
Proof by Computation in the Coq system

Martijn Oostdijk and Herman Geuvers

Computer Siene Department, Eindhoven University of Tehnology

Abstrat

In informal mathematis, statements involving omputations are seldom proved.

Instead, it is assumed that readers of the proof an arry out the omputations on

their own. However, when using an automated proof development system based on

type theory, the user is fored to �nd proofs for all laimed propositions, inluding

omputational statements.

This paper presents a method to automatially prove statements from primitive

reursive arithmeti. The method replaes logial formulas by boolean expressions.

A orretness proof is onstruted, whih states that the original formula is deriv-

able, if and only if the boolean expression equals true. Beause the boolean ex-

pression redues to true, the onversion rule yields a trivial proof of the equality.

By ombining this proof with the orretness proof, we get a proof for the original

statement.

1 Introdution

This paper presents a method to automatially prove statements from �rst

order primitive reursive arithmeti, in the ontext of type theoretial proof

systems [1℄. This is done by replaing proof obligations by omputations. For

example, the proposition Prime(61) an be veri�ed by a omputer program

whih heks all potential divisors of 61. By doing these omputations, it an

be seen that there are no proper divisors of 61. From this, it is onluded that

61 is prime.

In informal mathematial proofs, propositions like Prime(61) are seldom proved.

They are not onsidered to be \mathematially interesting" and veri�ation

is normally left to the reader. However, when onstruting formal proofs us-

ing an automated proof system based on type theory, suh as the Coq proof

assistant [9℄, the user is fored to �nd proofs for all laimed propositions, in-

luding propositions like Prime(61). The ability to prove these propositions

automatially, allows users of these systems to onentrate on formalizing the

important, mathematially interesting parts of a theory.

Preprint submitted to Elsevier Preprint 14 April 2000

The method presented here is based on two main ideas. The �rst idea, alled

omputational reetion in [7℄ (dating bak to original work by [8℄, who alls

it reetion) or two level approah in [3℄ is to interpret a lass of proposi-

tions on three di�erent levels: a syntatial level, a propositional level, and

a omputational level. The syntatial level makes it possible to relate the

omputational level to the propositional level by proving that a deision al-

gorithm (on the omputational level) indeed has the intended e�et (on the

propositional level). The seond idea, alled Poinar�e's priniple in [2℄, states

that propositions whih an be veri�ed by a omputation are easy; i.e., no

proof is required. This priniple is inorporated in Coq through the so-alled

onversion rule: types that are omputationally equal (onvertible) are not

distinguished. The Poinar�e's priniple is ruial for the use of omputational

reetion in theorem provers, as it allows to replae a large proof-objet (la-

borious to generate) by a small proof-objet plus a omputation (mehanial).

In our ase the ombination of these two ideas allows us to replae a proposi-

tion from primitive reursive arithmeti (the propositional level) with a om-

putation (the omputational level) involving harateristi funtions of primi-

tive reursive prediates. The latter an be resolved using the onversion rule.

Proving that this replaement is indeed allowed, involves lifting the original

proposition to the syntati level and translating it to the omputational and

propositional levels. It is proved that these two translations onform with eah

other: the translation to the omputational level evaluates to true if and only

if the translation to the propositional level is provable.

The intention of the paper is to present the result without assuming detailed

knowledge of type theory or proof-assistants based on type theory. To meet

that ondition, the paper is organized as follows. First we give a general in-

trodution to proof-assistants based on type theory, briey disussing the phi-

losophy and the tehnology. Then we introdue a type theory for higher order

prediate logi and we show by example how mathematial reasoning may be

formalized in this system. We extend this system with (a restrited form of)

indutive types. The system we thus obtain is a subsystem of the type theory

that is implemented in the proof-assistant Coq. In the last setion we show

how we have de�ned a deision proedure for primitive reursive arithmeti

inside Coq.

2 Proof Assistants based on type theory

In type theory one interprets formulas and proofs via the well-known `formulas-

as-types' and `proofs-as-terms' embedding, originally due to Curry, Howard

and De Bruijn. Under this interpretation, a formula is viewed as the type of

2

its proofs. Hene, a statement in type theory of the form

M : A

an be read in two ways:

� M is an element of the set denoted by A,

� M is a proof of the formula denoted by A.

In the ase that M denotes a proof, one an (in general) really onstrut a

natural dedution style derivation out of the proof term M . Whether this is

possible depends on the spei� type theory, but for many well-known logis

an isomorphi typed �-alulus has been de�ned: there is a bijetion between

natural dedutions in the logi and proof terms in the typed �-alulus. We

shall illustrate this orrespondene between logi and typed �-alulus later

by some examples. The main onsequenes of this approah towards theorem

proving are that

� Proof heking is Type heking,

� Interative Theorem Proving is the interative onstrution of a term of a

given type.

The Proof Assistant Coq is an interative theorem prover based on type theory:

the implemented typed �-alulus is a version of onstrutive higher order logi

with powerful indutive types. The system Coq provides the user with powerful

tatis to interatively onstrut a proof term. In this onstrution proess,

the system guarantees the type orretness. An important distintion to be

made { whih is a basi philosophy behind type theoreti provers like Coq {

is the one between

� Cheking an alleged proof: this is easy, omparable with heking the syn-

tati orretness of a omputer program,

� Construting a proof for a given formula: this is hard (undeidable in gen-

eral), omparable with onstruting a program whih satis�es a spei�a-

tion.

In type theoreti provers, the �rst task is performed by a type heking algo-

rithm, the seond task is performed interatively with the user.

2.1 Corretness of Proof Assistants

An important issue in automated theorem proving in general is the question

of orretness of the implemented system. Or, phrased di�erently: how an we

be sure that a formula that has been proven by the Proof Assistant (PA) is

3

really true? We may sometimes not be onvined that all the powerful tatis

that a PA provides are sound and it oasionally turns out that a PA ontains

a bug. In type theoreti PAs, this issue of reliability is solved to some extent,

beause the PA does not only tell the user that the theorem has been proved,

but it also provides a proof term that an either be type heked by the user

(using his own { relatively easy to write { type heking algorithm) or it an

be exported to some natural language style proof that an be read by other

humans. The feature of having proof terms that an be heked independently

by a relatively small and easy algorithm, is also known as the De Bruijn

riterion (see [2℄), named after the founding father of the Automath projet.

In this projet the �rst PAs based on type theory were implemented (in fat

they were proof hekers instead of proof assistants).

So, on the one hand the De Bruijn riterion gives a higher degree of reli-

ability to PAs. On the other hand, however, this riterion makes it harder

to implement very powerful proof tatis (like resolution), beause the sys-

tem will always have to onstrut a omplete proof term that an be (type)

heked easily in a small underlying system. In this paper we show that it is

possible to add powerful proof tatis to Coq and at the same time omply

with the De Bruijn riterion. This is done by applying the so alled `two level

approah' ([2℄), also known as the `reetion priniple' ([7℄). The basi idea

of that approah is to ode a spei� syntati lass of formulas into an in-

dutive type form. We write [[�℄℄ for the deoding funtion giving for every

formula a : form a proposition [[a℄℄. A given (powerful) proof proedure an

(in the simplest ase) then be de�ned as a funtion F of type form!form.

Now, if we an prove this proedure to be orret inside Coq, i.e. if we prove

8a:form([[a℄℄ $ [[Fa℄℄), then we an replae a proof obligation [[a℄℄ by a proof

obligation [[Fa℄℄ (whih will in general be easier).

In this paper we illustrate the method skethed above by looking at the formu-

las of primitive reursive arithmeti (PRA). We de�ne a funtion ([�℄) (ompa-

rable with the F above) that omputes true or false for every losed formula

of PRA (using a harateristi funtion) and we prove that ([�℄) is orret (i.e.

([�℄) preserves derivability: 8a:form([[a℄℄ $ (([a℄) = true))). Hene, if we want

to hek, e.g. whether Prime(61) holds, we have to �nd a term a of type

form suh that [[a℄℄ is onvertible with Prime(61) and we have to verify that

([a℄) = true. The latter is done by just omputing ([a℄): the outome is either

true or false.

4

3 A type theory for higher order prediate logi with indutive

types

In this setion we de�ne a part of the type system that is implemented in Coq.

We will not attempt to give a general introdution into Coq, but restrit to that

part of Coq that is neessary for our proof development. First we introdue the

system �PRED!, a type theory in whih one an (faithfully) interpret higher

order prediate logi. Then we extend this system with indutive types, to

obtain the system �PRED!

ind

.

Before giving the preise de�nition, we make some introdutory remarks to

guide the intuition.

(1) The language of higher order prediate logi is a typed language. In

�PRED! there are `�rst order sets', whih are of type Set and there

are higher order sets, whih are of type Type. These `universes' Set and

Type are alled sorts.

(2) In �PRED!, formulas like ' � and 8x:A:' will beome types. However,

these `propositional' types are not the same as the set types (like e.g. nat).

Hene there is another `universe', Prop, ontaining the `propositional'

types. So, all formulas are of type Prop in �PRED!.

(3) Prop itself is a higher order set type, so Prop : Type.

(4) For A a �rst order set (i.e. A : Set), the set of prediates on A is repre-

sented as A!Prop, the type of funtions from A to Prop. If P : A!Prop

and a : A, then Pa : Prop. the intended meaning is that `a belongs to P '

if the formula Pa an be proved.

(5) Natural dedutions are represented as typed �-terms. The disharging

of hypotheses is done by �-abstration. The modus ponens rule is inter-

preted via appliation.

(6) A formula is provable if we an �nd a proof of it. That is in �PRED!, if

' : Prop, then `' is provable' if we an �nd a term M suh that M : '.

The derivable judgements of �PRED! are of the form

� `M : A;

where � is a ontext and M and A are terms. A ontext is of the form

x

1

:A

1

; : : : ; x

n

:A

n

, where x

1

; : : : ; x

n

are variables and A

1

; : : : ; A

n

are terms.

In a ontext the variables that our in M and A are given a type. If, in the

judgment � ` M : A, the term A is a `propositional type' (i.e. � ` A : Prop),

we view M as a proof of A. If the term A is a `set type' (i.e. � ` A : Set or

� ` A : Type), we view M as an element of the set A.

Finally, there is another sort Type

s

, that ontains just Set. It is there to allow

5

delarations of the form x:Set in the ontext, delaring a new set, whih is in

our formalism only possible if Set itself has a type.

De�nition 1 The typed �-alulus �PRED!, representing higher order pred-

iate logi, is de�ned as follows. The set of pseudoterms T is de�ned by

T ::= Prop j Set j Type j Type

s

jV j (�V:T:T) j (�V:T:T) jTT:

Here, V is a set of variables. The set of sorts, S is fProp; Set; Type; Type

s

g.

A ontext is a sequene x

1

:A

1

; : : : ; x

n

:A

n

, where the ~x are in V and the

~

A are

in T.

The typing rules, that selet the well-typed terms from the pseudo-terms, are

as follows. Here, s ranges over the set of sorts S .

(axiom) ` Prop : Type ` Set : Type

s

(var)

� ` A : s

�; x:A ` x : A

(weak)

� ` A : s � `M : C

�; x:A `M : C

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

2

if (s

1

; s

2

) 2 f(Set; Set); (Set; Type); (Type; Type);

(Prop; Prop); (Set; Prop); (Type; Prop)g

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(onv)

� `M : A � ` B : s

� `M : B

if A =

�

B

In the rules (var) and (weak) it is always assumed that the newly delared

variable is fresh, that is, it has not yet been delared in �. The equality in the

onversion rule (onv

�

) is the �-equality on the set of pseudo-terms T.

6

A pseudo-term A is typable if there is a ontext � and a pseudo-term B suh

that � ` A : B or � ` B : A is derivable. The set of typable terms of �PRED!

is denoted by TERM(�PRED!).

The only type-forming operator in this language is the �, whih omes in

three avors, depending on the type of the domain (the A in �x:A:B) and the

type of the range (the B in �x:A:B). Intuitively, a �-type should be read as

a set of funtions. If we depit the ourrenes of x in B expliitly by writing

B(x), the intuition is:

�x:A:B(x) �

Y

a2A

B(a) = ff j 8a 2 A[f a 2 B(a)℄g:

So, �x:A:B is the dependent funtion type of funtions taking a term of type A

as input and delivering a term of type B in whih x is replaed by the input. We

therefore immediately reover the ordinary funtion type as a speial instane.

Notation 2 � In ase x =2 FV(B), we write A!B for �x:A:B. We all this

a non-dependent funtion type.

� We omit brakets by letting them assoiate to the right. So A!B!C de-

notes A!(B!C).

By examples we list all instanes of the �-type that an be enountered in

�PRED!.

Examples 3 (1) Using the ombination (Set,Set), we an form the funtion

type A!B for A;B:Set. Furthermore, it also extends to higher order

funtion types like (A!B)!A, the type of funtions taking funtions

from A to B as input and returning a value of type A.

If � ` A:Set and �; x:A ` B:Set, then x =2 FV(B) in �PRED!, so all

types formed by (Set,Set) are non-dependent funtion types.

(2) Using the ombination (Set,Type) we an form types of unary prediates

and binary relations: if A : Set, then A!Prop : Type and A!A!Prop :

Type.

If � ` A:Set and �; x:A ` B:Type, then x =2 FV(B) in �PRED!, so all

types formed by (Set,Type) are non-dependent types.

(3) Using the ombination (Type,Type) we an form higher order prediate

types: if A : Set, then (A!Prop)!Prop : Type, the type of prediates

over unary prediates over A. All types formed by (Type,Type) are non-

dependent types.

(4) Using the ombination (Prop,Prop), we an form the propositional type

'! for '; :Prop. This is to be read as an impliational formula.

All types formed by (Prop,Prop) are non-dependent types.

(5) Using the ombination (Set,Prop), we an form the dependent proposi-

tional type �x:A:' for A:Set, ':Prop. This is to be read as a universally

7

quanti�ed formula over A.

If � ` A:Type and �; x:A ` ':Prop, then it an our that x 2 FV(') in

�PRED!. An example is �x:A:Px!Px : Prop (in the ontext A:Set; P :A!Prop).

(6) Using the ombination (Type,Prop), we an do quanti�ation over higher

order domains, like in �P :A!A!Prop:'. In general, if B : Type and

' : Prop, then �P :B:' : Prop.

This type is (in general) a dependent type. An example is �P :A!Prop:Px!Px :

Prop (in the ontext A:Set; x:A).

We will not de�ne formal interpretations from higher order prediate logi to

�PRED! and bak. We motivate �PRED! by listing some examples of typing

statements.

Examples 4 (1) nat:Set; 0:nat; >:nat!nat!Prop ` �x:nat:x>0 : nat!Prop.

Here we see the use of �-abstration to de�ne prediates.

(2) nat:Set; 0:nat; S:nat!nat

` �P :nat!Prop:(P0)!(�x:nat:(Px!P (Sx)))!�x:nat:Px : Prop.

This is the formula for indution written down in �PRED! as a term of

type Prop.

(3) A:Set; R:A!A!Prop ` �x; y; z:A:Rxy!Ryz!Rxz : Prop.

Transitivity of R.

(4) A:Set ` �R;Q:A!A!Prop:�x; y:A:Rxy!Qxy :

(A!A!Prop)!(A!A!Prop)!Prop.

Inlusion of relations.

(5) A:Set ` �x; y:A:�P :A!Prop:(Px!Py) : A!A!Prop.

This relation is also alled `Leibniz equality' and is usually denoted by =

L

or =

A

if we want to denote the domain type expliitly.

(6) A:Set; x; y:A ` �r:x =

A

y:�P :A!Prop:r(�z:A:Pz � Px)(�q:Px:q) :

x =

A

y!y =

A

x.

The proof of the fat that Leibniz equality is symmetri.

Just as in higher order prediate logi, it is possible to de�ne the usual intu-

itionisti onnetives and onstants &, _, False, True, : and 9 in �PRED!.

However, in presene of indutive types, one usually also de�nes the onne-

tives indutively (as is also standard in Coq). We therefore do not give the

higher order de�nitions of the onnetives here, but take them as being de�ned

indutively. We disuss the onnetives briey in the next Setion.

3.1 Indutive Types

A basi notion in logi and set theory is indution: when a set is de�ned

indutively, we understand it as being `built up from the bottom' by a set

of basi onstrutors. Elements of suh a set an be deomposed in `smaller

8

elements' in a well-founded manner. This gives us the priniples of proof by

indution and funtion de�nition by reursion.

If we want to add indutive types to our type theory, we have to add a de�-

nition mehanism that allows us to introdue a new indutive type, by giving

the name and the onstrutors of the indutive type. The theory should auto-

matially generate a sheme for proof-by-indution and a sheme for primitive

reursion. It turns out that this an be done very generally in type theory, in-

luding very many instanes of indution. Here we shall use a variant of the

indutive types that are present in the system Coq [9℄ and that were �rst

de�ned in [5℄.

We illustrate the rules for indutive types in �PRED!

ind

by �rst treating the

(very basi) example of natural numbers nat. We would like the user to be

able to write something like

Indutive nat : Set :=

0 : nat

jS : nat!nat:

to obtain elimination priniples that allow to de�ne funtions over nat by

(higher order) primitive reursion and to prove properties over nat by indu-

tion. This amounts to the derivability of the following rules. (Re

nat

(f

1

; f

2

)

denotes some term ontaining f

1

and f

2

as subexpressions.)

(elim

1

)

� ` A : Set=Type � ` f

1

: A � ` f

2

: nat!A!A

� ` Re

nat

(f

1

; f

2

) : nat!A

(elim

2

)

� ` P : nat!Prop � ` f

1

: P0 � ` f

2

: �x:nat:Px!P (Sx)

� ` Re

nat

(f

1

; f

2

) : �x:nat:Px

The rule (elim

1

) allows the de�nition of funtions by primitive reursion. The

rule (elim

2

) allows proofs by indution. To make sure that the Re

nat

(�;�)

funtions ompute in the orret way, we should have the following redution

(omputation) rules.

Re

nat

(f

1

; f

2

)0!

�

f

1

Re

nat

(f

1

; f

2

)(St)!

�

f

2

t(Re

nat

(f

1

; f

2

)t)

In Coq, these terms Re

nat

(f

1

; f

2

) an be onstruted, using a well-founded

�xed point onstrution. (See [9℄ for details.) It is also possible to take the

(elim) rules as primitives (adding a Re onstant) and de�ne everything in

terms of Re , but this approah is not taken in the type system of Coq.

9

However, given the de�nition of nat above, Coq generates itself three de�ned

onstants Nat_re, Nat_ret and Nat_ind, representing Re above. In par-

tiular, the onstant Nat_ind is of type

�P :nat!Prop:(P0)!(�x:natPx!P (Sx))!�x:nat:Px:

One usually de�nes a funtion in Coq by giving an equational spei�ation.

Given the following equations (h(x; fx) is a term with sub-terms x and fx

and no other ourrenes of f)

f0= g

f(Sx)=h(x; fx);

Coq generates a term Re (g; h) that satis�es these equations (for f). This

amounts to speifying a funtion by primitive reursion. The situation is more

general: Coq also generates a solution for f spei�ed by the equations

f00= g

1

f0(Sy)= g

2

(y);

f(Sx)0= g

3

(x)

f(Sx)(Sy)= g

4

(x; y; f(x; y))

and more general for funtions that are spei�ed by giving a set of equations

where the left hand sides over all possible patterns and the reursive alls

on the right hand side are on `stritly smaller' expressions (aording to some

some syntati ordering on terms). The preise syntax is as follows. (We de�ne

equality on natural numbers, as a binary funtion from nat to bool.)

Fixpoint b_eq [n,m:nat℄: bool :=

Cases n m of

O O => true

| O (S y) => false

| (S x) O => false

| (S x) (S y) => (b_eq x y)

end.

In Coq, this de�nes a funtion, like the f above (where now, g

2

= g

3

=

�n:nat:true and g

4

(x; y; f(x; y)) = f(x; y)). The onditions under whih suh

a pattern de�nes a funtion are that the left-hand sides should over all possi-

ble patterns and that the reursive all on the right hand side is on struturally

smaller expressions.

It is understood that the additional �-redution is also inluded in the onversion-

rule (onv), where we now have `A =

��

B' as a side-ondition. The subsript

in Re

nat

will be omitted, when lear from the ontext.

10

An example of the use of Re is in the de�nition of addition, add , whih an

be de�ned by add := Re (�x:nat:x)(�x:nat:�f :nat!nat:�y:nat:S(fy)): But

we an equivalently de�ne it by an equational spei�ation

add 0y= y

add (Sx)y=S(add xy):

It is also possible to de�ne prediates and relations by primitive reursion, by

just taking Prop or nat!Prop for A in (elim

1

). An example is the relation

`less than or equal', ���, whih an be de�ned equationally as follows.

0�y= True;

(Sx)�0= False;

(Sx)�(Sy)= x�y:

An example of the use of (elim

2

) is the proof of �x:nat:x�x (by indution).

Say that triv is the (anonial) term (proof) of type True. Combining this

with ` �x:nat:�h:(x�x):h : �x:nat:(x�x)!((Sx)�(Sx)) and applying Re

we obtain

` Re triv(�x:nat:�h:(x�x):h) : �x:nat:(x�x):

Another well-known example is the type of lists over a domain D. It is de�ned

as follows.

Indutive list : Set :=

nil : list

j ons : list!D!list

with the following derivable rules.

(elim

1

)

� ` A : Set=Type � ` f

1

: A � ` f

2

: list!D!A!A

� ` Re

list

f

1

f

2

: list!A

(elim

2

)

� ` P : list!Prop

� ` f

1

: Pnil

� ` f

2

: �x:list:�d:D:Px!P (ons xd)

� ` Re

list

f

1

f

2

: �x:list:Px

The rule (elim

1

) allows the de�nition of funtions by primitive reursion.

The rule (elim

2

) allows proofs by indution. The following redution rules

for Re

list

hold, to make sure that the funtions ompute in the orret way.

11

Re

list

f

1

f

2

nil!

�

f

1

Re

list

f

1

f

2

(ons td)!

�

f

2

td(Re

list

f

1

f

2

t)

Of ourse, there is a more general pattern behind these two examples. The

types nat and list are examples of so alled algebrai indutive types. In an

algebrai indutive type, the types of the onstrutors (like nil and ons)

are of the form A

1

!� � �!A

n

!�, where � is the type to be de�ned, and all

the A

i

are either equal to � or do not ontain � as a sub-term. In Coq there is

a muh stronger shema for de�ning indutive types, allowing onstrutors of

higher type and onstrutors with a dependent type. Furthermore the stronger

shema allows to de�ne indutive prediates, as opposed to just types. Then

one an de�ne, e.g. the relation � indutively by saying it is the least binary

relation over nat suh that �x:nat:0 � x and �x; y:nat:(x � y)!(Sx � Sy)

hold. (Note that this de�nition of � is di�erent from { but equivalent to {

the binary reursive funtion � on nat given before.) As this is meant to be

an introdution, we restrit our general theoretial exposition to the algebrai

indutive types. In the formalization of the primitive reursive prediates, we

use one indutive type that is not algebrai, namely the type form, whih has

two onstrutors of higher type:

f_all: nat -> (nat -> form) -> form

f_ex: nat -> (nat -> form) -> form

The general sheme for suh indutive types is rather ompliated, although

quite natural. We will not give it but treat suh indutive types by some

examples.

The extension of �PRED! with algebrai indutive types, �PRED!

ind

, is

de�ned by adding the following sheme.

Indutive � : Set :=

onstr

1

: �

1

1

!� � ��

1

m

1

!�

.

.

.

onstr

n

: �

n

1

!� � ��

n

m

n

!�

where the �

i

j

: Set are all either � or do not ontain � as a sub-term. We want

to abstrat over the ourrenes of �, so we denote �

i

1

[X=�℄!� � �!�

i

m

i

[X=�℄!X

by �

i

(X). (So �

i

(X) is the type sheme �

i

1

!� � ��

i

m

i

!� in whih all � have

been replaed by the variable X.)

We take the elimination rules (rules (elim

1

) and (elim

2

) from the nat example)

as primitives. To de�ne the elimination shemes in general we look at the list

12

of �

i

j

in �

i

that are equal to �. Say that for �

1

, �

1

j

1

; : : : ; �

1

j

k

are the types that

are equal to �. Then we de�ne for A : Set=Type, �̂

1

(A) as follows.

�̂

1

(A) := �

1

1

!� � �!�

1

m

1

!A!� � �!A

| {z }

k

!A:

The �rst elimination rule is now as follows.

(elim

1

)

� ` A : Set=Type � ` f

1

: �̂

1

(A) � � � � ` f

n

: �̂

n

(A)

� ` Re

�

f

1

� � � f

n

: �!A

It an easily be veri�ed that the (elim

1

)-rules of nat and list satisfy this

general pattern.

For the redution rule of the general pattern, we abbreviate Re

�

f

1

� � � f

n

to

Re

~

f . The redution rule is

Re

�

f

1

� � � f

n

(onstr

i

t

1

� � � t

m

i

)!

�

f

i

t

1

� � � t

m

i

(Re

~

ft

j

1

) � � � (Re

~

ft

j

k

)

Let us now turn to the general pattern of the seond elimination rule. Again

we look at the list of �

i

j

in �

i

whih are equal to �. Say that for �

1

, �

1

j

1

; : : : ; �

1

j

k

are the types that are equal to �. Then we de�ne for P : �!Prop, �̂

1

(P) as

follows.

�̂

1

(P) := �x

1

:�

1

1

: � � ��x

m

1

:�

1

m

1

:Px

j

1

!� � �!Px

j

k

!P (onstr

1

x

1

� � �x

m

1

):

So, note that we have di�erent de�nitions for �̂ (A) (if A : Set=Type) and �̂(P)

(if P : �!Prop).

The seond elimination rule is now as follows.

(elim

2

)

� ` P : �!Prop � ` f

1

: �̂

1

(P) : : :� ` f

n

: �̂

n

(P)

� ` Re

�

f

1

� � � f

n

: �x:�:Px

Again, it an easily be veri�ed that the (elim

2

)-rules of nat and list satisfy

this general pattern.

For the dependent ase we have the same �-redution rule as for the non-

dependent ase:

Re

�

f

1

� � � f

n

(onstr

i

t

1

� � � t

m

i

)!

�

f

i

t

1

� � � t

m

i

(Re

~

ft

j

1

) � � � (Re

~

ft

j

k

):

13

Example 5 The indutive type of booleans, bool, an be de�ned as follows.

Indutive bool : Set :=

true : bool

j false : bool

This generates the following derivation rules.

(elim

1

)

� ` A : Set=Type � ` f

1

: A � ` f

2

: A

� ` Re

bool

f

1

f

2

: bool!A

(elim

2

)

� ` P : bool!Prop � ` f

1

: Ptrue � ` f

2

: Pfalse

� ` Re

bool

f

1

f

2

: �x:bool:Px

The rewrite rule for Re

bool

is as follows.

Re

bool

f

1

f

2

true!

�

f

1

;

Re

bool

f

1

f

2

false!

�

f

2

:

So, Re

bool

represents the `if{then{else{' funtion. More preisely, if t; q : A

and b : bool, then if b then t else q : A is represented by Re

bool

tqb.

The sheme de�ned so far is for algebrai indutive types. We now give an

example of an indutive type that is more ompliated than nat and list,

beause it uses higher types in one of the onstrutors. We want to de�ne the

type tree of ountably branhing trees with labels in D. (So a term of type

tree represents a tree where the nodes and leaves are labeled with a term

of type D and where at every node there are ountably many subtrees.) The

de�nition of tree is as follows.

Indutive tree : Set :=

leaf : D!tree

j join : D!(nat!tree)!tree

Here, leaf reates a tree onsisting of just a leaf, labeled by a term of type

D. The onstrutor join takes a label (of type D) and an in�nite (ountable)

list of trees to reate a new tree. The (elim

1

) rule is as follows.

(elim

1

)

� ` A : Set � ` f

1

: D!A � ` f

2

: D!(nat!tree)!(nat!A)!A

� ` Re

tree

f

1

f

2

: tree!A

14

Re

tree

has the following redution rule.

Re

tree

f

1

f

2

(leaf d)!

�

f

1

d

Re

tree

f

1

f

2

(join dt)!

�

f

2

dt(�x:nat:Re

tree

f

1

f

2

(tx))

It is an interesting exerise to de�ne all kinds of standard funtions on tree,

like the funtion that takes the nth subtree (if it exists and take leaf d

0

otherwise) or the funtion that deides whether a tree is in�nite (or just a

single leaf).

For the type tree, we obtain the following (elim

2

) rule.

(elim

2

)

� ` P : tree!Prop

� ` f

1

: �d:D:P (leaf d)

� ` f

2

: �d:D:�t:nat!tree:

(�n:nat:P (tn))!P (join dt)

� ` Re

tree

f

1

f

2

: �x:tree:Px

We an explain this rule as follows: a tree is a well-founded objet, but a tree

may be reated by joining ountably many trees (indexed over nat) into a

new one. This is done via the join onstrutor, whih takes a list of trees

(t : nat!tree) and a label (d : D) to reate another tree (join dt). Now,

if we want to prove a property P for all trees, we have to show that P is

preserved under the join onstrutor, i.e. we have to prove

(8n:nat:P (tn))! P (join dt):

for all d : D and for all t : nat!tree.

The redution rule for Re

tree

assoiated with this seond elimination sheme

is the same as before.

4 The method

This Setion presents a method to mehanially prove a proposition ' from

�rst order primitive reursive arithmeti in the Coq system. The method uses

a three level interpretation of '. The proposition is viewed on a syntatial,

on a propositional, and on a omputational level. The syntatial level is

represented by the indutive type form, the propositional level by the type-sort

Prop, and the omputational level by the indutive type bool. The Prop and

bool types are already present in Coq; the form type is de�ned in subsetion

4.1.

15

Trivial propositions are trivial beause they belong to a lass of propositions

that an be proved in a general mehanial fashion. In the Coq system there

are three ways to deal with these trivial propositions: ad ho, using tatials,

and using reetion. The reetion style of dealing with trivial propositions is

the method we are interested in here.

In the ad ho style of proving trivial propositions, ' is formalized on the propo-

sitional level as an expression of type Prop. The user provides a proof by hand

by applying tatis to the urrent goal, until it is resolved. Advantages of the

ad ho style: It is usually the most eÆient way if there is only one proposition

to be proved. (One doesn't �rst have to de�ne general tatials, or to set up

a general theory.) Moreover, if one is onsidering just one spei� (type of)

proposition, usually more lever triks an be used to speed up the proving.

For example in [6℄ (pp. 148{156), to prove primality of ertain numbers, one

�rst proves a result from algebra whih is then applied. Disadvantage: An ad

ho proof works only one (to prove that spei� proposition).

In the tatials style of proving, ' is also formalized as an expression of type

Prop. The user desribes a general deision proedure for a ertain lass of

propositions using tatials. Tatials ombine tatis into proof proedures

(new tatis). Advantages of the tatial style: It is a very general method that

an save a lot of work (ompared to the ad ho style), espeially when many

`similar' propositions have to be proven. The method yields a proof term that

usually orresponds rather losely to the proof term that would have been

found by using the ad ho style. The deision algorithm is desribed on the

meta level, whih gives quite a lot of exibility. However, this an also be a

drawbak, as the user will have to be able to program in the meta language

(or in the tatial language if that is provided). Disadvantages: Can be very

slow: all the steps have to be exeuted in the proof assistant, whih requires

a lot of uni�ation and type heking.

In the reetion style of proving trivial propositions, ' is not formalized di-

retly as an expression of type Prop. Rather, ' is formalized on the syntatial

level as an expression p of a new type form, where form haraterizes the lass

of propositions we are dealing with. Translations, [[�℄℄ from form to Prop and

([�℄) from form to bool, are used to obtain formalizations of p on the other

two levels, suh that [[p℄℄ = '. These translations, as well as a translation from

bool to Prop are de�ned in subsetion 4.2. The important thing to note here

is that the size of p is linear in the size of '.

Eventually, what is needed is a proof-objet inhabiting '. This proof-objet is

onstruted by ombining two proof-objets. First, the proof-objet ok in-

habits the orretness theorem, whih states that for all terms q of type

form: [[q℄℄ holds, if and only if (istrue ([q℄)) holds. Seond, an inhabitant of

(istrue ([p℄)) is sought for. This is easy: The boolean expression ([p℄) redues to

16

true (and then (istrue true) is inhabited) or it redues to false (and then

(istrue false) is not inhabited). The onstrution of these proof-objets is

presented in subsetion 4.3.

Advantages of the reetion method are: The size of the proof-objet of type

' is linear in the size of ' itself and it is trivial to onstrut. (Note that a

proof-objet an { in general { be arbitrarily omplex in terms of the size of

the problem '.) Almost all of the `proof' is in the omputation { whih an

be arbitrarily omplex { but this is hidden in the type heking algorithm.

That the proof-objet is trivial onforms with the idea that proofs by ompu-

tation are trivial and that omputations should not ontribute to the proof-

objet. Furthermore, reetion is a very general method, solving a lass of

problems instead of one problem. Disadvantages: Can be very slow: due to the

generality of the method, the generated deision algorithms follow a general

(non-optimized) pattern. For example the algorithm for heking primality is

a harateristi funtion that is generially extrated from the de�nition of

Prime. This is far more ineÆient then, e.g. the speial primality algorithm

used in [6℄ (pp. 148{156). On the other hand a generi method for solving

a large lass of propositions will always be slow, ompared to ad ho lever

triks. Another disadvantage is that the user needs to syntatially harater-

ize the lass of propositions and provide the translations and the orretness

proof.

4.1 Languages

Primitive reursive arithmeti (PRA) an be seen as a language of formulas.

Formulas from this language are either basi formulas or ompound formulas.

Basi formulas are built using the relations <, =, and >, from arithmetial

terms. Arithmetial terms are either number onstants, or number variables,

or the result of applying a primitive reursive funtion presription to other

arithmetial terms.

Compound formulas are built using onnetives or using bounded quanti�ers.

Connetives are :, ^, _, and !. Bounded �rst order quanti�ers are 8

<

and

9

<

. These bind a number variable. The upper bound is an arithmetial term.

The division and primality properties are examples whih an be expressed in

this language.

Example 6 The division and primality prediates are primitive reursive.

Divides(n;m)= 9k < m + 1 [k � n = m℄

Prime(n)= 8d < n [Divides(d; n)! d = 1℄ ^ n > 1

17

The language of primitive reursive arithmeti is formalized in Coq as the

indutive type form. Notie that the terms from whih basi formulas are built

are just objets of type nat. It is not neessary to treat these terms syntatily,

sine both [[�℄℄ and ([�℄) will translate them similarly. Note that the hoie of

not treating terms syntatially has a onsequene: the formulas (the p of type

form) are not really from PRA, but an extension thereof, namely where the

base terms are the terms of type nat in Coq (instead of the terms generated

from N by just appliation of primitive reursive funtions). Formalizing this

slight extension of PRA is more onvenient, as it removes the extra syntati

level. Notie also the use of higher order funtion types in the type of the

quanti�er onstrutors f all and f ex. This allows binding of variables using

the objet level lambda abstration.

De�nition 7 The language of primitive reursive arithmeti as formalized in

Coq.

Indutive form: Set :=

f_lt: nat -> nat -> form

| f_le: nat -> nat -> form

| f_eq: nat -> nat -> form

| f_ge: nat -> nat -> form

| f_gt: nat -> nat -> form

| f_not: form -> form

| f_and: form -> form -> form

| f_or: form -> form -> form

| f_imp: form -> form -> form

| f_all: nat -> (nat -> form) -> form

| f_ex: nat -> (nat -> form) -> form.

Notation 8 Coq-notation for lambda- and Pi abstration. We write

[x:A℄B for �x:A:B

(x:A)B for �x:A:B

The automatially generated indution priniple form ind (Re

form

of the

previous setion) has the following type.

form ind:

8P : form! Prop:

(8n;m : nat:(P (f lt nm)))!

(8n;m : nat:(P (f le nm)))!

(8n;m : nat:(P (f eq nm)))!

(8n;m : nat:(P (f ge nm)))!

(8n;m : nat:(P (f gt nm)))!

18

form

bool

Prop

[[�℄℄([�℄)

istrue

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�+

-

Fig. 1. The di�erent languages and translations.

(8' : form:(P ')! (P (f not')))!

(8' : form:(P ')! 8 : form:(P)! (P (f and ')))!

(8' : form:(P ')! 8 : form:(P)! (P (f or ')))!

(8' : form:(P ')! 8 : form:(P)! (P (f imp ')))!

(8n : nat:8�: nat ! form:(8m : nat:(P (�m)))! (P (f all n�)))!

(8n : nat:8�: nat ! form:(8m : nat:(P (�m)))! (P (f ex n�)))!

8' : form:(P ')

So, form ind states that if a prediate P on form is losed under the on-

strutors of the indutive type form (f lt, f le etetera), then P holds for

all terms of type form. Note the ases for f all and f ex: losure of P under

f all says that if P holds for all instanes of � (8m : nat:(P (�m))), then P

holds for (f all n�).

The prediates from example 6 an now be expressed as funtions with odomain

form.

Example 9 The division and primality prediates as formalized in Coq.

Definition f_Divides: nat -> nat -> form :=

[n,m:nat℄ (f_ex (S m) [k:nat℄(f_eq (mult k n) m)).

Definition f_Prime: nat -> form :=

[n:nat℄

(f_and (f_gt n (1))

(f_all n [d:nat℄ (f_imp (f_Divides d n) (f_eq d (1))))).

4.2 Translations

Three translations are de�ned on the types form, bool, and Prop. First, [[�℄℄

maps terms of type form to terms of type Prop. Seond, ([�℄) maps terms of

type form to terms of type bool. Third, istrue maps terms of type bool to

terms of type Prop. The three translations are depited in Figure 1.

19

4.2.1 The translation [[�℄℄ : form! Prop

The translation [[�℄℄ takes as input a formula p of type form and it produes a

proposition of type Prop. Beause form is an indutive type, [[�℄℄ an be de�ned

by reursion by speifying a translation for eah of the form-onstrutors.

In desribing reursive funtions, we will not use the Re notation that we

introdued in the de�nition of the type system �PRED!

ind

. Instead we use

a Coq like notation, whih uses pattern mathing to deonstrut an element

of an indutive type. Moreover, Coq has speial syntati sugar for de�ning

reursive funtions by a Fixpoint ommand. Arbitrary �xpoints are however

not allowed: the reursive alls should be done on struturally smaller terms.

This onforms preisely with the funtions de�nable by the (elim) shemes

that we have given before. (In the following, the de�nitions using Fixpoint

an all be translated to funtions de�ned by Re .)

De�nition 10 The translation [[�℄℄ as formalized in Coq.

[[f lt t

1

t

2

℄℄ = lt t

1

t

2

[[f le t

1

t

2

℄℄ = le t

1

t

2

[[f eq t

1

t

2

℄℄ = t

1

= t

2

[[f ge t

1

t

2

℄℄ = ge t

1

t

2

[[f gt t

1

t

2

℄℄ = gt t

1

t

2

[[f not p℄℄ = ~[[p℄℄

[[f and p q℄℄ = [[p℄℄/\[[q℄℄

[[f or p q℄℄ = [[p℄℄\/[[q℄℄

[[f imp p q℄℄ = [[p℄℄->[[q℄℄

[[f all t h℄℄ = (x : nat)(lt x t) -> [[h x℄℄

[[f ex t h℄℄ = Ex [x : nat℄((lt x t) /\ [[h x℄℄)

4.2.2 The translation ([�℄) : form ! bool

The translation ([�℄) takes as input a formula p of type form and it produes

a boolean expression of type bool. Beause form is an indutive type, ([�℄)

an be de�ned by speifying a translation for eah of the form-onstrutors.

20

De�nition 11 The translation ([�℄) as formalized in Coq.

([f lt t

1

t

2

℄) = b lt t

1

t

2

([f le t

1

t

2

℄) = b le t

1

t

2

([f eq t

1

t

2

℄) = b eq t

1

t

2

([f ge t

1

t

2

℄) = b ge t

1

t

2

([f gt t

1

t

2

℄) = b gt t

1

t

2

([f not p℄) = b not ([p℄)

([f and p q℄) = b and ([p℄) ([q℄)

([f or p q℄) = b or ([p℄) ([q℄)

([f imp p q℄) = b imp ([p℄) ([q℄)

([f all t h℄) = b all t [x : nat℄([h x℄)

([(f ex t h℄) = b ex t [x : nat℄([h x℄)

The boolean versions of the basi relations are de�ned by:

De�nition 12 Boolean inequalities as formalized in Coq.

Fixpoint b_le [n,m:nat℄: bool :=

Cases n m of

O O => true

| O (S y) => true

| (S x) O => false

| (S x) (S y) => (b_le x y)

end.

Definition b_lt := [n,m:nat℄(b_le (S n) m).

Definition b_ge := [n,m:nat℄(b_le m n).

Definition b_gt := [n,m:nat℄(b_lt m n).

De�nition 13 Boolean equality as formalized in Coq.

Fixpoint b_eq [n,m:nat℄: bool :=

Cases n m of

O O => true

| O (S y) => false

| (S x) O => false

| (S x) (S y) => (b_eq x y)

end.

21

The omputational versions of the onnetives are de�ned by:

De�nition 14 Boolean versions of the onnetives as de�ned in Coq.

Definition b_not := [x:bool℄(if x then false else true).

Definition b_and := [x,y:bool℄(if x then y else false).

Definition b_or := [x,y:bool℄(if x then true else y).

Definition b_imp := [x,y:bool℄(if x then y else true).

The omputational version of the bounded universal quanti�er is de�ned by

translating it into a large onjuntion. The omputational version of the

bounded existential quanti�er is de�ned by translating it into a large dis-

juntion.

De�nition 15 Boolean version of the bounded universal quanti�er as formal-

ized in Coq.

Fixpoint b_all [b:nat℄: (nat -> bool) -> bool :=

[f:nat->bool℄

Cases b of

O => true

| (S m) => (b_and (f m) (b_all m f))

end.

De�nition 16 Boolean version of the bounded existential quanti�er as for-

malized in Coq.

Fixpoint b_ex [b:nat℄: (nat -> bool) -> bool :=

[f:nat->bool℄

Cases b of

O => false

| (S m) => (b_or (f m) (b_ex m f))

end.

4.2.3 The translation istrue : bool! Prop

The translation istrue takes as input a boolean expression and lifts it to the

propositional level:

De�nition 17 The translation istrue as formalized in Coq.

Definition istrue := [x:bool℄(if x then True else False).

22

4.3 Proof-objets

Given a formula p of type form, the objetive is to onstrut a proof-objet

inhabiting [[p℄℄. This is done in two steps. First, it is shown that the dia-

gram in Figure 1 ommutes. Next, it is shown, using the onversion rule,

that (istrue ([p℄)) is inhabited. The ombination of these two steps yields the

desired proof-objet.

Using the indution priniple generated by the indutive de�nition of form,

we an onstrut a orretness proof ok of the translations.

ok : 8p : form:[[p℄℄$ (istrue ([p℄))

The proof-objet ok shows that the diagram in Figure 1 ommutes. In general

only the impliation from right to left is needed. However, in the proof of the

orretness theorem the other diretion is very useful in some of the indution

ases.

The translation ([�℄) is onstruted in suh a way, that for losed terms p of

type form that represent a provable proposition, it holds that

([p℄)!!

��

true

and therefore

(istrue ([p℄))!!

��

True

where !!

��

is the Coq redution relation. From the onversion rule, it now

follows that any inhabitant of True is also an inhabitant of (istrue ([p℄)).

Clearly, True is inhabited by the unit term triv, and therefore (istrue ([p℄))

is inhabited.

By ombining the inhabitant of (istrue ([p℄)) with ok, we get an inhabitant

of [[p℄℄, whih is what we were looking for.

It would be nie if we also had an inverse of [[�℄℄. In that ase the user ould

write down the goal as an expression ' of type Prop and have the system

translate it to an expression p of type form. This inverse translation annot

be expressed within the objet language. Some programming in the imple-

mentation language of Coq would be required to implement this translation.

An alternative would be to use the extensible grammar mehanism of Coq to

make the syntatial level look the same as the propositional level.

23

5 Results and disussion

The language of primitive reursive arithmeti an be elegantly formalized in

the Coq system using indutive types. As a matter of fat, the indutive type

form ontains a bit more than the formulas of PRA, namely the ones where

we take the terms of type nat in Coq as base terms. The formalization is used

to automatially prove propositions of primitive reursive arithmeti.

Even though primitive reursive arithmeti is a limited language, many trivial

propositions that are tedious to prove by hand an be expressed in it. By

having the Coq proof assistant to prove these automatially, the user an

onentrate on the real, important, and mathematially interesting problems.

We believe that the methods disussed in this paper ontribute to the user-

friendliness of systems like Coq. It is possible to extend the method to inlude

other prediates and funtions on nat (or even other logial onnetives).

Suppose we have a relation R typable in Coq, so R : nat

n

!Prop. Moreover

suppose that R is omputable in Coq, so there is a term f

r

: nat

n

!bool that

omputes R. Then we an extend our method to inlude R as a prediate

by adding a onstrutor r : nat

n

!form in the de�nition of form and by

onstruting a term q suh that

q : �~x:nat

n

:R~x$ istrue(f

r

~x):

The proof term q states (in Coq) that R is omputable by f

r

; it is used in

the onstrution of the new proof term ok for this extension of form. We an

depit the situation as follows.

r

f

R

R

[[�℄℄([�℄)

istrue

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�+

-

Fig. 2. Extension of the method with omputable prediate R.

As to the eÆieny of the proedure: The proedure desribed here is not very

fast. To hek (Prime61) takes several minutes on a fast Unix workstation,

even though the proof-objet is a �-term of only 10 lines of ode and the total

size of the theory development is only 300 lines of ode. (See [13℄.) There are

three reasons why this method is slow. First, the addition and multipliation

funtions operate on the standard unary numbers (generated by the onstru-

tors O and S). Things would be faster had we used binary versions of these

funtions on the omputational level [10℄. However, the orretness proof will

24

beome more ompliated if on the propositional level the same de�nitions of

addition and multipliation are used. The use of these ineÆient de�nitions is

desirable beause a lot of theory development depends on the unary de�ned

natural numbers. The seond reason is that omputations are interpreted in

Coq whih in turn is interpreted in a funtional language. This is not the most

eÆient setting for large omputations. Third, the proedure is very general,

meaning that it annot take into aount lever triks to avoid omputations.

This results in slow algorithms. For example to hek (Prime 61) all numbers

between 1 and 61 are tested as divisors of 61 instead of only the numbers up-to

p

61.

The method of omputational reetion is not new, [7℄ gives an overview

and history of reetion and ontrasts it with the LCF (tatials) approah.

(We have briey ontrasted the reetion method with other approahes in

Setion 4.) In NuPrl a reetion mehanism and a library with many di�erent

appliations was implemented [8℄. In [4℄ omputational reetion is applied in

Coq to �rst order theories of algebrai strutures suh as monoids and rings.

In [3℄ appliation of the reetion priniple to deide equational theories is

studied.

In [12℄ a similar tehnique was used to generate proofs for statements of PRA;

there are however some di�erenes with the internal method desribed in this

paper. The method in [12℄ uses an external program. This program takes as

input a string ontaining a formula ' of PRA and produes output whih

an be read by the Lego [11℄ proof system. The output produed in this way

ontains the formula ' of type Prop, a harateristi term �

'

of type bool and

Lego tatis whih will onstrut a proof-objet ok

'

of type '$ (istrue�

'

).

The present method uses one orretness proof ok, whih an be instantiated

with a formula ' of PRA by applying it to ' sine ' is of type form whih is

now part of the objet language.

Applying the method to other theories requires modi�ations to the type form

as well as to the translations [[�℄℄ and ([�℄) introdued in setion 4.2, and to

the proof-objet ok from setion 4.3.

Aknowledgments

This work has bene�ted muh from disussions with Henk Barendregt and

Thijs Cobben. Furthermore we want to express our gratitude to the anony-

mous referees for their valuable omments.

25

Referenes

[1℄ Barendregt, H (1992), Lambda Caluli with Types, in \Handbook of Logi

in Computer Siene, Volume II".

[2℄ Barendregt, H. and Barendsen, E. (1997), Autarki Computations in

Formal Proofs, Computing Siene Institute, University of Nijmegen.

[3℄ Barthe G. and Ruys, M. and Barendregt H. (1996), A Two-Level

Approah towards lean Proof-Cheking.

[4℄ Boutin, S. (1997), Using reetion to build eÆient and erti�ed deision

proedures.

[5℄ Coquand, Th. and Paulin-Mohring, Ch. (1990), Indutively de�ned types,

In P. Martin-L�of and G. Mints editors. COLOG-88 : International onferene

on omputer logi, LNCS 417.

[6℄ Elbers H. J. (1998), Conneting Informal and Formal Mathematis, PhD.

thesis, Eindhoven University of Tehnology.

[7℄ Harrison, J. (1995), Metatheory and Reetion in Theorem Proving: a

Survey and Critique, Tehnial Report CRC-053, SRI International Cambridge

Computer Siene Researh Centre.

[8℄ Howe, D. (1988) Computational Metatheory in Nuprl, The Proeedings of the

Ninth International Conferene of Automated Dedution, eds. E. Lusk and R.

Overbeek, LNCS 310, pp. 238{257.

[9℄ Huet, G. et al. (1997), The Coq Proof Assistant, Referene Manual, Version

6.1, INRIA-Roquenourt | CNRS-ENS Lyon.

[10℄ Huisman, M. (1997), Binary addition in Lego, Tehnial Report CSI-R9716,

Computing Siene Institute, University of Nijmegen.

[11℄ Luo Z. and Pollak R. (1992) (1993,1994), LEGO Proof Development

System: User's Manual, Department of Computer Siene, University of

Edinburgh.

[12℄ Oostdijk, M. (1996), Proof by Calulation, Master's thesis 385, Universitaire

Shool voor Informatia, University of Nijmegen.

[13℄ Oostdijk, M. and Geuvers, H. (1998), Coq proof development �les,

http://www.win.tue.nl/ martijno/work/refletion/.

26

