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—— Abstract

This short note is a clarification of a proof in the paper “Proof terms for generalized natural
deduction” [2]. In the original paper, some details are missing, which makes the proof unclear.
In particular, this concerns the proof of Strong Normalization for the reduction —, the proof-
reduction that contracts an introduction which is immediately followed by an elimination of the
same connective. This is also called the S-rule for the connective. In [2], this is proved for
generalized intuitionistic connectives, which are derived from the truth-table definition of the
connective. In this note, we provide some additional details for the proof and we repair a few
omissions in the definitions. We do not repeat the definitions of the derivation rules and of the
reduction —,, so this note can only be read along with the original paper [2].
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In [1] it has been shown how to generate natural deduction rules for propositional
connectives from truth tables, both for classical and constructive logic. The paper [2]
extends this for the constructive case with proof-terms, thereby extending the Curry-Howard
isomorphism to these new connectives. A general notion of conversion of proofs is defined,
both as a conversion of derivations and as a reduction of proof-terms. Conversions come in
two favors: either a detour conversion, —,, arising from a detour convertibility, where an
introduction rule is immediately followed by an elimination rule, or a permutation conversion,
—p, arising from an permutation convertibility, an elimination rule nested inside another
elimination rule. In the paper [2], both are defined for the general setting, as conversions
of derivations and as reductions of proof-terms. One of the main contributions of [2] is
that detour conversion, —,, is strongly normalizing. Other results are that permutation
conversion, —y, is strongly normalizing and that the combination of —, and — is
weakly normalizing. In [3], it is proven that the combination of —, and —, is strongly
normalizing.

Definition 57 in Section 6.1 defines saturated sets, which are sets of strongly normalizing
terms that are closed under key-redex expansion and it defines, given a connective c¢ of arity
n and saturated sets Xi,...,X,, a set ¢(Xq,...,X,) (which is then shown to be saturated
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as well).
Definition 57 (3) should be read as follows:
A set X C Term is saturated (X € SAT) if it satisfies the following properties
a. X CSN,
b. Neut C X
c. X is closed under key-redex expansion: if t € SN, ¢ has a key-redex and Vq(t —>’; q=
g€ X), thente X.
This is because otherwise each strongly normalizing ¢ that doesn’t have a key-redex would
be in X.
Definition 57 (4) should be read as follows:
For a connective ¢ of arity n and X1,...,X,, € SAT we define the set ¢(Xy,...,X,) as
follows. Assume that ry,...,r,, are the elimination rules for c.

o(X1,..., Xp) ={t |t eSNAVr, €{r1,....mn}
VD € SAT,Vp,q € Term
Vk(pr € Xi) A (VY € Xo (qelye == w] € D)) = t-,[p; \yql€D}

This is to make sure that the definition is also correct for a connective that has no elimination
rules, like T. In that case ¢(Xy,...,X,) = SN.

Now, we re-check the main lemmas concerning these definitions: Lemma 58 and Lemma
61 of [2]. To clarify the proofs we have isolated two additional properties about key-redexes
in Lemma 2.

» Lemma 1 (Lemma 58 of [2].). If X1,...,X,, € SAT, then ¢(X1,...,X,) € SAT.

Proof. We check the 3 conditions of “saturated set” for ¢(Xjy,...,X,). The proof of the
first condition is now trivial and that of the second one largely the same as in [2]; only the
third part is interesting. Suppose X7,..., X, € SAT.

c. Suppose t € SN and t has a key-redex and Vto(t —* to = to € ¢(X1,..., X)) (¥).
Let r; be a rule for ¢ and let D € SAT, p,g € Term with Vk(p, € Xj) and V¢ Vu, €
X (qe[ye :== ug] € D). We need to prove that t -, [p; A\y.q] € D.

By Lemma 2(1) (see below) we know that all key-reduction steps from ¢ -,., [p ; Ay.q] are
of the form
t’ri [ﬁ ; m] _>I; t' ‘r; [ﬁ ; m]
with ¢ —* ' (for some t'). We know ' € ¢(X1,...,X,), so t' «.. [p; Ay.q] € D. So,
we have Yu(t +., [ ; Ay.q] —* u = w € D). Also t+,, [p; \y.q] has a key-redex and
ter [D; M\y.q] € SN (by Lemma 2(3) below). So t -, [p; Ay.q] € D and we are done.
<

» Lemma 2. 1. Ift has a key-redex and t -, [D; A\y.q] —X u, then u=+t"-., [p; My.q] for
some t' with t —F ¢/

2. If t has a key-redex and t —4 t' —F ¢, where the reduction t —, t' is not a
key-reduction, then there is a q with t —* q —, ¢'.

3. If all proper sub-terms of t are SN and Vq(t —* ¢ = q € SN), then t € SN

Proof. The first is simply by an analysis of the possible cases for ¢ -, [p; Ay.q] —* u. The
second is by induction on the shape of ¢. The third is by proving Vt'(t —, t' = t' € SN),
using an analysis of the possible cases for the structure of ¢ and induction on the proof that
the direct subterms of ¢ are SN, using (2). <

For completeness, we also check Lemma 61 of [2], in particular the “introduction case”.
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» Lemma 3 (Lemma 61 of [2].). IfT't: A, and p =T, then (t), € (A).

Proof. By induction on the derivation of I' - ¢ : A. Suppose p |=TI". The (axiom) case and
the (el) case are exactly as in [2], so we only consider the (in) case. We ignore p for the rest
of the proof, as it gives a lot of notational overhead, so we just write ¢ for (t),.
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Suppose & = ¢(Ay,...,A,) and
FF{s; .t} : ®

in
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