Proof by Computation in the Coq system

Martijn Oostdijk and Herman Geuvers

Computer Science Department, Eindhoven University of Technology

Abstract

In informal mathematics, statements involving computations are seldom proved.
Instead, it is assumed that readers of the proof can carry out the computations on
their own. However, when using an automated proof development system based on
type theory, the user is forced to find proofs for all claimed propositions, including
computational statements.

This paper presents a method to automatically prove statements from primitive
recursive arithmetic. The method replaces logical formulas by boolean expressions.
A correctness proof is constructed, which states that the original formula is deriv-
able, if and only if the boolean expression equals true. Because the boolean ex-
pression reduces to true, the conversion rule yields a trivial proof of the equality.
By combining this proof with the correctness proof, we get a proof for the original
statement.

1 Introduction

This paper presents a method to automatically prove statements from first
order primitive recursive arithmetic, in the context of type theoretical proof
systems [1]. This is done by replacing proof obligations by computations. For
example, the proposition Prime(61) can be verified by a computer program
which checks all potential divisors of 61. By doing these computations, it can
be seen that there are no proper divisors of 61. From this, it is concluded that
61 is prime.

In informal mathematical proofs, propositions like Prime(61) are seldom proved.
They are not considered to be “mathematically interesting” and verification

is normally left to the reader. However, when constructing formal proofs us-

ing an automated proof system based on type theory, such as the Coq proof
assistant [9], the user is forced to find proofs for all claimed propositions, in-

cluding propositions like Prime(61). The ability to prove these propositions

automatically, allows users of these systems to concentrate on formalizing the

important, mathematically interesting parts of a theory.

Preprint submitted to Elsevier Preprint 14 April 2000

The method presented here is based on two main ideas. The first idea, called
computational reflection in [7] (dating back to original work by [8], who calls
it reflection) or two level approach in [3] is to interpret a class of proposi-
tions on three different levels: a syntactical level, a propositional level, and
a computational level. The syntactical level makes it possible to relate the
computational level to the propositional level by proving that a decision al-
gorithm (on the computational level) indeed has the intended effect (on the
propositional level). The second idea, called Poincaré’s principle in [2], states
that propositions which can be verified by a computation are easy; i.e., no
proof is required. This principle is incorporated in Coq through the so-called
conversion rule: types that are computationally equal (convertible) are not
distinguished. The Poincaré’s principle is crucial for the use of computational
reflection in theorem provers, as it allows to replace a large proof-object (la-
borious to generate) by a small proof-object plus a computation (mechanical).

In our case the combination of these two ideas allows us to replace a proposi-
tion from primitive recursive arithmetic (the propositional level) with a com-
putation (the computational level) involving characteristic functions of primi-
tive recursive predicates. The latter can be resolved using the conversion rule.
Proving that this replacement is indeed allowed, involves lifting the original
proposition to the syntactic level and translating it to the computational and
propositional levels. It is proved that these two translations conform with each
other: the translation to the computational level evaluates to true if and only
if the translation to the propositional level is provable.

The intention of the paper is to present the result without assuming detailed
knowledge of type theory or proof-assistants based on type theory. To meet
that condition, the paper is organized as follows. First we give a general in-
troduction to proof-assistants based on type theory, briefly discussing the phi-
losophy and the technology. Then we introduce a type theory for higher order
predicate logic and we show by example how mathematical reasoning may be
formalized in this system. We extend this system with (a restricted form of)
inductive types. The system we thus obtain is a subsystem of the type theory
that is implemented in the proof-assistant Coq. In the last section we show
how we have defined a decision procedure for primitive recursive arithmetic
inside Coq.

2 Proof Assistants based on type theory

In type theory one interprets formulas and proofs via the well-known ‘formulas-
as-types’ and ‘proofs-as-terms’ embedding, originally due to Curry, Howard
and De Bruijn. Under this interpretation, a formula is viewed as the type of

its proofs. Hence, a statement in type theory of the form

M: A

can be read in two ways:

e M is an element of the set denoted by A,
e M is a proof of the formula denoted by A.

In the case that M denotes a proof, one can (in general) really construct a
natural deduction style derivation out of the proof term M. Whether this is
possible depends on the specific type theory, but for many well-known logics
an isomorphic typed A-calculus has been defined: there is a bijection between
natural deductions in the logic and proof terms in the typed A-calculus. We
shall illustrate this correspondence between logic and typed A-calculus later
by some examples. The main consequences of this approach towards theorem
proving are that

e Proof checking is Type checking,
e Interactive Theorem Proving is the interactive construction of a term of a
given type.

The Proof Assistant Coq is an interactive theorem prover based on type theory:
the implemented typed A-calculus is a version of constructive higher order logic
with powerful inductive types. The system Coq provides the user with powerful
tactics to interactively construct a proof term. In this construction process,
the system guarantees the type correctness. An important distinction to be
made — which is a basic philosophy behind type theoretic provers like Coq —
is the one between

e Checking an alleged proof: this is easy, comparable with checking the syn-
tactic correctness of a computer program,

e Constructing a proof for a given formula: this is hard (undecidable in gen-
eral), comparable with constructing a program which satisfies a specifica-
tion.

In type theoretic provers, the first task is performed by a type checking algo-
rithm, the second task is performed interactively with the user.

2.1 Correctness of Proof Assistants

An important issue in automated theorem proving in general is the question
of correctness of the implemented system. Or, phrased differently: how can we
be sure that a formula that has been proven by the Proof Assistant (PA) is

really true? We may sometimes not be convinced that all the powerful tactics
that a PA provides are sound and it occasionally turns out that a PA contains
a bug. In type theoretic PAs, this issue of reliability is solved to some extent,
because the PA does not only tell the user that the theorem has been proved,
but it also provides a proof term that can either be type checked by the user
(using his own — relatively easy to write — type checking algorithm) or it can
be exported to some natural language style proof that can be read by other
humans. The feature of having proof terms that can be checked independently
by a relatively small and easy algorithm, is also known as the De Bruijn
criterion (see [2]), named after the founding father of the Automath project.
In this project the first PAs based on type theory were implemented (in fact
they were proof checkers instead of proof assistants).

So, on the one hand the De Bruijn criterion gives a higher degree of reli-
ability to PAs. On the other hand, however, this criterion makes it harder
to implement very powerful proof tactics (like resolution), because the sys-
tem will always have to construct a complete proof term that can be (type)
checked easily in a small underlying system. In this paper we show that it is
possible to add powerful proof tactics to Coq and at the same time comply
with the De Bruijn criterion. This is done by applying the so called ‘two level
approach’ ([2]), also known as the ‘reflection principle’ ([7]). The basic idea
of that approach is to code a specific syntactic class of formulas into an in-
ductive type form. We write [—] for the decoding function giving for every
formula a : form a proposition [a]. A given (powerful) proof procedure can
(in the simplest case) then be defined as a function F' of type form—form.
Now, if we can prove this procedure to be correct inside Coq, i.e. if we prove
Va:form([a] < [Fa]), then we can replace a proof obligation [a] by a proof
obligation [Fa] (which will in general be easier).

In this paper we illustrate the method sketched above by looking at the formu-
las of primitive recursive arithmetic (PRA). We define a function (—]) (compa-
rable with the F' above) that computes true or false for every closed formula
of PRA (using a characteristic function) and we prove that (—J) is correct (i.e.
(=) preserves derivability: Ya:form([a] <> ((a]) = true))). Hence, if we want
to check, e.g. whether Prime(61) holds, we have to find a term a of type
form such that [a] is convertible with Prime(61) and we have to verify that
(a) = true. The latter is done by just computing (a)): the outcome is either
true or false.

3 A type theory for higher order predicate logic with inductive
types

In this section we define a part of the type system that is implemented in Coq.
We will not attempt to give a general introduction into Coq, but restrict to that
part of Coq that is necessary for our proof development. First we introduce the
system APREDw, a type theory in which one can (faithfully) interpret higher
order predicate logic. Then we extend this system with inductive types, to
obtain the system APREDw™.

Before giving the precise definition, we make some introductory remarks to
guide the intuition.

(1) The language of higher order predicate logic is a typed language. In
APREDw there are ‘first order sets’, which are of type Set and there
are higher order sets, which are of type Type. These ‘universes’ Set and
Type are called sorts.

(2) In APREDuw, formulas like ¢ D v and Vz:A.p will become types. However,
these ‘propositional’ types are not the same as the set types (like e.g. nat).
Hence there is another ‘universe’, Prop, containing the ‘propositional’
types. So, all formulas are of type Prop in APREDw.

(3) Prop itself is a higher order set type, so Prop : Type.

(4) For A a first order set (i.e. A : Set), the set of predicates on A is repre-
sented as A—Prop, the type of functions from A to Prop. If P : A—Prop
and a : A, then Pa : Prop. the intended meaning is that ‘a belongs to P’
if the formula Pa can be proved.

(5) Natural deductions are represented as typed A-terms. The discharging
of hypotheses is done by A-abstraction. The modus ponens rule is inter-
preted via application.

(6) A formula is provable if we can find a proof of it. That is in APREDw, if
¢ : Prop, then ‘p is provable’ if we can find a term M such that M : ¢.

The derivable judgements of APREDw are of the form

THM: A,

where ' is a contert and M and A are terms. A context is of the form
r1:Aq, ..., 2,:A,, where x1,...,2, are variables and A;,..., A, are terms.
In a context the variables that occur in M and A are given a type. If, in the
judgment I' = M : A, the term A is a ‘propositional type’ (i.e. ' A : Prop),
we view M as a proof of A. If the term A is a ‘set type’ (i.e. T F A : Set or
' A: Type), we view M as an element of the set A.

Finally, there is another sort Type®, that contains just Set. It is there to allow

declarations of the form z:Set in the context, declaring a new set, which is in
our formalism only possible if Set itself has a type.

Definition 1 The typed \-calculus APREDw, representing higher order pred-
icate logic, is defined as follows. The set of pseudoterms T is defined by

T ::= Prop | Set | Type | Type® | V | (IIV:T.T) | (AV:T.T) | T T.

Here, V is a set of variables. The set of sorts, S is {Prop, Set, Type, Type’}.
A context is a sequence x1: Ay, ..., x,:A,, where the T are in V and the A are

i T.

The typing rules, that select the well-typed terms from the pseudo-terms, are
as follows. Here, s ranges over the set of sorts S.

(aziom) b Prop : Type I Set : Type®

'FA:s
(var) ——
oAbz A
'HA:s THM:C
(weak)

De:AEM:C

'FA:s; I'z:AF B: sy
I'=Tz:A.B : sy
if (s1,s2) € {(Set, Set), (Set, Type), (Type, Type),
(Prop, Prop), (Set, Prop), (Type, Prop)}

(IT)

Dye:AFM:B TFHIz:AB:s

(M)
' Mz:AM : 11z:A.B

'-M:llz:AB THN:A
' MN : B[N/x]

(app)

'M:A T'EB:s ,
(conv) if A=4 B
'-M:B

In the rules (var) and (weak) it is always assumed that the newly declared
variable 1s fresh, that is, it has not yet been declared in I'. The equality in the
conversion rule (convg) is the 3-equality on the set of pseudo-terms T.

A pseudo-term A is typable if there is a contert I' and a pseudo-term B such
that U= A: B orI'F B : A is derivable. The set of typable terms of APREDw
is denoted by TERM(APREDw).

The only type-forming operator in this language is the II, which comes in
three flavors, depending on the type of the domain (the A in Ix:A.B) and the
type of the range (the B in T1z:A.B). Intuitively, a II-type should be read as
a set, of functions. If we depict the occurrences of x in B explicitly by writing
B(z), the intuition is:

Mz:A.B(z) = [[B(a) ={f|Va € Alf a € B(a)]}.

a€A

So, I[1z:A.B is the dependent function type of functions taking a term of type A
as input and delivering a term of type B in which x is replaced by the input. We
therefore immediately recover the ordinary function type as a special instance.

Notation 2 e In case x ¢ FV(B), we write A—B for llx:A.B. We call this
a non-dependent function type.

e We omit brackets by letting them associate to the right. So A—B—C' de-
notes A—(B—C).

By examples we list all instances of the Il-type that can be encountered in
APREDw.

Examples 3 (1) Using the combination (Set,Set), we can form the function
type A—B for A, B:Set. Furthermore, it also extends to higher order
function types like (A—B)—A, the type of functions taking functions
from A to B as input and returning a value of type A.

IfT'+ A:Set and I',x:A + B:Set, then © ¢ FV(B) in APREDw, so all
types formed by (Set,Set) are non-dependent function types.

(2) Using the combination (Set,Type) we can form types of unary predicates
and binary relations: if A : Set, then A—Prop : Type and A— A—Prop :
Type.

If T+ A:Set and T',x:A - B:Type, then x ¢ FV(B) in A\PREDw, so all
types formed by (Set,Type) are non-dependent types.

(3) Using the combination (Type,Type) we can form higher order predicate
types: if A : Set, then (A—Prop)—Prop : Type, the type of predicates
over unary predicates over A. All types formed by (Type,Type) are non-
dependent types.

(4) Using the combination (Prop,Prop), we can form the propositional type
p— for @, :Prop. This is to be read as an implicational formula.

All types formed by (Prop,Prop) are non-dependent types.

(5) Using the combination (Set,Prop), we can form the dependent proposi-

tional type 1z:A.p for A:Set, @:Prop. This is to be read as a universally

quantified formula over A.

IfT' F A:Type and ', x:A - @:Prop, then it can occur that x € FV () in

APREDw. An example is lx:A.Px— Px : Prop (in the context A:Set, P:A—Prop).
(6) Using the combination (Type,Prop), we can do quantification over higher

order domains, like in [1P:A— A—Prop.@. In general, if B : Type and

¢ : Prop, then [IP:B.p : Prop.

This type is (in general) a dependent type. An example is IP:A—Prop.Pr— P :

Prop (in the context A:Set,x:A).

We will not define formal interpretations from higher order predicate logic to
APREDw and back. We motivate \APREDw by listing some examples of typing
statements.

Examples 4 (1) nat:Set,(0:nat, >:nat—nat—Prop - Az:nat.z>0: nat—Prop.
Here we see the use of \-abstraction to define predicates.

(2) nat:Set,O:nat, S:nat—nat
- IIP:nat—Prop.(P0)—(Ilz:nat.(Px—P(Sz)))—Ilx:nat. Pz : Prop.
This is the formula for induction written down in APREDw as a term of
type Prop.

(3) A:Set, R:A—A—Prop I Ilx,y, 2: A.Rxy—Ryz— Rxz : Prop.
Transitivity of R.

(4) A:Set - AR, Q:A—A—Prop.Illz, y:A.Rry—Qy :
(A—A—Prop)—(A—A—Prop)—Prop.
Inclusion of relations.

(5) A:Set - Az, y:A.IIP:A—Prop.(Px— Py) : A—A—Prop.
This relation is also called ‘Leibniz equality’ and is usually denoted by =y,
or =4 if we want to denote the domain type explicitly.

(6) A:Set,x,y:AF A\riw =4 y AP:A—Prop.r(A\z:A.Pz D Pz)(A\q:Px.q) :
T=AY—Y=aT.
The proof of the fact that Leibniz equality is symmetric.

Just as in higher order predicate logic, it is possible to define the usual intu-
itionistic connectives and constants &, V, False, True, = and 9 in APREDw.
However, in presence of inductive types, one usually also defines the connec-
tives inductively (as is also standard in Coq). We therefore do not give the
higher order definitions of the connectives here, but take them as being defined
inductively. We discuss the connectives briefly in the next Section.

3.1 Inductive Types

A basic notion in logic and set theory is induction: when a set is defined
inductively, we understand it as being ‘built up from the bottom’ by a set
of basic constructors. Elements of such a set can be decomposed in ‘smaller

elements’ in a well-founded manner. This gives us the principles of proof by
induction and function definition by recursion.

If we want to add inductive types to our type theory, we have to add a defi-
nition mechanism that allows us to introduce a new inductive type, by giving
the name and the constructors of the inductive type. The theory should auto-
matically generate a scheme for proof-by-induction and a scheme for primitive
recursion. It turns out that this can be done very generally in type theory, in-
cluding very many instances of induction. Here we shall use a variant of the
inductive types that are present in the system Coq [9] and that were first
defined in [5].

We illustrate the rules for inductive types in APREDw™ by first treating the
(very basic) example of natural numbers nat. We would like the user to be
able to write something like

Inductive nat : Set :=
0 : nat
| S : nat—nat.
to obtain elimination principles that allow to define functions over nat by
(higher order) primitive recursion and to prove properties over nat by induc-

tion. This amounts to the derivability of the following rules. (Rec pat (f1, f2)
denotes some term containing f; and f, as subexpressions.)

'HA:Set/Type THfi:A TFfy:nat—oA—A
I' - Recpat(f1, f2) : nat—A

(elimy)

'FP:nat—Prop T'kF fi:P0 TF fy:Ixnat.Pr—P(Sx)
[' - Recpat(fi, fo) : [lz:nat.Px

(elimy)

The rule (elim;) allows the definition of functions by primitive recursion. The
rule (elimy) allows proofs by induction. To make sure that the Rec nat(—, —)
functions compute in the correct way, we should have the following reduction
(computation) rules.

Rec pat(f1, f2)0 =, f1
Rec nat (f1, f2)(St) =, fot(Rec nat (f1, f2)t)

In Coq, these terms Rec nat(fi1, f2) can be constructed, using a well-founded
fixed point construction. (See [9] for details.) It is also possible to take the
(elim) rules as primitives (adding a Rec constant) and define everything in
terms of Rec, but this approach is not taken in the type system of Coq.

However, given the definition of nat above, Coq generates itself three defined
constants Nat_rec, Nat_rect and Nat_ind, representing Rec above. In par-
ticular, the constant Nat_ind is of type

[IP:nat—Prop.(P0)— (Ilz:nat Pr— P(Sx))—Ilr:nat. Px.

One usually defines a function in Coq by giving an equational specification.
Given the following equations (h(z, fx) is a term with sub-terms z and fx
and no other occurrences of f)

f0=g
f(Sz)=h(z, fz),

Coq generates a term Rec (g, h) that satisfies these equations (for f). This
amounts to specifying a function by primitive recursion. The situation is more
general: Coq also generates a solution for f specified by the equations

f00=g;
f0(Sy) = g2(y),
f(Sz)0=g3(x)
f(Sz)(Sy) = ga(z,y, f(x,y))

and more general for functions that are specified by giving a set of equations
where the left hand sides cover all possible patterns and the recursive calls
on the right hand side are on ‘strictly smaller’ expressions (according to some
some syntactic ordering on terms). The precise syntax is as follows. (We define
equality on natural numbers, as a binary function from nat to bool.)

Fixpoint b_eq [n,m:nat]: bool :=
Cases n m of

0 0 => true
| O (S y) => false
| (Sx) 0 => false
| (S x) (Sy)=>(b_eq xy)
end.

In Coq, this defines a function, like the f above (where now, go = g3 =
An:nat.true and g4(z,y, f(z,y)) = f(z,y)). The conditions under which such
a pattern defines a function are that the left-hand sides should cover all possi-
ble patterns and that the recursive call on the right hand side is on structurally
smaller expressions.

It is understood that the additional (-reduction is also included in the conversion-
rule (conv), where we now have ‘A =g, B’ as a side-condition. The subscript
in Rec nat will be omitted, when clear from the context.

10

An example of the use of Recis in the definition of addition, add, which can
be defined by add := Rec (Az:nat.z)(Az:nat.\fmat—nat.\ymmat.S(fy)). But
we can equivalently define it by an equational specification

add Oy =y
add (Sz)y = S(add zy).

It is also possible to define predicates and relations by primitive recursion, by
just taking Prop or nat—Prop for A in (elim;). An example is the relation
‘less than or equal’, —<—, which can be defined equationally as follows.

0<y =True,
(Sz)<0=False,
(Sz)<(Sy) =2<y.

An example of the use of (elimy) is the proof of Ixz:nat.z<xz (by induction).
Say that triv is the (canonical) term (proof) of type True. Combining this
with F Az:nat. Ah:(z<x).h : Ilznat.(r<z)—((Sz)<(Sz)) and applying Rec
we obtain

- Rec triv(Azmat. \h:(x<z).h) : [Izmat.(x<z).

Another well-known example is the type of lists over a domain D. It is defined
as follows.

Inductive list : Set :=
nil : list

|cons :list—D—list

with the following derivable rules.

'FA:Set/Type T'Ffi:A TFfy:list>D—A—A
I' F Rec1ise f1fo i list—A

(eliml)

Tk f, : Pnil
) ' P:1list—Prop
(elims) 'k fy: a:list.Ild:D.Pz— P(cons zd)

[' - Recqise fifo : x:list.Px

The rule (elim;) allows the definition of functions by primitive recursion.
The rule (elimy) allows proofs by induction. The following reduction rules
for Rec 155 hold, to make sure that the functions compute in the correct way.

11

Reciise f1fonil = fi
ReC 1151 f1f2(cons td) —, fotd(Rec 1iss f1 fot)

Of course, there is a more general pattern behind these two examples. The
types nat and list are examples of so called algebraic inductive types. In an
algebraic inductive type, the types of the constructors (like nil and cons)
are of the form A;—---—A,—u, where y is the type to be defined, and all
the A; are either equal to p or do not contain x4 as a sub-term. In Coq there is
a much stronger schema for defining inductive types, allowing constructors of
higher type and constructors with a dependent type. Furthermore the stronger
schema allows to define inductive predicates, as opposed to just types. Then
one can define, e.g. the relation < inductively by saying it is the least binary
relation over nat such that IIz:nat.0 < z and Iz, y:nat.(x < y)—(Sx < Sy)
hold. (Note that this definition of < is different from — but equivalent to —
the binary recursive function < on nat given before.) As this is meant to be
an introduction, we restrict our general theoretical exposition to the algebraic
inductive types. In the formalization of the primitive recursive predicates, we
use one inductive type that is not algebraic, namely the type form, which has
two constructors of higher type:

f_all: nat -> (nat -> form) -> form
f_ex: nat -> (nat -> form) -> form

The general scheme for such inductive types is rather complicated, although
quite natural. We will not give it but treat such inductive types by some
examples.

The extension of APREDw with algebraic inductive types, APREDw™™, is
defined by adding the following scheme.

Inductive p : Set :=

1 1

constry : oy — -0, —H

constry, : oy — -0y

where the a; : Set are all either y or do not contain p as a sub-term. We want
to abstract over the occurrences of ji, so we denote of [X/p]— - - - =0l [X/p]—X

by 7/(X). (So 7°(X) is the type scheme o}— ---o7, —p in which all ;i have
been replaced by the variable X.)

We take the elimination rules (rules (elim;) and (elimy) from the nat example)
as primitives. To define the elimination schemes in general we look at the list

12

1 1

of o’ in 7 that are equal to p. Say that for 7', o} ,..., 0] are the types that

are equal to p. Then we define for A : Set/Type, 71(A) as follows.
A =0 = =0l A S ASA
1 D e
k

The first elimination rule is now as follows.
I A:Set/Type T'F fi: 7' (A) - Tk f, : #"(A)

(eliml)
I'FRec,fi - fn:p—A

It can easily be verified that the (elim;)-rules of nat and list satisfy this
general pattern.

For the reduction rule of the general pattern, we abbreviate Rec ,f; --- f, to
Rec f. The reduction rule is

Rec . f1 -+ fa(constrty - --ty,,) =, fit1 -ty (Rec ﬁjl) .-+ (Rec ftjk)

Let us now turn to the general pattern of the second elimination rule. Again

we look at the list of o7 in 7* which are equal to p. Say that for 7', o} , ..., 0}

are the types that are equal to p. Then we define for P : u—Prop, 71(P) as
follows.

#1(P) == w0y -+ U, 0,, Prj— -+ —Prj —P(constrizy -+ Tpy,).

So, note that we have different definitions for 7(A) (if A : Set/Type) and 7(P)
(if P : uy—Prop).
The second elimination rule is now as follows.
I'FP:pu—sProp I'F fi:7(P)...T' - f, : #"(P)
I'FRec,fi-- fo : Hz:ip.Px

(elimy)

Again, it can easily be verified that the (elimy)-rules of nat and list satisfy
this general pattern.

For the dependent case we have the same i-reduction rule as for the non-
dependent case:

Rec , fi--- fu(constrty - -t,,) =, fit1---tm, (Rec ﬁjl) ---(Rec ftjk).

13

Example 5 The inductive type of booleans, bool, can be defined as follows.

Inductive bool : Set :=
true : bool

| false : bool

This generates the following derivation rules.

'FA:Set/Type I'Ffi:A TFf:A
I' FReCygo1 fif2 : bool—A

(elimy)

' P:bool—Prop ['F f;:Ptrue I'F f,: Pfalse
I' F Rec poo1 fif2 : Ilzibool. Px

(elimy)

The rewrite rule for Rec o1 S as follows.

Rec boolflfgtrue —, fl,
ReCpoo1 fifofalse =, fo.

So, Recpgo1 represents the ‘if-then—else—" function. More precisely, if t,q : A
and b : bool, then if b then ¢ else q : A is represented by Rec 1,447 tqb-

The scheme defined so far is for algebraic inductive types. We now give an
example of an inductive type that is more complicated than nat and list,
because it uses higher types in one of the constructors. We want to define the
type tree of countably branching trees with labels in D. (So a term of type
tree represents a tree where the nodes and leaves are labeled with a term
of type D and where at every node there are countably many subtrees.) The
definition of tree is as follows.

Inductive tree : Set :=

leaf : D—tree

| join : D—(nat—tree)—tree

Here, 1leaf creates a tree consisting of just a leaf, labeled by a term of type
D. The constructor join takes a label (of type D) and an infinite (countable)
list of trees to create a new tree. The (elim;) rule is as follows.

'FA:Set 'k f,: DA 'k fy: D—(nat—tree)—(nat—A)—A
I' F RecC tree f1f2 : tree— A

(eliml)

14

Rec tree has the following reduction rule.

Rec treeflf?(lea-f d) . fld
ReC tree f1/2(join dt) —, fodt(Ar:nat.Rec tree f1f2(t1))

It is an interesting exercise to define all kinds of standard functions on tree,
like the function that takes the nth subtree (if it exists and take leaf dj
otherwise) or the function that decides whether a tree is infinite (or just a
single leaf).

For the type tree, we obtain the following (elimy) rule.

' P :tree—Prop '+ fo: [Id:D . Ilt:nat—tree.
(elimy) D - £, . [Id:D.P(1eaf d) (n:nat.P(tn))—P(joindt)

[' F ReC tree fifo : lx:tree.Px

We can explain this rule as follows: a tree is a well-founded object, but a tree
may be created by joining countably many trees (indexed over nat) into a
new one. This is done via the join constructor, which takes a list of trees
(t : nat—tree) and a label (d : D) to create another tree (joindt). Now,
if we want to prove a property P for all trees, we have to show that P is
preserved under the join constructor, i.e. we have to prove

(Vn:nat.P(tn)) — P(joindt).
for all d: D and for all ¢ : nat—tree.

The reduction rule for Rec iree associated with this second elimination scheme
is the same as before.

4 The method

This Section presents a method to mechanically prove a proposition ¢ from
first order primitive recursive arithmetic in the Coq system. The method uses
a three level interpretation of . The proposition is viewed on a syntactical,
on a propositional, and on a computational level. The syntactical level is
represented by the inductive type form, the propositional level by the type-sort
Prop, and the computational level by the inductive type bool. The Prop and
bool types are already present in Coq; the form type is defined in subsection
4.1.

15

Trivial propositions are trivial because they belong to a class of propositions
that can be proved in a general mechanical fashion. In the Coq system there
are three ways to deal with these trivial propositions: ad hoc, using tacticals,
and using refiection. The reflection style of dealing with trivial propositions is
the method we are interested in here.

In the ad hoc style of proving trivial propositions, ¢ is formalized on the propo-
sitional level as an expression of type Prop. The user provides a proof by hand
by applying tactics to the current goal, until it is resolved. Advantages of the
ad hoc style: Tt is usually the most efficient way if there is only one proposition
to be proved. (One doesn’t first have to define general tacticals, or to set up
a general theory.) Moreover, if one is considering just one specific (type of)
proposition, usually more clever tricks can be used to speed up the proving.
For example in [6] (pp. 148-156), to prove primality of certain numbers, one
first proves a result from algebra which is then applied. Disadvantage: An ad
hoc proof works only once (to prove that specific proposition).

In the tacticals style of proving, ¢ is also formalized as an expression of type
Prop. The user describes a general decision procedure for a certain class of
propositions using tacticals. Tacticals combine tactics into proof procedures
(new tactics). Advantages of the tactical style: It is a very general method that
can save a lot of work (compared to the ad hoc style), especially when many
‘similar’ propositions have to be proven. The method yields a proof term that
usually corresponds rather closely to the proof term that would have been
found by using the ad hoc style. The decision algorithm is described on the
meta level, which gives quite a lot of flexibility. However, this can also be a
drawback, as the user will have to be able to program in the meta language
(or in the tactical language if that is provided). Disadvantages: Can be very
slow: all the steps have to be executed in the proof assistant, which requires
a lot of unification and type checking.

In the reflection style of proving trivial propositions, ¢ is not formalized di-
rectly as an expression of type Prop. Rather, ¢ is formalized on the syntactical
level as an expression p of a new type form, where form characterizes the class
of propositions we are dealing with. Translations, [—] from form to Prop and
(=) from form to bool, are used to obtain formalizations of p on the other
two levels, such that [p] = . These translations, as well as a translation from
bool to Prop are defined in subsection 4.2. The important thing to note here
is that the size of p is linear in the size of ¢.

Eventually, what is needed is a proof-object inhabiting . This proof-object is
constructed by combining two proof-objects. First, the proof-object ok in-
habits the correctness theorem, which states that for all terms ¢ of type
form: [¢] holds, if and only if (istrue (g¢])) holds. Second, an inhabitant of
(istrue (p])) is sought for. This is easy: The boolean expression ((p]) reduces to

16

true (and then (istrue true) is inhabited) or it reduces to false (and then
(istrue false) is not inhabited). The construction of these proof-objects is
presented in subsection 4.3.

Advantages of the reflection method are: The size of the proof-object of type
@ is linear in the size of @ itself and it is trivial to construct. (Note that a
proof-object can — in general — be arbitrarily complex in terms of the size of
the problem ¢.) Almost all of the ‘proof’ is in the computation — which can
be arbitrarily complex — but this is hidden in the type checking algorithm.
That the proof-object is trivial conforms with the idea that proofs by compu-
tation are trivial and that computations should not contribute to the proof-
object. Furthermore, reflection is a very general method, solving a class of
problems instead of one problem. Disadvantages: Can be very slow: due to the
generality of the method, the generated decision algorithms follow a general
(non-optimized) pattern. For example the algorithm for checking primality is
a characteristic function that is generically extracted from the definition of
Prime. This is far more inefficient then, e.g. the special primality algorithm
used in [6] (pp. 148-156). On the other hand a generic method for solving
a large class of propositions will always be slow, compared to ad hoc clever
tricks. Another disadvantage is that the user needs to syntactically character-
ize the class of propositions and provide the translations and the correctness
proof.

4.1 Languages

Primitive recursive arithmetic (PRA) can be seen as a language of formulas.
Formulas from this language are either basic formulas or compound formulas.

Basic formulas are built using the relations <, =, and >, from arithmetical
terms. Arithmetical terms are either number constants, or number variables,
or the result of applying a primitive recursive function prescription to other
arithmetical terms.

Compound formulas are built using connectives or using bounded quantifiers.
Connectives are =, A, V, and —. Bounded first order quantifiers are V. and
d.. These bind a number variable. The upper bound is an arithmetical term.
The division and primality properties are examples which can be expressed in
this language.

Example 6 The division and primality predicates are primitive recursive.

Divides(n,m) =3k <m+1[k xn =m]
Prime(n) =Vd < n [Divides(d,n) - d =1]An > 1

17

The language of primitive recursive arithmetic is formalized in Coq as the
inductive type form. Notice that the terms from which basic formulas are built
are just objects of type nat. It is not necessary to treat these terms syntacticly,
since both [—] and (—]) will translate them similarly. Note that the choice of
not treating terms syntactically has a consequence: the formulas (the p of type
form) are not really from PRA, but an extension thereof, namely where the
base terms are the terms of type nat in Coq (instead of the terms generated
from N by just application of primitive recursive functions). Formalizing this
slight extension of PRA is more convenient, as it removes the extra syntactic
level. Notice also the use of higher order function types in the type of the
quantifier constructors f_all and f_ex. This allows binding of variables using
the object level lambda abstraction.

Definition 7 The language of primitive recursive arithmetic as formalized in
Coq.

Inductive form: Set

f_1t: nat -> nat -> form
| f_le: nat -> nat -> form
| f_eq: mnat -> nat -> form
| f_ge: mnat -> nat -> form
| f_gt: nat -> nat -> form
| f_not: form -> form
| f_and: form -> form -> form
| f_or: form -> form -> form
| f_imp: form -> form -> form
| f_all: nat -> (nat -> form) -> form
| f_ex: mnat -> (nat -> form) -> form.

Notation 8 Coq-notation for lambda- and Pi abstraction. We write

[x:A]B for A\x:A.B
(x:M)B for Ilz:A.B

The automatically generated induction principle form_ind (Rec ¢qyp of the
previous section) has the following type.

form_ind:
VP: form — Prop.
(Vn,m: nat.(P (f.1t nm))) —
(Vn,m: nat.(P (f_1le nm))) —
(Vn,m: nat.(P (f_eq nm))) —
(Vn,m: nat.(P (f_ge nm))) —
(Vn,m: nat.(P (f_gt nm))) —

18

form

(=) (-]

bool - Prop
istrue

Fig. 1. The different languages and translations.

(Vep: form.(P) — (P (fnot ¢))) —

(Vo: form.(P ¢) — Vi: form.(P) — (P (f_and ¢1)))) —

Ech: form.(P ¢) — Vi: form.(P) — (Ef _or @)))
¥

m))) — (P
m))) — (P

(Vn: nat.v®: nat — form.(Vm: nat.(P
(Vn: nat.v®: nat — form.(Vm: nat.(P
Vp: form.(P p)

) —
£all n®))) —
f_

P
P
: form.(P ¢) — V¢o: form.(P) — (P
(@
(P ex nd))) —

)
) —
f_imp w)g
(

So, form_ind states that if a predicate P on form is closed under the con-
structors of the inductive type form (f_1t, f_le etcetera), then P holds for
all terms of type form. Note the cases for £_all and f_ex: closure of P under
f_all says that if P holds for all instances of ® (Vm : nat.(P(®m))), then P
holds for (f_all n ®).

The predicates from example 6 can now be expressed as functions with codomain
form.

Example 9 The division and primality predicates as formalized in Coq.

Definition f_Divides: nat -> nat -> form :=
[n,m:nat] (f_ex (S m) [k:nat](f_eq (mult k n) m)).

Definition f_Prime: nat -> form :=
[n:nat]
(f_and (f_gt n (1))
(f_all n [d:nat] (f_imp (f_Divides d n) (f_eq d (1))))).

4.2 Translations

Three translations are defined on the types form, bool, and Prop. First, [—]
maps terms of type form to terms of type Prop. Second, (—]) maps terms of
type form to terms of type bool. Third, istrue maps terms of type bool to
terms of type Prop. The three translations are depicted in Figure 1.

19

4.2.1 The translation [—]: form — Prop

The translation [—] takes as input a formula p of type form and it produces a
proposition of type Prop. Because form is an inductive type, [—] can be defined
by recursion by specifying a translation for each of the form-constructors.
In describing recursive functions, we will not use the Rec notation that we
introduced in the definition of the type system APREDw™. Instead we use
a Coq like notation, which uses pattern matching to deconstruct an element
of an inductive type. Moreover, Coq has special syntactic sugar for defining
recursive functions by a Fixpoint command. Arbitrary fixpoints are however
not allowed: the recursive calls should be done on structurally smaller terms.
This conforms precisely with the functions definable by the (elim) schemes
that we have given before. (In the following, the definitions using Fixpoint
can all be translated to functions defined by Rec.)

Definition 10 The translation [—] as formalized in Coq.

f_all th] = (x:nat) (1t xt)->[hz]
fexth] =Exl[z:nat]((ltxt)/\[hx])

4.2.2 The translation (—]: form — bool

The translation (—]) takes as input a formula p of type form and it produces
a boolean expression of type bool. Because form is an inductive type, (=]
can be defined by specifying a translation for each of the form-constructors.

20

Definition 11 The translation (—)) as formalized in Coq.

(£_1t t; t2) = b_1t t s
(f-le ti1 ty)) = b_le ti ty
(f-eq tity)) = b_eq t ty
(f_ge t1 1) = b_ge t1 t
(f-gt ti1t2)) = b_gt t1ty
(fnot p) = b_not (p)
(f-and pg) = b-and (p) (q)
(f-or pg) =b-or (p) (q)

(f-imp pg) = b-imp (p) (q)
(f-all th) = b.all t [z: nat](hz)

((f_exth) = b_ex t [x: nat](hx)

The boolean versions of the basic relations are defined by:
Definition 12 Boolean inequalities as formalized in Coq.

Fixpoint b_le [n,m:nat]: bool :=
Cases n m of

0 0 => true
| O (S y) => true
| (8x)0 => false
| (8 x) (Sy)=>(b_le x y)
end.
Definition b_1lt := [n,m:nat](b_le (S n) m).
Definition b_ge := [n,m:nat](b_le m n).

Definition b_gt := [n,m:nat](b_1t m n).
Definition 13 Boolean equality as formalized in Coq.

Fixpoint b_eq [n,m:nat]: bool :=
Cases n m of

0 0 => true
| O (S y) => false
| (Sx) 0 => false
| (S x) (Sy)=>(b_eq xy)
end.

21

The computational versions of the connectives are defined by:

Definition 14 Boolean versions of the connectives as defined in Coq.

[x:bool] (if x then false else true).
[x,y:bool] (if x then y else false).
[x,y:bool] (if x then true else y).
[x,y:bool] (if x then y else true).

Definition b_not
Definition b_and :
Definition b_or
Definition b_imp :

The computational version of the bounded universal quantifier is defined by
translating it into a large conjunction. The computational version of the
bounded existential quantifier is defined by translating it into a large dis-
junction.

Definition 15 Boolean version of the bounded universal quantifier as formal-
ized in Coq.

Fixpoint b_all [b:nat]: (nat -> bool) -> bool :=
[f:nat->bool]
Cases b of
0 => true
| (Sm) => (b_and (f m) (b_all m £f))
end.

Definition 16 Boolean version of the bounded existential quantifier as for-
malized in Coq.

Fixpoint b_ex [b:nat]: (nat -> bool) -> bool :=
[f:nat->bool]
Cases b of
0 => false

| (Sm) => (b_or (f m) (b_ex m f))
end.

4.2.3 The translation istrue: bool — Prop

The translation istrue takes as input a boolean expression and lifts it to the
propositional level:

Definition 17 The translation istrue as formalized in Coq.

Definition istrue := [x:bool] (if x then True else False).

22

4.3 Proof-objects

Given a formula p of type form, the objective is to construct a proof-object
inhabiting [p]. This is done in two steps. First, it is shown that the dia-
gram in Figure 1 commutes. Next, it is shown, using the conversion rule,
that (istrue (p]) is inhabited. The combination of these two steps yields the
desired proof-object.

Using the induction principle generated by the inductive definition of form,
we can construct a correctness proof ok of the translations.

ok : Vp: form.[p] +> (istrue (p))

The proof-object ok shows that the diagram in Figure 1 commutes. In general
only the implication from right to left is needed. However, in the proof of the
correctness theorem the other direction is very useful in some of the induction
cases.

The translation (—)) is constructed in such a way, that for closed terms p of
type form that represent a provable proposition, it holds that

(p) —»p, true

and therefore

(istrue (p])) —»p, True

where —»3, is the Coq reduction relation. From the conversion rule, it now
follows that any inhabitant of True is also an inhabitant of (istrue (p])).
Clearly, True is inhabited by the unit term triv, and therefore (istrue (p]))
is inhabited.

By combining the inhabitant of (istrue (p])) with ok, we get an inhabitant
of [p], which is what we were looking for.

It would be nice if we also had an inverse of [—]. In that case the user could
write down the goal as an expression ¢ of type Prop and have the system
translate it to an expression p of type form. This inverse translation cannot
be expressed within the object language. Some programming in the imple-
mentation language of Coq would be required to implement this translation.
An alternative would be to use the extensible grammar mechanism of Coq to
make the syntactical level look the same as the propositional level.

23

5 Results and discussion

The language of primitive recursive arithmetic can be elegantly formalized in
the Coq system using inductive types. As a matter of fact, the inductive type
form contains a bit more than the formulas of PRA, namely the ones where
we take the terms of type nat in Coq as base terms. The formalization is used
to automatically prove propositions of primitive recursive arithmetic.

Even though primitive recursive arithmetic is a limited language, many trivial
propositions that are tedious to prove by hand can be expressed in it. By
having the Coq proof assistant to prove these automatically, the user can
concentrate on the real, important, and mathematically interesting problems.
We believe that the methods discussed in this paper contribute to the user-
friendliness of systems like Coq. It is possible to extend the method to include
other predicates and functions on nat (or even other logical connectives).
Suppose we have a relation R typable in Coq, so R : nat”—Prop. Moreover
suppose that R is computable in Coq, so there is a term f, : nat”—bool that
computes R. Then we can extend our method to include R as a predicate
by adding a constructor r : nat”—form in the definition of form and by
constructing a term ¢ such that

q : [IZmat"” . RZ <> istrue(f, 7).

The proof term ¢ states (in Coq) that R is computable by f,; it is used in
the construction of the new proof term ok for this extension of form. We can
depict the situation as follows.

(=) (-1

Ir R

istrue

Fig. 2. Extension of the method with computable predicate R.

As to the efficiency of the procedure: The procedure described here is not very
fast. To check (Prime61) takes several minutes on a fast Unix workstation,
even though the proof-object is a A-term of only 10 lines of code and the total
size of the theory development is only 300 lines of code. (See [13].) There are
three reasons why this method is slow. First, the addition and multiplication
functions operate on the standard unary numbers (generated by the construc-
tors 0 and S). Things would be faster had we used binary versions of these
functions on the computational level [10]. However, the correctness proof will

24

become more complicated if on the propositional level the same definitions of
addition and multiplication are used. The use of these inefficient definitions is
desirable because a lot of theory development depends on the unary defined
natural numbers. The second reason is that computations are interpreted in
Coq which in turn is interpreted in a functional language. This is not the most
efficient setting for large computations. Third, the procedure is very general,
meaning that it cannot take into account clever tricks to avoid computations.
This results in slow algorithms. For example to check (Prime61) all numbers
between 1 and 61 are tested as divisors of 61 instead of only the numbers up-to

V61,

The method of computational reflection is not new, [7] gives an overview
and history of reflection and contrasts it with the LCF (tacticals) approach.
(We have briefly contrasted the reflection method with other approaches in
Section 4.) In NuPrl a reflection mechanism and a library with many different
applications was implemented [8]. In [4] computational reflection is applied in
Coq to first order theories of algebraic structures such as monoids and rings.
In [3] application of the reflection principle to decide equational theories is
studied.

In [12] a similar technique was used to generate proofs for statements of PRA;
there are however some differences with the internal method described in this
paper. The method in [12] uses an external program. This program takes as
input a string containing a formula ¢ of PRA and produces output which
can be read by the Lego [11] proof system. The output produced in this way
contains the formula ¢ of type Prop, a characteristic term x,, of type bool and
Lego tactics which will construct a proof-object ok, of type ¢ <> (istrue x.,).
The present method uses one correctness proof ok, which can be instantiated
with a formula ¢ of PRA by applying it to ¢ since ¢ is of type form which is
now part of the object language.

Applying the method to other theories requires modifications to the type form
as well as to the translations [—] and (—) introduced in section 4.2, and to
the proof-object ok from section 4.3.

Acknowledgments

This work has benefited much from discussions with Henk Barendregt and
Thijs Cobben. Furthermore we want to express our gratitude to the anony-
mous referees for their valuable comments.

25

References

1]

2]

3]

8]

[9]

BARENDREGT, H (1992), Lambda Calculi with Types, in “Handbook of Logic
in Computer Science, Volume I1”.

BARENDREGT, H. AND BARENDSEN, E. (1997), Autarkic Computations in
Formal Proofs, Computing Science Institute, University of Nijmegen.

BARTHE G. AND RuUys, M. AND BARENDREGT H. (1996), A Two-Level
Approach towards lean Proof-Checking.

BouTIN, S. (1997), Using reflection to build efficient and certified decision
procedures.

COQUAND, TH. AND PAULIN-MOHRING, CH. (1990), Inductively defined types,
In P. Martin-Lo6f and G. Mints editors. COLOG-88 : International conference
on computer logic, LNCS 417.

ELBERS H. J. (1998), Connecting Informal and Formal Mathematics, PhD.
thesis, Eindhoven University of Technology.

HARRISON, J. (1995), Metatheory and Reflection in Theorem Proving: a
Survey and Critique, Technical Report CRC-053, SRI International Cambridge
Computer Science Research Centre.

Howeg, D. (1988) Computational Metatheory in Nuprl, The Proceedings of the
Ninth International Conference of Automated Deduction, eds. E. Lusk and R.
Overbeek, LNCS 310, pp. 238-257.

HUET, G. ET AL. (1997), The Coq Proof Assistant, Reference Manual, Version
6.1, INRTA-Rocquencourt — CNRS-ENS Lyon.

[10] HuisMAN, M. (1997), Binary addition in Lego, Technical Report CSI-R9716,

Computing Science Institute, University of Nijmegen.

[11] Luo Z. AND PorpAack R. (1992) (1993,1994), LEGO Proof Development

System: User’s Manual, Department of Computer Science, University of
Edinburgh.

[12] OosTDUIK, M. (1996), Proof by Calculation, Master’s thesis 385, Universitaire

School voor Informatica, University of Nijmegen.

[13] OosTDLIK, M. AND GEUVERS, H. (1998), Coq proof development files,

http://www.win.tue.nl/ martijno/work/reflection/.

26

