
Explicit Substitution: on the Edge of Strong Normalization

Roel Bloo

�

bloo@win.tue.nl

Herman Geuvers

herman@win.tue.nl

Abstract

We use the Recursive Path Ordering (RPO) technique of semantic labelling to show the

Preservation of Strong Normalization (PSN) property for several calculi of explicit substitu-

tion. Preservation of Strong Normalization states that if a term M is strongly normalizing

under ordinary �-reduction (using `global' substitutions), then it is strongly normalizing if the

substitution is made explicit (`local'). There are di�erent ways of making global substitution

explicit and PSN is a quite natural and desirable property for the explicit substitution cal-

culus. Our method for proving PSN is very general and applies to several known systems of

explicit substitutions, both with named variables and with De Bruijn indices: �� of Lescanne

et al., �s of Kamareddine and R��os and �x of Rose and Bloo. We also look at two small

extensions of the explicit substitution calculus that allow to permute substitutions. For one

of these extensions PSN fails (using the counterexample in [Melli�es 95]). For the other we can

prove PSN using our method, thus showing the subtlety of the subject and the generality of

our method.

One of the key ideas behind our proof is that, for �x the set of terms of the explicit

substitution calculus, we look at the set �x

<1

, consisting of the terms A such that the

substitution-normal-form of each subterm of A is �-SN. This is a kind of `induction loading':

if we prove that �x-reduction is SN on the set �x

<1

, then we have proved PSN for �x. To

prove �x-SN on the set �x

<1

, we de�ne the �-size of a term A 2 �x

<1

as the maximum

length of a �-reduction path from the substitution-normal-form of A. Using this �-size, we

de�ne a translation from �x

<1

to some well-founded order >

rpo

on labelled terms, such

that any in�nite �x-reduction path starting from an A 2 �x

<1

translates to an in�nite

>

rpo

-descending sequence. The well-founded order >

rpo

is de�ned by using the technique of

semantic labelling.

Keywords: lambda-calculus, explicit substitution, recursive path order.

1 Introduction

Explicit Substitution was �rst studied by Abadi, Cardelli, Curien and L�evy in [Abadi et al. 90].

They proposed a calculus �� of explicit substitutions which can compose substitutions. Melli�es

has shown that simply typable terms can have in�nite reduction paths in �� ([Melli�es 95]). Several

people (see [BBLR 95], [Bloo & Rose 95], [Bloo 95], [Kamareddine & Rios 95], [Munoz 96]) have

succeeded in de�ning calculi of explicit substitutions which have the nice property that every

term which is strongly normalizing for �-reduction is also strongly normalizing in the explicit

substitution calculus. We call this property: PSN (Preservation of Strong Normalization).

In this paper we present a method to prove PSN for explicit substitution calculi based on

the recursive path order. In contrast to the work of Ferreira, Kesner and Puel (cf. [FKP 97]), our

method is applicable to named calculi as well as to calculi based on De Bruijn indices. Furthermore,

it yields direct proofs of PSN instead of reducing PSN for a new calculus to PSN for an old

calculus. Zantema used semantic labelling and the recursive path order to show termination of

�

address of both authors: Faculty of Mathematics and Computing Sience, Eindhoven University of Technology,

P.O.Box 513, NL{5600 MB Eindhoven. The �rst author was supported by the Netherlands Computer Science

Research Foundation (SION) with �nancial support from the Netherlands Organization for Scienti�c Research

(NWO).

1

the substitution part of �� [Zantema 95], but the technique he used doesn't apply to show PSN.

We use a stronger technique called semantic labelling [Ferreira & Zantema 95] to show PSN for

all explicit substitution calculi known to have the PSN property. We also show why our method

doesn't work for ��. Our technique relies on introducing a �rst order term rewrite system where

function symbols for application and substitution are labelled with natural numbers and where

variables are represented by just one constant �. The recursive path order >

rpo

on this labelled

calculus is strongly normalizing (or: terminating).

Then we take a look at the explicit substitution calculus �x. Here the �-reduction is split

up into a reduction !

Beta

(contracting the �-redex and creating an explicit substitution) and a

reduction !

x

(moving the explicit substitutions through the term to perform the substitution).

It is relatively easy (as usual in these calculi) to observe that !

x

is strongly normalizing and

conuent. So, for terms A of �x, the !

x

-normal form (substitution normal form) exists and is

unique; we call it x(A).

Now|and this is a crucial point in the proof of PSN|we take a look at the terms in �x for

which the substitution normal form of all of its subterms is �-SN; we call this set �x

<1

. An

important fact to note is that all �-SN pure �-terms are elements of �x

<1

. For A 2 �x

<1

, we

de�ne the �-size of A,

^

�(A), as the maximum length of all paths from x(A) to its �-normal form.

Using this �-size, we then de�ne a translation T from �x

<1

into the previously mentioned �rst

order term rewriting system with labelled terms. This translation T is reduction preserving in the

sense that, if M !

�x

N , then T (M) >

rpo

T (N). Hence, using the fact that >

rpo

is well-founded,

we conclude that every M 2 �x

<1

is �x-strongly normalizing. So, �x has the PSN property,

because every �-term that is �-strongly-normalizing is an element of �x

<1

.

For those more familiar with the RPO technique in the way it has been presented in [Klop 92],

we also present, in the �nal section, a translation T from �x

<1

to commutative labelled trees. This

translation is also reduction preserving in the following way (slightly di�erent from the situation

for T). If M !

x

N , then T (M) =�

�

T (N) and if M !

Beta

N , then T (M) =�

+

T (N). Here,

=� is the rpo-reduction on commutative labelled trees, as de�ned in [Klop 92], and =�

+

and =�

�

are, respectively, its transitive and transitive reexive closure. Now, PSN is obtained from the

fact that =� and !

x

are strongly normalizing.

To show the exibility of our proof method we use it for di�erent calculi of explicit substitution.

We start o� with a calculus with named variables (di�erent from, e.g. [Abadi et al. 90], where

De Bruijn-indices are used). We have chosen to use named variables because this makes the

presentation better accessible for non-specialists. Moreover, it makes it easier to single out the

places where the di�culties arise in the calculus of [Abadi et al. 90]. Hence, it helps clarifying the

problem of PSN. It should be remarked that it is not always straightforward how to turn a calculus

without named variables into a calculus with names, e.g. for �� this is complicated because of

the complex notion of scope. We also apply our proof method to the calculi �� of Lescanne et al.

and �s of Kamareddine and R��os. A well-known source of failure of PSN is the permutation of

substitutions (to a speci�c extent). In section 5.2 we discuss two small extensions of �x in which

permutation of substitutions is allowed under some very restricted conditions. For one of these

extensions, PSN can be proved using our method. For the other extension, PSN fails. It seems

that the border between PSN and non-PSN lies between these two systems.

2 A calculus for explicit substitutions with named variables

In the standard de�nition of the untyped lambda calculus, substitution is a meta-operation, usually

denoted by [x:=N] or [N=x], where x is a variable and N a term. In the following we use the

notation [N=x] for a (global) substitution of N for x. For M and N terms and x; y distinct

variables, the term M [N=x] is then de�ned by structural induction as follows.

x[N=x] := N;

y[N=x] := y; if y 6� x;

(PQ)[N=x] := P [N=x]Q[N=x];

2

(�y:P)[N=x] := �y

0

:P [y

0

=y][N=x]; if y

0

=2 FV (N) [fxg [(FV (P) n fyg)

(�x:P)[N=x] := �x:P:

We assume the notions of free variable (FV) and bound variable (BV) to be known. Furthermore,

� denotes syntactical equality modulo �-conversion, which is de�ned as the smallest equivalence

relation such that

x � x;

P � N and Q �M) PQ � NM;

P � Q; y =2 FV (Q) n fxg) �x:P � �y:Q[y=x]:

In the de�nition of substitution, there is a choice for the variable y

0

. For this de�nition to

make sense, it has to be shown that the speci�c choice for the variable y

0

is irrelevant. But this is

a consequence of the de�nition of � and the following Lemma.

Lemma 2.1 If P � Q and M � N , then P [M=x] � Q[N=x].

Remark: It is possible to �rst de�ne �-conversion and then de�ne substitution modulo �-

conversion. However, in that case, substitution of variables for variables has to be de�ned �rst

(before �-conversion), therefore we de�ne it the slightly shorter way, as above.

In order to get a calculus �x of explicit substitutions, two extensions have to be made. The

�rst is extending the terms with substitutions:

De�nition 2.2 The set of terms �x is de�ned by the following abstract syntax:

A ::= x j AA j �x:A j Ahx:=Ai

Where x denotes an arbitrary variable.

Substitution is de�ned on �x-terms as for �-terms but with the extra clauses that

M hy:=P i[N=x] :=M [y

0

=y][N=x]hy

0

:=P [N=x]i if y

0

=2 FV (N) [fxg [(FV (M) n fyg)

M hx:=P i[N=x] := M hx:=P [N=x]i

�-equivalence is de�ned on �x-terms as for �-terms but with the extra clause that

M � N;P � Q; y =2 FV (Q) n fxg) P hx:=M i � Q[y=x]hy:=N i

A 2 �x is called pure if A 2 �, i.e., A does not contain any substitution hx:=Bi.

The second is re�ning the notion of �-reduction. Remember that the reduction relation !

�

on pure terms is de�ned as the contextual closure of

(�x:A)B !

�

A[B=x]

We make explicit the global substitution in !

�

by splitting !

�

into two parts. !

Beta

is for

the creation of a substitution out of a �-redex; !

x

is for the proliferation of substitutions through

a term to variables and for performing the actual substitution or throwing away the substitute if

the substitution turns out to be void.

De�nition 2.3 The reduction relations !

Beta

and !

x

are de�ned to be the contextual closures

modulo �-conversion the following rules (respectively)

(�x:A)B !

Beta

Ahx:=Bi

(AB)hx:=Ci !

x

(Ahx:=Ci)(Bhx:=Ci)

(�y:A)hx:=Ci !

x

�y:Ahx:=Ci if x 6� y and y =2 FV (C)

xhx:=Ci !

x

C

Ahx:=Ci !

x

A if x =2 FV (A)

The explicit substitution reduction relation !

�x

is the union of !

Beta

and !

x

.

3

The reduction Ahx:=Ci !

x

A if x =2 FV (A) is also called garbage collection. Since we consider

terms modulo �-equality, substitutions can always be distributed to variables, hence the rule

yhx:=Ci !

x

y if x 6� y would already be su�cient. The more e�cient garbage collection will do

no harm however.

Remark: Working modulo �-conversion is no problem, because all operations that we de�ne on

�x are modulo �-conversion (as usual for a calculus with named variables). We shall not mention

this point anymore in the sequel.

The reduction relation !

x

is called the substitution calculus. It has nice properties:

Lemma 2.4 The reduction !

x

is strongly normalizing, conuent and has unique normal forms.

Proof: Strong normalization is shown by de�ning a map h : �x ! IN which decreases on x-

reduction; de�ne

h(x) = 1

h(AB) = h(A) + h(B) + 1

h(�x:A) = h(A) + 1

h(Ahx:=Bi) = h(A) � (h(B) + 1)

then by induction on the structure of A: if A!

x

B then h(A) > h(B).

To prove conuence, it is now su�cient to show weak conuence which is easy. 2

Notation 2.5 For R a reduction relation, we write A 2 SN

R

if A is strongly normalizing with

respect to R.

De�nition 2.6 Let A be an element of �x.

1. If A is a pure term, we write �(A) to denote the �-normal form of A, if it exists.

2. We write x(A) to denote the x-normal form of A.

3. The �-size of A,

^

�(A), is de�ned as the maximal length of a �-reduction path starting from

x(A), if x(A) 2 SN

�

. If x(A) =2 SN

�

, we let

^

�(A) :=1.

Note that for A 2 �x, x(A) is pure.

We now give some elementary but important properties of x and

^

�.

Lemma 2.7 (substitution) For all terms A;B: x(Ahx:=Bi) � x(A)[x(B)=x].

Proof: It is enough to prove the following property.

x(Ahx

1

:=B

1

i � � � hx

m

:=B

m

i) � x(A)[x(B

1

)=x

1

] � � � [x(B

m

)=x

m

];

for all terms B

1

; : : : ; B

m

and all terms A that do not end with a substitution. (So, one takes

A `as small as possible', i.e. A is a variable, an application or an abstraction). This property

is easily proved by induction on the number of symbols in the sequence A;B

1

; : : : ; B

m

. �

IH

�

x(Ahx

1

:=B

1

i � � � hx

m

:=B

m

i) � 2

Lemma 2.8 (Projection) For all terms A;B:

1. if A!

x

B then x(A) � x(B)

2. if A!

Beta

B then x(A)!!

�

x(B)

Proof: The �rst is an immediate consequence of Lemma 2.4 and the second is by induction on

the structure of A. Note that if N !!

�

N

0

then M [N=x]!!

�

M [N

0

=x]. We treat two cases:

4

� A � (�x:A

1

)A

2

, B � A

1

hx:=A

2

i. Then x(A) � (�x:x(A

1

))x(A

2

) !

�

x(A

1

)[x(A

2

)=x]

2:7

�

x(A

1

hx:=A

2

i) � x(B).

� A � A

1

hx:=A

2

i, B � A

1

hx:=A

0

2

i. Then x(A)

2:7

� x(A

1

)[x(A

2

)=x]

IH

!!

�

x(A

1

)[x(A

0

2

)=x]

2:7

�

x(B).

2

Note: The projection lemma is not strong enough to give us PSN. The problem is that if A!

Beta

B then sometimes x(A) � x(B), as in xhy:=(�z:C)Di !

Beta

xhy:=Chz:=Dii. A proof of PSN by

analyzing what can happen inside `void' substitutions such as in this example is given in [Bloo 95]

and in [Bloo & Rose 95].

Lemma 2.9 (Soundness) For all pure terms A;B, if A!

�

B then A!!

�x

B.

Proof: Induction on the structure of A, using Lemma 2.7 (substitution). We treat the case

A � (�x:A

1

)A

2

, B � A

1

[A

2

=x]. Then

A!

Beta

A

1

hx:=A

2

i !!

x

x(A

1

hx:=A

2

i)

Lemma 2.7

� x(A

1

)[x(A

2

)=x]

A pure

� A

1

[A

2

=x]:

2

A �nal property of �x that can be shown easily is the conuence of !

�x

.

Theorem 2.10 (Conuence) The reduction relation !

�x

is conuent on �x.

Proof: Let A;B

1

; B

2

be �x-terms such that A !!

�x

B

1

and A !!

�x

B

2

. Then by projection

(Lemma 2.8) x(A) !!

�

x(B

i

) (i = 1; 2), so by conuence of !

�

there is a pure term C such that

x(B

i

) !!

�

C (i = 1; 2). We also have B

i

!!

x

x(B

i

) (by de�nition of x) and x(B

i

) !!

�x

C by

soundness (Lemma 2.9). So we conclude that B

i

!!

�x

C (i = 1; 2), so C is a common reduct of

B

1

and B

2

. 2

3 The recursive path order

In this section we briey introduce the recursive path order. For a more detailed description and

proofs, the reader is referred to [Dershowitz 79], [Zantema 95] and [Ferreira & Zantema 95].

De�nition 3.1 Let F be a set of function symbols, X a set of variables such that F \X = ;, let

T (F ;X) be the set of (open) terms over F and X . Let � be a partial order on F . Let � be a map

assigning to every function symbol f 2 F one of the words mult or lex .

The recursive path order >

rpo

on T (F ;X) induced by � and � is de�ned by

f(s

1

; : : : ; s

m

) >

rpo

g(t

1

; : : : ; t

n

)

i� 9i[s

i

= g(t

1

; : : : ; t

n

) _ s

i

>

rpo

g(t

1

; : : : ; t

n

)]

_ (f � g ^ 8j[f(s

1

; : : : ; s

m

) >

rpo

t

j

])

_ (f = g ^ 8j[f(s

1

; : : : ; s

m

) >

rpo

t

j

] ^ hs

1

; : : : ; s

m

i >

�(f)

rpo

ht

1

; : : : ; t

n

i)

Here >

lex

rpo

and >

mult

rpo

are respectively the lexicographic and the multiset extensions of >

rpo

, i.e.,

� hs

1

; : : : ; s

m

i >

lex

rpo

ht

1

; : : : ; t

n

i i� for some i � m;n, s

1

= t

1

; : : : ; s

i�1

= t

i�1

; s

i

>

rpo

t

i

or

s

1

= t

1

; : : : ; s

m

= t

m

;m > n.

� hs

1

; : : : ; s

m

i >

mult

rpo

ht

1

; : : : ; t

n

i i� the multiset ffs

1

; : : : ; s

m

gg can be transformed into the

multiset fft

1

; : : : ; t

n

gg by performing the operation `replace a member s of the multiset by

�nitely many terms t such that s >

rpo

t' one or more times.

In [Ferreira & Zantema 95], � is called status function. More complex extensions of >

rpo

than

multiset or lexicographic are even possible.

5

Theorem 3.2 (Dershowitz) Let � be a partial order and � a status function on a set of function

symbols F , let >

rpo

be the induced recursive path order. Then

>

rpo

is well-founded () � is well-founded

Proof: see [Dershowitz 79] or [Ferreira & Zantema 95]. 2

4 PSN for �x

In this section we use the recursive path order to show that �x has PSN. Since the recursive path

order is about �rst order term rewrite systems, we need to translate terms of �x into a �rst order

term rewrite system. (Due to the presence of variable binding, the system �x is not �rst order.)

To be able to prove PSN this translation must in some sense preserve reductions. We do this

by labelling (some) function symbols with maximal lengths of reduction sequences; therefore we

restrict to terms where these lengths are �nite for all subterms. It will turn out that these are

exactly all the strongly normalizing �x-terms.

De�nition 4.1 We de�ne the set �x

<1

� �x by

�x

<1

= fA 2 �x j for all subterms B of A; x(B) 2 SN

�

g

Remark: For A 2 �x, A 2 �x

<1

if and only if: for all subterms B of A,

^

�(B) <1.

Lemma 4.2 For (�x:A)B 2 �x

<1

,

^

�((�x:A)B) >

^

�(Ahx:=Bi).

Proof: First note that x((�x:A)B) � (�x:x(A))x(B) and x(Ahx:=Bi) � x(A)[x(B)=x]. Now,

every!

�

-reduction path of length n starting from x(Ahx:=Bi) can be extended to a reduction path

of length n + 1 starting from x((�x:A)B), by pre�xing it with (�x:x(A))x(B) !

�

x(A)[x(B)=x].

2

Lemma 4.3 If A 2 �x

<1

and A!

�x

A

0

then A

0

2 �x

<1

.

Proof: Induction on the structure of A, using Lemma 2.8. 2

Note: Lemma 4.3 is the crucial Lemma that does not hold for ��.

De�nition 4.4 The TRS �

l

, with �

l

as set of terms and reduction relation !

l

is de�ned as

follows. The set of labelled terms �

l

is de�ned by the following abstract syntax:

A ::= � j A �

n

A j �A j AhAi

n

where n ranges over IN. The reduction relation !

l

is de�ned by

(�A) �

m

B !

l

AhBi

n

if m > n

(A �

m

B)hCi

n

!

l

(AhCi

p

) �

q

(BhCi

r

) if n � p; q; r

(�A)hCi

n

!

l

�(AhCi

n

)

AhCi

n

!

l

C

AhCi

n

!

l

A

A �

m

B !

l

A �

n

B if m > n

AhBi

m

!

l

AhBi

n

if m > n

6

Note that !

l

is not conuent (see the two rules for AhCi); for our purposes this is no problem

since !

l

is only designed for proving strong normalization. The last two rules are called Decr

in [Zantema 95] and are necessary to decrease the labels of applications and substitutions if inside

of them a!

Beta

-reduction is performed. Note that in the presence of the Decr rules we could also

have (�A) �

n+1

B !

l

AhBi

n

for all n instead of (�A) �

m

B !

l

AhBi

n

for all m > n.

Lemma 4.5 There is a precedence relation � such that for all A;B 2 �

l

,

if A!

l

B; then A >

rpo

B;

where >

rpo

is the rpo ordering induced by �. That is, !

l

is a subrelation of some recursive path

order.

Proof: For n 2 IN, de�ne the precedence � by

�

n+1

� h i

n

� �

n

� �; �

and the status function � by � (�

n

) = � (�) = � (hi

n

) = lex. Then !

l

is a subrelation of the induced

recursive path order >

rpo

. 2

Corrollary 4.6 The reduction relation !

l

on �

l

is SN.

Proof: By Theorem 3.2, >

rpo

of Lemma 4.5 is strongly normalizing, hence by Lemma 4.5 !

l

is

strongly normalizing. 2

In order to prove SN for !

�x

, we now de�ne a translation T from �x

<1

to �

l

that preserves

!

�x

-reduction steps.

De�nition 4.7 We de�ne the translation T : �x

<1

! �

l

by induction on the structure of terms

as follows.

T (x) = �

T (AB) = T (A) �

n

T (B) where n =

^

�(AB)

T (�x:A) = �T (A)

T (Ahx:=Bi) = T (A)hT (B)i

n

where n =

^

�(Ahx:=Bi)

Note that for all A 2 �x

<1

, T (A) is well-de�ned.

Lemma 4.8 For A 2 �x

<1

, if A!

�x

A

0

then T (A)!

+

l

T (A

0

).

Proof: Induction on the structure of A; we treat some of the more interesting cases.

� A � (�x:A

1

)A

2

!

Beta

A

1

hx:=A

2

i � A

0

.

Then T (A) � (�T (A

1

)) �

m

T (A

2

) !

l

T (A

1

)hx:=T (A

2

)i

n

� T (A

0

) where m =

^

�(A); n =

^

�(A

0

); note that m > n by Lemma 4.2.

� A � (A

1

A

2

)hx:=A

3

i !

x

(A

1

hx:=A

3

i)(A

2

hx:=A

3

i) � A

0

.

Then T (A) � (T (A

1

) �

m

T (A

2

))hT (A

3

)i

n

!

l

(T (A

1

)hT (A

3

)i

p

) �

n

(T (A

2

)hT (A

3

)i

q

) � T (A

0

),

where m =

^

�(A

1

A

2

), n =

^

�(A), p =

^

�(A

1

hx:=A

3

i), q =

^

�(A

2

hx:=A

3

i); note that n � p and

n � q.

� A � xhx:=A

1

i !

x

A

1

� A

0

. Then T (A) � �hT (A

1

)i

m

!

l

T (A

1

) � T (A

0

) where m =

^

�(A).

� A � A

1

hx:=A

2

i !

gc

A

1

� A

0

. Then T (A) � T (A

1

)hT (A

2

)i

m

!

l

T (A

1

) � T (A

0

) where

m =

^

�(A).

7

� A � (�y:A

1

)hx:=A

2

i !

x

�y:(A

1

hx:=A

2

i) � A

0

. Then T (A) � (�T (A

1

))hT (A

2

)i

m

!

l

�(T (A

1

)hT (A

2

)i

m

) � T (A

0

) where m =

^

�(A) =

^

�(A

0

).

� A � A

1

A

2

!

�x

A

0

1

A

2

� A

0

. Then T (A) � T (A

1

) �

m

T (A

2

)

IH

!

+

l

T (A

0

1

) �

m

T (A

2

) !!

l

T (A

0

1

) �

n

T (A

2

) where m =

^

�(A) � n =

^

�(A

0

).

2

Theorem 4.9 (PSN) 1. For all A 2 �x, A 2 �x

<1

() A 2 SN

�x

2. The system �x preserves strong normalization

Proof: The Theorem is a corollary of Lemma 4.8. In the �rst item, the implication from left to

right follows immediately from the Lemma, using the strong normalization of!

l

. The implication

from right to left is also immediate: if A =2 �x

<1

, then for some subterm B of A, x(B) has an

in�nite �-reduction path. This can easily be turned into an in�nite!

�x

-reduction path of A. For

the second item, let A be a pure �-term with A 2 SN

�

. Then A 2 �x

<1

, so A 2 SN

�x

, using the

�rst item. 2

5 ��, �s and extensions

In this section we show that our method is general enough to show PSN for other calculi of

explicit substitutions such as �� of [BBLR 95] and �s of [Kamareddine & Rios 95], and also some

extensions of �x. Furthermore, we discuss some extensions of �x, giving a counterexample to PSN

similar to the one of [Melli�es 95], but less involved.

5.1 The calculi �� and �s

De�nition 5.1 Terms and substitutions of �� are de�ned by the following abstract syntaxes.

a ::= n (aa) (�a) (a[s]);

s ::= a= * (s) ";

where n ranges over IN

+

.

The reduction relation !

��

is the union of !

�Beta

and !

�

which are de�ned by

(�a)b !

�Beta

a[b=]

(ab)[s] !

�

a[s]b[s]

(�a)[s] !

�

�(a[* (s)])

1[a=] !

�

a

n+ 1[a=] !

�

n

1[* (s)] !

�

1

n+ 1[* (s)] !

�

n[s]["]

n["] !

�

n+ 1

Some initial intuition to motivate the reduction rules of ��: a[b=] stands for `substitute b for

1 in a', [* (s)] stands for the substitution obtained by �rst raising all the indices in s by 1 and

replacing not the index 1, but the index 2, and ["] stands for the substitution that raises all

8

numbers (in the term in front of it) by 1. An example to explain these intuitive motivations is the

following. (For reasons of legibility we have removed some brackets.)

(�(�(12)))(11) !

�Beta

(�(12))[11=]

!

�

�((12)[* (11=)])

!

�

�(1[* (11=)]2[* (11=)])

!

�

�(12[* (11=)])

!

�

�(1(1[11=]["]))

!

�

�(1(11)["])

!

�

�(1(1["]1["]))

!

�

�(1(22))

For a detailed explanation and motivation of the system �� we refer to [BBLR 95].

De�nition 5.2 Terms and substitutions of �s are de�ned by the following abstract syntaxes:

a ::= n (aa) (�a) (�

i

j

a) (a�

i

a)

where n; i range over IN

+

and j ranges over IN.

The reduction relation !

�s

is the union of !

sBeta

and !

s

which are de�ned by

(�a)b !

sBeta

a�

1

b

(�a)�

i

b !

s

�(a�

i+1

b)

(a

1

a

2

)�

i

b !

s

(a

1

�

i

b)(a

1

�

i

b)

n�

i

b !

s

8

<

:

n� 1 if n > i

�

i

0

(b) if n = i

n if n < i

�

i

k

(�a) !

s

�(�

i

k+1

a)

�

i

k

(a

1

a

2

) !

s

(�

i

k

a

1

)(�

i

k

a

2

)

�

i

k

n !

s

�

n+ i� 1 if n > k

n if n � k

Again, we don't give a detailed explanation and motivation for the rules of this calculus, but

refer to [Kamareddine & Rios 95]. Some initial intuition: �

i

(b) stands for the substitution of b for

i, �

i

k

(a) stands for `raise all the numbers n > k in the term a with i� 1'. To explain the rules, we

treat the same example as for ��.

(�(�(12)))(11) !

sBeta

(�(12))�

1

(11)

!

s

�((12)�

2

(11))

!

s

�(1�

2

(11))(2�

2

(11))

!

s

�(1(2�

2

(11)))

!

s

�(1�

2

0

(11))

!

s

�(1(�

2

0

(1)�

2

0

(1)))

!!

s

�(1(22))

The calculus �s is very similar to ��. The di�erence is mainly in the moment of updating: in

�� every step n+ 1[* (s)]!

�

n[s]["] creates an update substitution ["] whereas in �s the update

9

functionsymbol �

i

k

is only created at the actual moment of substitution in n�

n

a!

s

�

n

0

a. Also, in

the reductions n�

i

b!

s

n� 1 (n > i)and n�

i

b!

s

n (n < i), there is no update function generated

whereas in n+ 1[* (s)] !

�

n[s]["] an update substitution is created regardless of whether the

substitution [" (s)] is binding n+ 1 or is void.

In [BBLR 95] it is shown that �� has PSN by contradicting the existence of a minimal in�nite

��-reduction of a term which is SN for!

�

; in [Kamareddine & Rios 95] PSN is shown to hold for

�s in a similar way.

We show that �� and �s are PSN by using the labelled calculus �

l

. The proof is very similar

to the proof of PSN for �x that we gave in the previous section.

For �� and �s we have the usual properties such as SN, CR, UN for !

�

respectively !

s

,

substitution lemma, projection lemma, soundness lemmaand conuence for!

��

respectively!

�s

.

We denote the!

�

-normal form respectively !

s

-normal form of a term b by �(b) respectively s(b).

Note that a substitution of �� is of the form *

n

(b=) or *

n

(") for some n.

We denote �-reduction on ��-terms as well as on �s-terms by !

�

; for a ��- respectively

�s-term a we write

^

�(a) to denote the maximal number of �-reduction steps starting from �(a)

respectively s(a), if this number exists.

De�nition 5.3

��

<1

:= fa 2 �� 8b � a[�(b) 2 SN

�

]g

�s

<1

:= fa 2 �s 8b � a[s(b) 2 SN

�

]g

Lemma 5.4 1. ��

<1

is closed under !

��

-reduction

2. �s

<1

is closed under !

�s

-reduction

De�nition 5.5 1. T

�

: ��

<1

�! �

l

is de�ned by

T

�

(n) = �

T

�

(ab) = T

�

(a) �

p

T

�

(b) where p =

^

�(ab)

T

�

(�a) = �T

�

(a)

T

�

(a[*

n

(b=)]) = T

�

(a)hT

�

(b)i

p

where p =

^

�(a[*

n

(b=)])

T

�

(a[*

n

(")]) = T

�

(a)

2. T

s

: �s

<1

�! �

l

is de�ned by

T

s

(n) = �

T

s

(ab) = T

s

(a) �

p

T

s

(b) where p =

^

�(ab)

T

s

(�a) = �T

s

(a)

T

s

(a�

i

b) = T

s

(a)hT

s

(b)i

p

where p =

^

�(a�

i

b)

T

s

(�

i

j

a) = T

s

(a)

Lemma 5.6 1. If a 2 ��

<1

and a!

�

b then T

�

(a)!!

l

T

�

(b)

2. If a 2 ��

<1

and a!

�Beta

b then T

�

(a)!!

+

l

T

�

(b)

3. If a 2 �s

<1

and a!

s

b then T

s

(a)!!

l

T

s

(b)

4. If a 2 �s

<1

and a!

sBeta

b then T

s

(a)!!

+

l

T

s

(b)

Proof: Induction on the structure of a. 2

Theorem 5.7 1. a 2 ��

<1

() a 2 SN

��

2. !

��

has PSN

10

3. a 2 �s

<1

() a 2 SN

�s

4. !

�s

has PSN

Proof:

1.) by projection; (: since !

�

is SN, any in�nite !

��

-reduction must contain in�nitely

many !

�Beta

-steps. Therefore an in�nite reduction of a pure term which is SN for !

�

translates by T

�

into an in�nite !

l

-reduction which is impossible by 4.6.

2. follows from 1.

3. & 4. similar to 1. & 2.

2

5.2 Extensions of �x

In this section we consider several extensions of �x with some kind of composition. The calculus

�� of [Abadi et al. 90] was designed to be able to compose substitutions. The price however is not

having PSN (cf. [Melli�es 95]). Since �x has no composition but does have PSN, it is an interesting

question where the borderline is between PSN and composition of substitutions.

We start with a short discussion of ��. For the precise de�nition of ��, the reader is referred

to [Abadi et al. 90]. The composition of substitutions in �� is mainly performed by two rules,

Comp andMap. The �rst glues two substitutions together: a[s][t]

Comp

�! a[s�t], while Map allows the

distribution of the second substitution over the �rst: (b�c�s

0

)�t

Map

�! b[t]�((c�s

0

)�t)

Map

�! b[t]�c[t]�(s

0

�t).

As was pointed out in [Kamareddine & Nederpelt 93], the substitutions of �� are roughly the

same as simultaneous parallel substitutions in the following extension of �x:

terms t ::= x tt �x:t th~x:=

~

ti

where h~x:=

~

ti is shorthand for hx

1

; : : : ; x

m

:=t

1

; : : : ; t

m

i; reductions are similar as for �x plus the

composition rule

ah~x:=

~

bih~y:=~ci �! ah~x; ~y:=b

1

h~y:=~ci; : : : ; b

m

h~y:=~ci; ~ci

In this calculus one can imitate the counterexample to PSN of �� (cf [Melli�es 95]). In fact,

even the calculus �x extended with the rule

ahx:=bihy:=ci �! ahx:=bhy:=cii if y =2 FV (a)

(no simultaneous substitutions required) doesn't have PSN. We give an in�nite derivation starting

from the term

�

�y:(�y:a)b

��

(�y:a)b

�

. Note that this term is even simpler than the term used

in [Melli�es 95].

First we de�ne substitutions �

i

for m 2 IN by

�

0

� hy:=(�y:a)bi

�

m+1

� hy:=b�

m

i

Now consider the following three reductions. (For simplicity we forget about the variable conven-

tion during this counterexample; furthermore, we freely change bound variables if convenient.)

�

�y:(�y:a)b

��

(�y:a)b

�

!!

�

(�y:a)b

�

hy:=(�y:a)bi

!!

�

�y:ahy:=(�y:a)bi

��

bhy:=(�y:a)bi

�

� (�y:a�

0

)(b�

0

)

! a�

0

hy:=b�

0

i

� a�

0

�

1

11

a�

0

�

m+1

� ahy

0

:=(�y:a)bihy:=b�

m

i ! ahy

0

:=((�y:a)b)hy:=b�

m

ii

!! ahy

0

:=(�y:ahy:=b�

m

i)(bhy:=b�

m

i)i � ahy

0

:=(�y:a�

m+1

)(b�

m+1

)i

! ahy

0

:=a�

m+1

hy:=b�

m+1

ii � ahy

0

:=a�

m+1

�

m+2

i

a�

m+1

�

n+1

� ahy

0

:=b�

m

ihy:=b�

n

i ! ahy

0

:=b�

m

hy:=b�

n

ii � ahy

0

:=b�

m

�

n+1

i

These combine into an in�nite derivation in the following way.

�

�y:(�y:a)b

��

(�y:a)b

�

!!

a�

0

�

1

!! : : :a�

1

�

2

: : : !! : : :a�

0

�

2

: : :

!! : : :a�

2

�

3

: : : !! : : :a�

1

�

3

: : : !! : : :a�

0

�

3

: : :

.

.

.

.

.

.

.

.

.

!! : : : a�

0

�

m+1

: : : !! : : :a�

m+1

�

m+2

: : : !! : : :a�

0

�

m+2

: : :

Recall that we proved PSN by showing that for every term A: if the x-normal forms of all its

subterms are in SN

�

, then A 2 SN

!

�x

. With the extra composition reduction de�ned above,

there is an easy counterexample to that: the term xhy:=zzihz:=�w:wwi has x-normal form x

(and is also SN for �x-reduction), but it has
 as a subterm of a reduct if composition is allowed.

Observe that this term violates Lemma 4.3.

This example also shows why our method fails for the system extended with the extra com-

position rule, and hence also for ��: T (xhy:=zzihz:=�w:wwi) � �h� �

0

�i

0

h�(� �

0

�)i

0

whereas

after composition of the two substitutions, the label of the innermost substitution does not exist:

T (xhy:=(zz)hz:=�w:wwii) � �h(� �

0

�)h�(� �

0

�)i

1

i

0

. So reduction in �� does not always decrease

T -images.

One can try to give a rule for composition of substitutions such that reduction still decreases

T -images, the following rule seems best �t for this purpose:

ahx:=bihy:=ci ! ahx:=bhy:=cii if y =2 FV (x(a)); x 2 FV (x(a))

The idea behind this rule is that, if x 2 FV (x(a)), then bhy:=ci will occur as a subterm of some

!

�x

-reduct of ahx:=bihy:=ci. Hence allowing to create bhy:=ci at this point will not spoil PSN.

Below we show that indeed this calculus has PSN.

De�nition 5.8 �xc

�

is the calculus with as terms the terms of �x and reduction rules those of

�x and the extra rule

ahx:=bihy:=ci !

c

� ahx:=bhy:=cii if x 2 FV (x(a)); y =2 FV (x(a)):

First of all, we show that adding the c

�

-rule does not spoil our substitution calculus:

Lemma 5.9 Let a; b; c be terms of �x and x; y variables such that x 2 FV (x(a)) and y =2

FV (x(a)). Then x(ahx:=bihy:=ci) � x(ahx:=bhy:=cii).

Proof: By Lemma 2.7 we have x(ahx:=bihy:=ci) � x(a)[x(b)=x][x(c)=y] and x(ahx:=bhy:=cii) �

x(a)[x(b)[x(c)=y]=x]. By an elementary lemma about substitution in ordinary �-calculus we have

x(a)[x(b)=x][x(c)=y] � x(a)[x(c)=y][x(b)[x(c)=y]=x] and since y =2 FV (x(a)), the latter expression

equals x(a)[x(b)[x(c)=y]=x]. 2

Lemma 5.10 xc

�

-reduction is SN.

Proof: We translate �xc

�

-terms into �

l

as follows:

T

0

(x) � �

T

0

(ab) � T

0

(a) �

0

T

0

(b)

T

0

(�x:a) � �T

0

(a)

T

0

(ahx:=bi) � T

0

(a)hT

0

(b)i

0

12

Let � be the precedence de�ned in Lemma 4.5 (so h i

0

� �

0

� �; �), and >

rpo

the induced rpo

on �

l

. Now it is straightforward to show that for �xc

�

-terms a; b, if a !

xc

�
b then T

0

(a) >

rpo

T

0

(b). We show the crucial case ahx:=bihy:=ci !

c

�
ahx:=bhy:=cii. Then T

0

(ahx:=bihy:=ci) �

T

0

(a)hT

0

(b)i

0

hT

0

(c)i

0

and T

0

(ahx:=bhy:=cii) � T

0

(a)hT

0

(b)hT

0

(c)i

0

i

0

. Thus we are done if we

show the following three inequalities:

T

0

(a)hT

0

(b)i

0

hT

0

(c)i

0

>

rpo

T

0

(a)

T

0

(a)hT

0

(b)i

0

hT

0

(c)i

0

>

rpo

T

0

(b)hT

0

(c)i

0

�

T

0

(a)hT

0

(b)i

0

; T

0

(c)

�

>

lex

rpo

�

T

0

(a); T

0

(b)hT

0

(c)i

0

�

The �rst inequality holds since T

0

(a) is a subterm of the left hand side, the third inequality holds

since T

0

(a) is a subterm of T

0

(a)hT

0

(b)i

0

; note that the lexicographic extension is crucial here.

The second inequality holds if we show the following three inequalities:

T

0

(a)hT

0

(b)i

0

hT

0

(c)i

0

>

rpo

T

0

(b)

T

0

(a)hT

0

(b)i

0

hT

0

(c)i

0

>

rpo

T

0

(c)

�

T

0

(a)hT

0

(b)i

0

; T

0

(c)

�

>

lex

rpo

�

T

0

(b); T

0

(c)

�

The �rst two inequalities hold since the right hand side is a subterm of the left hand side, the

third holds since T

0

(b) is a subterm of T

0

(a)hT

0

(b)i

0

. 2

Lemma 5.11 !

xc

�
and !

�xc

�
are conuent.

Proof: We can imitate the proof of Theorem 2.10 since by Lemma 5.9, !

c

�
doesn't change

x-normalforms. 2

Lemma 5.12 �xc

�

has PSN.

Proof: We extend the reduction relation !

l

on �

l

with the following rule:

AhBi

m

hCi

n

!

l

AhBhCi

p

i

q

if n � p; q:

In order to show that Lemma 4.5 and Corollary 4.6 still hold for this extended reduction !

l

, we

only need to check that for n � p; q, AhBi

m

hCi

n

>

rpo

AhBhCi

p

i

q

. This can be shown similar to

the proof of Lemma 5.10. Again, it is crucial that hi be given the lexicographic extension by � .

Now we can show that!

�xc

�-reduction is preserved by T of De�nition 4.7: all we need to check

is that ifM !

c

� N at the root, then T (M)!

l

T (N). So, suppose thatM � Ahx:=Bihy:=Ci and

N � Ahx:=Bhy:=Cii with x 2 FV (x(A)), y =2 FV (x(A)). Then T (M) � T (A)hT (B)i

m

hT (C)i

n

with m =

^

�(Ahx:=Bi), n =

^

�(M) and T (N) � T (A)hT (B)hT (C)i

p

i

q

with p =

^

�(Bhy:=Ci),

q =

^

�(N). Then n = q, by Lemma 5.9, and p � n because x(Bhy:=Ci) is a subterm of x(M), due

to the occurrence of x in x(A). Therefore T (M)!

l

T (N).

Now, similar to Theorem 4.9 we have as consequences that the sets �x

<1

and SN

�xc

�
are the

same and hence we conclude that PSN holds for �xc

�

. 2

that been

6 Proof of PSN using labelled trees

In this section we outline a proof of PSN, again using the RPO technique, but now in the way it

has been presented in [Klop 92]. One then looks at the collection of commutative �nite labelled

trees Tree (i.e. trees are identi�ed upto permutation of branches: there is no order from left to

right in the subtrees). The labels are taken from IN. Furthermore, one looks at the set Tree

?

,

where some nodes in a tree may have a marker ?. It is convenient to denote the tree with root

node n and subtrees t

1

; : : : ; t

p

by n(t

1

; : : : ; t

p

), and similarly, if the root node has a marker, by

n

?

(t

1

; : : : ; t

p

). In the following, we abbreviate t

1

; : : : ; t

p

to

~

t. On these commutative labelled trees

with markers (the set Tree

?

), a reduction relation =� is de�ned.

13

De�nition 6.1 The relation =� on Tree

?

is de�ned as follows.

n(

~

t) =� n

?

(

~

t);

n

?

(

~

t) =� m(n

?

(

~

t); : : : ; n

?

(

~

t));

if m < n, zero or more copies of n

?

(

~

t);

n

?

(s;

~

t) =� n(s

?

; : : : ; s

?

;

~

t);

zero or more copies of s;

n

?

(

~

t) =� t

i

;

1 � i � p:

Furthermore, the relation =� is compatible with the tree-forming operations, that is, if t

i

=� t

0

i

,

then n(t

1

; : : : ; t

i

; : : : ; t

p

) =� n(t

1

; : : : ; t

0

i

; : : : ; t

p

).

As usual, the relation =�

+

denotes the transitive closure of =� and =�

�

denotes the transitive

reexive closure of =�.

For examples on the use of these rules we refer to [Klop 92]. we just mention the main result,

which will be applied here to the problem of PSN for explicit substituion.

Theorem 6.2 ([Klop 92],[Dershowitz 79]) The relation =�

+

is well-founded on Tree (the set

of trees without markers).

To prove PSN for the calculus �x, we now proceed by de�ning a reduction preserving mapping

T from �x

<1

to Tree: if M !

x

N , then M =�

�

N and if M !

Beta

N , then M =�

+

N . Hence,

using the fact that !

x

is strongly normalizing, we can again conclude that every M 2 �x

<1

is

�x-SN and so that �x has the PSN property.

For notational convenience, we abbreviate the sequence of de�nitions hx

1

:=P

1

i � � � hx

n

:=P

n

i to

hx:=P i.

De�nition 6.3 For M 2 �x

<1

, we de�ne the tree T (M) by induction on the length of M as

follows.

T (x) = 0;

T (QN) =

^

�(QN)

	�

�

�

�

�

� @

@

@

@

@

@R

T (Q) T (N)

T (�y:N) = T (N)

T (yhx:=P i) =

0

	�

�

�

�

�

� @

@

@

@

@

@R

T (P

1

) � � � T (P

n

)

if y =2 fx

1

; : : : ; x

n

g

T (x

i

hx:=P i) =

0

��

�

�

�

�

�

�

�

�

�

	�

�

�

�

�

� @

@

@

@

@

@R

T (P

1

) � � � T (P

i�1

) T (P

i

hx

i+1

:=P

i+1

i � � � hx

n

:=P

n

i)

14

T ((QN)hx:=P i) =

^

�((QN)hx:=P i)

	�

�

�

�

�

� @

@

@

@

@

@R

T (Qhx:=P i) T (N hx:=P i)

T ((�y:N)hx:=P i) = T (N hx:=P i)

The following Lemmas show that T preserves reductions (in the right sense as announced

above). The proofs of these Lemmas are not di�cult, the main complication being to �nd out

the right induction loadings (and the right order in which the induction should be done). We just

outline the proofs.

Lemma 6.4 For M 2 �x

<1

, if M !

x

N , then T (M) =�

�

T (N).

Proof: By induction on the length ofM , distinguishing subcases according to the structure ofM .

Note that we need Lemma 4.3 to make sure that N 2 �x

<1

and hence that T (N) is well-de�ned.

2

The following two Lemmas are sublemmas necessary for the proof of preservation of !

Beta

-

reduction by T .

Lemma 6.5 For N hx:=P i 2 �x

<1

, T (N hx:=P i) =�

�

T (N).

Proof: By induction on the length of N . 2

Lemma 6.6 For ((�y:N)Q)hx:=P i 2 �x

<1

, T (((�y:N)Q)hx:=P i) =�

+

T (N hy:=Qihx:=P i).

Proof: By induction on the length of N , using Lemma 6.5. First write N as Rhy:=Qi, with R

not a term that ends with a substitution item. (So, the sequence hy:=Qi should be taken as long

as possible.) Then distinguish cases according to the structure of R. 2

Corrollary 6.7 For M 2 �x

<1

, if M !

Beta

N , then T (M) =�

+

T (N).

Proof: By induction on the structure of M , using Lemma 6.6 for the base case when M itself is

the contracted Beta-redex. 2

Theorem 6.8 The calculus �x has the PSN property.

Proof: If M is a �-SN pure �-term, then M 2 �x

<1

. If M has an in�nite �x-reduction path,

then T (M) has an in�nite =�-reduction path, due to Lemma 6.4 and Corollary 6.7, contradicting

Theorem 6.2. 2

7 Conclusions

We have introduced a new method for proving PSN for �-calculi with explicit substitution. The

method involves four steps:

� determine a suitable set contained in the set of strongly normalizing terms in the explicit

substitution calculus, containing the pure �-SN terms and closed under explicit substitution

reduction,

� give a translation from this set into a �rst order term rewrite system,

� de�ne a strongly normalizing reduction relation on this TRS by giving a well-founded prece-

dence,

15

� show that the translation preserves in�nite reduction paths.

For named calculi, the translation identi�es all variables; for calculi using de Bruijn indices the

translation identi�es all indices and erases update functions, giving evidence for the statement

`update functions do not matter for termination issues'. Kruskal's theorem ensures that a well-

founded precedence yields a strongly normalizing term rewrite system.

Further applications of this method that are under investigation:

� give a maximal strategy for �x-reduction and an inductive characterization of the set �x

<1

.

� give a general PSN proof for combinatory reduction systems with explicit substitution

(cf. [Rose 95], [Bloo & Rose 96])

� give a (�rst order) calculus with explicit substitution which has PSN as well as conuence

on open terms.

8 Acknowledgements

Thanks to Thomas Arts for making us aware of current notations for the recursive path orders,

using semantic labelling. We have also bene�tted from discussions with the following people:

Hans Zantema, Gilles Barthe, Daniel Briaud, Twan Laan, Pierre Lescanne, Rob Nederpelt and

Kristo�er Rose.

References

[Abadi et al. 90] Abadi, M., Cardelli, L., Curien, P.-L., and L�evy, J.-J., Explicit substitutions, in POPL

'90|Seventeenth Annual ACM Symposium on Principles of Programming Languages (San Francisco,

California, jan. 1990).

[Abramsky et al. 1992] Abramsky, S., Gabbay, Dov M., and Maibaum, T. S. E. (eds.), Handbook of Logic

in Computer Science, Vol. II , Oxford University Press, 1992.

[BBLR 95] Benaissa, Z.E.A., Briaud, D., Lescanne, P. and Rouyer-Degli, J., ��, a calculus of explicit

substitutions which preserves strong normalization, Journal of Functional Programming, vol. 6, nr.

5, 1996.

[Bloo 95] Bloo, R., Preservation of Strong Normalization for Explicit Substitution, Computing Science

Report 95-08, Eindhoven University of Technology.

[Bloo & Rose 95] Bloo, R., and Rose, K. H., Preservation of Strong Normalization in Named Lambda

Calculi with Explicit Substitution and Garbage Collection, in: J.C. van Vliet, ed., Proceedings of

CSN'95 (Computing Science in the Netherlands), ISBN 90 6196 460 1, also available as technical

report via WWW; URL: ftp://ftp.diku.dk/diku/semantics/papers/D-246.ps.

[Bloo & Rose 96] Bloo, R., and Rose, K. H., Combinatory Reduction Systems with Explicit Substitu-

tion that Preserve Strong Normalization, Lecture Notes in Computer Science, Vol. 1103, Rewrite

Techniques and Applications '96, pages 169{183 , Springer-Verlag, 1996.

[Dershowitz 79] Dershowitz, N., A note on simpli�cation orderings, Inf. Proc. Letters 9 (5): 212{215,

1979

[Ferreira & Zantema 95] Ferreira, M.C.F., and Zantema, H., Well-foundedness of Term Orderings, pro-

ceedings of CTRS-94, Springer, 1995, LNCS vol. 968, pp. 106{123.

[FKP 97] Ferreira, Kesner and Puel, �-calculi with explicit substitutions and composition which preserve

�-strong normalization (Extended Abstract), in: Hanus, M., and Rodr��guez-Artalejo, M. (eds.),

Proceedings of Algebraic and Logic Programming '96, Lecture Notes in Computer Science, Vol. 1139,

pages 284{298, Springer-Verlag, 1996.

[Kamareddine & Nederpelt 93] Kamareddine, F., and Nederpelt, R.P., On stepwise explicit substitution,

International Journal of Foundations of Computer Science 4 (3), 197{240, 1993.

16

[Kamareddine & Rios 95] Kamareddine, F., and Rios, A., �-calculus �a la de Bruijn & explicit substitu-

tion, Lecture Notes in Computer Science, Vol. 982, 7th international symposium on Programming

Languages: Implementations, Logics and Programs, PLILP '95, pages 45{62 , Springer-Verlag, 1995.

[Klop 92] Klop, J. W., Term rewrite systems, in: [Abramsky et al. 1992].

[Melli�es 95] Melli�es, P.-A., Typed �-calculi with explicit substitutions may not terminate, in: Proceedings

of TLCA'95 , Lecture Notes in Computer Science, Vol. 902, eds. M. Dezani-Ciancaglini and G.

Plotkin.

[Munoz 96] Mu~noz, C., Conuence and Preservation of Strong Normalization in an Explicit Substitutions

Calculus, in: Proceedings of LICS '96, IEEE Computer Society Press, 1996.

[Rose 95] Rose, K.H., Combinator Reduction Systems with Explicit Substitution, in: Proceed-

ings of HOA'95, (Second International Workshop on Higher-Order Algebra, Logic and Term

Rewriting), Paderborn, Germany, 1995, also available as technical report via WWW; URL:

ftp://ftp.diku.dk/diku/semantics/papers/D-247.ps.

[Zantema 95] Zantema, H., Termination of Term Rewriting by Semantic Labelling, Fundamenta Infor-

maticae, Vol. 24 (1,2), pp. 89{105, 1995

17

