
Formal Mathematics on Display:
A Wiki for Flyspeck

Carst Tankink1, Cezary Kaliszyk2, Josef Urban1, and Herman Geuvers1,3

1 ICIS, Radboud Universiteit Nijmegen, Netherlands
2 Institut für Informatik, Universität Innsbruck, Austria

3 Technical University Eindhoven, Netherlands

Abstract. The Agora system is a prototype “Wiki for Formal Math-
ematics”, with an aim to support developing and documenting large
formalizations of mathematics in a proof assistant. The functions imple-
mented in Agora include in-browser editing, strong AI/ATP proof advice,
verification, and HTML rendering. The HTML rendering contains hy-
perlinks and provides on-demand explanation of the proof state for each
proof step. In the present paper we show the prototype Flyspeck Wiki as
an instance of Agora for HOL Light formalizations. The wiki can be used
for formalizations of mathematics and for writing informal wiki pages
about mathematics. Such informal pages may contain islands of formal
text, which is used here for providing an initial cross-linking between
Hales’s informal Flyspeck book, and the formal Flyspeck development.

The Agora platform intends to address distributed wiki-style collabo-
ration on large formalization projects, in particular both the aspect of
immediate editing, verification and rendering of formal code, and the
aspect of gradual and mutual refactoring and correspondence of the ini-
tial informal text and its formalization. Here, we highlight these features
within the Flyspeck Wiki.

1 Introduction

The formal development of large parts of mathematics is gradually becoming
mainstream. In various proof assistants, large repositories of formal proof have
been created, e.g. in Mizar [1], Coq [2], Isabelle [3] and HOL Light [4]. This has led
to fully formalized proofs of some impressive results, for example the odd order
theorem in Coq [5], the proof of the 4 color theorem in Coq [6] and a significant
portion of the proof of the Kepler conjecture [7] in HOL Light.

Even though these results are impressive, it is still quite hard to get a consid-
erable speed-up in the formalization process. If we look at Wikipedia, we observe
that due to its distributed nature everyone can and wants to contribute, thus
generating a gigantic increase of volume. If we look at the large formalization
projects, we see that they are very hierarchically structured, even if they make
use of systems like Coq, that very well support a cooperative distributed way
of working, supported by a version control system. An important reason is that
the precise definitions do matter in a computer formalised mathematical theory:

some definitions work better than others and the structure of the library impacts
the way you work with it.

There are other reasons why formalization is progressing at a much slower
rate than, e.g. Wikipedia. One important reason is that it is very hard to get
access to a library of formalised mathematics and to reuse it: specific features
and notational choices matter a lot and the library consists of such an enormous
amount of detailed formal code that it is hard to understand the purpose and use
of its ingredients. A formal repository consists of computer code (in the proof
assistant’s scripting language), and has the same challenges as a programming
source code regarding understanding, modularity and documentation. Also, if
you want to make a contribution to a library of formalized mathematics, it
really has to be all completely verified until the final proof step. And finally,
giving formal proofs in a proof assistant is very laborious, requiring a significant
amount of training and experience to do effectively.

To remedy this situation we have been developing the Agora platform: wiki
technology that supports the development of large coherent repositories of for-
malised mathematics. We illustrate our work by focusing on the case of a wiki
for the Flyspeck project, but the aims of Agora are wider. In short we want to
provide proof assistant users with the tools to

1. Document and display their developments for others to be read and studied,
2. Cooperate on formalizations,
3. Speed up the proving by giving them special proof support via AI/ATP

tools.

All this is integrated in one web-based framework, which aims at being a “Wiki
for Formal Mathematics”. In the present paper we highlight and advocate our
framework by showing the prototype Flyspeck Wiki. We first elaborate on the
three points mentioned above and indicate how we support these in Agora.

Documenting formal proofs An important challenge is the communication of
large formalizations to the various different communities interested in such for-
malizations: PA users that want to cooperate or want to build further on the de-
velopment, interested readers who want to understand the precise choices made
in the formalization and mathematicians who want to convince themselves that
it is really the proper theorem that has been proven. All these communities have
their own views on a formalization and the process of creating formalization, giv-
ing a diverse input that benefits the field. Nonetheless, communicating a formal
proof is hard, just as hard as communicating a computer program.

Agora provides a wiki based approach: Formal proofs are basically program
code in a high-level programming language, which needs to be documented to be
understandable and maintainable. A proof development of mathematics is spe-
cial, because there typically is documentation in the form of a mathematical text
(a book or an article) that describes the mathematics informally. This is what
we call the informal mathematics as opposed to the formal mathematics which
is the mathematics as it lives inside a proof assistant. For software verification

efforts, there is no pre-existing documentation, but Agora can be used to pro-
vide documentation of the verification as well. These days, informal mathematics
consists of LATEX files and formal mathematics usually consist of a set of text
files that are given as input to a proof assistant to be checked for correctness.

In Agora, one can automatically generate HTML files from formal proof de-
velopments, where we maintain all linking that is inherently available in the
formal development. Also, one can automatically generate files in wiki syntax
from a set of LATEX files. These wiki files can also be rendered as HTML, main-
taininf the linking inside the LATEX files, but more importantly, also the linking
with the formal proof development. Starting from the other end, one can write a
wiki document about mathematics and include snippets of formal proof text via
an inclusion mechanism. This allows the dynamic insertion of pieces of formal
proof, by referencing the formal object in a repository.

Cooperation on formal proofs With Agora, we also want to lower the threshold for
participating in formalization projects by providing an easy-to-use web interface
to a proof assistant [8]. This allows people to cooperate on a project, the files of
which are stored on the server.

Proof Support We provide additional tools for users of proof assistants, like
automated proof advice [9]. The proof states resulting from editing HOL Light
code in Agora are continuously sent to an online AI/ATP service which is trained
in a number of ways on the whole Flyspeck corpus. The service automatically
tries to discharge the proof states by using (currently 28) different proof search
methods in parallel, and if successful, it attempts to create the corresponding
code reconstructing such proofs in the user’s HOL Light session.

To summarize, the Agora system now provides the following tooling for HOL
Light and Flyspeck:

– a rendering of the informal proof texts, written originaly in LATEX,
– a hyperlinked, marked up version of the HOL Light and Flyspeck source code,

augmented with the information about the proof state after each proof step
– transclusion of snippets of the hyperlinked formal code into the informal text

whenever useful
– cross-linking between the informal and formal text based on custom Flyspeck

annotations
– an editor to experiment with the sources of the proof by dropping down to

HOL Light and doing a formal proof,
– integrated access to a proof advisor for HOL Light that helps (particularly

novices) to finish their code while they are writing it, or provide options for
improvement, by suggesting lemmas that will solve smaller steps in one go.

Most of these tools are prototypical and occasionally behave in unexpected
ways. The wiki pages for Flyspeck can be found at http://mws.cs.ru.nl/

agora_cicm/flyspeck. These pages also list the current status of the tooling.

http://mws.cs.ru.nl/agora_cicm/flyspeck
http://mws.cs.ru.nl/agora_cicm/flyspeck

The rest of the paper is structured as follows. Section 2 shows the presentation
side of Agora, as experienced by readers. The internal document model of Agora
is described in Section 3, Section 4 explains the interaction with the formal HOL
Light code, and Section 5 describes the inclusion of the informal Flyspeck texts
in Agora. Section 6 concludes and discusses future work.

1.1 Similar Systems

There are some systems that support mashing up informal documentation with
computed information. In particular, Agora shares some similarities with tools
using the OMDoc [10] format, as well as the IPython [11] architecture (and
Sage [12], which uses IPython as an interface to computer algebra functionality).

OMDoc is mainly a mechanization format, but supports workflows that are
similar to Agora’s, but differs in execution: OMDoc is a stricter format, requiring
documents to be more structured and detailed. In particular, this requires its
input languages, such as sTEX, to be more structured. On the other hand, Agora
does not define much structure on the files its includes, rather extracting as much
information as possible and fitting it in a generic tree structure. Because Agora
is less strict in its assumptions, it becomes easier to write informal text, freeing
the authors of having to write semantic macros.

The IPython architecture has the concept of a notebook which is similar to a
page in Agora: it is a web page that allows an author to specify ’islands’ of Python
that are executed on the server, with the results displayed in the notebook. Agora
builds on top of this idea, by having a collection of documents referring to each
other, instead of only allowing the author of a document to define new islands.

2 Presenting Formal and Informal Mathematics in Agora

Agora has two kinds of pages: fully formal pages, generated from the sources of
the development, and informal pages, which include both markup and snippets
of formal text. To give readers, in particular readers not used to reading the
syntax of a proof assistant, insight in a formal development, we believe that it
is not enough to mark up the formal text prettily:

– there is little to no context for an inexperienced reader to quickly understand
what is being formalized and how: items might be named differently, and in
a proof script, all used lemmas are presented with equal weight. This makes
it difficult for a reader to single out what is used for what purpose;

– typically, the level of detail that is used to guide the proof assistant in its
verification of a proof is too high for a reader to understand the essence of
that proof: it is typically decorated with commands that are administrative
in nature, proof steps such as applying a transitivity rule. A reader makes
these steps implicitly when reading an informal proof, but they must be
spelled out for a formal system. In the extreme, this means that a proof that
is ‘trivial’ in an informal text still requires a few lines of formal code;

– because most proof assistants are programmable, a proof in proof assistant
syntax can have a different structure than its informal counterpart: proofs
can be ‘packed’ by applying proof rules conditionally, or applying a proof
rule to multiple similar (but not identical) cases.

On the other hand, it is not enough to just give informal text presenting a
formalization: without pointers to the location of a proof in the formal develop-
ment, it is easy for a reader to get lost in the large amount of code. To allow
easier navigation by a reader, the informal text should provide references to the
formal text at the least, and preferably include the portions of formal text that
are related to important parts of the informal discussion.

By providing the informal documentation and formal code on a single web
platform, we simplify the task of cross-linking informal description to formal
text. The formal text is automatically cross-linked, and annotated with proper
anchors that can also be referenced from an informal text. Moreover, our system
uses this mechanism to provide a second type of cross-reference, which includes a
formal entity in an informal text [13]: these references are written like hyperlinks,
using a slightly different syntax indicating that an inclusion will be generated.
Normal hyperlinks can refer to concepts on the same page, the same repository,
or on external pages.

These mechanisms allow an author of an informal text to provide an overview
of a formal development that, at the highest level, can give the reader insight in
the development and the choices made. Should the reader be interested in more
details of the formalization, cross-linking allows further investigation: clicking
on links opens the either informal concepts or shows the definition of a formal
concept.

The formalization of the Kepler conjecture in the Flyspeck project provides us
with an opportunity to display these techniques: not only is it a significant non-
trivial formalization, but its informal description in LATEX [14] contains explicit
connections between the informal mathematics and the related formal concepts
in the development. We have transformed these sources into the wiki pages
available on our Agora system4. Parts of one page are shown in Figures 1 and 2.

2.1 Informal Descriptions

The informal text on the page is displayed similarly to the source (Flyspeck)
document, from which it is actually generated (see Section 5), keeping the for-
mulae intact to be rendered by the MathJax5 JavaScript library. The difference
to the Flyspeck source document is that the source document contains references
to formal items (see also Section 5), while the Agora version includes the actual
text of these formal entities. To prevent the reader from being confused by the
formal text, which can be quite long, the formal text is hidden behind a clearly-
labeled link (for example the FAN and XOHLED links in Figure 1 which link to the
formal definition of fan and the formal statement of lemma fan cyclic).

4 http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
5 http://mathjax.org

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
http://mathjax.org

Document:

Informal Formal

Definition of [fan, blade] DSKAGVP (fan) [fan FAN]

Let be a pair consisting of a set and a set of unordered pairs of distinct elements
of . The pair is said to be a fan if the following properties hold.

(CARDINALITY) is finite and nonempty. [cardinality fan1]1.
(ORIGIN) . [origin fan2]2.
(NONPARALLEL) If , then and are not parallel. [nonparallel fan6]3.
(INTERSECTION) For all , [intersection fan7]4.

When , call or a blade of the fan.

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial
consequence of the definition.

Informal Formal

Lemma [] CTVTAQA (subset-fan)

If is a fan, then for every , is also a fan.

Proof

This proof is elementary.

Informal Formal

Lemma [fan cyclic] XOHLED

[set_of_edge] Let be a fan. For each , the set

is cyclic with respect to .

Proof

If , then and are not parallel. Also, if , then

Article Raw Log in

↔

(V , E) V ⊂ R3 E
V

V ↔
0 ∉ V ↔

{v, w} ∈ E v w ↔
ε, ∈ E ∪ {{v} : v ∈ V }ε′ ↔

C(ε) ∩ C() = C(ε ∩).ε′ ε′

ε ∈ E (ε)C0 C(ε)

(V , E) ⊂ EE ′ (V ,)E ′

E(v) ↔ (V , E) v ∈ V

E(v) = {w ∈ V : {v, w} ∈ E}

(0, v)

w ∈ E(v) v w w ≠ ∈ E(v)w′

Fig. 1. Screenshot of the Agora wiki page presenting a part of the “Fan” chapter of
the informal description of the Kepler conjecture formalization. For each formalized
section, the user can choose between the informal presentation (shown here) and its
formal counterpart (shown on the next screenshot). The complete wikified chapter is
available at: http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/.

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/

Document:

Informal Formal

#DSKAGVP?

let FAN=new_definition`FAN(x,V,E) <=> ((UNIONS E) SUBSET V) /\ graph(E) /\ fan1(x,V,E) /\ fan2(x,V,E)/\
fan6(x,V,E)/\ fan7(x,V,E)`;;

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of
the definition.

Informal Formal

let CTVTAQA=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (E1:(real^3->bool)->bool).
FAN(x,V,E) /\ E1 SUBSET E
==>
FAN(x,V,E1)`,

REPEAT GEN_TAC
THEN REWRITE_TAC[FAN;fan1;fan2;fan6;fan7;graph]
THEN ASM_SET_TAC[]);;

Informal Formal

let XOHLED=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (v:real^3).
FAN(x,V,E) /\ v IN V
==> cyclic_set (set_of_edge v V E) x v`,

MESON_TAC[CYCLIC_SET_EDGE_FAN]);;

Informal Formal

Remark [easy consequences of the definition] WCXASPV (fan)

Let be a fan.

The pair is a graph with nodes and edges . The set

is the set of edges at node . There is an evident symmetry: if and only if .

1.

[sigma_fan] [inverse1_sigma_fan] Since is cyclic, each has an azimuth
cycle . The set can reduce to a

2.

singleton. If so, is the identity map on . To make the notation less cumbersome,
denotes the value of the map at .

The property (NONPARALLEL) implies that the graph has no loops: .1.

The property (INTERSECTION) implies that distinct sets do not meet. This property of fans
is eventually related to the planarity of hypermaps.

2.

Article Raw Log in

(V , E)

(V , E) V E

{{v, w} : w ∈ E(v)}

v w ∈ E(v) v ∈ E(w)
σ ↔ σ(v)−1 ↔ E(v) v ∈ V

σ(v) : E(v) → E(v) E(v)

σ(v) E(v) σ(v, w)
σ(v) w

{v, v} ∉ E

(ε)C0

Fig. 2. http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/(formal).

The informal page may additionally embed editable pieces of formal code
(instead of just including addressable formal entities from other files as done in
the demo page). In that case (see Section 4) clicking the ’edit’ on these blocks
opens up an editor on the page itself, which gives direct feedback by calling
HOL Light in the background, and displaying the resulting proof assistant state,
together with a proof advice which uses automated reasoning tools to try to find
a solution to the current goal.

2.2 Formal Texts

The formal text of the development, in the proof assistant syntax, is included
in Agora as a set of hyperlinked HTML pages that provide dynamic access to
the proof state, using the Proviola [15] technology we have previously developed:
pointing at the commands in the formal text calls the proof assistant and pro-
vides the state on the page. The results of this computation are memoized for
future requests: this makes it possible for future visitors to obtain these states
quickly, while not taking up space unnecessarily.

The pages are hyperlinked (see Section 4.2) to allow a reader to explore
the presented formalization. The formalization could be large and, in projects
like Flyspeck, produced by a number of collaborators. The current alternatives
to hyperlinking are unsatisfactory in such circumstances: it amounts to either
memorization by the reader of large parts of the libraries, or mandatory access

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/

to a search facility. In HOL Light, this search facility is the system itself: typing
in the name of a lemma prints out its statement.

3 Document Structure: Frames and Scenes

The pages in Agora are generated from in-memory documents: (Python) objects
equipped with methods for rendering and storing the internal files. To cater for
multiple proof assistants and document-preparation tools, such as a renderer for
wiki syntax, we use the object-inheritance to instantiate documents for different
systems, while providing a common interface. This interface consists of a tree-like
structure of frames, grouped into scenes.

Documents in Agora are structured according to our earlier work on a system
called Proviola [16], for replaying formal proof: this tool takes a “proof script”
and uses a light-weight parser to transform it into a list of separate commands.
This list can then be submitted to a proof assistant, storing the responses in the
process. This memoization of the proof assistant’s responses is stored together
with the command, into a data structure we call a frame. Frames can store more
than just a response and a command, in particular, we assume that all frames
in Agora documents store a markup element that contains the HTML markup
of the frame’s command.

To display a document as a page, it would be enough to display the list of
frames in order, rendering the markup of each frame, and this is how the purely
formal pages in Agora are rendered. However, we want our tools to be able to
display not only flat lists of text, but also combine them in meaningful ways:
for example by grouping a lemma with its proof, but also combining multiple
lemmas into a self-contained section. For this, we introduced a scene: a scene is
a grouping of (references to) frames and other scenes, that can combine them in
any order. The system will render such a tree structure recursively, displaying
the markup of each frame referenced to. The benefit of grouping files into scenes
is that it becomes easier to re-mix parts of a document into a new document,
such as including formal text into an informal page.

Inclusion To allow remixing scenes from documents into new content, it is
necessary to provide an interface that allows including scenes into pages. In
previous work [13], we introduced an interface in the form of syntax: Agora
allows users to write narratives in a markup language similar to Wikipedia’s,
which is extended with the notion of a reference. This reference is similar to
Isabelle’s antiquotation: it is syntax for pointing to formally defined entities on
the Web which carry some metadata, which can be automatically provided by
a theorem prover. When rendered, the references are resolved into marked up
‘islands’ of formal text. The rest of the syntax is a markup language allowing
mathematical notation and hyperlinks.

These islands are included in the scene structure as references to the marked
up scenes. At the moment, we only allow referring to formal scenes from informal
text, which is enough to render the Flyspeck text. Having an inclusion syntax

fits the Agora philosophy: the documentation workflow can use the formal code,
but it should not change it. Instead, writing informal documentation about a
development should be similar to writing a LATEX article, only in a different
markup language. However, it is occasionally necessary to add code directly to
an informal page, for example to write an illustrative example or a failed attempt;
such a code block is not part of the formal development, but benefits from the
markup techniques applied to the development.

In the document structure, such code blocks are just scenes, that are marked
to be written in a particular language. From the rendered page, it is possible
to open an editor for each scene, which requires special functionality to support
writing formal proofs.

4 Interaction with Formal HOL Light Code

4.1 Parsing and Proving

For HOL Light, adding Proviola support implies adding a parser that can trans-
form a proof script into a list of commands, and adding a layer to communicate
with the prover’s read-eval-print loop (REPL). This is sufficient, but so far does
not create a very illustrative Proviola display: most HOL Light proofs are pack-
aged into a single REPL-invocation that introduces and discharges a theorem.
Making this into a useful Proviola display is left for future work, but we will
sketch how a better display can be implemented using the scene structure of a
Proviola document.

To illustrate the workings of the parser and the prover, we use the following
example code:

(∗ Example code fragment . ∗)
g ‘ x=x ‘ ; ;
e REFL TAC ; ;
l et t = (∗ Use top thm to v e r i f y the proo f . ∗)

top thm () ; ;

Parser Because HOL Light proofs are written as syntactically correct scripts that
are interpreted by the OCaml read-eval-print loop (REPL), the parser separates
a proof script into the single commands that can be interpreted by this REPL.
These commands are, in the Flyspeck sources, terminated by ‘;;’6 and followed
by a newline, so our parser splits a proof script into commands by looking for
this terminator. Additionally, the proof can contain comments, surrounded by
‘(*’ and ‘*)’: we let the parser only emit a command if the terminator does not
occur as part of a comment. Finally, comment blocks that are not within other
commands are treated as separate commands. This last decision differs from
traditional source-code parsers, which regard comments as white space, because

6 According to the OCaml reference manual, http://caml.inria.fr/pub/docs/

manual-ocaml-4.00/manual003.html#toc4

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual003.html#toc4
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual003.html#toc4

Agora reconstructs the proof script’s appearance from the frames in the movie,
in order to show the complete proof script if a reader desires it.

The parser does not group the frames into a scene structure: a HOL Light
proof is represented as a single scene containing all frames. For our example, the
following frames are generated:

– (∗ Example code fragment. ∗)
– g ‘x=x‘;;
– e REFL TAC;;
– let t = (∗ Use top thm to verify the proof . ∗)

top thm ();;

The first comment does not occur within a command, so it is parsed as a
separate command, and the second comment occurs inside a command.

Prover HOL Light is not implemented as a stand-alone program with its own
REPL. Instead, it is implemented as a collection OCaml scripts and some parsing
functions. This means that the ‘prover’ instance is actually a regular OCaml
REPL instance, which loads the appropriate bootstrap script. The problem of
this approach is that these scripts take several minutes to load, a heavy penalty
for wanting to edit a proof on the Web. To offset the load time, one can checkpoint
the OCaml instance after it has bootstrapped HOL Light. Checkpointing software
allows the state of a process to be written to disk, and restore this state from the
stored image later. We use DMTCP7 as our checkpointing software: it does not
require kernel modifications, and because of that is one of the few checkpointing
solutions that works on recent Linux versions.

Communication with the provers is encapsulated by a Python class: creating
an instance of the class loads the checkpoint and connects to its standard input
and output. The resulting object has a send method which writes a provided
command to standard input and returns the REPL’s response. Beyond this low-
level communication mechanism, the object also provides a send_frame method.
This method takes an entire frame and sends the command stored in it. This
method does not only send the text, but also records the number of tactics that
the prover has executed so far, by examining the length of the current goalstack.
This gives an indication of how far a list of frames is processed, and allows
the prover to use HOL Light’s undo function to prevent executing too many
commands.

After sending the frames generated from our example code, the frames have
stack numbers as shown in Table 1.

When the frame with the REFL TAC invocation is changed, the send_-

frame method will send the HOL Light undo function, b ();; as many times as
is necessary to return to state 1. Afterwards, it will send the command of the
changed frame.

The HOL Light glue does not send all commands equally: the Flyspeck for-
malization packs its proofs within an OCaml module, which causes the REPL

7 http://dmtcp.sourceforge.net

http://dmtcp.sourceforge.net

Command State

(∗ Example code fragment. ∗) 0
g ‘x=x‘;; 1
e REFL TAC;; 2
let t = ... 2

Table 1. Frames with state numbers

not to give output until the module is closed. Because we want to give state in-
formation per command, the gluing code ignores the module and end commands
that signal the opening and closing of modules.

Packaged Proofs To allow Proviola to record a packaged proof, it needs to break
the proof down to its individual commands. To do this, we propose to use the
Tactician tool [17]: this is an extension to HOL Light that records a packaged
proof as it is executed, and allows the user to retrieve the actual tactics executed,
which exposes the tree-like structure of such a proof: some of the tactics in the
packaged proof might be applied multiple times, to different subgoals generated
during the proof.

We can use the sequential tactic script generated by Tactician directly, render-
ing it instead of the packaged proof, or do more sophisticated post-processing: we
could match up the generated tactics to their occurrence in the packaged proof,
and generate a special scene for each packaged proof. This scene would render
as the original proof, but execute the Tactician-generated sequence to provide
responses. This gives readers a better feel of what is going on in such a packaged
proof, but depends on a correct matching of the packaged proof to the sequential
proof. We have not yet fully investigated the reach of these possibilities, however,
so this remains as future work.

4.2 Hyperlinking

It seems that no proper hyperlinking facility exists so far for HOL-based systems.
Such a facility should plug in to the parsing layer of the systems (as done, e.g.,
for Coq and Mizar), and either export the information about symbols’ definitions
relative to the original formal text, or directly produce a hyperlinked version of
the text: this hyperlinking pass should be fast, so it can be run when a page is
loaded in the browser.

For HOL Light (and Flyspeck), we so far did not try to hook into the parsing
layer of the system, and only provide a heuristic hyperlinking system. Still, such
a hyperlinker can be useful, because relatively few concepts are overloaded in
the formalization, and most of the definitions and theorems are introduced using
a regular syntax: this means that the hyperlinker can generate an index for file
definitions with only a small chance of ambiguity. The hyperlinking proceeds in
two broad steps, an indexing step and a rendering step. The indexing is done by
a Perl script that generates a symbol index by:

1. collecting the globally defined symbols and theorem names from the formal
texts by heuristically matching the most common patterns that introduce
them,8 and

2. optionally adding and removing some symbols based on a predefined list.

The page renderer of Agora then processes the texts again by heuristically
tokenizing the text, looking up tokens and their linking in the generated index.
Additionally, the page rendering also uses the index to generate metadata that
can be used by the referencing mechanism [13].

The complete hyperlinking of the whole library now takes less than ten sec-
onds, and while obviously imperfect, it seems to be already quite useful tool
that allowed us to browse and study the library. The generated index of 15,780
Flyspeck entities together with their URLs can be loaded into arbitrary external
application, and used for separate heuristic hyperlinking of other texts. This
function is used by the script that translates the LATEX sources of the informal
text describing Flyspeck into wiki syntax (Section 5), to link the formally defined
concepts to their HOL Light definitions.

4.3 Editing and Proof Advising

Editing We can directly use the tools that turn text into frames for building the
server backend of a (simple) web-based editor: the front end of this editor just
gathers the entered text and sends it to the server, the server processes it into
a list of frames and post-processes it: both by generating proof assistant (HOL
Light) responses and by sending markup information based on the correctness
of a part of the text. Because this processing is incremental, information can
be returned on demand: after the text has been parsed into frames, the server
can give the editor information as it is produced, using the protocols described
in [8]. As also described in that paper, it remains an open question on how to
properly deal with the impact of the formal text written in the editor, as this
might invalidate the entire repository. An example of the editor interaction is
shown in Figure 3. It already shows also the proof advising facility.

Proof Advising In order to further facilitate the online Wiki authoring using
HOL Light, we have added a post-processing step to the editor. For each goal
interactively computed by the proof assistant, the editor automatically submits
this goal to the AI/ATP proof advisor (HOL(y)Hammer) service [18]. The advisor
uses a number of differently parametrized premise-selection methods (based on
various machine-learning algorithms) to find the most relevant theorems from
the Flyspeck library for a given goal, and passes them (after translation to first-
order logic) to automated theorem provers (ATPs) such as Vampire [19], E [20],
and Z3 [21]. If an ATP proof is found, it is minimized and reconstructed by a
number of reconstruction strategies described in [22]. In parallel to such AI/ATP

8 To help this, we also use the theorem names stored by the HOL Light processing in
the ”theorems” file, using the mechanisms from the file update database **.ml.

[edit]
[edit]

[edit]

[edit]

[edit]

Store

Document:

Sum of Reciprocals of Triangular Numbers

Definition of triangular numbers.

let triangle = new_definition
`triangle n = (n * (n + 1)) DIV 2`;;

Mapping them into the reals: division is exact.

State

val it : goalstack = 2 subgoals (2 total)

`EVEN (n * (n + 1)) ==>
 2 * (n * (n + 1)) DIV 2 = n * (n + 1)`

`EVEN (n * (n + 1))`

Advise

* Result (34.37s): ARITH_EVEN_conjunct3 EQ_CLAUSES
 EVEN_ADD EVEN_MULT F_DEF NOT_CLAUSES_WEAK_conjunct2
 * Minimized: ARITH_EVEN_conjunct3 EQ_CLAUSES EVEN_ADD
 EVEN_MULT
 * Replaying: SUCCESS (0.71s):
 MESON_TAC[EVEN_MULT;EVEN_ADD;EQ_CLAUSES;ARITH_EVEN]

Article Raw Edit cek

g `&(triangle n) = (&n * (&n + &1)) / &2`;;
e (MATCH_MP_TAC(REAL_ARITH `&2 * x = y ==> x = y / &2`));;
e (REWRITE_TAC[triangle; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD;
 REAL_OF_NUM_EQ]);;
e (SUBGOAL_THEN `EVEN(n * (n + 1))` MP_TAC);;
e (REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH] THEN CONV_TAC TAUT);;
e (REWRITE_TAC[EVEN_EXISTS]);;
e STRIP_TAC;;
e (ASM_REWRITE_TAC[]);;
e AP_TERM_TAC;;
e (MATCH_MP_TAC DIV_MULT);;

1
2
3
4
5
6
7
8
9

10
11

Fig. 3. The interactive editor built in the Wiki with the proof state for the line with
the cursor. The screenshot features a section of Harrison’s triangular numbers formal-
ization. In line 5 the advisor automatically finds a proof that n(n+ 1) is even, slightly
different from the one used in the edited formalization.

methods, a number of decision procedures are tried on the goal. The currently
used decision procedures are able to solve boolean goals (tautologies), goals that
involve naturals (arithmetic), integers, rationals, reals and complex numbers
including Gröbner bases. Whenever any of the strategies finds a tactic that solves
the goal, all other strategies are stopped and the result of the successful one is
transmitted to the Agora users through a window. The users can immediately
use the successful results in their proof.

The protocol to communicate with the advisor has been designed to be as
simple as possible, in order to enable using it not only as a part of Agora but
also via an experimental Emacs interface [18] and from the command line tool in
the spirit of old style LCF. A request for advice consists of a single line which is
a text representation of a goal to prove. To encode a goalstate as text the goal
assumptions need to be separated from the goal conclusion and from each other.
We use the ‘ character as such separator, since the character never appears in
normal HOL Light terms as it is used to denote start and end of terms by the
Camlp5 preprocessor. When a request for advice is received the server parses the
goal assumptions and conclusion together, to allow matching the free variables
present in more than one of them and ensure proper typing. The response is
also textual and the connection is closed when no more advice for the goalstate
is available. Server-side caching is used to handle repeated queries, typically
produced by refactoring an existing proof script in the Wiki.

5 Inclusion of the Informal Flyspeck Texts

We have used a version of the informal Flyspeck LATEX text that has 309 pages,
but only a smaller part has so far been chosen for the experiments: Chapter 5
(Fan). The file fan.tex has 1981 lines. There are 15 definitions (some of them
define several concepts) and 36 lemmas. The definitions have the following anno-
tated form (developed by Hales), which already cross-links to some of the formal

counterparts (formally defined theorem names like QSRHLXB and MUGGQUF and
symbols like azim_fan and is_Moebius_contour):

\begin{definition}[polyhedron]\guid{QSRHLXB}

A \newterm{polyhedron} is the

intersection of a finite number of closed half-spaces in

\ring{R}^n.

\end{definition}

The lemmas are written in a similar style:

\begin{lemma}[Krein--Milman]\guid{MUGGQUF}

Every compact convex set $P\subset\ring{R}^n$ is the convex hull

of its set of extreme points.

\end{lemma}

The text contains many mappings between informal and formal concepts, e.g.:

\formaldef{$\op{azim}(x)$}{azim_fan}

\formaldef{M\"obius contour}{is_Moebius_contour}

\formaldef{half space}{closed_half_space, open_half_space}

There are several systems that can (to various extent) transform LATEX texts
to (X)HTML and similar formats. Examples include LaTeXML9, PlasTeX10,
xhtmlatex11, and TeX4ht.12 Often they are customizable, and some of them
can be equipped with custom non-HTML (e.g., wiki) renderers. For the first
experiments we have however relied only on MathJaX for rendering mathematics,
and custom transformations from LATEX to wiki syntax that allow us to easily
experiment with specific functions for cross-linking and formalization without
involving the bigger systems. The price for this is that the resulting wiki pages
are more similar to presentations in ProofWiki and Wikipedia than to full-fledged
HTML book presentations. We might switch to the larger extendable systems
when it is clear what extensions are needed for our use-case.

The transformations are now implemented in about 200 lines of a Perl script
(Creolify.pl) translating the Flyspeck LATEX sources into the enhanced Creole wiki
syntax used by Agora. The script is easily extendable, and it now consists mainly
of about 30 regular-expression replacements and related functions taking care
of the non-mathematical LATEX syntax and macros. The mathematical text is
handled by the (slightly modified) macros taken from Flyspeck (kepmacros.tex)
that are prepended to any Agora Flyspeck text and used automatically by Math-
Jax. Producing and tuning the transformations took about one to two days of
work, and should not be a large time investment for (formal) mathematicians
interested in experimenting with Agora. The particular transformations that are
now used for Flyspeck include:

9 http://dlmf.nist.gov/LaTeXML/
10 http://plastex.sourceforge.net/
11 http://www.matapp.unimib.it/~ferrario/var/x.html
12 http://tug.org/tex4ht/

http://dlmf.nist.gov/LaTeXML/
http://plastex.sourceforge.net/
http://www.matapp.unimib.it/~ferrario/var/x.html
http://tug.org/tex4ht/

– Transformations that handle wiki-specific syntax that is (intentionally or
accidentally) used in LATEX, such as comments, white space, fonts and section
markup.

– Transformations that create wiki subsections for various LATEX blocks, sec-
tions, and environments. Each definition, lemma, remark, corollary, and
proof environment gets its own wiki subsection, similarly, e.g., to ProofWiki
and Wikipedia.

– The transformation that add linking and cross-linking, based on the LATEX
annotations. Each LATEX label produces a corresponding wiki anchor, and
each LATEX reference produces a link to the anchor. Newly defined terms
(introduced with the newterm macro) also produce anchors. Formal anno-
tations (introduced with the guid and formaldef macros) are first looked
up in the index of all formal concepts produced by hyperlinking of the for-
malization (Section 4.2), and if they are found there, such annotations are
linked to the corresponding formal definition.

6 Conclusion and Future Work

The platform is still in development, and a number of functions can be im-
proved and added. For example, whole-library editing, guarded by global con-
sistency checking of the formal code that has been already verified (as done for
Mizar [23]), is future work. On the other hand, the platform already allows the
dual presentation of mathematical texts as both informal and formal, and the
interaction between these two aspects. In particular, the platform takes both
LATEX and formal input, cross-links both of them based on simple user-defined
macros and on the formal syntax, and allows one to easily browse the formal
counterparts of an informal text. It is already possible to add further formal
links to the informal concepts, and thus make the informal text more and more
explicit. A particular interesting use made possible by the platform is thus an
exhaustive collaborative formal annotation of the Flyspeck book. The platform
also already includes interactive editing and verification, which allows at any
point of the informal text to switch to formal mode, and to add the correspond-
ing formal definitions, theorems, and proofs, which are immediatelly hyperlinked
and equipped with detailed proof status information for every step. The editing
is complemented by a relatively strong proof advice system for HOL Light. This
is especially useful in a Wiki environment, where redundancies and deviations
can be discovered automatically. The requests for advice can become grounds
for further experiments on strengthening the advice system.

One future direction is to allow even the non-mathematical parts of the wiki
pages to be written directly with (extended) LATEX, as it is done for example in
PlanetMath. This could facilitate the presentation of the projects developed in
the wiki as standalone LATEX papers. On the other hand, it is straightforward to
provide a simple script that translates the wiki syntax to LATEX, analogously to
the existing script that translates from LATEX to wiki.

References

1. Grabowski, A., Korni lowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of
Formalized Reasoning 3(2) (2010) 153–245

2. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag (2004)

3. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

4. Harrison, J.: HOL Light: An overview. In: Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009. Volume
5674 of LNCS., Munich, Germany, Springer-Verlag (2009) 60–66

5. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In Gia-
cobazzi, R., Cousot, R., eds.: POPL, ACM (2013) 1–2

6. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In Kapur,
D., ed.: ASCM. Volume 5081 of LNCS., Springer (2007) 333

7. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A
revision of the proof of the Kepler conjecture. Discrete & Computational Geometry
44(1) (2010) 1–34

8. Tankink, C.: Proof in context — web editing with rich, modeless contextual feed-
back. To appear in proceedings of UITP 2012 (2012)

9. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck.
CoRR abs/1211.7012 (2012)

10. Kohlhase, M.: OMDoc - An Open Markup Format for Mathematical Documents
[version 1.2]. Volume 4180 of Lecture Notes in Computer Science. Springer (2006)

11. Pérez, F., Granger, B.E.: IPython: a System for Interactive Scientific Computing.
Comput. Sci. Eng. 9(3) (2007) 21–29

12. Stein, W.A., et al.: Sage mathematics software (2009)
13. Tankink, C., Lange, C., Urban, J.: Point-and-write. In: AISC/MKM/Calculemus.

Volume 7362 of LNCS., Springer (2012) 169–185
14. Hales, T.C.: Dense Sphere Packings - a blueprint for formal proofs. Cambridge

University Press (2012)
15. Tankink, C., McKinna, J.: Dynamic proof pages. In: ITP Workshop on Mathe-

matical Wikis (MathWikis). Number 767 in CEUR Workshop Proceedings (2011)
16. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof

re-animation. [24] 440–454
17. Adams, M., Aspinall, D.: Recording and refactoring HOL Light tactic proofs. In:

Proceedings of the IJCAR workshop on Automated Theory Exploration. (2012)
18. Kaliszyk, C., Urban, J.: Automated reasoning service for HOL Light (2013) Ac-

cepted to CICM 2013.
19. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI

Commun. 15(2-3) (2002) 91–110
20. Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2-3) (2002) 111–126
21. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In Ramakrishnan,

C.R., Rehof, J., eds.: TACAS. Volume 4963 of LNCS., Springer (2008) 337–340
22. Kaliszyk, C., Urban, J.: PRocH: Proof reconstruction for HOL Light (2013)
23. Urban, J., Alama, J., Rudnicki, P., Geuvers, H.: A wiki for Mizar: Motivation,

considerations, and initial prototype. [24] 455–469
24. CICM 2010. In: AISC/MKM/Calculemus. Volume 6167 of LNCS., (Springer)

	Formal Mathematics on Display: A Wiki for Flyspeck

