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Abstra
t

In informal mathemati
s, statements involving 
omputations are seldom proved.

Instead, it is assumed that readers of the proof 
an 
arry out the 
omputations on

their own. However, when using an automated proof development system based on

type theory, the user is for
ed to �nd proofs for all 
laimed propositions, in
luding


omputational statements.

This paper presents a method to automati
ally prove statements from primitive

re
ursive arithmeti
. The method repla
es logi
al formulas by boolean expressions.

A 
orre
tness proof is 
onstru
ted, whi
h states that the original formula is deriv-

able, if and only if the boolean expression equals true. Be
ause the boolean ex-

pression redu
es to true, the 
onversion rule yields a trivial proof of the equality.

By 
ombining this proof with the 
orre
tness proof, we get a proof for the original

statement.

1 Introdu
tion

This paper presents a method to automati
ally prove statements from �rst

order primitive re
ursive arithmeti
, in the 
ontext of type theoreti
al proof

systems [1℄. This is done by repla
ing proof obligations by 
omputations. For

example, the proposition Prime(61) 
an be veri�ed by a 
omputer program

whi
h 
he
ks all potential divisors of 61. By doing these 
omputations, it 
an

be seen that there are no proper divisors of 61. From this, it is 
on
luded that

61 is prime.

In informal mathemati
al proofs, propositions like Prime(61) are seldom proved.

They are not 
onsidered to be \mathemati
ally interesting" and veri�
ation

is normally left to the reader. However, when 
onstru
ting formal proofs us-

ing an automated proof system based on type theory, su
h as the Coq proof

assistant [9℄, the user is for
ed to �nd proofs for all 
laimed propositions, in-


luding propositions like Prime(61). The ability to prove these propositions

automati
ally, allows users of these systems to 
on
entrate on formalizing the

important, mathemati
ally interesting parts of a theory.

Preprint submitted to Elsevier Preprint 14 April 2000



The method presented here is based on two main ideas. The �rst idea, 
alled


omputational re
e
tion in [7℄ (dating ba
k to original work by [8℄, who 
alls

it re
e
tion) or two level approa
h in [3℄ is to interpret a 
lass of proposi-

tions on three di�erent levels: a synta
ti
al level, a propositional level, and

a 
omputational level. The synta
ti
al level makes it possible to relate the


omputational level to the propositional level by proving that a de
ision al-

gorithm (on the 
omputational level) indeed has the intended e�e
t (on the

propositional level). The se
ond idea, 
alled Poin
ar�e's prin
iple in [2℄, states

that propositions whi
h 
an be veri�ed by a 
omputation are easy; i.e., no

proof is required. This prin
iple is in
orporated in Coq through the so-
alled


onversion rule: types that are 
omputationally equal (
onvertible) are not

distinguished. The Poin
ar�e's prin
iple is 
ru
ial for the use of 
omputational

re
e
tion in theorem provers, as it allows to repla
e a large proof-obje
t (la-

borious to generate) by a small proof-obje
t plus a 
omputation (me
hani
al).

In our 
ase the 
ombination of these two ideas allows us to repla
e a proposi-

tion from primitive re
ursive arithmeti
 (the propositional level) with a 
om-

putation (the 
omputational level) involving 
hara
teristi
 fun
tions of primi-

tive re
ursive predi
ates. The latter 
an be resolved using the 
onversion rule.

Proving that this repla
ement is indeed allowed, involves lifting the original

proposition to the synta
ti
 level and translating it to the 
omputational and

propositional levels. It is proved that these two translations 
onform with ea
h

other: the translation to the 
omputational level evaluates to true if and only

if the translation to the propositional level is provable.

The intention of the paper is to present the result without assuming detailed

knowledge of type theory or proof-assistants based on type theory. To meet

that 
ondition, the paper is organized as follows. First we give a general in-

trodu
tion to proof-assistants based on type theory, brie
y dis
ussing the phi-

losophy and the te
hnology. Then we introdu
e a type theory for higher order

predi
ate logi
 and we show by example how mathemati
al reasoning may be

formalized in this system. We extend this system with (a restri
ted form of)

indu
tive types. The system we thus obtain is a subsystem of the type theory

that is implemented in the proof-assistant Coq. In the last se
tion we show

how we have de�ned a de
ision pro
edure for primitive re
ursive arithmeti


inside Coq.

2 Proof Assistants based on type theory

In type theory one interprets formulas and proofs via the well-known `formulas-

as-types' and `proofs-as-terms' embedding, originally due to Curry, Howard

and De Bruijn. Under this interpretation, a formula is viewed as the type of
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its proofs. Hen
e, a statement in type theory of the form

M : A


an be read in two ways:

� M is an element of the set denoted by A,

� M is a proof of the formula denoted by A.

In the 
ase that M denotes a proof, one 
an (in general) really 
onstru
t a

natural dedu
tion style derivation out of the proof term M . Whether this is

possible depends on the spe
i�
 type theory, but for many well-known logi
s

an isomorphi
 typed �-
al
ulus has been de�ned: there is a bije
tion between

natural dedu
tions in the logi
 and proof terms in the typed �-
al
ulus. We

shall illustrate this 
orresponden
e between logi
 and typed �-
al
ulus later

by some examples. The main 
onsequen
es of this approa
h towards theorem

proving are that

� Proof 
he
king is Type 
he
king,

� Intera
tive Theorem Proving is the intera
tive 
onstru
tion of a term of a

given type.

The Proof Assistant Coq is an intera
tive theorem prover based on type theory:

the implemented typed �-
al
ulus is a version of 
onstru
tive higher order logi


with powerful indu
tive types. The system Coq provides the user with powerful

ta
ti
s to intera
tively 
onstru
t a proof term. In this 
onstru
tion pro
ess,

the system guarantees the type 
orre
tness. An important distin
tion to be

made { whi
h is a basi
 philosophy behind type theoreti
 provers like Coq {

is the one between

� Che
king an alleged proof: this is easy, 
omparable with 
he
king the syn-

ta
ti
 
orre
tness of a 
omputer program,

� Constru
ting a proof for a given formula: this is hard (unde
idable in gen-

eral), 
omparable with 
onstru
ting a program whi
h satis�es a spe
i�
a-

tion.

In type theoreti
 provers, the �rst task is performed by a type 
he
king algo-

rithm, the se
ond task is performed intera
tively with the user.

2.1 Corre
tness of Proof Assistants

An important issue in automated theorem proving in general is the question

of 
orre
tness of the implemented system. Or, phrased di�erently: how 
an we

be sure that a formula that has been proven by the Proof Assistant (PA) is
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really true? We may sometimes not be 
onvin
ed that all the powerful ta
ti
s

that a PA provides are sound and it o

asionally turns out that a PA 
ontains

a bug. In type theoreti
 PAs, this issue of reliability is solved to some extent,

be
ause the PA does not only tell the user that the theorem has been proved,

but it also provides a proof term that 
an either be type 
he
ked by the user

(using his own { relatively easy to write { type 
he
king algorithm) or it 
an

be exported to some natural language style proof that 
an be read by other

humans. The feature of having proof terms that 
an be 
he
ked independently

by a relatively small and easy algorithm, is also known as the De Bruijn


riterion (see [2℄), named after the founding father of the Automath proje
t.

In this proje
t the �rst PAs based on type theory were implemented (in fa
t

they were proof 
he
kers instead of proof assistants).

So, on the one hand the De Bruijn 
riterion gives a higher degree of reli-

ability to PAs. On the other hand, however, this 
riterion makes it harder

to implement very powerful proof ta
ti
s (like resolution), be
ause the sys-

tem will always have to 
onstru
t a 
omplete proof term that 
an be (type)


he
ked easily in a small underlying system. In this paper we show that it is

possible to add powerful proof ta
ti
s to Coq and at the same time 
omply

with the De Bruijn 
riterion. This is done by applying the so 
alled `two level

approa
h' ([2℄), also known as the `re
e
tion prin
iple' ([7℄). The basi
 idea

of that approa
h is to 
ode a spe
i�
 synta
ti
 
lass of formulas into an in-

du
tive type form. We write [[�℄℄ for the de
oding fun
tion giving for every

formula a : form a proposition [[a℄℄. A given (powerful) proof pro
edure 
an

(in the simplest 
ase) then be de�ned as a fun
tion F of type form!form.

Now, if we 
an prove this pro
edure to be 
orre
t inside Coq, i.e. if we prove

8a:form([[a℄℄ $ [[Fa℄℄), then we 
an repla
e a proof obligation [[a℄℄ by a proof

obligation [[Fa℄℄ (whi
h will in general be easier).

In this paper we illustrate the method sket
hed above by looking at the formu-

las of primitive re
ursive arithmeti
 (PRA). We de�ne a fun
tion ([�℄) (
ompa-

rable with the F above) that 
omputes true or false for every 
losed formula

of PRA (using a 
hara
teristi
 fun
tion) and we prove that ([�℄) is 
orre
t (i.e.

([�℄) preserves derivability: 8a:form([[a℄℄ $ (([a℄) = true))). Hen
e, if we want

to 
he
k, e.g. whether Prime(61) holds, we have to �nd a term a of type

form su
h that [[a℄℄ is 
onvertible with Prime(61) and we have to verify that

([a℄) = true. The latter is done by just 
omputing ([a℄): the out
ome is either

true or false.

4



3 A type theory for higher order predi
ate logi
 with indu
tive

types

In this se
tion we de�ne a part of the type system that is implemented in Coq.

We will not attempt to give a general introdu
tion into Coq, but restri
t to that

part of Coq that is ne
essary for our proof development. First we introdu
e the

system �PRED!, a type theory in whi
h one 
an (faithfully) interpret higher

order predi
ate logi
. Then we extend this system with indu
tive types, to

obtain the system �PRED!

ind

.

Before giving the pre
ise de�nition, we make some introdu
tory remarks to

guide the intuition.

(1) The language of higher order predi
ate logi
 is a typed language. In

�PRED! there are `�rst order sets', whi
h are of type Set and there

are higher order sets, whi
h are of type Type. These `universes' Set and

Type are 
alled sorts.

(2) In �PRED!, formulas like ' �  and 8x:A:' will be
ome types. However,

these `propositional' types are not the same as the set types (like e.g. nat).

Hen
e there is another `universe', Prop, 
ontaining the `propositional'

types. So, all formulas are of type Prop in �PRED!.

(3) Prop itself is a higher order set type, so Prop : Type.

(4) For A a �rst order set (i.e. A : Set), the set of predi
ates on A is repre-

sented as A!Prop, the type of fun
tions from A to Prop. If P : A!Prop

and a : A, then Pa : Prop. the intended meaning is that `a belongs to P '

if the formula Pa 
an be proved.

(5) Natural dedu
tions are represented as typed �-terms. The dis
harging

of hypotheses is done by �-abstra
tion. The modus ponens rule is inter-

preted via appli
ation.

(6) A formula is provable if we 
an �nd a proof of it. That is in �PRED!, if

' : Prop, then `' is provable' if we 
an �nd a term M su
h that M : '.

The derivable judgements of �PRED! are of the form

� `M : A;

where � is a 
ontext and M and A are terms. A 
ontext is of the form

x

1

:A

1

; : : : ; x

n

:A

n

, where x

1

; : : : ; x

n

are variables and A

1

; : : : ; A

n

are terms.

In a 
ontext the variables that o

ur in M and A are given a type. If, in the

judgment � ` M : A, the term A is a `propositional type' (i.e. � ` A : Prop),

we view M as a proof of A. If the term A is a `set type' (i.e. � ` A : Set or

� ` A : Type), we view M as an element of the set A.

Finally, there is another sort Type

s

, that 
ontains just Set. It is there to allow
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de
larations of the form x:Set in the 
ontext, de
laring a new set, whi
h is in

our formalism only possible if Set itself has a type.

De�nition 1 The typed �-
al
ulus �PRED!, representing higher order pred-

i
ate logi
, is de�ned as follows. The set of pseudoterms T is de�ned by

T ::= Prop j Set j Type j Type

s

jV j (�V:T:T) j (�V:T:T) jTT:

Here, V is a set of variables. The set of sorts, S is fProp; Set; Type; Type

s

g.

A 
ontext is a sequen
e x

1

:A

1

; : : : ; x

n

:A

n

, where the ~x are in V and the

~

A are

in T.

The typing rules, that sele
t the well-typed terms from the pseudo-terms, are

as follows. Here, s ranges over the set of sorts S .

(axiom) ` Prop : Type ` Set : Type

s

(var)

� ` A : s

�; x:A ` x : A

(weak)

� ` A : s � `M : C

�; x:A `M : C

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

2

if (s

1

; s

2

) 2 f(Set; Set); (Set; Type); (Type; Type);

(Prop; Prop); (Set; Prop); (Type; Prop)g

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(
onv)

� `M : A � ` B : s

� `M : B

if A =

�

B

In the rules (var) and (weak) it is always assumed that the newly de
lared

variable is fresh, that is, it has not yet been de
lared in �. The equality in the


onversion rule (
onv

�

) is the �-equality on the set of pseudo-terms T.
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A pseudo-term A is typable if there is a 
ontext � and a pseudo-term B su
h

that � ` A : B or � ` B : A is derivable. The set of typable terms of �PRED!

is denoted by TERM(�PRED!).

The only type-forming operator in this language is the �, whi
h 
omes in

three 
avors, depending on the type of the domain (the A in �x:A:B) and the

type of the range (the B in �x:A:B). Intuitively, a �-type should be read as

a set of fun
tions. If we depi
t the o

urren
es of x in B expli
itly by writing

B(x), the intuition is:

�x:A:B(x) �

Y

a2A

B(a) = ff j 8a 2 A[f a 2 B(a)℄g:

So, �x:A:B is the dependent fun
tion type of fun
tions taking a term of type A

as input and delivering a term of type B in whi
h x is repla
ed by the input. We

therefore immediately re
over the ordinary fun
tion type as a spe
ial instan
e.

Notation 2 � In 
ase x =2 FV(B), we write A!B for �x:A:B. We 
all this

a non-dependent fun
tion type.

� We omit bra
kets by letting them asso
iate to the right. So A!B!C de-

notes A!(B!C).

By examples we list all instan
es of the �-type that 
an be en
ountered in

�PRED!.

Examples 3 (1) Using the 
ombination (Set,Set), we 
an form the fun
tion

type A!B for A;B:Set. Furthermore, it also extends to higher order

fun
tion types like (A!B)!A, the type of fun
tions taking fun
tions

from A to B as input and returning a value of type A.

If � ` A:Set and �; x:A ` B:Set, then x =2 FV(B) in �PRED!, so all

types formed by (Set,Set) are non-dependent fun
tion types.

(2) Using the 
ombination (Set,Type) we 
an form types of unary predi
ates

and binary relations: if A : Set, then A!Prop : Type and A!A!Prop :

Type.

If � ` A:Set and �; x:A ` B:Type, then x =2 FV(B) in �PRED!, so all

types formed by (Set,Type) are non-dependent types.

(3) Using the 
ombination (Type,Type) we 
an form higher order predi
ate

types: if A : Set, then (A!Prop)!Prop : Type, the type of predi
ates

over unary predi
ates over A. All types formed by (Type,Type) are non-

dependent types.

(4) Using the 
ombination (Prop,Prop), we 
an form the propositional type

'! for ';  :Prop. This is to be read as an impli
ational formula.

All types formed by (Prop,Prop) are non-dependent types.

(5) Using the 
ombination (Set,Prop), we 
an form the dependent proposi-

tional type �x:A:' for A:Set, ':Prop. This is to be read as a universally
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quanti�ed formula over A.

If � ` A:Type and �; x:A ` ':Prop, then it 
an o

ur that x 2 FV(') in

�PRED!. An example is �x:A:Px!Px : Prop (in the 
ontext A:Set; P :A!Prop).

(6) Using the 
ombination (Type,Prop), we 
an do quanti�
ation over higher

order domains, like in �P :A!A!Prop:'. In general, if B : Type and

' : Prop, then �P :B:' : Prop.

This type is (in general) a dependent type. An example is �P :A!Prop:Px!Px :

Prop (in the 
ontext A:Set; x:A).

We will not de�ne formal interpretations from higher order predi
ate logi
 to

�PRED! and ba
k. We motivate �PRED! by listing some examples of typing

statements.

Examples 4 (1) nat:Set; 0:nat; >:nat!nat!Prop ` �x:nat:x>0 : nat!Prop.

Here we see the use of �-abstra
tion to de�ne predi
ates.

(2) nat:Set; 0:nat; S:nat!nat

` �P :nat!Prop:(P0)!(�x:nat:(Px!P (Sx)))!�x:nat:Px : Prop.

This is the formula for indu
tion written down in �PRED! as a term of

type Prop.

(3) A:Set; R:A!A!Prop ` �x; y; z:A:Rxy!Ryz!Rxz : Prop.

Transitivity of R.

(4) A:Set ` �R;Q:A!A!Prop:�x; y:A:Rxy!Qxy :

(A!A!Prop)!(A!A!Prop)!Prop.

In
lusion of relations.

(5) A:Set ` �x; y:A:�P :A!Prop:(Px!Py) : A!A!Prop.

This relation is also 
alled `Leibniz equality' and is usually denoted by =

L

or =

A

if we want to denote the domain type expli
itly.

(6) A:Set; x; y:A ` �r:x =

A

y:�P :A!Prop:r(�z:A:Pz � Px)(�q:Px:q) :

x =

A

y!y =

A

x.

The proof of the fa
t that Leibniz equality is symmetri
.

Just as in higher order predi
ate logi
, it is possible to de�ne the usual intu-

itionisti
 
onne
tives and 
onstants &, _, False, True, : and 9 in �PRED!.

However, in presen
e of indu
tive types, one usually also de�nes the 
onne
-

tives indu
tively (as is also standard in Coq). We therefore do not give the

higher order de�nitions of the 
onne
tives here, but take them as being de�ned

indu
tively. We dis
uss the 
onne
tives brie
y in the next Se
tion.

3.1 Indu
tive Types

A basi
 notion in logi
 and set theory is indu
tion: when a set is de�ned

indu
tively, we understand it as being `built up from the bottom' by a set

of basi
 
onstru
tors. Elements of su
h a set 
an be de
omposed in `smaller
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elements' in a well-founded manner. This gives us the prin
iples of proof by

indu
tion and fun
tion de�nition by re
ursion.

If we want to add indu
tive types to our type theory, we have to add a de�-

nition me
hanism that allows us to introdu
e a new indu
tive type, by giving

the name and the 
onstru
tors of the indu
tive type. The theory should auto-

mati
ally generate a s
heme for proof-by-indu
tion and a s
heme for primitive

re
ursion. It turns out that this 
an be done very generally in type theory, in-


luding very many instan
es of indu
tion. Here we shall use a variant of the

indu
tive types that are present in the system Coq [9℄ and that were �rst

de�ned in [5℄.

We illustrate the rules for indu
tive types in �PRED!

ind

by �rst treating the

(very basi
) example of natural numbers nat. We would like the user to be

able to write something like

Indu
tive nat : Set :=

0 : nat

jS : nat!nat:

to obtain elimination prin
iples that allow to de�ne fun
tions over nat by

(higher order) primitive re
ursion and to prove properties over nat by indu
-

tion. This amounts to the derivability of the following rules. (Re


nat

(f

1

; f

2

)

denotes some term 
ontaining f

1

and f

2

as subexpressions.)

(elim

1

)

� ` A : Set=Type � ` f

1

: A � ` f

2

: nat!A!A

� ` Re


nat

(f

1

; f

2

) : nat!A

(elim

2

)

� ` P : nat!Prop � ` f

1

: P0 � ` f

2

: �x:nat:Px!P (Sx)

� ` Re


nat

(f

1

; f

2

) : �x:nat:Px

The rule (elim

1

) allows the de�nition of fun
tions by primitive re
ursion. The

rule (elim

2

) allows proofs by indu
tion. To make sure that the Re


nat

(�;�)

fun
tions 
ompute in the 
orre
t way, we should have the following redu
tion

(
omputation) rules.

Re


nat

(f

1

; f

2

)0!

�

f

1

Re


nat

(f

1

; f

2

)(St)!

�

f

2

t(Re


nat

(f

1

; f

2

)t)

In Coq, these terms Re


nat

(f

1

; f

2

) 
an be 
onstru
ted, using a well-founded

�xed point 
onstru
tion. (See [9℄ for details.) It is also possible to take the

(elim) rules as primitives (adding a Re
 
onstant) and de�ne everything in

terms of Re
 , but this approa
h is not taken in the type system of Coq.
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However, given the de�nition of nat above, Coq generates itself three de�ned


onstants Nat_re
, Nat_re
t and Nat_ind, representing Re
 above. In par-

ti
ular, the 
onstant Nat_ind is of type

�P :nat!Prop:(P0)!(�x:natPx!P (Sx))!�x:nat:Px:

One usually de�nes a fun
tion in Coq by giving an equational spe
i�
ation.

Given the following equations (h(x; fx) is a term with sub-terms x and fx

and no other o

urren
es of f)

f0= g

f(Sx)=h(x; fx);

Coq generates a term Re
 (g; h) that satis�es these equations (for f). This

amounts to spe
ifying a fun
tion by primitive re
ursion. The situation is more

general: Coq also generates a solution for f spe
i�ed by the equations

f00= g

1

f0(Sy)= g

2

(y);

f(Sx)0= g

3

(x)

f(Sx)(Sy)= g

4

(x; y; f(x; y))

and more general for fun
tions that are spe
i�ed by giving a set of equations

where the left hand sides 
over all possible patterns and the re
ursive 
alls

on the right hand side are on `stri
tly smaller' expressions (a

ording to some

some synta
ti
 ordering on terms). The pre
ise syntax is as follows. (We de�ne

equality on natural numbers, as a binary fun
tion from nat to bool.)

Fixpoint b_eq [n,m:nat℄: bool :=

Cases n m of

O O => true

| O (S y) => false

| (S x) O => false

| (S x) (S y) => (b_eq x y)

end.

In Coq, this de�nes a fun
tion, like the f above (where now, g

2

= g

3

=

�n:nat:true and g

4

(x; y; f(x; y)) = f(x; y)). The 
onditions under whi
h su
h

a pattern de�nes a fun
tion are that the left-hand sides should 
over all possi-

ble patterns and that the re
ursive 
all on the right hand side is on stru
turally

smaller expressions.

It is understood that the additional �-redu
tion is also in
luded in the 
onversion-

rule (
onv), where we now have `A =

��

B' as a side-
ondition. The subs
ript

in Re


nat

will be omitted, when 
lear from the 
ontext.

10



An example of the use of Re
 is in the de�nition of addition, add , whi
h 
an

be de�ned by add := Re
 (�x:nat:x)(�x:nat:�f :nat!nat:�y:nat:S(fy)): But

we 
an equivalently de�ne it by an equational spe
i�
ation

add 0y= y

add (Sx)y=S(add xy):

It is also possible to de�ne predi
ates and relations by primitive re
ursion, by

just taking Prop or nat!Prop for A in (elim

1

). An example is the relation

`less than or equal', ���, whi
h 
an be de�ned equationally as follows.

0�y= True;

(Sx)�0= False;

(Sx)�(Sy)= x�y:

An example of the use of (elim

2

) is the proof of �x:nat:x�x (by indu
tion).

Say that triv is the (
anoni
al) term (proof) of type True. Combining this

with ` �x:nat:�h:(x�x):h : �x:nat:(x�x)!((Sx)�(Sx)) and applying Re


we obtain

` Re
 triv(�x:nat:�h:(x�x):h) : �x:nat:(x�x):

Another well-known example is the type of lists over a domain D. It is de�ned

as follows.

Indu
tive list : Set :=

nil : list

j 
ons : list!D!list

with the following derivable rules.

(elim

1

)

� ` A : Set=Type � ` f

1

: A � ` f

2

: list!D!A!A

� ` Re


list

f

1

f

2

: list!A

(elim

2

)

� ` P : list!Prop

� ` f

1

: Pnil

� ` f

2

: �x:list:�d:D:Px!P (
ons xd)

� ` Re


list

f

1

f

2

: �x:list:Px

The rule (elim

1

) allows the de�nition of fun
tions by primitive re
ursion.

The rule (elim

2

) allows proofs by indu
tion. The following redu
tion rules

for Re


list

hold, to make sure that the fun
tions 
ompute in the 
orre
t way.

11



Re


list

f

1

f

2

nil!

�

f

1

Re


list

f

1

f

2

(
ons td)!

�

f

2

td(Re


list

f

1

f

2

t)

Of 
ourse, there is a more general pattern behind these two examples. The

types nat and list are examples of so 
alled algebrai
 indu
tive types. In an

algebrai
 indu
tive type, the types of the 
onstru
tors (like nil and 
ons )

are of the form A

1

!� � �!A

n

!�, where � is the type to be de�ned, and all

the A

i

are either equal to � or do not 
ontain � as a sub-term. In Coq there is

a mu
h stronger s
hema for de�ning indu
tive types, allowing 
onstru
tors of

higher type and 
onstru
tors with a dependent type. Furthermore the stronger

s
hema allows to de�ne indu
tive predi
ates, as opposed to just types. Then

one 
an de�ne, e.g. the relation � indu
tively by saying it is the least binary

relation over nat su
h that �x:nat:0 � x and �x; y:nat:(x � y)!(Sx � Sy)

hold. (Note that this de�nition of � is di�erent from { but equivalent to {

the binary re
ursive fun
tion � on nat given before.) As this is meant to be

an introdu
tion, we restri
t our general theoreti
al exposition to the algebrai


indu
tive types. In the formalization of the primitive re
ursive predi
ates, we

use one indu
tive type that is not algebrai
, namely the type form, whi
h has

two 
onstru
tors of higher type:

f_all: nat -> (nat -> form) -> form

f_ex: nat -> (nat -> form) -> form

The general s
heme for su
h indu
tive types is rather 
ompli
ated, although

quite natural. We will not give it but treat su
h indu
tive types by some

examples.

The extension of �PRED! with algebrai
 indu
tive types, �PRED!

ind

, is

de�ned by adding the following s
heme.

Indu
tive � : Set :=


onstr

1

: �

1

1

!� � ��

1

m

1

!�

.

.

.


onstr

n

: �

n

1

!� � ��

n

m

n

!�

where the �

i

j

: Set are all either � or do not 
ontain � as a sub-term. We want

to abstra
t over the o

urren
es of �, so we denote �

i

1

[X=�℄!� � �!�

i

m

i

[X=�℄!X

by �

i

(X). (So �

i

(X) is the type s
heme �

i

1

!� � ��

i

m

i

!� in whi
h all � have

been repla
ed by the variable X.)

We take the elimination rules (rules (elim

1

) and (elim

2

) from the nat example)

as primitives. To de�ne the elimination s
hemes in general we look at the list

12



of �

i

j

in �

i

that are equal to �. Say that for �

1

, �

1

j

1

; : : : ; �

1

j

k

are the types that

are equal to �. Then we de�ne for A : Set=Type, �̂

1

(A) as follows.

�̂

1

(A) := �

1

1

!� � �!�

1

m

1

!A!� � �!A

| {z }

k

!A:

The �rst elimination rule is now as follows.

(elim

1

)

� ` A : Set=Type � ` f

1

: �̂

1

(A) � � � � ` f

n

: �̂

n

(A)

� ` Re


�

f

1

� � � f

n

: �!A

It 
an easily be veri�ed that the (elim

1

)-rules of nat and list satisfy this

general pattern.

For the redu
tion rule of the general pattern, we abbreviate Re


�

f

1

� � � f

n

to

Re


~

f . The redu
tion rule is

Re


�

f

1

� � � f

n

(
onstr

i

t

1

� � � t

m

i

)!

�

f

i

t

1

� � � t

m

i

(Re


~

ft

j

1

) � � � (Re


~

ft

j

k

)

Let us now turn to the general pattern of the se
ond elimination rule. Again

we look at the list of �

i

j

in �

i

whi
h are equal to �. Say that for �

1

, �

1

j

1

; : : : ; �

1

j

k

are the types that are equal to �. Then we de�ne for P : �!Prop, �̂

1

(P ) as

follows.

�̂

1

(P ) := �x

1

:�

1

1

: � � ��x

m

1

:�

1

m

1

:Px

j

1

!� � �!Px

j

k

!P (
onstr

1

x

1

� � �x

m

1

):

So, note that we have di�erent de�nitions for �̂ (A) (if A : Set=Type) and �̂(P )

(if P : �!Prop).

The se
ond elimination rule is now as follows.

(elim

2

)

� ` P : �!Prop � ` f

1

: �̂

1

(P ) : : :� ` f

n

: �̂

n

(P )

� ` Re


�

f

1

� � � f

n

: �x:�:Px

Again, it 
an easily be veri�ed that the (elim

2

)-rules of nat and list satisfy

this general pattern.

For the dependent 
ase we have the same �-redu
tion rule as for the non-

dependent 
ase:

Re


�

f

1

� � � f

n

(
onstr

i

t

1

� � � t

m

i

)!

�

f

i

t

1

� � � t

m

i

(Re


~

ft

j

1

) � � � (Re


~

ft

j

k

):
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Example 5 The indu
tive type of booleans, bool, 
an be de�ned as follows.

Indu
tive bool : Set :=

true : bool

j false : bool

This generates the following derivation rules.

(elim

1

)

� ` A : Set=Type � ` f

1

: A � ` f

2

: A

� ` Re


bool

f

1

f

2

: bool!A

(elim

2

)

� ` P : bool!Prop � ` f

1

: Ptrue � ` f

2

: Pfalse

� ` Re


bool

f

1

f

2

: �x:bool:Px

The rewrite rule for Re


bool

is as follows.

Re


bool

f

1

f

2

true!

�

f

1

;

Re


bool

f

1

f

2

false!

�

f

2

:

So, Re


bool

represents the `if{then{else{' fun
tion. More pre
isely, if t; q : A

and b : bool, then if b then t else q : A is represented by Re


bool

tqb.

The s
heme de�ned so far is for algebrai
 indu
tive types. We now give an

example of an indu
tive type that is more 
ompli
ated than nat and list,

be
ause it uses higher types in one of the 
onstru
tors. We want to de�ne the

type tree of 
ountably bran
hing trees with labels in D. (So a term of type

tree represents a tree where the nodes and leaves are labeled with a term

of type D and where at every node there are 
ountably many subtrees.) The

de�nition of tree is as follows.

Indu
tive tree : Set :=

leaf : D!tree

j join : D!(nat!tree)!tree

Here, leaf 
reates a tree 
onsisting of just a leaf, labeled by a term of type

D. The 
onstru
tor join takes a label (of type D) and an in�nite (
ountable)

list of trees to 
reate a new tree. The (elim

1

) rule is as follows.

(elim

1

)

� ` A : Set � ` f

1

: D!A � ` f

2

: D!(nat!tree)!(nat!A)!A

� ` Re


tree

f

1

f

2

: tree!A
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Re


tree

has the following redu
tion rule.

Re


tree

f

1

f

2

(leaf d)!

�

f

1

d

Re


tree

f

1

f

2

(join dt)!

�

f

2

dt(�x:nat:Re


tree

f

1

f

2

(tx))

It is an interesting exer
ise to de�ne all kinds of standard fun
tions on tree,

like the fun
tion that takes the nth subtree (if it exists and take leaf d

0

otherwise) or the fun
tion that de
ides whether a tree is in�nite (or just a

single leaf).

For the type tree, we obtain the following (elim

2

) rule.

(elim

2

)

� ` P : tree!Prop

� ` f

1

: �d:D:P (leaf d)

� ` f

2

: �d:D:�t:nat!tree:

(�n:nat:P (tn))!P (join dt)

� ` Re


tree

f

1

f

2

: �x:tree:Px

We 
an explain this rule as follows: a tree is a well-founded obje
t, but a tree

may be 
reated by joining 
ountably many trees (indexed over nat) into a

new one. This is done via the join 
onstru
tor, whi
h takes a list of trees

(t : nat!tree) and a label (d : D) to 
reate another tree (join dt). Now,

if we want to prove a property P for all trees, we have to show that P is

preserved under the join 
onstru
tor, i.e. we have to prove

(8n:nat:P (tn))! P (join dt):

for all d : D and for all t : nat!tree.

The redu
tion rule for Re


tree

asso
iated with this se
ond elimination s
heme

is the same as before.

4 The method

This Se
tion presents a method to me
hani
ally prove a proposition ' from

�rst order primitive re
ursive arithmeti
 in the Coq system. The method uses

a three level interpretation of '. The proposition is viewed on a synta
ti
al,

on a propositional, and on a 
omputational level. The synta
ti
al level is

represented by the indu
tive type form, the propositional level by the type-sort

Prop, and the 
omputational level by the indu
tive type bool. The Prop and

bool types are already present in Coq; the form type is de�ned in subse
tion

4.1.
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Trivial propositions are trivial be
ause they belong to a 
lass of propositions

that 
an be proved in a general me
hani
al fashion. In the Coq system there

are three ways to deal with these trivial propositions: ad ho
, using ta
ti
als,

and using re
e
tion. The re
e
tion style of dealing with trivial propositions is

the method we are interested in here.

In the ad ho
 style of proving trivial propositions, ' is formalized on the propo-

sitional level as an expression of type Prop. The user provides a proof by hand

by applying ta
ti
s to the 
urrent goal, until it is resolved. Advantages of the

ad ho
 style: It is usually the most eÆ
ient way if there is only one proposition

to be proved. (One doesn't �rst have to de�ne general ta
ti
als, or to set up

a general theory.) Moreover, if one is 
onsidering just one spe
i�
 (type of)

proposition, usually more 
lever tri
ks 
an be used to speed up the proving.

For example in [6℄ (pp. 148{156), to prove primality of 
ertain numbers, one

�rst proves a result from algebra whi
h is then applied. Disadvantage: An ad

ho
 proof works only on
e (to prove that spe
i�
 proposition).

In the ta
ti
als style of proving, ' is also formalized as an expression of type

Prop. The user des
ribes a general de
ision pro
edure for a 
ertain 
lass of

propositions using ta
ti
als. Ta
ti
als 
ombine ta
ti
s into proof pro
edures

(new ta
ti
s). Advantages of the ta
ti
al style: It is a very general method that


an save a lot of work (
ompared to the ad ho
 style), espe
ially when many

`similar' propositions have to be proven. The method yields a proof term that

usually 
orresponds rather 
losely to the proof term that would have been

found by using the ad ho
 style. The de
ision algorithm is des
ribed on the

meta level, whi
h gives quite a lot of 
exibility. However, this 
an also be a

drawba
k, as the user will have to be able to program in the meta language

(or in the ta
ti
al language if that is provided). Disadvantages: Can be very

slow: all the steps have to be exe
uted in the proof assistant, whi
h requires

a lot of uni�
ation and type 
he
king.

In the re
e
tion style of proving trivial propositions, ' is not formalized di-

re
tly as an expression of type Prop. Rather, ' is formalized on the synta
ti
al

level as an expression p of a new type form, where form 
hara
terizes the 
lass

of propositions we are dealing with. Translations, [[�℄℄ from form to Prop and

([�℄) from form to bool, are used to obtain formalizations of p on the other

two levels, su
h that [[p℄℄ = '. These translations, as well as a translation from

bool to Prop are de�ned in subse
tion 4.2. The important thing to note here

is that the size of p is linear in the size of '.

Eventually, what is needed is a proof-obje
t inhabiting '. This proof-obje
t is


onstru
ted by 
ombining two proof-obje
ts. First, the proof-obje
t ok in-

habits the 
orre
tness theorem, whi
h states that for all terms q of type

form: [[q℄℄ holds, if and only if (istrue ([q℄)) holds. Se
ond, an inhabitant of

(istrue ([p℄)) is sought for. This is easy: The boolean expression ([p℄) redu
es to

16



true (and then (istrue true) is inhabited) or it redu
es to false (and then

(istrue false) is not inhabited). The 
onstru
tion of these proof-obje
ts is

presented in subse
tion 4.3.

Advantages of the re
e
tion method are: The size of the proof-obje
t of type

' is linear in the size of ' itself and it is trivial to 
onstru
t. (Note that a

proof-obje
t 
an { in general { be arbitrarily 
omplex in terms of the size of

the problem '.) Almost all of the `proof' is in the 
omputation { whi
h 
an

be arbitrarily 
omplex { but this is hidden in the type 
he
king algorithm.

That the proof-obje
t is trivial 
onforms with the idea that proofs by 
ompu-

tation are trivial and that 
omputations should not 
ontribute to the proof-

obje
t. Furthermore, re
e
tion is a very general method, solving a 
lass of

problems instead of one problem. Disadvantages: Can be very slow: due to the

generality of the method, the generated de
ision algorithms follow a general

(non-optimized) pattern. For example the algorithm for 
he
king primality is

a 
hara
teristi
 fun
tion that is generi
ally extra
ted from the de�nition of

Prime. This is far more ineÆ
ient then, e.g. the spe
ial primality algorithm

used in [6℄ (pp. 148{156). On the other hand a generi
 method for solving

a large 
lass of propositions will always be slow, 
ompared to ad ho
 
lever

tri
ks. Another disadvantage is that the user needs to synta
ti
ally 
hara
ter-

ize the 
lass of propositions and provide the translations and the 
orre
tness

proof.

4.1 Languages

Primitive re
ursive arithmeti
 (PRA) 
an be seen as a language of formulas.

Formulas from this language are either basi
 formulas or 
ompound formulas.

Basi
 formulas are built using the relations <, =, and >, from arithmeti
al

terms. Arithmeti
al terms are either number 
onstants, or number variables,

or the result of applying a primitive re
ursive fun
tion pres
ription to other

arithmeti
al terms.

Compound formulas are built using 
onne
tives or using bounded quanti�ers.

Conne
tives are :, ^, _, and !. Bounded �rst order quanti�ers are 8

<

and

9

<

. These bind a number variable. The upper bound is an arithmeti
al term.

The division and primality properties are examples whi
h 
an be expressed in

this language.

Example 6 The division and primality predi
ates are primitive re
ursive.

Divides(n;m)= 9k < m + 1 [k � n = m℄

Prime(n)= 8d < n [Divides(d; n)! d = 1℄ ^ n > 1

17



The language of primitive re
ursive arithmeti
 is formalized in Coq as the

indu
tive type form. Noti
e that the terms from whi
h basi
 formulas are built

are just obje
ts of type nat. It is not ne
essary to treat these terms synta
ti
ly,

sin
e both [[�℄℄ and ([�℄) will translate them similarly. Note that the 
hoi
e of

not treating terms synta
ti
ally has a 
onsequen
e: the formulas (the p of type

form) are not really from PRA, but an extension thereof, namely where the

base terms are the terms of type nat in Coq (instead of the terms generated

from N by just appli
ation of primitive re
ursive fun
tions). Formalizing this

slight extension of PRA is more 
onvenient, as it removes the extra synta
ti


level. Noti
e also the use of higher order fun
tion types in the type of the

quanti�er 
onstru
tors f all and f ex. This allows binding of variables using

the obje
t level lambda abstra
tion.

De�nition 7 The language of primitive re
ursive arithmeti
 as formalized in

Coq.

Indu
tive form: Set :=

f_lt: nat -> nat -> form

| f_le: nat -> nat -> form

| f_eq: nat -> nat -> form

| f_ge: nat -> nat -> form

| f_gt: nat -> nat -> form

| f_not: form -> form

| f_and: form -> form -> form

| f_or: form -> form -> form

| f_imp: form -> form -> form

| f_all: nat -> (nat -> form) -> form

| f_ex: nat -> (nat -> form) -> form.

Notation 8 Coq-notation for lambda- and Pi abstra
tion. We write

[x:A℄B for �x:A:B

(x:A)B for �x:A:B

The automati
ally generated indu
tion prin
iple form ind (Re


form

of the

previous se
tion) has the following type.

form ind:

8P : form! Prop:

(8n;m : nat:(P (f lt nm)))!

(8n;m : nat:(P (f le nm)))!

(8n;m : nat:(P (f eq nm)))!

(8n;m : nat:(P (f ge nm)))!

(8n;m : nat:(P (f gt nm)))!
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form

bool

Prop

[[�℄℄([�℄)

istrue

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�+

-

Fig. 1. The di�erent languages and translations.

(8' : form:(P ')! (P (f not')))!

(8' : form:(P ')! 8 : form:(P  )! (P (f and ' )))!

(8' : form:(P ')! 8 : form:(P  )! (P (f or ' )))!

(8' : form:(P ')! 8 : form:(P  )! (P (f imp ' )))!

(8n : nat:8�: nat ! form:(8m : nat:(P (�m)))! (P (f all n�)))!

(8n : nat:8�: nat ! form:(8m : nat:(P (�m)))! (P (f ex n�)))!

8' : form:(P ')

So, form ind states that if a predi
ate P on form is 
losed under the 
on-

stru
tors of the indu
tive type form (f lt, f le et
etera), then P holds for

all terms of type form. Note the 
ases for f all and f ex: 
losure of P under

f all says that if P holds for all instan
es of � (8m : nat:(P (�m))), then P

holds for (f all n�).

The predi
ates from example 6 
an now be expressed as fun
tions with 
odomain

form.

Example 9 The division and primality predi
ates as formalized in Coq.

Definition f_Divides: nat -> nat -> form :=

[n,m:nat℄ (f_ex (S m) [k:nat℄(f_eq (mult k n) m)).

Definition f_Prime: nat -> form :=

[n:nat℄

(f_and (f_gt n (1))

(f_all n [d:nat℄ (f_imp (f_Divides d n) (f_eq d (1))))).

4.2 Translations

Three translations are de�ned on the types form, bool, and Prop. First, [[�℄℄

maps terms of type form to terms of type Prop. Se
ond, ([�℄) maps terms of

type form to terms of type bool. Third, istrue maps terms of type bool to

terms of type Prop. The three translations are depi
ted in Figure 1.
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4.2.1 The translation [[�℄℄ : form! Prop

The translation [[�℄℄ takes as input a formula p of type form and it produ
es a

proposition of type Prop. Be
ause form is an indu
tive type, [[�℄℄ 
an be de�ned

by re
ursion by spe
ifying a translation for ea
h of the form-
onstru
tors.

In des
ribing re
ursive fun
tions, we will not use the Re
 notation that we

introdu
ed in the de�nition of the type system �PRED!

ind

. Instead we use

a Coq like notation, whi
h uses pattern mat
hing to de
onstru
t an element

of an indu
tive type. Moreover, Coq has spe
ial synta
ti
 sugar for de�ning

re
ursive fun
tions by a Fixpoint 
ommand. Arbitrary �xpoints are however

not allowed: the re
ursive 
alls should be done on stru
turally smaller terms.

This 
onforms pre
isely with the fun
tions de�nable by the (elim) s
hemes

that we have given before. (In the following, the de�nitions using Fixpoint


an all be translated to fun
tions de�ned by Re
 .)

De�nition 10 The translation [[�℄℄ as formalized in Coq.

[[f lt t

1

t

2

℄℄ = lt t

1

t

2

[[f le t

1

t

2

℄℄ = le t

1

t

2

[[f eq t

1

t

2

℄℄ = t

1

= t

2

[[f ge t

1

t

2

℄℄ = ge t

1

t

2

[[f gt t

1

t

2

℄℄ = gt t

1

t

2

[[f not p℄℄ = ~[[p℄℄

[[f and p q℄℄ = [[p℄℄/\[[q℄℄

[[f or p q℄℄ = [[p℄℄\/[[q℄℄

[[f imp p q℄℄ = [[p℄℄->[[q℄℄

[[f all t h℄℄ = (x : nat)(lt x t) -> [[h x℄℄

[[f ex t h℄℄ = Ex [x : nat℄((lt x t) /\ [[h x℄℄)

4.2.2 The translation ([�℄) : form ! bool

The translation ([�℄) takes as input a formula p of type form and it produ
es

a boolean expression of type bool. Be
ause form is an indu
tive type, ([�℄)


an be de�ned by spe
ifying a translation for ea
h of the form-
onstru
tors.
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De�nition 11 The translation ([�℄) as formalized in Coq.

([f lt t

1

t

2

℄) = b lt t

1

t

2

([f le t

1

t

2

℄) = b le t

1

t

2

([f eq t

1

t

2

℄) = b eq t

1

t

2

([f ge t

1

t

2

℄) = b ge t

1

t

2

([f gt t

1

t

2

℄) = b gt t

1

t

2

([f not p℄) = b not ([p℄)

([f and p q℄) = b and ([p℄) ([q℄)

([f or p q℄) = b or ([p℄) ([q℄)

([f imp p q℄) = b imp ([p℄) ([q℄)

([f all t h℄) = b all t [x : nat℄([h x℄)

([(f ex t h℄) = b ex t [x : nat℄([h x℄)

The boolean versions of the basi
 relations are de�ned by:

De�nition 12 Boolean inequalities as formalized in Coq.

Fixpoint b_le [n,m:nat℄: bool :=

Cases n m of

O O => true

| O (S y) => true

| (S x) O => false

| (S x) (S y) => (b_le x y)

end.

Definition b_lt := [n,m:nat℄(b_le (S n) m).

Definition b_ge := [n,m:nat℄(b_le m n).

Definition b_gt := [n,m:nat℄(b_lt m n).

De�nition 13 Boolean equality as formalized in Coq.

Fixpoint b_eq [n,m:nat℄: bool :=

Cases n m of

O O => true

| O (S y) => false

| (S x) O => false

| (S x) (S y) => (b_eq x y)

end.
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The 
omputational versions of the 
onne
tives are de�ned by:

De�nition 14 Boolean versions of the 
onne
tives as de�ned in Coq.

Definition b_not := [x:bool℄(if x then false else true).

Definition b_and := [x,y:bool℄(if x then y else false).

Definition b_or := [x,y:bool℄(if x then true else y).

Definition b_imp := [x,y:bool℄(if x then y else true).

The 
omputational version of the bounded universal quanti�er is de�ned by

translating it into a large 
onjun
tion. The 
omputational version of the

bounded existential quanti�er is de�ned by translating it into a large dis-

jun
tion.

De�nition 15 Boolean version of the bounded universal quanti�er as formal-

ized in Coq.

Fixpoint b_all [b:nat℄: (nat -> bool) -> bool :=

[f:nat->bool℄

Cases b of

O => true

| (S m) => (b_and (f m) (b_all m f))

end.

De�nition 16 Boolean version of the bounded existential quanti�er as for-

malized in Coq.

Fixpoint b_ex [b:nat℄: (nat -> bool) -> bool :=

[f:nat->bool℄

Cases b of

O => false

| (S m) => (b_or (f m) (b_ex m f))

end.

4.2.3 The translation istrue : bool! Prop

The translation istrue takes as input a boolean expression and lifts it to the

propositional level:

De�nition 17 The translation istrue as formalized in Coq.

Definition istrue := [x:bool℄(if x then True else False).
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4.3 Proof-obje
ts

Given a formula p of type form, the obje
tive is to 
onstru
t a proof-obje
t

inhabiting [[p℄℄. This is done in two steps. First, it is shown that the dia-

gram in Figure 1 
ommutes. Next, it is shown, using the 
onversion rule,

that (istrue ([p℄)) is inhabited. The 
ombination of these two steps yields the

desired proof-obje
t.

Using the indu
tion prin
iple generated by the indu
tive de�nition of form,

we 
an 
onstru
t a 
orre
tness proof ok of the translations.

ok : 8p : form:[[p℄℄$ (istrue ([p℄))

The proof-obje
t ok shows that the diagram in Figure 1 
ommutes. In general

only the impli
ation from right to left is needed. However, in the proof of the


orre
tness theorem the other dire
tion is very useful in some of the indu
tion


ases.

The translation ([�℄) is 
onstru
ted in su
h a way, that for 
losed terms p of

type form that represent a provable proposition, it holds that

([p℄)!!

��

true

and therefore

(istrue ([p℄))!!

��

True

where !!

��

is the Coq redu
tion relation. From the 
onversion rule, it now

follows that any inhabitant of True is also an inhabitant of (istrue ([p℄)).

Clearly, True is inhabited by the unit term triv, and therefore (istrue ([p℄))

is inhabited.

By 
ombining the inhabitant of (istrue ([p℄)) with ok, we get an inhabitant

of [[p℄℄, whi
h is what we were looking for.

It would be ni
e if we also had an inverse of [[�℄℄. In that 
ase the user 
ould

write down the goal as an expression ' of type Prop and have the system

translate it to an expression p of type form. This inverse translation 
annot

be expressed within the obje
t language. Some programming in the imple-

mentation language of Coq would be required to implement this translation.

An alternative would be to use the extensible grammar me
hanism of Coq to

make the synta
ti
al level look the same as the propositional level.
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5 Results and dis
ussion

The language of primitive re
ursive arithmeti
 
an be elegantly formalized in

the Coq system using indu
tive types. As a matter of fa
t, the indu
tive type

form 
ontains a bit more than the formulas of PRA, namely the ones where

we take the terms of type nat in Coq as base terms. The formalization is used

to automati
ally prove propositions of primitive re
ursive arithmeti
.

Even though primitive re
ursive arithmeti
 is a limited language, many trivial

propositions that are tedious to prove by hand 
an be expressed in it. By

having the Coq proof assistant to prove these automati
ally, the user 
an


on
entrate on the real, important, and mathemati
ally interesting problems.

We believe that the methods dis
ussed in this paper 
ontribute to the user-

friendliness of systems like Coq. It is possible to extend the method to in
lude

other predi
ates and fun
tions on nat (or even other logi
al 
onne
tives).

Suppose we have a relation R typable in Coq, so R : nat

n

!Prop. Moreover

suppose that R is 
omputable in Coq, so there is a term f

r

: nat

n

!bool that


omputes R. Then we 
an extend our method to in
lude R as a predi
ate

by adding a 
onstru
tor r : nat

n

!form in the de�nition of form and by


onstru
ting a term q su
h that

q : �~x:nat

n

:R~x$ istrue(f

r

~x):

The proof term q states (in Coq) that R is 
omputable by f

r

; it is used in

the 
onstru
tion of the new proof term ok for this extension of form. We 
an

depi
t the situation as follows.

r

f

R

R

[[�℄℄([�℄)

istrue

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�+

-

Fig. 2. Extension of the method with 
omputable predi
ate R.

As to the eÆ
ien
y of the pro
edure: The pro
edure des
ribed here is not very

fast. To 
he
k (Prime61) takes several minutes on a fast Unix workstation,

even though the proof-obje
t is a �-term of only 10 lines of 
ode and the total

size of the theory development is only 300 lines of 
ode. (See [13℄.) There are

three reasons why this method is slow. First, the addition and multipli
ation

fun
tions operate on the standard unary numbers (generated by the 
onstru
-

tors O and S). Things would be faster had we used binary versions of these

fun
tions on the 
omputational level [10℄. However, the 
orre
tness proof will
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be
ome more 
ompli
ated if on the propositional level the same de�nitions of

addition and multipli
ation are used. The use of these ineÆ
ient de�nitions is

desirable be
ause a lot of theory development depends on the unary de�ned

natural numbers. The se
ond reason is that 
omputations are interpreted in

Coq whi
h in turn is interpreted in a fun
tional language. This is not the most

eÆ
ient setting for large 
omputations. Third, the pro
edure is very general,

meaning that it 
annot take into a

ount 
lever tri
ks to avoid 
omputations.

This results in slow algorithms. For example to 
he
k (Prime 61) all numbers

between 1 and 61 are tested as divisors of 61 instead of only the numbers up-to

p

61.

The method of 
omputational re
e
tion is not new, [7℄ gives an overview

and history of re
e
tion and 
ontrasts it with the LCF (ta
ti
als) approa
h.

(We have brie
y 
ontrasted the re
e
tion method with other approa
hes in

Se
tion 4.) In NuPrl a re
e
tion me
hanism and a library with many di�erent

appli
ations was implemented [8℄. In [4℄ 
omputational re
e
tion is applied in

Coq to �rst order theories of algebrai
 stru
tures su
h as monoids and rings.

In [3℄ appli
ation of the re
e
tion prin
iple to de
ide equational theories is

studied.

In [12℄ a similar te
hnique was used to generate proofs for statements of PRA;

there are however some di�eren
es with the internal method des
ribed in this

paper. The method in [12℄ uses an external program. This program takes as

input a string 
ontaining a formula ' of PRA and produ
es output whi
h


an be read by the Lego [11℄ proof system. The output produ
ed in this way


ontains the formula ' of type Prop, a 
hara
teristi
 term �

'

of type bool and

Lego ta
ti
s whi
h will 
onstru
t a proof-obje
t ok

'

of type '$ (istrue�

'

).

The present method uses one 
orre
tness proof ok, whi
h 
an be instantiated

with a formula ' of PRA by applying it to ' sin
e ' is of type form whi
h is

now part of the obje
t language.

Applying the method to other theories requires modi�
ations to the type form

as well as to the translations [[�℄℄ and ([�℄) introdu
ed in se
tion 4.2, and to

the proof-obje
t ok from se
tion 4.3.
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