
and one that did not. In that situation (20) is true, and it is so in virtue of the fact that the definite
term it automatically selects the dog that satisfies the conditions of the predicate bit him, so that
the second conjunct is true. That is, the reference of it (or of John’s dog) is made dependent on
the truth of the proposition ‘it (John’s dog) bit him’. This means that the sentence:

(21)  John owns a dog, and it did not bite him.
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is likewise true in the same situation, because in this case the reference object of it is the dog
that did not bite him. This fact is remarkable because truth is here used as a criterion for the
fixing of reference given a situational key. For the second conjuncts of (20) and (21) to be true
it is sufficient for there to be, in the situation at hand, a dog that did, or did not, bite John,
respectively.

This puzzling fact was noticed by Walter Burley, as was shown in connection with example (3)
above, and is specifically discussed in Geach (1969) (though again without attribution). Beyond
that, however, it has escaped the attention of modern philosophy, probably because it has been as-
sumed that Geach’s solution to the problem is adequate. Geach’s solution amounts to ‘translating’
(20) and (21) not as a conjunction of two propositions, i.e. as A A B, but as, respectively

(22) a. Fz[Dog(z) A Own(John, z) A Bite(z, John)]
b. Jz[Dog(z) A Own(John, z) A —Bite(z, John)]

so that inconsistency is avoided. It was shown, however, in Seuren (1977) that this solution is
inadequate since it does not apply to cases where intensional operators are involved, as in:

(23) a. John must have owned a dog, and it may have bitten him.
b. John must have owned a dog, and it cannot have bitten him.

Both (23a) and (23b) may be true at the same time, provided John owned at least two dogs.
But Geach’s solution does not apply, due to scope problems. If it is taken to represent a variable
bound by an existential quantifier 3z, as in (22a,b), then the operators ‘possible’ in (23a) and ‘not-
possible’ in (23b) must be in the scope of Jz. But 3z itself is in the scope of the necessity operator
must, in the normal interpretation of (23a,b). It follows that may and cannot must likewise be in
the scope of must, which is clearly not what these sentences mean. It is, therefore, impossible to
bind it in the cases quoted, which makes Geach’s solution invalid for these cases. This conclusion
is reinforced by the observation that the pronoun i in (20) and (21) can be replaced with an
epithet, as in :

(24) a. John owns a dog, and the animal bit him.
b. John owns a dog, and the animal did not bite him.

which, as we have seen, appears to be impossible for pronouns representing bound variables.

The consequences of the phenomenon of nonspecific reference are startling. First, the Language
of Predicate Calculus must be extended at least with pronominal definite terms that are not bound
variables. Secondly, and more importantly, even if that is done, the standard model-theoretic
calculus by which TVs are computed on the basis of the extensions of terms and predicates in the
model cannot be upheld, since here the extension of some terms is determined by the assumed
value ‘true’ for the proposition at hand, which would make the procedure circular.

The phenomenon of nonspecific reference shows that keying and reference fixation are cognitive
processes in a game of hypothesis and approximation, and cannot be part of logical model theory.
In fact, standard model-theoretic semantics, to the extent that it takes keying and reference rela-
tions into account (toy models usually do), simply takes these for granted. But this means that the
empirical question of how language users come to understand and interpret their sentences remains
fundamentally unsolved in model-theoretic semantics. The Quinean programme of reformulating
occasion sentences as eternal sentences is an attempt at circumventing this problem, but, as has
been shown, to no avail. We must conclude that natural language semantics is basically different
from what is called ‘semantics’ in logic.

2 The logic of occasion sentences
2.1 The logic of occasion sentences is restricted to prior selection of key
and reference

It is now clear that a formal theory of entailments, i.e. a logic, of natural language sentences is
predicated on the prior selection of a key K and of reference relations in K. In its simplest form,
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K is defined by a set I of individuals in W, within frames of time and place. A discourse is said
to be about K. A new sentence in a discourse may open up a new K, in which case the discourse
is about more than one K. Normal discourses are about sets of Ks forming a hyperkey. In the
present context hyperkeys will be left out of account, and only simple Ks will be considered.

A key K realizes a particular actual state of affairs or situation s,, but other situations s might
have occurred in K, depending on what relations obtain in I. We say that K is a set of situations
s, one of which is the actual situation s,.

If a natural language L is considered to be a set of sentences, not all sentences of L are
interpretable given some K. Only the sentences in a subset Lk of L will be interpretable given
K. There is as yet no formal method for delimiting Lk given some L and given some K (hardly
surprising when one realizes the neglect of occasion sentences in modern logic and semantics).
Sentences not belonging to some Lk have no truth value and are, therefore, not objects in any
logical calculus.

Each sentence A € Lk is associated with the set of situations ¥ C K in which A is true, or
the ©-SPACE of A, also written as /A/. Every X-space is a possible fact. When, for some A,
J/A/ = K, A is necessarily true in K. When /A/ = 0, A is necessarily false in K. We call the
Y-space of a sentence A, or /A/, the extension of A. A sentence A € Lk is true just in case
sa € /A/, and false just in case s, ¢ /A/.

2.2 Applications of Boolean algebra to standard propositional calculus

In his famous article (1892), Frege decided to apply the distinction between intension and exten-
sion, which had so far been restricted to predicates, also to sentences. He stipulated that the
extension of a sentence A, or [A], should be the truth value of A, whereas the intension of A
should be the thought underlying A in the minds of language users. His reason for taking TVs
as extensions of sentences was one of convenience. According to Frege, the TV of a sentence can
be computed compositionally from the extensions of its component parts (1892,p. 33-4). Thus, if
the extension of a sentence is taken to be its TV, there is a compositional calculus to compute
the extension of a sentence on the basis of the extensions of its parts and nothing else. The fact
that such a calculus is not available for the intension (underlying thought) of a sentence makes
this extensional calculus all the more valuable (it is the basis of Montague’s programme of ‘ex-
tensionalisation of intensions’). It has been shown above that it is not correct to say that the TV
of a sentence can be computed compositionally from the extensions of its parts, not even if one
limits oneself (which Frege did not do) to eternal sentences, since the satisfaction conditions of
predicates often require an appeal to world knowledge. But Frege did not take such niceties into
account.

A further convenience for Frege was the fact that if TVs are sentence extensions, Boolean
algebra computes the truth functions. All that is needed is to define ‘truth’ as the value of
Boolean 1, and ‘falsity’ as the value of Boolean 0. Negation (—) is now interpreted as Boolean
complement, conjunction (A) as Boolean multiplication, and disjunction (V) as Boolean addition.
This is the origin of the widespread convention to denote truth with the symbol ‘1’, and falsity
with ‘0.

The propositional truth-functional operators now compute as follows. For any sentences A, B:

o Ais true iff [A] =1; A is false iff [A] = 0.
e —A is true iff [A] = 0; -A is false iff [A] = 1. That is, [-A] = [A].
e [ANB] =[A][B] and [AV B] = [4] + [B].

This gives the classical truth tables of fig. 3. However, although this gives the correct computations
for the standard truth functions, it remains unclear what is meant when one says that a sentence
A is true, or false. All one can say, with Frege, is that a true sentence refers to the VERUM
or ‘the True’, whereas a false sentence refers to the FALSUM or ‘the False’. However, as a basis
for a philosophically sophisticated theory of truth (and meaning), this Fregean application is
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[AA B] ‘ [B] [AvB] ‘ [B]
[A4] | [-4] 10 +1 1 0
1 0 [A] 1 ‘ 1 0 [A] 1 ‘ I 1
0 1 0] 0 0 o 1 o0

Figure 3: Frege’s application of Boolean algebra to bivalent propositional calculus

unsatisfactory and thus open to revision. It requires that the truth values, being extensions,
be considered part of the world with respect to which sentences (propositions) are true or false.
But the VERUM and the FALSUM are hardly defensible as elements in any ontology, a fact widely
recognized in model-theoretic semantics but left unremedied.

There is, however, a different though, as far as standard bivalent calculus is concerned, logically
equivalent notion of sentence extension, sketched in section 2.1 above and based on the notion
of Y-space. It was said there that the extension of a sentence A is a possible fact, or the set of
situations in K in which A is true. This we have decided to call the ¥-space of A or /A/. The idea
originates with Boole (1847, pp. 49-50), but was never fully elaborated. Kneale & Kneale (1962,
p. 43) speak of a ‘perhaps more interesting’ development. To the extent that one understands
Boole’s few remarks on the matter, it seems that he had in mind an interpretation where Boolean
‘1’ is the algebraic expression for the universe U, or the set of all possible situations, of which
the actual situation s, is one. ‘0’ is the algebraic expression for the empty set or #. For any
sentence A of L, the extension of A, let us say again /A/, is the set of situations in which A is
true. Apparently, Boole did not realize that most sentences of any natural language are occasion
sentences, which means that they are not true or false per se but only when properly anchored
and keyed. This makes the notion of ‘set of possible situations in which a sentence A is true’
incoherent. Yet, if this complication is disregarded by always applying the logical calculus modulo
K, Boole’s notion provides an alternative to Frege’s notion of sentence extension, which is logically
equivalent as long as the logic is kept strictly bivalent.

Van Fraassen (1971, pp. 88ff) was the first to provide a formal elaboration of Boole’s idea,
still in terms of an unrestricted universe U, i.e. the set of all possible situations, without any
contextual or keying restrictions. For Van Fraassen, a situation is defined by a valuation, i.e. an
assignment of truth values to all sentences of a language L. If L contains n logically independent
sentences, then the number of valuations for L is 2", with the two values T (‘true’) and F (‘false’).
The X-space (for Van Fraassen the valuation space) of a sentence A, or /A/, is the set of valuations
in which A gets the value T. Clearly, if A F B, then /A/ C /B/. If A F B, any valuation where
A is valued T and B is valued F is inadmissible, in Van Fraassen’s terms.

This allows for a Boolean interpretation of standard propositional calculus. Let each constant
term in the algebra stand for the X-space of a sentence in the language. Variables ranging over
terms thus stand for arbitrary ¥-spaces. For any necessarily true sentence N; in L, /N;/ = U
(read ‘1’). For any necessarily false sentence Ny, /Ny/ =0 (read ‘0’). /A/ is the set of valuations
(X-space) in which A is false. When A is true, the valuation v, describing the actual situation is a
member of /A/: v, € /A/. When A is false, v, ¢ /A/ and v, € /A/. Tt follows that /~A/ = [A/.
Thus, when A is false, v, € /A/, or v, € /2A/. We now define:

JANB/=/A/-/B] and: JAVB/=/A/+/B/

This likewise gives the classical truth tables in fig. 4, with T for ‘true’ and F for ‘false’.

JANB/ ‘ /B/ JAV B/ ‘ /B/
JA] | -4/ T F +| T F
T | F JA]  T| T F JA] T T T
F| T F ‘ F F F ‘ T F

Figure 4: Y-space application of Boolean algebra to bivalent propositional calculus

The truth tables are demonstrated more clearly by means of set-theoretic diagrams (fig.5). In
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these diagrams the -spaces and the corresponding values T and F are positioned in such a way
that the truth tables can be read directly from the diagrams. The same method is followed in the
figs.9, 10 and 13 below.

B/

[-~A] =]A] J[ANB] =[A]-|B] JAV B/ =[A] +[B/

Figure 5: Set-theoretic interpretation of bivalent propositional calculus

In the following section it will be shown that the logic of natural language must be at least
trivalent, as it distinguishes two different kinds of falsity. In the light of that distinction, Frege’s
notion of TVs as sentence extension and his use of Boolean 1 for truth and Boolean 0 for falsity
cannot, be upheld, simply because Boolean 0 does not allow for internal distinctions. If, however,
truth and falsity are treated in terms of ¥-spaces, there is no problem, since ¥-spaces, being sets,
allow for further internal distinctions. From now on, therefore, we shall use Van Fraassen’s Y-
space application of Boolean algebra as the formal foundation of propositional calculus, with one
important difference. Since it makes no sense to say of occasion sentences that they are true or false
per se, for any given situation, without specifying how they are anchored and keyed, we shall not
speak of the universe U of all possible situations, but rather of the key K of all possible situations
in which the sentences of Lk are true or false. The ‘universe of discourse’, in other words, is not
the unfathomable totality of all possible situations (‘worlds’), with all the conceptual, logical and
ontological problems that come with it, but the rather more manageable set of possible states of
affairs within the restricted part of the world focused upon by means of the intentional mental act
of keying. Apart from that, Van Fraassen’s analysis can be maintained in its entirety, since the
underlying mathematics remains the same.

2.3 The logic of presupposition
2.3.1 Presupposition requires trivalence

In this section an empirical argument is proposed to the effect that the logic of natural language
cannot be bivalent but must at least be trivalent, with two different kinds of falsity. Before
the argument can be presented, the notion of bivalence has to be stated with some precision.
The Aristotelian PRINCIPLE OF BIVALENCE, also known as the PRINCIPLE OF THE EXCLUDED
TuirD (PET), applies first and foremost to the Aristotelian theory of truth as correspondence.
Its application to logic is secondary. For Aristotle, truth and falsity are properties of proposi-
tions expressed in sentences, in such a way that PET holds. PET consists of the following two
independent subprinciples:

i. PRINCIPLE OF COMPLETE VALUATION: all propositions always have a truth value.

ii. PRINCIPLE OF BINARITY: there are exactly two truth values, ‘true’ and ‘false’; there are
no values in between, and no values outside ‘true’ and ‘false’. The Principle of Binarity
comprises the PRINCIPLE OF THE EXCLUDED MIDDLE (PEM), which says only that there
are no values between ‘true’ and ‘false’, and says nothing about possible values beyond
simply ‘true’ and ‘false’.
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The Principle of Complete Valuation holds trivially if one follows the tradition, which says that
to have a truth value is a defining feature of a proposition. Then, obviously, it makes no sense to
speak of propositions without a truth value. Under our definition, however, of a proposition as a
subject-predicate structure that is contextually anchored, it makes a great deal of sense. For now
the Principle of Complete Valuation implies that keying is not necessary and that all anchored
sentences are automatically keyed. It has been argued that this must be considered incorrect.

The Principle of Binarity, on the other hand, can be rejected in a number of ways. One
may, for example, wish to reject the Principle of the Excluded Middle or PEM, and maintain
that the opposition between true and false is not, as Aristotle insisted it was, absolute, like that
between locked and unlocked, but gradable, like that between polite and impolite. An elaboration
of this notion leads to what is known as ‘fuzzy logic’ (Zadeh 1975), which allows for an infinite
number of values between ‘true’ and ‘false’. When all intermediate values are taken together as
one intermediate third value, the result is a trivalent logic with an intermediate value between
‘true’ and ‘false’; such as the trivalent logic devised by Kleene (1938, 1952) (although Kleene did
not set up his trivalent logic with this purpose in mind). Such logics defy PEM and hence the
Principle of Binarity.

A different way of rejecting the Principle of Binarity, mentioned earlier in section 1.3, consists
in distinguishing different kinds of falsity. An example may illustrate this. Suppose a quiz master
asks the question:

Which of these four was the youngest president ever of the United States:
Reagan, Jefferson, Kennedy or De Gaulle?

The correct answer is, of course, ‘Kennedy. But of the three incorrect answers, one is somehow
more incorrect than the other two. The answer De Gaulle was the youngest president ever of the
US is somehow ‘worse’ than the answers that mention Reagan or Jefferson, because De Gaulle
does not even fulfill the preliminary condition of having been president of the US. It is possible,
or thinkable, to exploit this difference theoretically by distinguishing two kinds of satisfaction
conditions, the PRECONDITIONS and the UPDATE CONDITIONS. The extension of the predicate be
the youngest president of the US can thus roughly be specified as follows:

[be the youngest president of the US] = {z:z is or was president of the US | there is no y
such that y is or was president of the US and
y is or was younger than z}

The conditions between the colon and the upright stroke are the preconditions. Those after the
upright stroke are the update conditions. Failure to satisfy the preconditions results in RADI-
CAL FALSITY (F2). Failure to satisfy the update conditions results in MINIMAL FALSITY (Fj).
Satisfaction of all conditions results in TRUTH (T). The preconditions, moreover, determine the
PRESUPPOSITIONS of the sentence in question. In this perspective, the sentence De Gaulle was the
youngest president ever of the US presupposes that De Gaulle was president of the US. Since this
presupposition is false, the sentence is radically false.

The argument here is that the behaviour of sentence negation in natural language, in connection
with presuppositions, makes it mandatory to distinguish between minimal falsity and radical falsity
in the way indicated. The first proposal to this effect was made in Dummett (1973, p. 421),
also on grounds of presupposition and negation, though more from a philosophical than from an
observational angle. (Dummett also considers the possibility of two kinds of truth, a suggestion
that should be taken seriously but is not elaborated here.) An actual trivalent propositional
calculus (PPC3) was provided in Seuren (1985, 1988).

Since, under the Principle of Binarity, all situations (whether in U or in K) are such that either
A or —A is true, it follows that when A F B and also =A E B, B must be a necessary truth (true
in all situations of either U or K). In empirical terms this means that if it can be established that
in natural language a sentence A as well as its negation not-A both entail a sentence B which is
not a necessary truth (in U or in K), then natural language not cannot correspond to the bivalent
negation operator — of standard propositional calculus. If mot is to be rendered in the logic of
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language as a truth-functional operator, room must be created for a third option, besides standard
truth and falsity, the ‘third’ excluded by PET.

The point now is that there are many sentence pairs (A, not-A) in natural language, such that
both A and not-A entail a sentence B which is not a necessary truth in any sense of the term.
Examples are given in (25)—(31) below (similar observations are presented and commented upon
in much grater detail in Seuren 1985, 1988, 2000). In all such cases the shared entailment B is a
presupposition of A as well as of not-A.

(25) a.  All children laughed. E  there were children
b. Not all children laughed. F  there were children
(26) a. Only the children laughed. E  the children laughed
b. Not only the children laughed. F  the children laughed
(27) a. The BUTLER killed Jack. F  someone killed Jack
b. The BUTLER didn’t kill Jack (JOE did). E someone killed Jack
(28) a. It was the BUTLER that killed Jack. FE  someone killed Jack
b. It wasn’t the BUTLER that killed Jack. F someone killed Jack
(29) a. Who killed Jack was the BUTLER. FE  someone killed Jack
b.  Who killed Jack wasn’t the BUTLER. F  someone killed Jack
(30) a. That Joe died surprised Susan. F  Joe died
b. That Joe died didn’t surprise Susan. E  Joe died
(31) a.  She doesn’t mind that Joe has left. E  Joe has left
b. She DOES mind that Joe has left. FE  Joe has left

The sentence pairs (25-31) distinguish themselves from the majority of pairs (A, not-A) in that
normally a sentence not-A allows for the cancelling of presuppositional entailments if the negation
word not is given heavy accent and the whole sentence is placed under an echo-intonation. Thus,
in (32) the presuppositional implication that there is a king of France can be cancelled under the
intonational conditions mentioned. Yet there remains a more or less strong suggestion or invited
inference that there is a king of France, an inference mistaken by many for an entailment:

(32)  The present king of France is not bald.

In his famous (1905), Russell maintained that (32) does not entail that there is a king of France,
although it suggests it. His solution consisted in analysing or ‘translating’ (32) in two different
ways:

(33) a. =3z[Now[KoF(z)] A Bald(z) A Vy[Now[KoF(y)] — = = y]]
b. Fz[Now[KoF(z)] A -Bald(z) A Yy[Now[KoF(y)] = = = y]]

(33a) is the ordinary full sentential negation of (9b), his translation of (9a), The present king of
France is bald, whereas in (33b) the negation is restricted to the propositional function ‘Bald(z)’.
For reasons best known to natural language speakers, Russell says, (33b) appears to be preferred
and (33a) appears to be the marked case. Why speakers should have this preference is left open by
Russell. That question was taken up in modern pragmatics (which has, however, failed to provide
an answer).

Leaving aside the question of whether Russell’s ‘translations’ (33a,b) are justifiable, we must
admit that he was right in claiming that (32) is open to two interpretations, one that saves the
presupposition of (9a), and one that cancels it. If this were the case for all negative sentences in
natural languages, then there would indeed be some point in saying that full sentential negation,
as in (33a), cancels all entailments, so that standard propositional calculus can stand. It is found,
however, Seuren (1985, pp. 118-238) that there are many cases where the reading expressed in
(33a) is not possible. These are, first, all cases where the sentence negation is not in its ‘canonical’
position, i.e. in construction with the finite verb, as in (25b) and (26b). Such ‘out-of-place’
negations, apparently, have no choice but to preserve all presuppositional entailments. Yet the
only possible translation for these sentences places the negation at the top: in all these cases the
negation is full sentence negation, even though the presuppositional entailments are preserved.
Since this is not possible in standard bivalent logic, something has to be done about the logic.
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This fact is illustrated neatly by the following three English sentences (where the exclamation
mark indicates communicational incoherence):

(34) a. He did not only sell his collection of rare books. He only sold his first edition of Milton.
b. ! Not only did he sell his collection of rare books. He only sold his first edition of Milton.
c. ! He not only sold his collection of rare books. He only sold his first edition of Milton.

The sentence He only sold his collection of rare books presupposes that he sold his collection of rare
books and asserts that he sold nothing else. This presupposition can be cancelled in (34a), where
not is in construction with the finite verb did. However, in (34b,c) not is in different positions,
allowed for by the grammar of English, and here the presupposition cannot be cancelled, as is
borne out by the incoherence of (34b,c). Nor is it possible to ‘translate’ them in such a way that
not is no longer a full sentential negation.

Returning now to (25a,b), we see that the presupposition that there were children is maintained
under sentence negation, apparently because not does not occur in the canonical position for
sentence negation. One realizes, of course, that in standard Predicate Calculus (25a) does not
entail that there were children (though (25b) does on account of the fact that ‘not all’ is equivalent
to ‘some not’, which has existential import). Yet standard Predicate Calculus does an injustice to
natural language in this respect, as was also recognized by Strawson (1952) and by Aristotle, whose
Predicate Calculus had existential import as a valid inference schema (the ‘subaltern’). As is well
known, the Aristotelian inference from ‘all’ to ‘some’ leads to logical disaster when empty sets are
quantified over, but it is all right as long as empty sets are avoided. In other words, Aristotelian
Predicate Calculus presupposes the nonemptiness of the sets quantified over. This means that
Aristotle implicitly, and no doubt without realizing it, not only took proper anchoring and keying
for granted in his Predicate Calculus, but also limited it to situations where presuppositions are
fulfilled. Under these restrictions, Aristotelian Predicate Calculus is sound.

The examples (27-29) are to do with focusing in terms of three syntactically different types of
topic-comment structure. Apparently, for reasons not yet worked out (but surely to do with the
principles of coherent discourse) focusing structures cannot give up their presuppositions under
negation.

Example (30) involves the predicate surprise which is factive with regard to its subject clause
(i.e. the truth of the subject clause is presupposed). As long as the subject clause stays in the
syntactic position for subjects, the factive presupposition cannot be shed under negation. By way
of contrast, consider:

(35) It surprised Susan that Joe died. F  Joe died

a.
b. It did not surprise Susan that Joe died. ¥ Joe died

where (35b) no longer entails that Joe died, since now the ‘radical’ interpretation of not is possible.

In (31) we have to do with the NEGATIVE POLARITY ITEM mind, which requires either a
negative context or contrastive accent, as in (31b), for the sentence to be grammatical. Negative
polarity items, likewise, do not allow for presuppositions to be dropped under negation.

Cases like (25-31) show that sentence negation does not per se cancel presuppositional entail-
ments, but clearly preserves them in certain sentence types. This fact shows that the classical
bivalent paradigm cannot be upheld, unless some external remedy is found. In the logic-based the-
ory of model-theoretic semantics it has been hoped, for the past quarter century, that pragmatics
would provide such an external remedy. Yet no such remedy has been provided. That being so,
we feel justified in saying that it makes sense to look for ways to extend standard bivalent logic
in such a way that the observations made above are accounted for in logical terms. The obvious
solution would then seem to consist in adding a third truth value and making the logic trivalent.

2.3.2 Kleene’s trivalent calculus

A first notable attempt to do just that was made in Kleene (1938, 1952), mentioned earlier.
Kleene’s trivalent calculus is widely used in logic-oriented presupposition research (e.g. Blau 1978).
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Yet closer analysis reveals that it is unfit for that purpose, although it does serve the different
purpose of accounting for phenomena to do with transitional values between true and false.

What Kleene had in mind was a logical account of sentences containing nonreferring terms,
i.e. terms whose proper semantic function is to refer to a world entity whereas the world does
not contain such an entity, precisely as in Russell’s famous sentence (9a). Such ‘undefined terms’
would make the sentence have the TV ‘undefined’ or ‘u’. This trivalent calculus, with the values T,
u, and F, works according to the truth tables shown in figs. 6 and 7. One sees that under negation
T and F ‘toggle’ in the classical way, but that u is unaffected by negation, that under conjunction
(A) F takes precedence over all other values, and u over T, whereas under disjunction (V) T takes
precedence over all other values, and u over F. In fig. 6 this leads to the fan-like structure in the
tables for A and V, with T as the root of the fan for A, and F for V. In the equivalent tables of
fig. 7 where u is ordered as the third value, after T and F, the fan-like structure has disappeared.
We shall see in a moment that this is significant: for a proper X-space interpretation the fan-like
disposition of the values is mandatory.

AANB B AV B B
A|~A T uw F T v F
T| F A T|T u F A T|IT T T
u u u|lu uw F ul|T u u
F| T FIF F F F|IT v F

Figure 6: Truth tables of Kleene’s trivalent propositional calculus

AANB B AV B B
A|~A T F u T F u
T| F A T T F u A T|T T T
F| T FIF F F FIT F u
u u ulu F u u|T u u

Figure 7: Truth tables of Kleene’s trivalent propositional calculus

4

This logic maintains all axioms of classical bivalent logic with the negation operator ‘~’ for

standard ‘—’, except F AV ~ A. In particular, De Morgan’s Laws apply unchanged:

(36) a. ~(AAB)=~AV~B
b. ~(AVB)=~AA~B

That the Kleene calculus fails to account for presuppositions appears from the following. It is
assumed, in accordance with all theories of presupposition, that (37) is a defining logical property
of the presupposition relation. (Since Kleene provides no operator yielding truth when v[A] = u
(A is valued u), we introduce the operator ‘v’ and define: v[uAd] = T iff v[A] = v and v[uAd] = F
otherwise.)

(37) If A>» P,then AFEPand ~AF P and (~PVuP)F uA.
Moreover, in any reasonable notion of presupposition, it must be assumed that:
(38) Ao ABp > CAD, where A and B are logically independent (‘Xy’ : ‘X presupposing
Y.

For neither Ac A Bp nor ~(A¢ A Bp) can be contextually anchored unless the presuppositions
of A and B, i.e. C and D, respectively, are part of the preceding discourse (see 1.3). This means
that Ac A Bp, provided A¢c and Bp are well-keyed, can only have the values T or F if both C'
and D are true. Here, the Kleene calculus poses a problem. Take a situation where C is true and
D is false and A¢ is false (and, of course, Bp has the value u, since its presupposition D is false).
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Now C' A D has the value F, which should make it necessary for Ac A Bp to have the value u. Yet,
with F for A¢ and u for Bp, the Kleene tables give F for Ac A Bp, and not the required value u.

The deeper reason why the Kleene calculus fails in this respect becomes clear in the ¥-space
interpretation. Since, in general, if A E B, then /A/ C /B/, it follows from (37) that if A > P,
then /A/ C /P/and /~ A/ C /P/and /P/ C JuA/. In fact, if P4 stands for the conjunction of all
presuppositions of A, then /~ A/U /A/ must equal /P#/. We call /P“/ the PRESUPPOSITIONAL
SUBUNIVERSE of A.

If Kleene’s calculus is to account for the presupposition relation, / ~ A/ must be defined as
/PA) — JA/, as in fig.8 (left), where /P4/ (the area within heavy lines) equals A/ U/~ A/.
Fig. 8 (right) shows that both A and ~ A entail their presupposition P (/P/ is represented by the
dark grey area).

K Pl K
1PY

IA/

JuA/ JuA/
J~A[UJA/ = /P4 JA/C[P[and [~AfC [P/

Figure 8: If A > P, then /A/ C /P/ and /~A/ C /P/

However, it is now impossible to set out the ¥-spaces for ~(A A B) and ~(A V B) in such a
way that De Morgan’s Laws apply under the Kleene truth tables. De Morgan’s Laws require that
[~(AAB)=[~AJU/~B]and [~(AVB)/=/~A/N/~B/.

Th 1P| K = 1P| K =] 1P| K
1PY B/ 1PN B/ 1PY
(] [ 7] e ol
~Al F|F |F I~A/l FIF |u I~Al Flu
/ F_F u / \u_/u u / u |u
/pANEY /pANEY /PAVEY
JANB] = /A/N/Bf JANB] = /A/N/Bf JAV B/ = /AU /B/
[~(AVB)/=/~A/N[~B/
Figure 9

In fig.9 we have tried to picture the situation where the requirements of De Morgan’s Laws
are fulfilled, given the definition of presuppositional ~ as in fig.8. The conjunction has been
represented twice, once with /PAE/ = /PA/U /PP / and once with /PANE/ = /PA /N /PB/. In
either case, however it is not so that / ~(AAB)/ =/~ A/U/ ~ B/, quite apart from the fact that
the truth tables do not correspond. Moreover, the diagram for / ~(AV B)/ in fig. 9 (right) violates
(37), since nontruth of PAVE does not automatically result in the value u for AV B. (The dark
grey areas contain the situations in K that produce T, the light grey areas those that produce F,
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and the white areas those that produce u, for ~ A, AA B, and AV B, respectively. The areas
within heavy lines represent /P4/, /PA"B/ and /PAVB/ respectively.) Therefore, De Morgan’s
Laws cannot be made to hold in the Kleene calculus under a presuppositional interpretation.

The only way to satisfy Kleene’s calculus in a X-space interpretation is to leave out the notion
of presupposition and consider the value u as a transition between T and F, as in fig. 10. Now
De Morgan’s Laws hold and the right truth tables result, but the presupposition relation cannot
be expressed. The only way to define /PA"B/ is to take in fig. 10 (middle) the union of all the
non-white areas. Then, however, /P4/ N /PB/ C /PAMB/ where one would expect these to be
equal. But even if we take this inequality for granted, we still cannot accept the definition of
/PANB [ because if A has the value F and B has the value u, then ~(A A B) has the value T,
whereas the conjunction of the presuppositions of A and B has the value F, violating (37) and
(38). For that reason we have said, in section 2.3.1, that the Kleene calculus seems appropriate
as a logical account of a violation of PEM, if the value u is taken to incorporate all intermediate
values between T and F. Note, incidentally, that while in fig.10 /~(AAB)/ = /~A/U/~B/
and /~(AV B)/ = /~A/ N /~B/, the analogous equations with u for ~ are not valid. De
Morgan’s Laws thus do not hold for the operator u.

K K K
/Bl
|/AI u |F |
JuA/ u |u [F JuA/ u |u
IF_|F F u | F
/uB/ /uB/
[~A] =[P~ [A] J[ANB/=[A/N/B/ /AVB/=[A/U/B/

[~(ANB)/=[~AJU[~B] [~(AVB)/=[~A/0/~B/
Figure 10

2.3.3 The trivalent presuppositional calculus PPC3

In order to satisfy the logical conditions (37) and (38) of the presupposition relation, it is necessary
to define, for Ag, where B is the conjunction of all presuppositions of A, a presuppositional
subuniverse or subkey P4 such that /~ A/ = /P4/ — /A/ and /P4/ := /B/.

Three values are distinguished: T, F; and Fs, and two complementary negations, the minimal
presupposition-preserving negation ~ and the radical presupposition-cancelling negation ~ . (The
classical bivalent negation — has been thrown in for good measure.) We call /~ A/ the INNER
COMPLEMENT of A, and /~ A/ the OUTER COMPLEMENT of A.

This gives the truth tables shown in fig. 11. (The implication is left undefined in PPC3, because
conditional sentences in natural language are clearly not truth-functional but imply a modal notion
of necessity which cannot be expressed by means of a truth table. But if one wishes, an implication
of the form A — B can be defined as ‘(~ AV ~ A) V B’, which reduces this implication to the
classical implication. And analogously for the bi-implication A = B.)

For PPC3 conjunction, Fs takes precedence over the other values and F; over T. For disjunction,
T takes precedence over the other values and F; over F;. Note that, for any proposition A,
(~AV ~A) = -A (with the classical bivalent negation —). PPCj is, therefore, equivalent to
classical bivalent propositional calculus provided only — is used as negation. (In particular, =(AA
B)=-AvV-Band -(AV B) = ~AA-B.) The negations ~ and ~ are called specific negations,
because they turn one specific kind of falsity into truth. — is a nonspecific negation in PPCs.

PPC; can be extended to PPC,,, with n — 1 kinds of falsity. Conjunction always selects the
highest degree of falsity and truth only if there is no falsity at all. Disjunction always selects
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ANB B AV B B
A | ~A | ~A | —-A T F1 F2 T F1 F2
T| F Fi | F1 A T T Fi Fs A T|T T T
Fi| T Fio | T Fi|Fi Fi R F| T F K
Fa| F2 T T Fo | Fo F2 Fs Fo2 | T F1 Fs

Figure 11: Truth tables of PPCg

truth over falsity, and lower degrees of falsity over higher degrees. For each ~ A (1 < i < n),
T and all values F; (j < ¢) are converted to Fi, F; is converted to T, and all values Fy (k > i)
are left unchanged. For PPC, this is shown in fig. 12. Note that — is still the disjunction of all
specific negations. An interesting corollary is that a propositional calculus, defined in terms of
{—,A,V}, may have any number of truth values. However, without further specific negations for
specific complements, all distinctions between kinds or degrees of falsity are vacuous. Economy
then requires that all values # T be united into one value for falsity.

AANB B AV B B
Aldalrallal-a T FL Fy Fy T F F Fy
Tl F Fy Fy Fy A T| T F, Fy F3 A T|T T T T
Fy T Fy Fy T Fi|Fi Fi Fy F3 F+ T R Fi K
Fy | F» T Fy T Fo | Fo F» Fy F3 Fo | T Fi F2 Fy
Fs | F3 | F3 T | T Fs |F3 F3 F3 Fj Fs| T Fi Fy Fs

Figure 12: Truth tables of PPCy

In a Y-space interpretation, PPCs is represented as in fig.13. This is an exact parallel of
fig. 10, except that the X-spaces of ~A and ~ A (or uA in fig. 10) have changed positions: in
fig. 10, / ~ A/ is the outer complement and /uA/ the inner complement of A, whereas in fig. 13
/ ~ A/ is the inner complement, and / ~ A/ the outer complement of A. This means that in PPCj
De Morgan’s Laws hold for the operator ~ (and, of course, for =), but not for ~ (unless the value
Fy is disregarded).

K /PP K /PP K

1PY B/ 1PY

Fl Fl F2 Fl Fl
E|F |F ElF

F2 \ / u 2 2 / 1 2

I=A
\
1PN =AU ~A IPANB =P N PP IPAVB = /PYUIPP
~Af = [PA]— [A/ JANB/ = /A/N/B/ JAVB/=/A/U/B/
Figure 13

Note that an eternal sentence, and thus without any presuppositions, can still be regarded, from
a strictly logical point of view, as presupposing all necessary truths. An eternal sentence has no
outer complement and cannot have the value F5. Its inner complement is the classical complement
in K, and standard bivalent logic applies. Thus, a sentence with the internal structure A A By
can be read as Ax A By4. Its S-space /Ax A Ba/ = /Ba/, and /PAxNBa | = /PAx /0 /PBa/ =
Kn/A/ =/A].
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A further important point is the following. In section 1.3 above, the logical condition (17) was
formulated for the presupposition relation, saying that if A > B, then A = B and not-A |= B. It
was stipulated there that this condition does not define presupposition but is merely a necessary
condition, since there may be cases where (17) is satisfied but where we do not want to speak of
presupposition. This occurs in particular under the operator A, and specifically with conjunctions
of the type A A B4, which are very frequent in language use, because they are informative in the
sense that /Ba/ C [A/.

It follows from PPCj that both AA B4 = A and ~(A A By) |= A. Yet we do not want to say
that AA By > A. The reason is that in language a sequence A and B is processed in any current
discourse domain D as the increment of A followed by the increment of B. A temporal order is thus
involved in the processing of A and B, which cannot be expressed in the static truth-functional
system PPCs. This temporal order is manifest in the presupposition relation in the manner shown
in fig.14. Let A be a sentence without presuppositions, so that /P4/ = K. The left diagram

K K K

/ CBA/

B,/ B,/
A

A

IAI N IA/ N\

/ /
/F’“/J 1PPI 1PPI =¥}

Figure 14: Subsequent processing of A, B4 and Cp,

shows K after A has been incremented, or added, in K. The middle diagram shows K after the
incrementation of B, with /P®/ = /A/, and the right diagram shows the situation after the
addition of Cg,, now with /P¢/ = /B/. That is, after each successive incrementation the space
within which the minimal negation operates gets more restricted, and previous presuppositional
subuniverses are cancelled. Since linguistic and is an operator signalling a new incrementation,
the use of a minimal negation over a conjunction of the type A and B, is logically undefined: in
the middle diagram of fig. 14, the minimal negation operates within K for A but within /A/ for
B4. For that reason a structure like ~(A A B4), though logically sound in PPCs, has no logically
equivalent translation in natural language. A sentence like

(39) He did not marry a princess and divorce her after one year.

does not correspond to the logical structure ~(A A B4). In fact, no logical translation of that
sentence is available at present. This being so, we do not want to say that A and B4 presupposes
A, whereas we do want to say that the logically equivalent B4 does.

One might consider a system where K and /A/ in the right diagram of fig. 14 are defined as
‘higher order’ subuniverses delimiting inner complements under ‘higher order’ negations. In that
case the logic would fluctuate between 2 and n values according to the number n + 2 of stacked
presuppositions, perhaps as shown for PPC,, above. But such a system would not model natural
language, which does not have a corresponding system of unlimited ‘higher order’ negations.

So we are faced with a situation where, although /P“/ = /B/, the inner complement of /B/ is
different from the inner complement of /P¢/, since the inner complement of /B/ is delimited with
regard to /PP / = /A/, while that of /P“/ is delimited with regard to K, without any intervening
presuppositional subuniverse. Phrased in other terms: a presuppositional proposition has no
presuppositions itself. For the extension of the proposition PPC, this means that /PPC/ =K,
even though /P®/ = /B/ and /P®/ = /A/. The consequences for the calculus of presuppositional
subuniverses are explained in section 3 below.
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2.3.4 Kleene’s calculus and PPC3; combined into PPC3-K

PPCs; and the Kleene calculus are compatible and can be combined into PPC3-K. The Kleenean
value ‘u’ between two values z and y is interpreted as ‘vague between z and y’. Since PPCj
contains three values, T, F; and Fs, PPC3-K contains two values u: u; and us. The truth tables
of PPC3-K are as in fig. 15. The X-space interpretation of PPC3-K is as in fig. 13 above, but with

AANB B AV B B
A|l~A :A T U1 F1 U F2 T (5% F1 U2 F2
T F1 F1 A T T (751 F1 U2 F2 A T T T T T T
U1 U1 F1 U | v Up F1 U F2 U1 T Uy U Ut U
F1 T F1 F1 F1 F1 F1 U2 F2 F1 T (5% F1 F1 F1
Us | us | wg Uz | U2 us us uz Fa ug | T wr F1 us ws
F2 F2 T F2 F2 F2 F2 F2 F2 F2 T U1 F1 U2 F2

Figure 15: Truth tables of PPC3 — K

the boundary lines between /A/ and / ~ A/, and between / ~ A/ and /~ A/ blurred or replaced
with a transitional area. The value u; stands for the transitional area between /A/ and its inner
complement / ~ A/. This value is assigned when A is neither clearly true nor clearly minimally
false. The value us stands for the transitional area between /P4 / and / ~ A/. Tt is assigned when a
presupposition of A is neither clearly true nor clearly (minimally) false. In either case the minimal
negation ~ has no effect. The radical negation ~ , which says that A suffers from presupposition
failure, yields (minimal) falsity when A is true, minimally false or somewhere in between, and
gives minimal undefinedness (u;) when a presupposition of A is (radically) undefined.

2.3.5 The relation between semantics and logic

It is probably correct to say that the tables of fig.15, as far as they go, do partial justice to
the logic of natural language. They certainly provide an answer to the ancient paradoxes of
the Heap ‘Sorites’ and the Horns (Seuren 1998b, p. 427). Yet standard bivalent logic remains
privileged, in that it is adequate for languages without vague predicates and whose anchoring and
keying conditions are automatically fulfilled so that presuppositions are either absent or irrelevant.
One such language is the language of mathematics, but many formal or technical uses of natural
language satisfy these conditions as well.

However, whether the tables of fig. 15 also do semantic justice to natural language as used
under normal conditions is another matter. From a logical point of view, natural language is more
complex than standard bivalent logic, due, in part, to its anchoring and keying conditions. But
besides this greater complexity, which is partly caught in the tables mentioned, there is also the
fact that logic and semantics are less closely related than is widely assumed in formal semantics.

Even when a correct and adequate logic of natural language is available, it does not follow au-
tomatically that the logical elements (quantifiers, connectives) as described in the logic of language
provide a correct semantic analysis of their corresponding elements in language. Several aspects
play a central role in semantics but are absent from a logical analysis, which is concerned solely
with the preservation of truth through sets of sentences. In Seuren (2000) it is argued that speech
act quality is an essential aspect of semantic theory, unjustly assigned to pragmatics in standard
formal semantics. It is argued there that the propositional connectives, including negation, are
more adequately accounted for in terms of different forms of speaker’s commitment, and not in
terms of truth functions.

It is likewise argued there that the logical consequences of the fact that natural language
happily mixes object language and metalanguage, apparently without the risk of paradoxes, have
been unjustly neglected in standard formal semantics and in the philosophy of language. The
linguistic counterpart of radical negation is richer than its logical representative ~ , in that it has
a specific metalinguistic function (Horn 1985), which is not captured by its logical definition. This
aspect, which is analysed in detail in Seuren (2000), cannot be further elaborated here.
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The logic of natural language, in other words, is considered to be a metaphysically necessary
epiphenomenal aspect of the elements, structures and processes at issue. Questions of this nature
are profound and far from easy to understand, and it cannot be the purpose of the present paper to
provide a final answer. What we wish to achieve here is, more modestly, to bring these questions to
the fore and show their importance. Formal semantics has, on the whole, overlooked or neglected
these questions. They are, however, highly relevant, if only because the machinery of logic, no
matter how enlightening and inspiring from a variety of points of view, can hardly be considered to
provide or constitute a realistic hypothetical reconstruction of the mental structures and processes
involved in the understanding and interpretation of linguistic utterances.

In the following section, the mathematical properties of PPC3 are investigated, not because
PPC; is regarded as a semantic theory, but rather because it is essential for any semantic theory
that proof be given of the mathematical soundness of the logic emerging from it.

3 The Boolean foundation of PPCj

3.1 Noncompositionality

The fact that PPCs is representable by means of a set-theoretic diagram as in fig.13 means that
it must have a Boolean foundation. Since this is not provided in the logical or mathematical
literature, it is developed in the present section. It must likewise be possible to develop a Boolean
foundation for the Kleene calculus and for PPC3-K. In order not to complicate matters unduly,
this is not attempted here: we shall limit ourselves to PPCs.

We anticipate immediately that one major problem in the mathematical theory of presuppo-
sitional logic is the noncompositionality of the system. By compositionality we mean here the

admissibility of substitution of equal terms inside a context. Let C(a1,...,a,) be a context in
which the terms aq, ..., a, occur. The substitution property states that we can substitute equal
terms in place of ay, ..., an, i.e. that if by = a4, ..., by, = ap, then C(by,... ,b,) =C(a,...,an).

If the substitution property holds the equality ‘=’ is said to be a congruence. This property fails
for PPC3 because two Y-spaces may be equal without having the same inner complements, as was
explained at the end of section 2.3.3 above. We can intuitively explain this phenomenon by saying
that the equality ‘=’ is blind to presuppositions and can see only extensions of propositions. This
gives us the idea of defining a new equality ‘=’ that is able to see presuppositions as well. That
is, a = b means that not only the extensions of a and b are the same, but also those of their
presuppositions. In the next sections we will formulate and study the system PPCs with the weak
equality ‘=" and as from section 3.5 we will study a compositional version, PPC5, which uses the
strong equality ‘=".

Consider a Boolean system where a term a stands for the ¥-space of some sentence A of a
language L, i.e. as /A/. The principal innovation with regard to standard Boolean algebra consists
in the introduction of an operator ‘1’ such that 1, represents the presuppositional subuniverse
/P4/ of A. The symbol ‘1’ is here used as a unary operator that, when applied to the Boolean
term a representing the extension /A/ of a proposition A, delivers the Boolean term 1, representing
/P

The choice of the symbol ‘1’ for the operator at hand has been deliberate. It underlines the
fact that 1, is interpreted as a presuppositional subuniverse for the corresponding sentence A. It
may look as if the symbol ‘1’ is used ambiguously as (i) a Boolean constant (a constant in all
Boolean systems) and (ii) an operator over terms yielding terms. We can, however, generalize the
notion of 1 as an operator in such a way that the Boolean constant 1 is seen as a special case of the
operator 1. The operator 1 is thus taken to be basic, the constant 1 being derived from it. We do
this by defining 1 (without argument) as the common value for all 1;, for any term a. Moreover,
1y =1 (equation (e21) in Proposition 3.7 below) and 1o = 1 (axiom (D4) in Definition 3.3).

There is a deeper significance to this. The fact that the constant 1 is now derived from the
noncompositional function 1 makes an interpretation of 1 in a system, such as the system of X-
spaces, less absolute. It is no longer necessarily the unwieldy ‘universe’ of all that is or may be the
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case, but rather a ‘universe’ or key in so far as it is relevant to a given discourse. It is now also
possible to have different ‘universes’ or keys side by side in a hypersystem of systems running in
parallel. It would seem that, in principle at least, this opens new possibilities for a more adequate
logic to model discourses.

As was shown at the end of section 2.3.3, the operator 1 is noncompositional, since it is
possible for two sentences in natural language to have identical X-spaces yet to differ in their inner
complements. That is, we do not have in general a = b — 1, = 1;,. A concrete example will
illustrate this.

Consider the propositions expressed in the following sentences, corresponding exactly to A, B
and C| respectively, in fig. 14 above:

(40) A There is an island of Atlantis.
B There are inhabitants on the island of Atlantis.
C The inhabitants of the island of Atlantis have blue eyes.

One might think that, since 1,c, = /B/ and 1,5, = /A/, it would follow that 1, ., = /A/. This
would, however, contradict the fact that presuppositional propositions have no presuppositions
themselves (see the remark at the end of section 2.3.3), which is stated formally in axiom (D1) of
definition 3.3 below: 1;,,, = 1. What we have in fact is 1,0, = /B/- /A/ = /B/ (C presupposes
both that there is an island of Atlantis and that it is inhabited, i.e. that the island of Atlantis is
inhabited). But our troubles are not over yet: it would follow from 1,5, = /A/ and 1,4, = 1 that
1,/ - 1,4, = /A/, which would lead to the contradiction

V=110, =1pj/a; =1/ 147 = [A].

The mistake in this fallacious argument lies in the fact that = is not a congruence relation.
Therefore we cannot replace 1,~, with /A/-/B/ inside a context (especially under the 1 operator).
A counterexample in the formal system PPC; is the equality between 1, and a +a. (In PPCs, @
is the minimal negation of a.) These two terms, although equal, cannot be substituted for each
other in a context. See section 3.4 for a formal treatment.

3.2 The system PPC;

We now define the formal system of presupposition logic PPC3. It is an extension of ordinary
classical (Boolean) proposition logic with presuppositions and two negations. The propositions
are built up from literals, Lit, using the binary connectives - and +, the unary connectives 1, —
and = and the constants 0 and 1. The intended meaning of these connectives is this:

1, the conjoined presuppositions of the sentence a
a the minimal negation of a (negating a, affirming the presuppositions)

the radical negation of a (negating the presuppositions)

)

We use — (complement) and — (minus) as abbreviations for the composite connectives @ :=a +a
and @ — b := a-b. The intended meaning of @ is the ordinary Boolean negation, the complement
of a. When writing propositions, we remove brackets by letting - bind more strongly than +.

We give the precise mathematical definition of the language of PPCs. Definition 3.1 says that
the terms of PPCs, forming the set T', are constructed starting from the literals, elements of Lit,

and the constants 0 and 1, and recursively applying the operators +, -, 7, ~ and 1.
Definition 3.1 The set of terms of PPCs, T, is defined recursively as follows.
T:=Lit|T+T|T-T|0]1|T|T|1r.

Remarks 3.2 1. The connective — is not taken as a primitive, but is ‘decomposed’ in terms
of other (new) connectives. This means that we have to prove that we indeed have a Boolean
algebra.
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2. In Boolean algebra, we can take different sets of connectives as basic (and then define the
others in terms of the basic ones). The reason this can be done is that Boolean equality is
a congruence with respect to the connectives. In PPCs, equality is not a congruence, hence
the choice of primitives is crucial. For example, if we define @ := @ + a, as we have done
above, we can freely substitute a + a for @, which is not allowed if @ = @ + a is a derived
equality. We have already pointed out this problem in section 3.1. A formal analysis is given
in section 3.4.

The Boolean connectives enjoy the well-known Boolean equations. That is, they form a dis-
tributive lattice. We recapitulate the axioms of a distributive lattice.

a+b = b+a a-b = b-a
(a+b)+c = a+(b+c) (a'b)-¢c = a-(b-c)
(a+b)-¢c = a-c+b-c

at+a = a a-a = a

a+1l = 1 a-1 = a

a+0 = a a-0 = 0

It is well-known that the following equations are now derivable: a-b+b = b, (a+b)-b = b,
a-bt+ec=(a+c)-(b+c)anda+b=0—-a=0&0=0,a-b=1—-a=1&b=1.

A property which is usually left implicit in the definition of distributive lattice is that = is a
congruence for the connectives - and +. As ‘="is not a congruence for the other connectives, we
need to require this property explicitly by adding the axioms:

a=bandc=d — a+c=b+d
a=bandc=d — a-c=b-d.

Definition 3.3 PPC; is the formal system for deriving equations from
1. the axzioms for a distributive lattice (including the congruence azioms for - and +, see above),

2. the following 10 special azioms

(A1) a+4a = 1, (D1) 1, =1
(42) a-a = 0 (D2) 1; = 1,
(B1) a+1, = 1 (D3) 1; = 1
(B2) a-1, = 0 (D4) 1o = 1.
(Ol) lap = 1g-1p
(C2)  lapp = la+1,

To denote that, for a,b € T, a = b is derivable in PPCs, we shall write
PPCs3Fa=0»b

Axioms A1 and A2 state that 1, is the union of @ and @ and that a and @ are disjoint. So, a and
a are each other’s complement within 1,. Axiom B1 and B2 say something similar about @ and
1,: they are disjoint and their union is 1. This amounts to the first picture in fig. 13, describing
aC1l,C1,aC1,anda C 1with a,a disjoint and 1,,a disjoint. Axioms C'1 and C2 specify that
the 1 operator commutes with - and +. The D-axioms describe how connectives (especially 1, -
and =) operate under the 1 connective.

Lemma 3.4 Given a proposition a, @ is the unique proposition for which the Boolean laws for
complement hold: a-a=0 and a+a = 1.

Proof We have to show two things:

1. The defined connective — satisfies the axioms of Boolean logic.
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2. Ifa-b=0and a+b=1, then b =a (i.e. @ is unique).

The proof of the first is as follows.

a+a = a+at+a=1,+a=1.

a-a = a-(@G+a)=a-a+a-a=a-a

= a-a+0=a-a+1,-a=(a+1,)-a=(a+a+a)-a=1,-a=0.

The second is shown as follows. Suppose a-b =0 and a + b= 1. Then

a=a-l=a-(a+b)=a-a+a-b=a-b=a-b+a-b=(a+a)-b=0b.
Theorem 3.5 PPC3 is an extension of Boolean logic.

Proof The only thing left to prove is that the equality = is a congruence with respect to the
defined connective —, i.e. if @ = b, then @ = b. So, suppose a =b. Then a-a=0and a+a = 1.
But, due to the fact that = is a congruence for - and +, we also have b-a=0and b+a = 1. As
b satisfies these same equations, we conclude that @ = b (by the uniqueness stated in the previous
Lemma).

Remark 3.6 As PPCj3 satisfies the Boolean axioms, we can freely use notions from Boolean logic.
In the following, we use the abbreviations a < b (and a > b for b < a):

a<b abbreviates a-b=a

or, equivalently, a+b="0.

Proposition 3.7 The following equations are derivable in PPCs.

(el) 1o4+a = 1, (e3) a-a = 0
(e2) 1l,-a = a (ed) a-a = 0
(e5) Q l,—a (ell) a I,=T1,
(e6) a = 1, (e12) a = a
(e7) a = a (el3) a = 0
(e8) a+a = a (el4) a+a@ = a
(€9) a-a = a (el5) a-a = a
(e10) i, 1, (e16) 1, 0
(el7) a+b G- b+a-b+a-b (el9) a+b G- b=Tors
(e18) a-b a-b+a-b+b-a (e20) a-b a+b=14p
(e21) 1 1
(e22) 1 =0 (e25) 0 1
(e23) 1 =0 (e26) 0 =0
(€24) T =0 (e27) 0= 1
Proof

(el) L+a2a+d+a=a+a=1,

(e2) la-a’4:1(a+6)-a:a+0:a

(e3,ed) 0Z1,-a% (a+d)-d=a-a+a-a Hencea-a=a-a=0.

€5) lo—a=1ly-@+d)=14-a+1,-021,- a2 (@+a)-a2o+a=a
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(el0) 1,21, —1,=1-1,=1,
e oth a an ~aaret e complement of 1,(an encea:::
11 Both @ and 1 hy 1 f1 dh 1
a1, Z0anda+1, 21
L1, Z0and I, +1, 21, 21

(e7) d=d-l=da-(a+a) =d-a+a-a+a-a=
Gd-a+0+a-aX%.a+a-a%G-a+0=d-a+a-a=
Gt+a+a)aZ(lz+a)-aZ (le+ad)-aZl-a=

(e8) a+a=a+a+a=a+a=a

(e9) a-a=a-(a+a)=a+a-a=a-(1+a)=a

€17) a+bZ1up—(a+b) L (La+1y) —(a+b) = (1o —a)—b) + (1, —a) — b)) 2
~ ~ e N A2e3ed . T L~
: =" a-b+a-b+a-b

(e18) ﬁ21a.b—(a-b)ozl(1a-1~,,)—(g-b): 1, 1) - (@+0)=(1a-a@- 1) + (1 -b-1,) 2

€19 a+bEL,,¢L+,=1,- L, %ab

€20) a-bET,,CT, 1,=T,+1, % a+b.

(e21) 1, =1+1=
(e22) 1=1-1=0

(€23) 1=1-1%1-1, =0

(e24) T=14+1=0+0=
(e25) 0=0+021,21
11 — D4 24

(e26) 0=T, =1%
(e27) 0=0+0=1+

The axioms for PPC5 given above are still redundant as the connective = is definable in terms
of 1 and —.

Lemma 3.8 In PPCs, a is definable: a := 1,.

Proof We have to show that, if we remove the connective — and the corresponding axioms, and
we define @ as above, then all the laws of PPC3 hold for this defined connective. The only axioms
in which = occurs are B1, B2 and D3.
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(Bl) a+1,=L,+1, 21, Z1.

(B2) a-1,=1,-1, Z0.

D2

(D3) 1; =1 1, Z1.

1.
So a minimal calculus for PPC3 would consist of terms (propositions) built up from literals,
Lit, using the binary connectives - and +, the unary connectives 1 and — and the constants 0 and

1, satisfying the axioms for a distributive lattice (including congruence axioms for - and +), in
addition satisfying the axioms (A1), (A2), (C1), (C2), (D1), (D2) and (D4).

3.3 Consistency and models

We can prove consistency of PPC3 by showing that standard Boolean algebra is a special case
of it in which we take 1, := 1, @ := 0 and a := @ for every term a. Since Boolean algebra is
consistent, PPC3 must be too. This also implies that the axiom 1, = 1 is a consistent extension
of PPCj3, yielding the mazimal interpretation for 1. The parallel minimal interpretation 1, := a is
not sound, since it conflicts with axiom D1: a =1, = 1;, = 1, so all propositions would be equal
to 1. This shows that no proposition except for the necessarily true ones presupposes itself.

We now define the semantics of PPCs, inspired by the notions presented in section 2.3.3 and
visually displayed in fig. 13. We saw there that to every proposition we can associate two subsets
of possible situations, the subset of situations in which the presuppositions are fulfilled, and which
we called the subkey of the proposition, and the subset of situations in which the proposition
proper is fulfilled. Similarly, we now define two semantic objects associated with a term a of
PPCs, the interpretation of its presupposition, [1,], and the interpretation of a proper, [a]. We
take a more abstract viewpoint than in section 2.3.3, taking as model for the interpretation a
general Boolean algebra B = (B;M,U, L, T,=). Intuitively, think of B as the family of all sets
of possible situations, i.e. the powerset of K, of L as the empty set (J, of T as the set K of all
situations and of M, LI and — as the operations of intersection, union and complementation for
sets. We use the relation C, which is defined by: p C ¢ if pM g = p or, equivalently, pLlg = ¢q. In
the case of a set model, C is the subset relation. We also write p 3 ¢ for ¢ C p.

We define a general notion of PPC3 model. The idea is that to every proposition a we asso-
ciate two objects, one giving the interpretation of a itself (its Boolean value) and one giving the
interpretation of the presuppositions of a (the value of 1,). An atomic proposition « (a literal)
therefore has two basic values, p(a) and £(«), representing these two interpretations. These basic
values are given by two assignments p ad &, which are parameters of the model. An assignment
is a map p : Lit — B, from the literals to a Boolean algebra B.

Definition 3.9 A PPCs-model is a tern (B, p,£), with B a Boolean algebra and p and £ two
assignments such that p C &, i.e. p(a) E &(a) for every literal a € Lit.

Definition 3.10 Given a PPCz-model (B, p, £), the interpretation function [[—]]p5 (taking a PPCs
term and returning an element of B) is defined as follows.

[[O]lpg = 1, [[10]]pg = T,
[, = T, [L,e = T,
[al,e = pla), [Lal,e = &la),
[a-0],e = lal,e M8 [Laslye = [Lalye M [Lod,e
[a + b]]pg = [[a]]pg U [[b]]pga [[1a+b]]pg = [[1a]]pg u ﬂlb]]pga
[[a]]pg = [[la]]pg - [[a]]pga [[l“d]]pg = [[la]]pga
[[a]]p£ = [[1a]]p§: [[16]]pg = T,
[[11a]]pg = T.

Remark 3.11 Note that the interpretation function [—] is well-defined, but not by induction on
the length of a proposition, but by induction on the measure m, defined as follows. m(a) = 1,
m(a +b) =m(a) + m(b), m(a-b) =m(a) + m(b), m(1.) = 1+ m(a), m(a) = m(a) = 2+ m(a).
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The property that the interpretation of a proposition is always contained in the interpretation
of its presuppositions is expressed by the following lemma.

Lemma 3.12 In a PPCs-model we have
[[1a]]p£ = [[a]]pﬁ'

Proof Remembering that in a Boolean algebra by J by is defined as by M bs = bs or, equivalently,
as by U be = by, we prove the claim by induction on the structure of a.

o [lad,e Nlal,e = @) M pla) = pla) (because p C &)
a [1a),e M lal e = [tal e M[Lal e Hm = [tal e Hm = [al
a  [la],enla],e =T n[a], =[al,

Lo [[11a]]pg r [[LL]]pg =T1n [[1a]]pg = [[1a]]pg
@b [aalye Mo My = [ale M Ialye N [olye NIPLe = [l NP, = [ Bl

atb  [arslye Ula+ 8l = [al,e Ulal e U [l U Il = 1] U I],e = Dol

where 2 denotes an application of the induction hypothesis, stating that the thesis already holds
for a and b. Note that only in the last case do we use (for convenience) by LIby = b; as a formulation
for bl ; bg.

The two main properties that we expect from a semantics are wvalidity and completeness.
Validity states that every equality a = b that can be proved in the system is wvalid, i.e. the
interpretations of the two terms, [a] . and [b] ., are the same in every model. This guarantees
that what we derive formally is true. Completeness states that if two terms a and b are interpreted
in equal objects in every model, then it must be possible to prove that they are equal, i.e. PPC3
a = b is derivable. This guarantees that our formal system completely captures all the properties
of the semantics.

Theorem 3.13 (Validity) The model notion of Definition 3.9 is sound, i.e. if PPC3 - a = b,
then [a] . = [b] ¢ in all PPCs-models (B, p,&).

Proof We have to check that the axioms for a distributive lattice and the 10 axioms of Definition
3.3 hold in the model.

The axioms for a distributive lattice are trivially proved from the fact that B is a distributive
lattice.

That axioms (C1), (C2), (D1)-(D4) hold in the model follows immediately from the definition
of the interpretation (3.10). Rules (A1)—(B2) require slightly more work. We show (A2), (B1)
and (B2) in detail and then we discuss (A1).

(A2 [[a'a]]pg = [[a]]pg r ([[1a]]pg - [[a]]pg) = [[a]]pg r [[1a]]pg Hm =1
(B1 a+ 1a]]p£ = [[1a]]p£ L [[1‘1]]05 =T
(B2) a- 1a]]p£ = [[1a]]p£ r [[1‘1]]05 =1

To prove that (A1) holds, we first recall that [1.], 3 [a] . for every a, or equivalently, that
[la],e M [al,e = [a],¢ for every a. This was proved in Lemma 3.12. Given this result, we prove
(A1) as follows.

(41)  [a+al,e = [al ¢ U ([Lal e M Ial,e) = ([Lal e Mlal,e) U ([Lal,e Mal,e) =
[Lal,e 1 (Tal ¢ U al,e) = [Lal

To prove completeness we define the PPCs-term-model. This is a PPCsz-model consisting of
the terms of PPC3 (given by the set T', see Definition 3.1) itself. This means that we have to cast
T into a Boolean algebra and define p and ¢ as required by Definition 3.9.

)
)
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Definition 3.14 The set B is defined by quotienting T with the PPCs-equality. In other words,
the elements of B are the equivalence classes [t] (for t € T'), where

[t] :={t' e T|PPC3 Ft=1t}.

The Boolean operations are defined as the corresponding operators of PPCs applied inside the
equivalence classes:

1 = 0], T = [1],
[a] I'IM = [a-}], [a]U[b] := [a+b],
ol = [=l@a+a

It can be proved that these operations are well-defined and they determine a Boolean algebra.
The PPCs-term-model is now obtained by taking (B, p, &) with p(a) = [a] and {(a) = [1,] for
a € Lit.

Lemma 3.15 1. The PPCs-term-model ((B, p, &) in the previous Definition) is indeed a PPCs-
model.

2. Foralla,beT, if [[a]]pE = [[b]]p£ in the PPCs-term-model (B, p, &), then PPC3 - a =b.

Proof 1. It has to be shown that B is a Boolean algebra and that p C &. The first follows from
Theorem 3.5. The second follows from the fact that 1,-a = a is a derived rule in PPC3 (rule
(e2) in Proposition 3.7).

2. This follows immediately from the fact that

[a] e = la]
for all @ € T, which can be shown by an easy induction on the structure of a.

Theorem 3.16 (Completeness) The model notion of Definition 3.9 is complete, i.e. if [a] . =
[[b]]pé holds in all PPCs-models (B, p,€§), then PPC3 - a =b.

Proof Suppose a and b are two PPCs-terms such that

[al,e = [0,

holds in all PPC3-models. Then [a] . = [b] ¢ holds in the PPC3-term-model (B, p,{) and hence
PPCs F a = b, due to Lemma 3.15.

Corresponding to the maximal interpretation of PPCs, we have trivial models in which £(a) = T
for every a € Lit. We can construct simple nontrivial models by choosing any boolean algebra
B and any function p that is not constantly T and letting {(a) = p(a) for every a € Lit. In
this model we have that for a literal a such that p(a) # T, also [la],, = &(a) # T = [1]
and so the model is nontrivial (the interpretation of 14 is not just always T). Observe that this
model does not correspond to the unsound minimal interpretation, because the identification of
the presupposition of a term with the term itself is stipulated only for the literals and not for
every term. Notably, for a term 1, (« a literal), the presupposition of 1, is not identified with
1o in the model. (Proof: we have seen that [1,], # T. It is also the case that [1;,],, = T,
so [1a],¢ # [11.],¢: the terms 1, and 1y, are not identified in this model.) It also follows from
validity that 1, = 1 is not derivable in PPC3. As a consequence, the term model is also nontrivial.
Indeed, for a literal «, we have that [1,],; # [1] . because the equality 1o =1 is not derivable
in PPC3. As a conclusion of this paragraph we state the following fact.

Fact 3.17 There are non-trivial models of PPCs, that is, models in which [1,] .. # [1] ¢ for some
term a.
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3.4 Compositionality in the calculus and the models

In section 3.1 the noncompositionality of the calculus has already been discussed when we looked
at the example sentences (40). It has been argued that the equality of PPC3 is not a congruence.
A counterexample to congruence in the formal system PPCj is given by the terms a + @ and 1,,
which are equal but cannot be substituted for each other in a context. According to axiom (A1),
1, = a + a. If the calculus were compositional, we could substitute one of the two terms for the
other when they appear as arguments of the 1 operator, yielding 11, = 1,45. But this equality is
not always valid. In fact, the left hand side is equal to the unity, 1;, = 1 by (D1), whereas the
right hand side can be proved to be equal to the presupposition of a, 1,45 = 1o+1z = 1,+1, = 1,.
Unless the presupposition of a is trivially equal to unity, the supposed equality cannot hold. This
clearly shows that in PPC3 equality is not a congruence with respect to the 1 operator.

Similarly, equality is not a congruence with respect the operators — and =. A counterexample
is agam given by the term a + @ 1, =a+a but I, = a @+ a is not generally true, because
ata=d-a+a-a+a- a =0+a-a+a-a=0+0=0 (using el7, el12 and e7) and 1, = a. Finally
o = a+a, but l,=a + a is not true in general, because a/—DL —G-a=a (using €19 and e12)
and la =0.

In a model, the fact that equality is a congruence with respect to the operators is called
compositionality: the interpretation of a formula is defined by structural recursion. For the 1
operator, this would mean that [1,] is defined as U([a]), with U the function that represents the
1 operator in the model. In a non-trivial model, we cannot have such an operator U. Or, stated
differently, the operator U in the model (that represents the connective 1) cannot be a function.

[y

Definition 3.18 We call compositionality the rule
a=b—1, =1y.
Fact 3.19 Compositionality is equivalent to the rule 1, = 1.

Proof Assume compositionality. Then 1, =1z =11, =11, - 1g=1-1z456 = lz+1lg =1, +1=1.
Proving compositionality from 1, = 1 is easy.

So, compositionality yields a trivial model. We have a way of constructing non-trivial models:
If we take {(a) # T, then [1,], # T. In such a model compositionality does not hold: 1,
and a + & are equal in a non-trivial model, but 11, and 1,45 are not: [11,],, = T, whereas

[osal,e = €(@).

Remarks 3.20 1. If we let {(a) = T for all literals, we have a trivial model (i.e. [1a], =T
for all a).

2. There can be no model in which [a] . = [1.],¢ for all a. Suppose that [a] ,c = [La],¢ for all
a. Then [a] .. = [La],e = [11.],6 = T for all a. This is a contradiction because at least 0 is
not interpreted as T .

3.5 A compositional equality in PPC;

We have already observed that in PPC3 there is only one ‘level’ of presuppositions: if a is a
sentence, then 1,, the sentence that expresses the presuppositions of a, is, in general, a sentence
different from 1. But 1;_, the sentence expressing the presuppositions of 1, (the presuppositions of
the presuppositions of a) is always 1. So, two sentences a and b can be distinct in their ‘classical’
Boolean interpretation (then a # b) or they can be distinct in their presuppositions (then (1, # 1),
but in no other way: we always have 1;, = 1y,. This fact can also be observed in a different way.
We first define the strong equality a = b.

Definition 3.21 The strong equality a = b in PPCs is defined as follows.
a=0bif and only if a =b and 1, = 1; in PPCs.
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Lemma 3.22 Strong equality is a congruence for all connectives. That is

a=b&kc=d = a+c=b+d (1)
a=b&kc=d — a-c=b-d (2)
a=b — 1,=1, (3)
a=b = a=b (4)
a=b — a=b (5)
a=b — a=bh. (6)

Proof Suppose a =b and ¢c=d. Thena=0b,1, =1;,c=d and 1. = 14. Hence a + ¢ = b + d,
because = is a congruence for +. We also find

love D lo+1le=1+14 2 Ly,

and so a + ¢ = b+ d. The argument for - is analogous. Therefore we have proved (1) and (2).
Suppose a = b. Then a = b and 1, = 1. As 1;, =1y, by rule (D1), we find that 1, = 15, which
proves (3).

Suppose a = b. Then a = b and 1, = 1;. Now, a2 l,-a=1, 52D, Also 15 £ 1, =1,
which proves (4).

Suppose a = b. Thena =band 1, = 1,. Now,a =2 T, =1, 2 5. Also1; 212 13, thus
proving (5).

Suppose @ = b. Then a = b and 1, = 1. Using (4) and (5) we find that a =a+a = b+b=>.
Using (3), (4) and (5), we also derive that 1z = 15,5 L1415 = 1+ 1; 2 ;.5 = 13, thus
proving (6).

3.6 A compositional presentation of PPC;

Building on the previous section, we give a completely compositional presentation of PPCz. That
is, we characterize the compositional equality = independently. Moreover, we define the (non-
compositional) equality of PPC3 in terms of this =. We call our new system PPCS, compositional
PPC;.

There are two reasons for studying this new system. First, our aim in developing a formal
system for presuppositional sentences is to capture the logic and semantics of presuppositions. The
meaning of a proposition contains the meaning of its presuppositions. It is natural to say that two
propositions are equal when they have the same meaning. Since there is no precise mathematical
theory of meaning, this cannot be done in a Boolean setting, in which the equality “=" is taken to
be identity of extensions. Much of the meaning of a proposition is lost in this interpretation. We
have made an effort to produce a mathematical theory that captures a little more of the meaning
of sentences. We are now in the position to give an interpretation of propositions which is more
faithful to what really happens in natural language. Hence, we consider two propositions to be
equal when not just their extensions, but also the extensions of their presuppositions coincide.

Second, a compositional theory has nicer mathematical properties that facilitate its study.
PPCS is a standard equational theory, that can be studied using classical methods from Universal
Algebra. Once the equivalence of PPC; and PPC] is established, it is easier, when trying to prove
something in PPCj, to translate the problem into the system PPCS and solve it there.

Definition 3.23 The language of PPCS is almost the same as that of PPC3. There are two
additions. The first is the constant ®, which indicates a proposition that presupposes a necessary
falsity. The second is a new unary operation A that takes a proposition as argument and yields a
necessarily false proposition having the argument as presupposition.

The set of terms of PPCS, TC, is defined recursively as follows.

T¢ =Lt |T° +T°|T°-T¢| ® |1|T¢|17e | Are.
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Definition 3.24 The azioms of PPC5 are the following.

1. The equality = is a congruence relation, i.e. is an equivalence relation and is preserved under
application of the operations: if a1 = ax and by = by then ay + by = as + be, a1 - by = as - bs,
a1 = az, 1y, =1y, and Ay, = Ay, -

2. The operators + and - and the constants ® and 1 determine a distributive lattice with a
bottom and a top element. This means that the following equations hold.

a+b=b+a a-b=b-a
a+(b+ec)=(a+d)+ec a-(b-c)=(a-b) c
(@-b)+b=b (a+b)-b=b
(a+bd)-c=a-c+b-c (a-b)+c=(a+c)-(b+c)

ata=a a-a=a

a+1=1 a-O=0

a+O=a a-l=a

3. Specific axioms for PPCS that determine the properties of the unary operators Z,1 and A.

(49) L =1 45 1, = 1

(A3) a = a (A$) 1z = 1,

(A%) a-a = a-lg (45) lo,;a = a

(AZ) a+a+ 1@ = 1 (Aio) 1@ +1, = 1~a

(AS) Loy = 1a-1; (AS)) L, = atlg
(A§) lavp = 1o+ 1 (AS,) a = Ay, -1,,

Note 3.25 The symbol ® is not the usual zero, it does not correspond to 0 in the original pre-
sentation of PPCs. It is rather an absolute zero corresponding to propositions that presuppose a
necessary falsity, like for example

John knows that bachelors are married.

The operator A, when applied to a proposition a, gives a proposition A, which is necessary
false and has a as presupposition. An example of such a construction in language could be

Some living dead know that a.

Note 3.26 We do not require that our structure is a Boolean algebra. Indeed the negation opera-
tion — does not behave like the ordinary complement in Boolean algebras. Specifically the equation
a-a= 0O is not satisfied.

We want to prove that this theory is equivalent to the original one. We first define the missing
symbols.

Definition 3.27

> R Q) O
i
S @)'—‘z'—‘
. SO

+a
b

and the (weak) equality

a=bEL o1+0=b+0.

Now we have to prove that with these definitions -, +, 0, 1, — and = form a Boolean algebra
and that the axioms of 3.3 are satisfied.
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Lemma 3.28 -, + and = form a distributive lattice.

Proof It is enough to sum 0 to both sides of the corresponding equations that express the fact
that -, + and = form a distributive lattice. Of the two axioms involving 0, the first, a + 0 = a,
translates to a + 1o + 1o = 1, which is trivially true. The second, a - 0 = 0 translates to
a-1g + 15 = 15 and is proved by the following argument:

a-1®+1®Ea-1®—|—1-1®E(a+1)-1®zl-1®zl®.
Lemma 3.29 a-a=0

Proof If we unfold the definitions we have to prove that a - (1, + @) + 1o = 16.

~ ~ AS ~
a-(Ig+a)+1lyg = a-la+a-ad+1le = a-lg+a lg+1g
~ AS ~
= a (Ia+1)+1g = a-1,+1g
AG ~ AS
= a-la-1a+1® = a-la-1®+1®
e
= a-lp+1g = (a+1)-1g
= 11@ = 1@.

Lemma 3.30 a+a=1.

Proof Unfolding the definitions, we have to prove that a + 1, + @ + 1o = 1
~ _ ~ AS ~
a+1a—|—a+1® = a—l—a—|—1®+1a—|—1® = 1a+1a+1®
= 10. = .

We have thus proved that
Theorem 3.31 -, +, 1, 0, — and = determine a Boolean algebra.
We prove the specific equalities of PPCs.
Proposition 3.32 The azioms A1-D4 of PPCy are satisfied in PPC;.

Proof Al a+a=1,. Immediate from A§.

A2 a-a =0. We have to prove that a-a+0=0+0,i.e.a-a+0=0.
a-Zi—I—OAEga-l(;—l—OEa-O—i—OE (a+1)-0=1-0=0.

B1 a+ 1, = 1. Unfolding some of the definitions we have to prove that To+ 1, + lo =1+0.
Nowﬁ+1a+0§1la’§1:1+o.

B2 a-1, = 0. Unfolding some of the definitions we have to prove that 1,-1,+0=1+0. Now
I, -1, AES 1,15 AEE 1,0 = 1g =0, proving the claim.

C1 1,4 =14 - 1. Immediate from Ag.

C2 1,4 =1, + 1. Immediate from Ag.

D1 1y, = 1. Immediate from AZ.

D2 1, = 1;. Immediate from Ag.

D3 1z = 1. Unfolding the definitions we have to prove that 17+ 0 = 1 + 0. Now the claim

Ag A7
follows from 1~ = 1;, = 1.

a
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D4 1o = 1. Unfolding the definitions we have to prove that 1;, +0 = 1 + 0. This follows
immediately from (A$%).

So the axioms of the original PPC3 are satisfied.
Theorem 3.33 PPC; with the defined weak equality satisfies the axioms of PPCs.

Vice versa, if we start with the original PPC3 and we define

aEb(dzefrazbandlazlb
we can prove that the axioms of PPCS are satisfied, provided that we give the following definition
for the extra symbols.

®:=0 A, =0

1o :=0 1y, '=a
Note that in these definitions we must specify not only the value of the defined term but also
that of its presupposition, owing to the noncompositionality of the system. Since these definitions
extend the domain of the operator 1, we must check that the axioms pertaining to it are still
satisfied.

Theorem 3.34 PPC; with the defined strong equality satisfies the axioms of PPC5.

But these embedding theorems are still too weak. Suppose we start out with the system PPC§
with the strong equality =. We now define the weak equality = as

a=b<d=3f>a+05b+0.

We know that this equality satisfies the axioms of PPC3. From this equality we now define a new
strong equality by

az’bgazbandlazlb

We now want to prove that this strong equality coincides with the original one.

Lemma 3.35 1,+0=1,
Proof Easy.
Theorem 3.36 a = b if and only if a =' b.

Proof From left to right, a = b — a =' b, is immediate by substitution.

From right to left, a = b — a = b, needs some reasoning. Assume that a =’ b holds. If we
unfold the definition of =’ we obtain that a = b and 1, = 1;. If we unfold also the definition of =
we obtain that a + 0 =b+ 0 and 1, + 0 = 1, + 0. From these equalities we want to derive that
a = b. From the first equality and axiom A, we have that 1,, = 1,,. From the second equality
and lemma 3.35 we have that 1, = 1;,. Now by axiom A§, we have that

a=Ay, -1y, =Ay, 14, =D

a

as desired.

An interesting property is the following.

—~ ~

Lemma 3.37 a+b=a-b+a-b.
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Proof The proof is given in the original system PPCs, i.e. we prove that a+b=a-b+a-band

1a+b = IE-E+E-E'

a+b L Gb+a-b+a-b - a-b+a-b
D2 C2

1a+b = 1“+b - ]-a + ]-b

1,02 def

Lisias - Lz g+ le- 1y ~ L-Lgthg i
= L L+ +0a+1la) L F L1+ +(1+1E) 1
= 15 1—}—1-13 = 154-13
2 L+

Therefore L =150 and the second part of the lemma is proved.

3.7 Models of PPC;

Definition 3.38 A PPC;-model is a pair (B, 0), where B is a Boolean algebra B = (B;N,U, L, T,—)
and § is an assignment that maps every variable in the language to an element of the set

M := {(p,q) € B*|q E p}
where T indicates the order on B : ¢ C p means ¢ M p = q or, equivalently, q 1 p = p.
Given a model we define the interpretation of every term of PPC5 by an element of M
[-];: T — M

by induction on the structure of the term (the functions m; and 7, are the first and second
projection, respectively: w1 (p,q) = p and 72 (p, ¢} = q):

[als = d(a) for every literal a

[[®]]5 = <J-a J—)

[[1]]6 = <Ta >

[a] s = (m[a]s, m[a]; N7 [[a]] )

[Lals = (T,m[als)

[A.]; = (m[a];, L)

[a+0]; = (m[als Um[b]s, m[als Um[b]s)
[a-b]; = (m[als " m[bls, m2[als 2Bl )

The elementary relation = is interpreted as identity of the interpretations of the terms.

Definition 3.39 a = b is valid in the PPC5-model (B, 0) if [a]; = [b];-

Theorem 3.40 (Validity Theorem) If a = b is provable in PPC5 then [a]; = [b]; for every
PPCs-model (B, ¢).

Proof By induction on the length of the proof of a = b. It is enough to prove the validity of all
the axioms.

By the definition of the interpretation it follows that the defined symbols are interpreted in
the following way:

[[0]]6 = <T7J->
[al; = (T,mlals)

[al; = (T,m[als)



40 4 FURTHER PERSPECTIVES: MODAL LOGIC

3.8 Equivalence with PPC;-models

If we have a PPCS-model (i.e. one of the models of Definition 3.38) we can obtain a PPCs-model
(i.e. a model in the sense of Definition 3.9) by taking the same Boolean algebra B and defining
the maps p and £ on the variables as

pla) = m(d(a)),
(a) = m(d(a)).

Vice versa given a PPCsz-model (B, p, ) we obtain a PPC5-model by taking the same Boolean
algebra B and defining the map ¢ as

3.9 Completeness of PPC;

We prove now completeness of PPC; with respect to the defined models, deriving it from the
completeness of PPC3 and the correspondence between the models of the two systems outlined in
subsection 3.8.

Theorem 3.41 Let a and b be two propositions. If for every PPC5-model (B,0), [a]s = [b];, then
a = b is derivable in PPC5.

Proof Suppose the interpretations of @ and b coincide in every model. We construct a term
model by taking the Boolean algebra B := (T// =) of terms of definition 3.14 and defining the
assignment ¢ as d(a) := ({(a), p(a)) = ([1a], [@]) for every atomic proposition a. By lemma 3.15
and subsection 3.8, (B,d) is a model of PPC5. Hence [a]; = [b]; by hypothesis. We prove a
preparatory lemma.

Lemma 3.42 For every proposition a, [a]s = ([1a] ¢, [a] ¢ )
Proof By induction on the structure of a.

Using the lemma we have that

([Lal e [al,e) = (16D e [01,¢)-

The two components must be equal, [1,] , = [1s],¢ and [a] . = [0] .. By lemma 3.15 we have
then that 1, = 1, and a = b, that is, a = b by theorem 3.36.

4 Further perspectives: modal logic

The concept of noncompositional operator can be put to further use, e.g. in the logic of the modal-
ities POSSIBLE (Poss) and NECESSARY (Nec). Natural language modalities differ from metaphysical
modalities in that they are valuated relative to a given context or knowledge state, representable
as a given sentence A“. Poss(B) means that B is consistent with A%, and Nec(B) means that B
is entailed by A“.

More formally, for every given sentence A there is a set of new sentences P 4c, the sentences
that are possible relative to A, defined as P4c := {B: JAY/ N /B/ # 0}. If B € P 4, then
Poss(B) is true relative to A“.

For every given sentence A“ there is also a set of new sentences N 4e, the sentences that are
necessary relative to AY, defined as N q¢ := {B: /A% / C /B/}. If B € N 4¢, then Nec(B) is true
relative to A.

What are /Poss(B)/ and /Nec(B)/? Note that Poss(B) and Nec(B) are not sentences in the
ordinary sense (where the interpretation of a sentence is the set of situations in which it is the
case). The sentences Poss(B) and Nec(B) are just true or false and have no direct interpretation
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as a X-space. A key of propositions is required, i.e. a PARAKEY. (A METAKEY is a key of linguistic
elements, not propositions.) The elements of the PARAKEY (PK) are discourse domains, i.e.
propositions. The relation between modal propositions (e.g. Poss(B)) and discourse domains (e.g.
A% in the previous case) parallels the one between ordinary propositions and states in the world.
As we define the extension of an ordinary proposition A as the set of situations s that make A
true, we can define the extension of a modal proposition as the set of discourse domains that make
it true.

Hence the extension of Poss(B) is the set of all those discourse domains (propositions) A such
that A makes Poss(B) true, that is, the set of those A such that B is possible relative to A:

/Poss(B)/ = {A| A makes Poss(B) true}
= {A]| B is consistent with A}

{A|BeP4}

= {Al/A/n/B] # 0}

as depicted in figure 16, where we call PPK the universe containing the second level (modal)
propositions.

K PK PPK
— N
I/ A T
/>
—_| /Poss(B)/
™ Poss(B)
8l P
- B
L — 2 /

Figure 16: Set-theoretic interpretation of the modality of possibility.

Similarly the extension of Nec(B) is the set of all those discourse domains (propositions) A
such that A makes Nec(B) true, that is, the set of those A such that B is necessary relative to A:

/Nec(B)/ = {A| A makes Nec(B) true}
= {A] A entails B}
= {A|BeNu}
= {Al/A/ C/B/}

as depicted in figure 17.

Our arguments on presuppositions hold also at this second level, once we specify what the pre-
suppositions of modal sentences are. Every proposition Poss(B) or Nec(B) presupposes that B is
well-formed, well-anchored and well-keyed (i.e. has a TV). This happens when the presuppositions
of B are fulfilled. Therefore the presupposition of Poss(B) (or of Nec(B)) is satisfied whenever
1p is true. However, we must be careful not to confuse the two levels: the extension of 1g is a
subset of K, whereas we expect the extension of 1p,s(p) to be a subset of PK. In other words the
presupposition of Poss(B) cannot be 1, because the latter is an element of PK, whereas 1poss(p)
needs to be an element of PPK. 1p,sp) should be a para-proposition whose extension consists of
all the discourse domains in which B is well-keyed and well-anchored, i.e. all the discourse domains
that entail 15. In conclusion we expect that

[1poss()/ = {A | A entails 15} = /Nec(1g)/

The natural definition is thus 1pess(p) := Nec(1p). Similarly 1nec(p) := Nec(1g).
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K PK PPK

A

)
R A \

L

IAl < INec(B)/

> Nec(B)
. 5 —]

2

B/ — |

Figure 17: Set-theoretic interpretation of the modality of necessity.

This is not yet correct: the given definitions do not satisfy in general the property that for every
proposition B, the extension of B is contained in the extension of its presupposition, /B/ C /15/
(fig. 18 left). The property holds for the necessity operator, /Nec(B)/ C /Inec(s)/ = /Nec(1s)/,
for every proposition B; but it fails for the possibility operator, as it is not in general true that
JPoss(B)/ = {A | JA/ N /B/ # 0} is contained in /lpess()/ = /Nec(1p)/ = {A | /A/ C [1p/}
(fig. 18 right).

Y,

/Bl

I1g!

A€ [Nec(B)/ = A € [Nec(lp)/ A€ [Poss(B)/ but A ¢ /Nec(lp)/

Figure 18: Extension of the presuppositions of modal sentences.

We must therefore change the definition of /Poss(B)/. The correct definition is

JPoss(B)/ = {A| /A] € 1/ and JA/ N [B] # 0}.

Then it is the case that /A/ C /14/ holds in general. For example, for A = Poss(B) we
find that /1pess(p)y/ = /Nec(1p)/ = {A | /A/ C /1g/}, which is clearly a superset of /Poss(B)/,
according to the definition of /Poss(B)/ that we have just given.

From these definitions the usual modal theorems Nec(~ B) = ~(Poss(B)) and Poss(~ B) =
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~(Nec(B)) follow:

/Nec(~B)/ = {A|/A/ C/~B/}
{Al/A/ € /1g/ - /B/}
[ ~(Poss(B))/ = [lposs(py/ — /Poss(B)/
/Nec(1g)/ — /Poss(B)/
{A/A] C /1p/} —{A|/A/ C /1p/ and /A/ N /B/ # 0}
{A|/A/ € /1g/ and /A/ N /B = 0}
= {A|/A/ C/1g/—-/B/}
[Poss(~B)/ = {A|/A/C/1.p/and /A/N[/~B/# 0}
= {A|/A/ C/1p/ and [A/N(/1p/ - /B/) # 0}
= {A|/A/ C/1g/ and JA/ —/B/ # 0}
/ ~(Nec(B))/ = /[Inec(n)/ — [Nec(B)/
= /[Nec(lp)/ — /Nec(B)/
{Al/A/ C /1s/}—{A|/A/ C /B/}
= {A|/A/C/1p/ and /A ¢ /B/}
= {A|/A/ C/1p/and /A - /B/ # 0}

Note that the modal theorems do not hold for the other negations:

/Nec(~B)/ {A]/4/ € /1B/}
[=Poss(B)/ = {A[/A/Z [1s/}

So, in general /Nec(~ B)/ # / ~Poss(B)/. Similarly for the Boolean negation.
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