Addendum to "Proof terms for generalized natural deduction"

Herman Geuvers

- 4 Radboud University Nijmegen & Technical University Eindhoven, The Netherlands
- 5 herman@cs.ru.nl

6 Tonny Hurkens

8 hurkens@science.ru.nl

9 — Abstract

27

31

41

This short note is a clarification of a proof in the paper "Proof terms for generalized natural deduction" [2]. In the original paper, some details are missing, which makes the proof unclear. In particular, this concerns the proof of Strong Normalization for the reduction \longrightarrow_a , the proof-reduction that contracts an introduction which is immediately followed by an elimination of the same connective. This is also called the β -rule for the connective. In [2], this is proved for generalized intuitionistic connectives, which are derived from the truth-table definition of the connective. In this note, we provide some additional details for the proof and we repair a few omissions in the definitions. We do not repeat the definitions of the derivation rules and of the reduction \longrightarrow_a , so this note can only be read along with the original paper [2].

¹⁹ **2012 ACM Subject Classification** Theory of computation \rightarrow Proof theory, Theory of computation \rightarrow Type theory, Theory of computation \rightarrow Constructive mathematics, Theory of computation \rightarrow Functional constructs

Keywords and phrases constructive logic, natural deduction, detour conversion, permutation conversion, normalization Curry-Howard isomorphism

Digital Object Identifier 10.4230/LIPIcs...

Acknowledgements We thank Andreas Abel for pointing out some unclarities in the original paper [2], that has led us to write this addendum.

In [1] it has been shown how to generate natural deduction rules for propositional connectives from truth tables, both for classical and constructive logic. The paper [2] extends this for the constructive case with proof-terms, thereby extending the Curry-Howard isomorphism to these new connectives. A general notion of conversion of proofs is defined, both as a conversion of derivations and as a reduction of proof-terms. Conversions come in two favors: either a detour conversion, \longrightarrow_a , arising from a detour convertibility, where an introduction rule is immediately followed by an elimination rule, or a permutation conversion, \longrightarrow_b , arising from an permutation convertibility, an elimination rule nested inside another elimination rule. In the paper [2], both are defined for the general setting, as conversions of derivations and as reductions of proof-terms. One of the main contributions of [2] is that detour conversion, \longrightarrow_a , is strongly normalizing. Other results are that permutation conversion, \longrightarrow_b , is strongly normalizing and that the combination of \longrightarrow_a and \longrightarrow_b is weakly normalizing. In [3], it is proven that the combination of \longrightarrow_a and \longrightarrow_b is strongly normalizing.

Definition 57 in Section 6.1 defines saturated sets, which are sets of strongly normalizing terms that are closed under key-redex expansion and it defines, given a connective c of arity n and saturated sets X_1, \ldots, X_n , a set $c(X_1, \ldots, X_n)$ (which is then shown to be saturated

as well).

45

68

69

70

78

Definition 57 (3) should be read as follows:

A set $X \subseteq \mathsf{Term}$ is saturated $(X \in \mathsf{SAT})$ if it satisfies the following properties

- **a**. $X \subseteq SN$,
- **b**. Neut $\subseteq X$
- **c.** X is closed under key-redex expansion: if $t \in SN$, t has a key-redex and $\forall q(t \longrightarrow_a^k q \Rightarrow t)$ $q \in X$), then $t \in X$.
- This is because otherwise each strongly normalizing t that doesn't have a key-redex would be in X.

Definition 57 (4) should be read as follows:

For a connective c of arity n and $X_1, \ldots, X_n \in \mathsf{SAT}$ we define the set $c(X_1, \ldots, X_n)$ as follows. Assume that r_1, \ldots, r_m are the elimination rules for c.

$$\begin{split} c(X_1,\dots,X_n) := \{ t \mid \underline{t \in \mathsf{SN}} \land \forall r_i \in \{r_1,\dots,r_m\} \\ \forall D \in \mathsf{SAT}, \forall \overline{p}, \overline{q} \in \mathsf{Term} \\ \forall k(p_k \in X_k) \land (\forall \ell \, \forall u_\ell \in X_\ell \, (q_\ell[y_\ell := u_\ell] \in D)) \implies t \cdot_{r_i} [\overline{p} \, ; \overline{\lambda y.q}] \in D \, \} \end{split}$$

This is to make sure that the definition is also correct for a connective that has no elimination rules, like \top . In that case $c(X_1, \ldots, X_n) = \mathsf{SN}$.

Now, we re-check the main lemmas concerning these definitions: Lemma 58 and Lemma 61 of [2]. To clarify the proofs we have isolated two additional properties about key-redexes in Lemma 2.

- ▶ **Lemma 1** (Lemma 58 of [2].). If $X_1, \ldots, X_n \in SAT$, then $c(X_1, \ldots, X_n) \in SAT$.
- **Proof.** We check the 3 conditions of "saturated set" for $c(X_1, \ldots, X_n)$. The proof of the first condition is now trivial and that of the second one largely the same as in [2]; only the third part is interesting. Suppose $X_1, \ldots, X_n \in \mathsf{SAT}$.
- **c.** Suppose $t \in SN$ and t has a key-redex and $\forall t_0(t \longrightarrow_a^k t_0 \Rightarrow t_0 \in c(X_1, \dots, X_n))$ (*). Let r_i be a rule for c and let $D \in SAT$, $\overline{p}, \overline{q} \in Term$ with $\forall k(p_k \in X_k)$ and $\forall \ell \forall u_\ell \in T_k$ 63 $X_{\ell}(q_{\ell}[y_{\ell}:=u_{\ell}] \in D)$. We need to prove that $t \cdot_{r_{i}} [\overline{p}; \overline{\lambda y.q}] \in D$.

By Lemma 2(1) (see below) we know that all key-reduction steps from $t \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}]$ are of the form

$$t \cdot_{r_i} [\overline{p} ; \overline{\lambda y.q}] \longrightarrow_a^k t' \cdot_{r_i} [\overline{p} ; \overline{\lambda y.q}]$$

with $t \longrightarrow_a^k t'$ (for some t'). We know $t' \in c(X_1, \ldots, X_n)$, so $t' \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}] \in D$. So, we have $\forall u(t \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}] \longrightarrow_a^k u \implies u \in D)$. Also $t \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}]$ has a key-redex and $t \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}] \in SN$ (by Lemma 2(3) below). So $t \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}] \in D$ and we are done. 67

- ▶ Lemma 2. 1. If t has a key-redex and $t \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}] \longrightarrow_a^k u$, then $u = t' \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}]$ for some t' with $t \longrightarrow_a^k t'$.
- If t has a key-redex and t →_a t' →_a^k q', where the reduction t →_a t' is not a key-reduction, then there is a q with t →_a^k q →_a q'.
 If all proper sub-terms of t are SN and ∀q(t →_a^k q ⇒ q ∈ SN), then t ∈ SN 71 72

Proof. The first is simply by an analysis of the possible cases for $t \cdot_{r_i} [\overline{p}; \overline{\lambda y.q}] \longrightarrow_a^k u$. The second is by induction on the shape of t. The third is by proving $\forall t'(t \longrightarrow_a t' \implies t' \in SN)$, using an analysis of the possible cases for the structure of t and induction on the proof that the direct subterms of t are SN, using (2). 77

For completeness, we also check Lemma 61 of [2], in particular the "introduction case".

▶ **Lemma 3** (Lemma 61 of [2].). *If* $\Gamma \vdash t : A$, and $\rho \models \Gamma$, then $\langle t \rangle_{\rho} \in \langle A \rangle$.

Proof. By induction on the derivation of $\Gamma \vdash t : A$. Suppose $\rho \models \Gamma$. The (axiom) case and the (el) case are exactly as in [2], so we only consider the (in) case. We ignore ρ for the rest of the proof, as it gives a lot of notational overhead, so we just write t for $\langle t \rangle_{\rho}$.

Suppose $\Phi = c(A_1, \dots, A_n)$ and

$$\frac{\dots\Gamma\vdash s_j:A_j\dots\dots\Gamma,x_i:A_i\vdash t_i:\Phi\dots}{\Gamma\vdash\{\overline{s}\;;\;\overline{\lambda x.t}\}_r:\Phi}$$
 in

We need to prove $\{\overline{s} ; \overline{\lambda x.t}\}_r \in \Phi$ and we have as induction hypothesis $s_i \in A_i$ (for 83 all j) and $t_i[x_i := a_i] \in \Phi$ for all t_i and $a_i \in A_i$. In particular, all these terms are SN. 84 In case there are no elimination rules for Φ , the interpretation of Φ is SN and indeed, $\{\overline{s} : \lambda x.t\}_r \in \mathsf{SN}, \text{ so we are done.}$ 86

In case there are elimination rules for Φ , let r' be such a rule for c, and let $D \in \mathsf{SAT}, \bar{p}, \bar{q} \in \mathsf{SAT}$ Term with $\forall k(p_k \in A_k)$ and $\forall \ell \, \forall u_\ell \in A_\ell \, (q_\ell[y_\ell := u_\ell] \in D)$. For $\{\overline{s} ; \overline{\lambda x.t}\}_r \cdot_{r'} [\overline{p} ; \overline{\lambda y.q}]$ there are the following possible key-reductions:

$$\{\overline{s} ; \overline{\lambda x.t}\}_r \cdot_{r'} [\overline{p} ; \overline{\lambda y.q}] \longrightarrow_a^k q_l[y_l := s_j]
\{\overline{s} ; \overline{\lambda x.t}\}_r \cdot_{r'} [\overline{p} ; \overline{\lambda y.q}] \longrightarrow_a^k t_i[x_i := p_k] \cdot_{r'} [\overline{p} ; \overline{\lambda y.q}]$$
(2)

$$\{\overline{s} ; \overline{\lambda x.t}\}_r \cdot_{r'} [\overline{p} ; \overline{\lambda y.q}] \longrightarrow_q^k t_i [x_i := p_k] \cdot_{r'} [\overline{p} ; \overline{\lambda y.q}]$$
 (2)

In case (1), $q_l[y_l := s_j] \in D$ by the assumption and the induction hypothesis. In case (2), $t_i[x_i := p_k] \in \Phi$ by the induction hypothesis and so $t_i[x_i := p_k] \cdot_{r'} [\overline{p}; \overline{\lambda y.q}] \in D$ by the definition of $\Phi = c(A_1, \dots, A_n)$ as a saturated set. So, $\{\overline{s}; \overline{\lambda x.t}\}_r \cdot_{r'} [\overline{p}; \overline{\lambda y.q}]$ has a key-redex and all its key reductions are in D, so the term itself is in D. Therefore, $\{\overline{s} ; \overline{\lambda x.t}\}_r \in \Phi.$

References

87

89

91

92

94

97

98

100

- H. Geuvers and T. Hurkens. Deriving natural deduction rules from truth tables. In ICLA, 1 volume 10119 of Lecture Notes in Computer Science, pages 123–138. Springer, 2017.
- Herman Geuvers and Tonny Hurkens. Proof terms for generalized natural deduction. 2 101 In Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi, editors, 23rd Inter-102 national Conference on Types for Proofs and Programs, TYPES 2017, May 29-June 1, 103 2017, Budapest, Hungary, volume 104 of LIPIcs, pages 3:1-3:39. Schloss Dagstuhl - Leibniz-104 Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.TYPES.2017.3, 105 doi:10.4230/LIPIcs.TYPES.2017.3. 106
- Herman Geuvers, Iris van der Giessen, and Tonny Hurkens. Strong normalization for truth 107 table natural deduction. Fundam. Informaticae, 170(1-3):139-176, 2019. URL: https: 108 //doi.org/10.3233/FI-2019-1858, doi:10.3233/FI-2019-1858. 109