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Abstract9

This short note is a clarification of a proof in the paper “Proof terms for generalized natural10

deduction” [2]. In the original paper, some details are missing, which makes the proof unclear.11

In particular, this concerns the proof of Strong Normalization for the reduction −→a, the proof-12

reduction that contracts an introduction which is immediately followed by an elimination of the13

same connective. This is also called the β-rule for the connective. In [2], this is proved for14

generalized intuitionistic connectives, which are derived from the truth-table definition of the15

connective. In this note, we provide some additional details for the proof and we repair a few16

omissions in the definitions. We do not repeat the definitions of the derivation rules and of the17

reduction −→a, so this note can only be read along with the original paper [2].18
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In [1] it has been shown how to generate natural deduction rules for propositional27

connectives from truth tables, both for classical and constructive logic. The paper [2]28

extends this for the constructive case with proof-terms, thereby extending the Curry-Howard29

isomorphism to these new connectives. A general notion of conversion of proofs is defined,30

both as a conversion of derivations and as a reduction of proof-terms. Conversions come in31

two favors: either a detour conversion, −→a, arising from a detour convertibility, where an32

introduction rule is immediately followed by an elimination rule, or a permutation conversion,33

−→b, arising from an permutation convertibility, an elimination rule nested inside another34

elimination rule. In the paper [2], both are defined for the general setting, as conversions35

of derivations and as reductions of proof-terms. One of the main contributions of [2] is36

that detour conversion, −→a, is strongly normalizing. Other results are that permutation37

conversion, −→b, is strongly normalizing and that the combination of −→a and −→b is38

weakly normalizing. In [3], it is proven that the combination of −→a and −→b is strongly39

normalizing.40

Definition 57 in Section 6.1 defines saturated sets, which are sets of strongly normalizing41

terms that are closed under key-redex expansion and it defines, given a connective c of arity42

n and saturated sets X1, . . . , Xn, a set c(X1, . . . , Xn) (which is then shown to be saturated43
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as well).44

Definition 57 (3) should be read as follows:45

A set X ⊆ Term is saturated (X ∈ SAT) if it satisfies the following properties46

a. X ⊆ SN,47

b. Neut ⊆ X48

c. X is closed under key-redex expansion: if t ∈ SN, t has a key-redex and ∀q(t −→k
a q ⇒49

q ∈ X), then t ∈ X.50

This is because otherwise each strongly normalizing t that doesn’t have a key-redex would51

be in X.52

Definition 57 (4) should be read as follows:
For a connective c of arity n and X1, . . . , Xn ∈ SAT we define the set c(X1, . . . , Xn) as
follows. Assume that r1, . . . , rm are the elimination rules for c.

c(X1, . . . , Xn) := {t | t ∈ SN ∧ ∀ri ∈ {r1, . . . , rm}
∀D ∈ SAT,∀p, q ∈ Term

∀k(pk ∈ Xk) ∧ (∀` ∀u` ∈ X` (q`[y` := u`] ∈ D)) =⇒ t ·ri
[p ; λy.q] ∈ D }

This is to make sure that the definition is also correct for a connective that has no elimination53

rules, like >. In that case c(X1, . . . , Xn) = SN.54

Now, we re-check the main lemmas concerning these definitions: Lemma 58 and Lemma55

61 of [2]. To clarify the proofs we have isolated two additional properties about key-redexes56

in Lemma 2.57

I Lemma 1 (Lemma 58 of [2].). If X1, . . . , Xn ∈ SAT, then c(X1, . . . , Xn) ∈ SAT.58

Proof. We check the 3 conditions of “saturated set” for c(X1, . . . , Xn). The proof of the59

first condition is now trivial and that of the second one largely the same as in [2]; only the60

third part is interesting. Suppose X1, . . . , Xn ∈ SAT.61

c. Suppose t ∈ SN and t has a key-redex and ∀t0(t −→k
a t0 ⇒ t0 ∈ c(X1, . . . , Xn)) (*).62

Let ri be a rule for c and let D ∈ SAT, p, q ∈ Term with ∀k(pk ∈ Xk) and ∀` ∀u` ∈63

X` (q`[y` := u`] ∈ D). We need to prove that t ·ri
[p ; λy.q] ∈ D.64

By Lemma 2(1) (see below) we know that all key-reduction steps from t ·ri
[p ; λy.q] are

of the form
t ·ri [p ; λy.q] −→k

a t
′ ·ri [p ; λy.q]

with t −→k
a t

′ (for some t′). We know t′ ∈ c(X1, . . . , Xn), so t′ ·ri
[p ; λy.q] ∈ D. So,65

we have ∀u(t ·ri
[p ; λy.q] −→k

a u =⇒ u ∈ D). Also t ·ri
[p ; λy.q] has a key-redex and66

t ·ri [p ; λy.q] ∈ SN (by Lemma 2(3) below). So t ·ri [p ; λy.q] ∈ D and we are done.67

J68

I Lemma 2. 1. If t has a key-redex and t ·ri
[p ; λy.q] −→k

a u, then u = t′ ·ri
[p ; λy.q] for69

some t′ with t −→k
a t

′.70

2. If t has a key-redex and t −→a t′ −→k
a q′, where the reduction t −→a t′ is not a71

key-reduction, then there is a q with t −→k
a q �a q

′.72

3. If all proper sub-terms of t are SN and ∀q(t −→k
a q =⇒ q ∈ SN), then t ∈ SN73

Proof. The first is simply by an analysis of the possible cases for t ·ri
[p ; λy.q] −→k

a u. The74

second is by induction on the shape of t. The third is by proving ∀t′(t −→a t
′ =⇒ t′ ∈ SN),75

using an analysis of the possible cases for the structure of t and induction on the proof that76

the direct subterms of t are SN, using (2). J77

For completeness, we also check Lemma 61 of [2], in particular the “introduction case”.78
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I Lemma 3 (Lemma 61 of [2].). If Γ ` t : A, and ρ |= Γ, then 〈t〉ρ ∈ 〈A〉.79

Proof. By induction on the derivation of Γ ` t : A. Suppose ρ |= Γ. The (axiom) case and80

the (el) case are exactly as in [2], so we only consider the (in) case. We ignore ρ for the rest81

of the proof, as it gives a lot of notational overhead, so we just write t for 〈t〉ρ.82

Suppose Φ = c(A1, . . . , An) and

. . .Γ ` sj : Aj . . . . . .Γ, xi : Ai ` ti : Φ . . .
in

Γ ` {s ; λx.t}r : Φ

We need to prove {s ; λx.t}r ∈ Φ and we have as induction hypothesis sj ∈ Aj (for83

all j) and ti[xi := ai] ∈ Φ for all ti and ai ∈ Ai. In particular, all these terms are SN.84

In case there are no elimination rules for Φ, the interpretation of Φ is SN and indeed,85

{s ; λx.t}r ∈ SN, so we are done.86

In case there are elimination rules for Φ, let r′ be such a rule for c, and let D ∈ SAT, p, q ∈87

Term with ∀k(pk ∈ Ak) and ∀`∀u` ∈ A` (q`[y` := u`] ∈ D). For {s ; λx.t}r ·r′ [p ; λy.q]88

there are the following possible key-reductions:89

{s ; λx.t}r ·r′ [p ; λy.q] −→k
a ql[yl := sj ] (1)90

{s ; λx.t}r ·r′ [p ; λy.q] −→k
a ti[xi := pk] ·r′ [p ; λy.q] (2)91

In case (1), ql[yl := sj ] ∈ D by the assumption and the induction hypothesis. In case92

(2), ti[xi := pk] ∈ Φ by the induction hypothesis and so ti[xi := pk] ·r′ [p ; λy.q] ∈ D by93

the definition of Φ = c(A1, . . . , An) as a saturated set. So, {s ; λx.t}r ·r′ [p ; λy.q] has94

a key-redex and all its key reductions are in D, so the term itself is in D. Therefore,95

{s ; λx.t}r ∈ Φ.96

J97
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