
Safe Proof Checking in Type Theory with Y

Herman Geuvers1, Erik Poll2, and Jan Zwanenburg2

1 Computer Science Department, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, herman@win.tue.nl

2 Computer Science Department, University of Nijmegen, P.O. Box 9010, 6500 GL
Nijmegen , The Netherlands, {erikpoll,janz}@cs.kun.nl

Abstract. We present an extension of type theory with a fixed point
combinator Y . We are particularly interested in using this Y for doing un-
bounded proof search in the proof system. Therefore we treat in some de-
tail a typed λ-calculus for higher order predicate logic with inductive ty-
pes (a reasonable subsystem of the theory implemented in
[Dowek e.a. 1991]) and show how bounded proof search can be done in
this system, and how unbounded proof search can be done if we add
Y . Of course, proof search can also be implemented (as a tactic) in the
meta language. This may give faster results, but asks from the user to
be able to program the implementation. In our approach the user works
completely in the proof system itself. We also provide the meta theory
of type theory with Y that allows to use the fixed point combinator in
a safe way. Most importantly, we prove a kind of conservativity result,
showing that, if we can generate a proof term M of formula ϕ in the
extended system, and M does not contain Y , then M is already a proof
of ϕ in the original system.

1 Introduction

In theorem provers based on type theory, we are always looking for an explicit
proof-object, i.e. if we want to prove the formula ϕ, we are in fact looking for a
term M such that M : ϕ. (M is of type ϕ.) Such a term M then corresponds
to a derivation in standard natural deduction (and can be translated to a proof
in natural language text). This has the advantage that, besides the proof engine
telling us that the formula is provable, the engine also produces – interactively
with the user – a proof term that can be checked independently. As a matter
of fact, the program for checking a proof object is relatively simple: it is a type
checking algorithm for a strongly dependent-typed language. This conforms with
the basic idea that finding a proof is difficult – hence this is done interactively,
whereas verifying an alleged proof is simple.

The interaction with the proof engine usually exists in a set of goal-directed
tactics. So, we try to construct a proof-term by looking at the structure of the
goal to be proved. Of course, one can define more powerful tactics, especially
when we are dealing with a decidable fragment of the logic. An example is the
‘Tauto’ tactic in Coq, that automatically solves (i.e. constructs proof-terms) for
first order propositional logic (and a bit beyond).

J. Flum and M. Rodŕıguez-Artalejo (Eds.): CSL’99, LNCS 1683, pp. 439–452, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

440 H. Geuvers, E. Poll, and J. Zwanenburg

Tactics like Tauto are built-in in the engine, but the user can also define
his/her own tactics, by programming them in the meta-language of the proof
system. To do so, the user has to know the meta-language and the way the
proof system is implemented in it quite well. This makes it in general quite hard
to program one’s own tactics. In this paper we present a kind of ‘tactic’ that
can be programmed in the proof system itself, which allows searching for proof-
terms. So no knowledge of the implementation is required. We also present two
examples of its use and the underlying explanation of the method in terms of
the proof system (the typed λ-calculus that is implemented in the proof engine).

The method we present can also be implemented as a tactic in the meta-
language, and then it can certainly be made much faster. We believe that it is
nice that a ‘search-tactic’ can be safely implemented in the language of the proof
system itself, which makes it much easier to apply for a user.

Due to the expressiveness of typed λ-calculus, a lot of ‘proof search’ can be
defined already in the proof system itself. E.g. if we have a decidable predicate
Q over nat (i.e. a proof term P of type ∀n:nat.Q(n) ∨ ¬Q(n)), then we can do
a bounded search for an element m ≤ N such that Q(m) holds. The idea is to
iterate P up to N times until we find an m : nat for which Pm = inl t; then
t : Q(m). Note that this m will also be the smallest n for which Q(n) holds.

An unbounded search can also be defined if we add a fixed point combinator to
the typed λ-calculus. In the example above: using the fixed point combinator, we
can iterate P without bound, until we find an m : nat such that Pm = inl t, and
then Q(m) holds. Adding a fixed point combinator is of course a real extension
of the proof system: as the underlying typed λ-calculus is strongly normalizing,
no fixed point combinator can be defined in it. In this paper we show that adding
a fixed point combinator Y is safe. This is done by showing that the addition
of Y yields a conservative extension. That is, if �S denotes derivability in some
typed λ-calculus and �S+Y denotes derivability in S extended with Y , then

Γ �S+Y M : A ⇒ Γ �S M : A,

for Γ,M and A not containing Y . (Of course we do not have conservativity
in the logical sense: ∃M (Γ �S+Y M : A) �⇒ ∃M (Γ �S M : A), for Γ and A
not containing Y .) Now, in order to show that adding Y is safe, let ϕ be a
formula in a certain context Γ (both ϕ and Γ in the system S). Suppose we
have constructed a proof-term P : ϕ in S + Y , so P may possibly contain Y .
Now we let P reduce until we find a term P ′ that does not contain Y . Then,
due to the subject reduction property for S + Y (which we will prove), we have
Γ �S+Y P ′ : ϕ and hence Γ �S P ′ : ϕ by conservativity.

How exactly the fixed point combinator is used to perform proof search will be
detailed in the paper by some examples. The proof search is in fact performed
by the reduction of the fixed point combinator, so, in terms of the previous
paragraph, the search is in the reduction from P to P ′.

The conservativity of S + Y over S will be proved for arbitrary functional
Pure Type Systems S. Functional Pure Type Systems cover a large class of
typed λ-calculi, among which we find the simple typed λ-calculus, dependent

Safe Proof Checking in Type Theory with Y 441

typed λ-calculus, polymorphic λ-calculus (known as system F) and the Calculus
of Constructions. The core of the proof system of Coq is also a functional Pure
Type System. We believe that the conservativity of S + Y over S will extend to
the whole proof system of Coq, which is a functional Pure Type System extended
with inductive types.

2 Theorem Proving in Typed λ-Calculus

In this section we briefly introduce the notion of Pure Type System and give
some examples of how theorem proving is done in such a system. Our main focus
will be on the system λPREDω. This is a typed λ-calculus that faithfully repre-
sents constructive higher order predicate logic. To motivate this we give some
examples of derivable judgements in λPREDω. For more information on Pure
Type Systems and typed λ-calculus in general, we refer to [Barendregt 1992] and
[Geuvers 1993].

Pure Type Systems or PTSs were first introduced by Berardi [Berardi 1990]
and Terlouw [Terlouw 1989a], with slightly different definitions. The advantage
of the class of PTSs is that many known systems can be seen as PTSs. So, many
specific results for specific systems are immediate instances of general properties
of PTSs. In the following we will mention a number of these properties.

Definition 1. For S a set, the so called sorts, A ⊂ S × S (the axioms) and
R ⊂ S × S × S (the rules), the Pure Type System λ(S,A,R) is the typed λ-
calculus with the following deduction rules.

(sort) � s1 : s2 if (s1, s2) ∈ A

(var)
Γ � A : s

Γ, x:A � x : A

(weak)
Γ � A : s Γ � M : C

Γ, x:A � M : C

(Π)
Γ � A : s1 Γ, x:A � B : s2

Γ � Πx:A.B : s3
if (s1, s2, s3) ∈ R

(λ)
Γ, x:A � M : B Γ � Πx:A.B : s

Γ � λx:A.M : Πx:A.B

(app)
Γ � M : Πx:A.B Γ � N : A

Γ � MN : B[N/x]

(convβ)
Γ � M : A Γ � B : s

Γ � M : B
A =β B

442 H. Geuvers, E. Poll, and J. Zwanenburg

If s2 ≡ s3 in a triple (s1, s2, s3) ∈ R, we write (s1, s2) ∈ R. In these rules, the
expressions are taken from the set of pseudoterms T, defined by

T ::= S |V | (ΠV:T.T) | (λV:T.T) |TT.

The pseudoterm A is typable if there is a context Γ and a pseudoterm B such
that Γ � A : B or Γ � B : A is derivable.

In the following, we will mainly be dealing with the PTS λPREDω, which is
defined as follows.

λPREDω
S Set,Types,Prop,Typep

A (Set : Types), (Prop : Typep)
R (Set,Set), (Set,Typep), (Typep,Typep),

(Prop,Prop), (Set,Prop), (Typep,Prop)

The idea is that Set is the sort (universe) of ‘small’ sets, Prop is the sort of
propositions Typep is the sort of ‘large’ sets (so Prop is a large set) and Types is
the sort containing just Set.

We briefly explain the rules. The rule (Prop,Prop) is for forming the implica-
tion: ϕ→ψ for ϕ,ψ : Prop. With (Set,Typep) one can form A→Prop : Typep and
A→A→Prop : Typep, the domains of unary predicates and binary relations over
A. (Typep,Typep) allows to extend this to higher order predicates and relations,
like (A→Prop)→Prop : Typep, the domain of predicates over predicates over A,
and (A→A→Prop)→Prop : Typep. The rule (Set,Prop) allows the quantification
over small sets (i.e. A with A : Set): one can form Πx:A.ϕ (for A : Set and
ϕ : Prop), which is to be read as a universal quantification. (Typep,Prop) allows
also higher order quantification, i.e. over large sets, e.g. ΠP :A→Prop.ϕ : Prop.
Using (Set,Set) one can define function types like the type of binary functions:
A→A→A, but also (A→A)→A, which is usually referred to as a ‘higher order
function type’.

We motivate the definition by giving some examples of mathematical notions
that can be formalised in λPREDω.

Example 1.
1. nat:Set, 0:nat, >:nat→nat→Prop � λx:nat.x>0 : nat→Prop. Here we see

the use of λ-abstraction to define a predicate.
2. nat:Set, 0:nat, S:nat→nat �

ΠP :nat→Prop.(P0)→(Πx:nat.(Px→P (Sx)))→Πx:nat.Px : Prop. This is
the induction formula written down in λPREDω as a term of type Prop.

3. A:Set, R:A→A→Prop � Πx, y, z:A.Rxy→Ryz→Rxz : Prop. (This formula
expresses transitivity of R.)

4. A:Set � λR,Q:A→A→Prop.Πx, y:A.Rxy→Qxy :
(A→A→Prop)→(A→A→Prop)→Prop. (This relation between binary relati-
ons on A expresses inclusion of relations.)

5. A:Set � λx, y:A.ΠP :A→Prop.(Px→Py) : A→A→Prop.
This binary relation on A is also called ‘Leibniz equality’ and is usually
denoted by =A, denoting the domain type explicitly.

Safe Proof Checking in Type Theory with Y 443

6. A:Set, x, y:A � λr : x =A y.λP :A→Prop.r(λz:A.Pz→Px)(λq:Px.q) : x =A

y→y =A x. The proof of symmetry of Leibniz equality.

The rules of Pure Type Systems give the flexibility to define subsystems in
a rather easy way by restricting the set R. The Pure Type System λPRED2,
representing second order predicate logic, is defined from λPREDω by removing
(Typep,Typep) from the R. (Then we can no longer form higher order predicates
and relations.) To obtain first order predicate logic, we remove (Typep,Prop) from
λPRED2, which forbids quantification over second order domains (predicates,
relations). Other well-known typed λ-calculi that can be described as a PTS are
simple typed λ-calculus, polymorphic typed λ-calculus (also known as system
F) and the Calculus of Constructions.

2.1 Properties of Pure Type Systems

An important motivation for the definition of Pure Type Systems is that many
important properties can be proved for all PTSs at once. Here we list the
most important properties and discuss them briefly. Proofs can be found in
[Geuvers and Nederhof 1991] and [Barendregt 1992]. Here we only mention the
ones that are needed for the proof of conservativity of the extension of a PTS
with a fixed point combinator.

In the following, unless explicitly stated otherwise, � refers to derivability in
an arbitrary PTS. Furthermore, Γ is a correct context means that Γ � M : A
for some M and A.

Proposition 1 (Church-Rosser (CR)).
The β-reduction is Church-Rosser on the set of pseudoterms T.

Proposition 2 (Correctness of Types (CT)).
If Γ � M : A then Γ � A : s or A ≡ s for some some s ∈ S.

Proposition 3 (Subject Reduction (SR)).
If Γ � M : A and M −→−→β N , then Γ � N : A.

Proposition 4 (Predicate Reduction (PR)).
If Γ � M : A and A −→−→β A′, then Γ � M : A′.

There are also many (interesting) properties that hold for specific PTSs or
specific classes of PTSs. We mention one of these properties.

Definition 2. A PTS λ(S,A,R) is functional, also called singly sorted, if the
relations A and R are functions, i.e. if the following two properties hold

∀s1, s2, s′
2 ∈ S(s1, s′

2), (s1, s
′
2) ∈ A ⇒ s2 = s′

2,

∀s1, s2, s3, s′
3 ∈ S(s1, s2, s3), (s1, s2, s′

3) ∈ R ⇒ s3 = s′
3

The PTSs that we have encountered so far are functional. So are all PTSs
that are used in practice. Functional PTSs share the following nice property.

444 H. Geuvers, E. Poll, and J. Zwanenburg

Proposition 5 (Unicity of Types for functional PTSs (UT)).
For functional PTSs, if Γ � M : A and Γ � M : B, then A =β B.

A less interesting, very basic, property, but one needed in a proof later, is:

Proposition 6 (Π-generation). Let Γ � Πx:A.B : s. Then there exists a rule
(s1, s2, s) ∈ R such that Γ � A : s1 and Γ, x:A � B : s2

An important property of a type system is that types can be computed, i.e.
there is an algorithm that given Γ and M , computes an A for which Γ � M : A
holds, and if there is no such A, returns ‘false’. This is usually referred to as the
type inference problem.

There are two important properties that ensure that type inference is de-
cidable: Church-Rosser for β-reduction and Normalization for β-reduction. Of
course, when adding a fixed point combinator, normalization is lost. In the next
section we will discuss why, for the relevant fragment of the system, type checking
is still decidable.

2.2 Inductive Types

We briefly treat the extension of λPREDω with inductive types, by giving some
examples and how they are used. λPREDω + inductive types does not fully
cover the type system of Coq, but quite a bit of it. At least it covers enough to
be able to describe our examples of proof search in the next section. The scheme
we give is roughly the one first introduced in [Coquand and Mohring 1990] and
implemented in [Dowek e.a. 1991].

We first give the (very basic) example of natural numbers nat. One is allowed
to write down the following definition.

Inductive definition nat : Set :=
0 : nat
S : nat→nat.

to obtain the following rules.

(elim1)
Γ � A : Set Γ � f1 : A Γ � f2 : nat→A→A

Γ � Rec natf1f2 : nat→A

(elim2)
Γ � P : nat→Prop Γ � f1 : P0 Γ � f2 : Πx:nat.Px→P (Sx)

Γ � Rec natf1f2 : Πx:nat.Px

(elim3)
Γ � A : Typep Γ � f1 : A Γ � f2 : nat→A→A

Γ � Rec natf1f2 : nat→A

The rule (elim1) allows the definition of functions by primitive recursion. The
rule (elim2) allows proofs by induction. The rule (elim3) allows the definition of

Safe Proof Checking in Type Theory with Y 445

predicates (on nat) by induction. To make sure that the functions defined by the
(elim) rules compute in the correct way, Rec has the following reduction rule.

Rec natf1f20 −→ι f1

Rec natf1f2(St) −→ι f2t(Rec natf1f2t)

The additional ι-reduction is also included in the conversion-rule (conv), where
we now have as a side-condition ‘A =βι B’. The subscript in Rec nat will be
omitted, when clear from the context.

An example of the use of (elim1) is in the definition of the ‘double’ function
d, which is defined by

d := Rec 0(λx:nat.λy:nat.S(S(y))).

Now, d0 −→−→βι 0 and d(Sx) −→−→βι S(S(dx)). The predicate of ‘being even’,
even(−), can be defined by using (elim3):

even(−) := Rec (�)(λx:nat.λα:Prop.¬α).

Here, ¬ϕ is defined as ϕ→⊥. We obtain indeed that

even(0) −→−→βι �,

even(Sx) −→−→βι ¬even(x)

An example of the use of (elim2) is the proof of Πx:nat.even(dx). Say that true
is some canonical inhabitant of type �. Using even(d(Sx)) =βι ¬¬even(dx) we
also find that the term λx:nat.λh:even(dx).λz:¬even(dx).zh is of type
Πx:nat.even(dx)→even(d(Sx)). So we conclude that

� Rec true(λx:nat.λh:even(dx).λz:¬even(dx).zh) : Πx:nat.even(dx).

Another well-known example is the type of lists over a domain D. This is
usually defined as a parametric inductive type, taking the domain as a parameter
of the inductive definition. The type of parametric lists can be defined as follows.

Inductive definition List : Set→Set :=
Nil : ΠD:Set.(ListD)
Cons : ΠD:Set.(ListD)→D→(ListD).

Which generates the following elimination rules and reduction rule.

(elim1)
Γ � D : Set Γ � A : Set Γ � f1 : A Γ � f2 : (ListD)→D→A→A

Γ � Rec Listf1f2 : (ListD)→A

(elim2)
Γ � D : Set
Γ � P : (ListD)→Prop

Γ � f1 : P (NilD)
Γ � f2 : Πx:(ListD).Πd:D.Px→P (Consxd)

Γ � Rec Listf1f2 : Πx:(ListD).Px

(elim3)
Γ � D : Set Γ � A : Typep Γ � f1 : A Γ � f2 : (ListD)→D→A→A

Γ � Rec Listf1f2 : (ListD)→A

446 H. Geuvers, E. Poll, and J. Zwanenburg

Rec Listf1f2(NilD) −→ι f1

Rec Listf1f2(ConsDld) −→ι f2ld(Rec Listf1f2l)

Note that to be able to write down the type of the constructors Nil and Cons,
we need to add the rule (Types,Set) to λPREDω. The constructors Nil and Cons
have a dependent type. It turns out that this situation occurs more often. We
treat another interesting example: the Σ-type. Let B : Set and Q : B→Prop and
suppose we have added the rule (Prop,Set) to our system.

Inductive definition µ : Set :=
In : Πz:B.(Qz)→µ.

(elim1)
Γ � A : Set Γ � f1 : Πz:B.(Qz)→A

Γ � Rec µf1 : µ→A

(elim2)
Γ � P : µ→Prop Γ � f1 : Πz:B.Πy:(Qz).P (Inzy)

Γ � Rec µf1 : Πx:µ.(Px)

(elim3)
Γ � A : Typep Γ � f1 : Πz:B.(Qz)→A

Γ � Rec µf1 : µ→A

The ι-reduction rule is

Rec µf1(Inbq) −→ι f1bq

Now, taking in (elim1) B for A and λz:B.λy:(Qz).z for f1, we find that
Rec (λz:B.λy:(Qz).z)(Inbq) −→−→ b. Hence we define π1 := Rec (λz:B.λy:(Qz).z).
Now, taking in (elim2) λx:µ.Q(π1x) for P and λz:B.λy:(Qz).y for f1, we find that
Rec (λz:B.λy:(Qz).y) : Πz:µ.Q(π1z). Also, Rec (λz:B.λy:(Qz).y)(Inbq) −→−→ q.
Hence we define π2 := Rec (λz:B.λy:(Qz).y) and we remark that µ together
with In (as pairing constructor) and π1 and π2 (as projections) represents the
Σ-type. In the rest of this article, we will just use the Σ-type, and will write
〈n, p〉 for the pair of n and p.

An example of an inductively defined proposition is the disjunction. Given ϕ
and ψ of type Prop, ϕ ∨ ψ can be defined as follows.

Inductive definition ϕ ∨ ψ : Prop :=
inl : ϕ→(ϕ ∨ ψ)
inr : ψ→(ϕ ∨ ψ)

We add the (Prop,Set) rule to λPREDω, because we want to have the first
two elimination rules.

(elim1)
Γ � A : Set Γ � f1 : ϕ→A Γ � f2 : ψ→A

Γ � Rec ∨f1f2 : (ϕ ∨ ψ)→A

(elim2)
Γ � P : Prop Γ � f1 : ϕ→P Γ � f2 : ψ→P

Γ � Rec ∨f1f2 : (ϕ ∨ ψ)→P

Safe Proof Checking in Type Theory with Y 447

Rec ∨f1f2(inl q) −→ι f1q,

Rec ∨f1f2(inr q) −→ι f2q.

As usual we write

case t of inl (p) ⇒ M1
inr (p) ⇒ M2

for Rec ∨(λp:ϕ.M1)(λp:ψ.M2)t.
Similarly one can define the disjoint union of two small sets, A + B for

A,B : Set, inductively. We will ambiguously use the same notations for the
constructors of A + B.

3 Proof Search in Type Theoretic Theorem Provers

We treat two examples of proof search in Coq. We try to avoid using Coq-syntax
and describe the examples in terms of λPREDω with inductive types. The first
example is a search for a term n : nat such that Q(n) holds, where Q is a
decidable predicate. So we let Q : nat→Prop and we assume we have a term

P : Πn:nat.Q(n) ∨ ¬Q(n).

Now, we want to iterate P to find the n and the proof of Q(n). First suppose
that we hope to find the n before N , so we want to iterate P at most N times
(N : nat).

Definition 3. For A : Set, a : A and n : nat we define Y n
a : (A→A)→A as

follows.

Y n
a := λf :A→A.Rec nata(λx:nat.f)n.

The following is easily verified.

Y 0
a f −→−→βι a,

Y n+1
a f −→−→βι f(Y n

a f),
Y n

a f −→−→βι f
n(a),

where fn(a) denotes, as usual, n times application of f on a.
Now define

F :≡ λg:nat→nat.λn:nat.case (Pn) of inl (p) ⇒ n
inr (p) ⇒ g(n + 1).

448 H. Geuvers, E. Poll, and J. Zwanenburg

So, F : (nat→nat)→(nat→nat). Now, let N : nat and let I := λx:nat.x.
Then

Y N
I F0 −→−→βι 0 if P0 −→−→βι inl (p) : Q(0),

Y N−1
I F1 if P0 −→−→βι inr (p) : ¬Q(0),

Y N−1
I F1 −→−→βι 1 if P1 −→−→βι inl (p) : Q(1),

Y N−2
I F2 if P1 −→−→βι inr (p) : ¬Q(1),

Y N−2
I F2 −→−→βι 2 if P2 −→−→βι inl (p) : Q(2),

Y N−3
I F3 if P2 −→−→βι inr (p) : ¬Q(2),

. . .
Y 1

I F (N − 1) −→−→βι N − 1 if P (N − 1) −→−→βι inl (p) : Q(N − 1),
Y 0

I FN if P (N − 1) −→−→βι inr (p) : ¬Q(N − 1),
Y 0

I FN −→−→βι N.

So, if Y N
I F0 −→−→βι n with n < N , then Q(n) holds and P (n) −→−→βι inl (p)

with p a proof of Q(n). If Y N
I F0 −→−→βι N , then ¬Q(n) for all n < N .

The method above works if we know an upperbound to the n that we want to
search for. Another option is to start a (possibly non-terminating) search. This
can be done by adding the fixed point combinator to λPREDω with inductive
types. We define the extension very generally for PTSs.

Definition 4. Let S = λ(S,A,R) be a PTS and let s be a sort of the system
S. The system S + Y s is obtained by adding the following rule.

Γ � A : s Γ � f : A→A
Γ � Y sf : A

The β-reduction is extended with

Y sf −→Y f(Y sf).

We sometimes omit the superscript s, if we know which sort we are talking about.
If we add Y s for all sorts, we just talk about S + Y .

In λPREDω with inductive types and Y Set , we can now program an arbitrary
proof search. (We omit the superscript Set.) With the above definition for F we
obtain

Y FI : nat

and if Y FI −→−→βιY n with n a normal form, then we know that Q(n) holds and
Pn −→−→βιY inl (p) with p : Q(n). (Moreover, we know that n is the smallest
m for which Q(m) holds, but only on a meta-level: the proof term does not
represent this information. If Y FI does not terminate, there is no n for which
Q(n) holds.)

We may wonder whether the extension of a type system with Y is safe. This
will be the subject of the next section. Here we consider one more application
of the proof search method, where we want to verify whether Q holds for n =
0, 1, . . . , N .

Safe Proof Checking in Type Theory with Y 449

Suppose again we have our decidable predicate Q with P a proof term of type
Πn:nat.Q(n) ∨ ¬Q(n). If we want to prove that Q holds for n = 0, 1, . . . , N ,
we do not just want to verify that fact, but also store the proof terms of
Q(0), Q(1), . . . , Q(N). Moreover, if Q(n) fails for an n ≤ N , we want to return
this n. Now abbreviate

List := List(Σx:nat.Q(x)).

Define the function F as follows.

F :≡ λg.λn:nat.case P (n) of inl (p) ⇒ (case g(n + 1) of
inl (l) ⇒ inl ((Cons〈n, p〉l)
inr (m) ⇒ inr (m))

inr (p) ⇒ inr (n).

Here, the type of g is nat→(List +nat), with List as above, the type of lists over
Σx:nat.Q(x). (For readability we have omitted the Set-parameter in Cons.) So,

F : (nat→(List + nat))→(nat→(List + nat)).

Now, iterating F N +1 times on λx:nat.inl (Nil) will either result in a sequence

[〈0, p0〉, 〈1, p1〉, . . . , 〈N, pN 〉]
with pi : Q(i) for each i, or in a term n : nat with n ≤ N , Pn −→−→βι inr (p)
and p : ¬Q(n). Obviously, in this example one will never wish to use the fixed
point combinator, as we are doing a bounded search.

4 Meta-theory of Pure Type Systems with Y

Most of the meta-theoretical properties of PTSs are not affected by the inclusion
of a fixpoint combinator Y . (The obvious exception is strong normalization, of
course!) In particular:

Proposition 7 (Church-Rosser (CRY)).
The βY -reduction is Church-Rosser on the set of pseudoterms T.

Proposition 8 (Correctness of Types (CTY)).
If Γ �S+Y M : A then Γ �S+Y A : s or A ≡ s for some some s ∈ S.

Proposition 9 (Subject Reduction (SRY)).
If Γ �S+Y M : A and M −→−→βY N , then Γ �S+Y N : A.

Proposition 10 (Unicity of Types for functional PTSs (UTY)).
For functional PTSs, if Γ �S+Y M : A and Γ �S+Y M : B, then A =βY B.

In addition to the properties above, to prove conservativity of Y we also need
the (very basic) ones below.

450 H. Geuvers, E. Poll, and J. Zwanenburg

Proposition 11 (ΠY -generation). Let Γ �S+Y Πx:A.B : s. Then there exists
a rule (s1, s2, s) ∈ R such that Γ �S+Y A : s1 and Γ, x:A �S+Y B : s2

Proposition 12 (axiomY -generation).
Let Γ �S+Y s : s′ with s, s′ ∈ S. Then (s, s′) ∈ A.

All the properties of PTSs with Y above can be proved in exactly the same
way as for PTSs. The trick to proving Conservativity (1 below) is to prove the
following, slightly weaker, property. A direct proof of Conservativity by induction
on derivations fails.

Lemma 1. For functional PTSs, if Γ �S+Y M : A with Γ and M not contai-
ning Y , then Γ � M : A′ for some A′ with A −→−→βY A′.

Proof. Induction on the derivation of Γ �S+Y M : A. The interesting cases are
the abstraction and application rule:

– Suppose the last step in the derivation is

Γ �S+Y M : Πx:A.B Γ �S+Y N : A
Γ �S+Y MN : B[N/x]

By the IH Γ � M : C for some C with Πx:A.B −→−→βY C. So, C is a
Π-abstraction, say C ≡ Πx:A′.B′. Then A −→−→βY A′ and −→−→βY B′. By
Proposition 6, Γ � A′ : s1 for some s1. By the IH Γ � N : A′′ for some A′′

with A −→−→βY A′′. As A′ =βY A′′ and A′, A′′ do not contain Y , we conclude
A′ =β A′′ (using CRβY). Hence Γ � N : A′ by the (conv) rule. Now,
Γ � MN : B′[N/x] by the (app) rule and indeed B[N/x] −→−→βY B′[N/x].

– Suppose the last step in the derivation is

Γ, x:A �S+Y M : B Γ �S+Y Πx:A.B : s
Γ �S+Y λx:A.M : Πx:A.B

By the IH on the first premise Γ, x:A � M : B′ for some B′ with B −→−→βY

B′. Unfortunately we cannot use the IH on the second premise – Γ �S+Y

Πx:A.B : s – as Πx:A.B may contain Y . We reason as follows: Γ � A : s1
(for some s1). By CT (Proposition 2), Γ, x:A � B′ : s2 for some s2 (i) or
B′ ≡ s′ for some s′ (ii). Looking at these two cases:
(i) As �S ⊆ �S+Y we know Γ �S+Y A : s1 and Γ, x : A �S+Y B′ : s2. Using

SRY we find Γ �S+Y Πx:A.B′ : s. Combining this with Proposition 11
and UTY we conclude (s1, s2, s) ∈ R. So Γ � Πx:A.B′ : s.

(ii) As �S ⊆ �S+Y we know Γ �S+Y A : s1. Using SRY we find Γ �S+Y

Πx:A.B′ : s. Combining this with Proposition 11 and UTY we conclude
(s1, s2, s) ∈ R and Γ, x : A �S+Y B′ : s2 for some s2. Since B′ ≡ s′,
s′ : s2 must be an axiom, so Γ, x : A � B′ : s2. Hence Γ � Πx:A.B′ : s.

Now Γ � λx:A.M : Πx:A.B′ by the (λ) rule and Πx:A.B −→−→βY Πx:A.B′.

Conservativity is an easy consequence of the lemma above.

Safe Proof Checking in Type Theory with Y 451

Corollary 1 (Conservativity for functional PTSs).
Consider a functional PTS. Let Γ �S+Y M : A with Γ , M , and A not containing
Y . Then Γ � M : A.

Proof. By the previous lemma Γ � M : A′ for some A′ with A −→−→βY A′. By
CTY we have Γ �S+Y A : s or A ≡ s for some s ∈ S. In the second case,
A′ ≡ A ∈ S, so Γ � M : A. In the first case, Γ � A : s by the previous Lemma,
so Γ � M : A by the conversion rule.

With respect to the issue of decidability of type inference: in general, the
addition of a fixed point combinator will make type inference undecidable. This
is because Y allows us to define all partial recursive functions. So, if F : nat→nat
is some closed term, representing a partial recursive function and we take Γ =
P : nat→Prop, x : P0, then

x : P (F0) iff F0 = 0.

So, a type inference algorithm would give us a decision algorithm for the value
of partial recursive functions on 0, quod non: type inference is undecidable.

Nevertheless, we still want to be able to edit the term Y F that defines our
proof search. That is, we would like to be able to interactively construct Y F
and have it type checked by the proof engine. If we look back at the examples
in Section 3, we see that the ‘proof search terms’ Y F that are given here can be
type checked: If we apply the usual type-checking algorithm to these terms, the
Y -reduction, which is the only possible source for infinite reductions (and hence
undecidability), is never used.

To be more precise: the proof search terms that we have constructed can all
be type-checked in the system λPREDω, where Y is treated as a constant that
takes a term of type A→A to a term of type A. (The λPREDω-type-checking
algorithm applies immediately to this small extension. Alternatively one could
extend λPREDω with the rule (Types,Set). Then put Y : Πα:Set.(α→α)→α in
the context and use the type-checking algorithm for this extension of λPREDω.)

This is a general situation: in the phase of constructing the proof search term
we can treat Y as a constant (without reduction behaviour). So then we are de-
aling with well-known type systems. When we have constructed the proof search
term, we let it reduce and if this results in a normal form, the conservativity
property, Corollary 1, guarantees that we have found a proof in the original type
system.

5 Conclusions and Related Work

We have presented a method for proof search inside the proof system of higher
order predicate logic with inductive types. We have tested our method by some
examples using the proof engine Coq. See [Zwanenburg e.a. 1999] for the exam-
ples; the methods turn out to be reasonably fast. In our first example we are
looking for a ‘witness’ n of the property Q, using Y N

I F0, which iterates F up to
N times, starting from 0. One could do this similarly in the meta language of the

452 H. Geuvers, E. Poll, and J. Zwanenburg

proof system (the implementation language), which may be faster, but also re-
quires a lot of knowledge of the implementation and experience in programming
in the meta-language.

We have also presented the underlying theory, why doing an unbounded se-
arch (by adding a fixed point combinator) does not spoil the logical proof system.
The addition of a fixed point combinator to the Calculus of Constructions (CC)
has also previously been studied in [Audebaud 1991]. His goal is to overcome the
problem with the second order definable datatypes in CC, so he is using the fixed
point mainly to be able to define data types (of type Set in our system) that have
the desirable properties. We don’t have to do that, because we use the extension
with inductive types, which provides us with the necessary data types. Moreo-
ver, we are especially interested in using the fixed point combinator to define
(potentially) infinite computations to search for witnesses and proof-objects.

References

[Audebaud 1991] P. Audebaud, Partial Objects in the Calculus of Constructions, in
Proceedings of the Sixth Annual Symp. on Logic in Computer Science,
Amsterdam 1991, IEEE, pp. 86 – 95.

[Barendregt 1992] H.P. Barendregt, Lambda calculi with Types. In Handbook of Logic
in Computer Science, eds. Abramski et al., Oxford Univ. Press, pp. 117 – 309.

[Berardi 1990] S. Berardi, Type dependence and constructive mathematics, Ph.D.
thesis, Universita di Torino, Italy.

[Coquand and Mohring 1990] Th. Coquand and Ch. Paulin-Mohring Inductively
defined types, In P. Martin-Löf and G. Mints editors. COLOG-88 : International
conference on computer logic, LNCS 417.

[Dowek e.a. 1991] G. Dowek, A. Felty, H. Herbelin, G. Huet, Ch. Paulin-Mohring, B.
Werner, The Coq proof assistant version 5.6, user’s guide. INRIA Rocquencourt
- CNRS ENS Lyon.

[Geuvers 1993] H. Geuvers, Logics and Type Systems, Ph.D. Thesis, University of
Nijmegen, 1993.

[Geuvers and Nederhof 1991] J.H. Geuvers and M.J. Nederhof, A modular proof of
strong normalisation for the calculus of constructions. Journal of Functional
Programming, vol 1 (2), pp 155-189.

[Terlouw 1989a] J. Terlouw, Een nadere bewijstheoretische analyse van GSTT’s (incl.
appendix), Manuscript, Faculty of Mathematics and Computer Science,
University of Nijmegen, Netherlands, March, April 1989. (In Dutch)

[Zwanenburg e.a. 1999] J. Zwanenburg and H. Geuvers, Example of Proof Search by
iteration in Coq, url:
http://www.cs.kun.nl/˜janz/proofs/proofSearch/index.html

	1 Introduction
	2 Theorem Proving in Typed lambda-Calculus
	2.1 Properties of Pure Type Systems
	2.2 Inductive Types

	3 Proof Search in Type Theoretic Theorem Provers
	4 Meta-theory of Pure Type Systems with Y
	5 Conclusions and Related Work

