
Under
onsideration for publi
ation in Math. Stru
t. in Comp. S
ien
e

Some logi
al and synta
ti
al observations

on
erning the �rst order dependent type

system �P

HERMAN GE UVERS

1

and ERIK BARENDSEN

2

1

Computing S
ien
e Department, Eindhoven Univ. of Te
hnology, NL

1

;

2

Computing S
ien
e Department, Nijmegen University, NL

Re
eived 31 Mar
h 1999

We look at two di�erent ways of interpreting logi
 into the dependent type system �P.

The �rst is by a dire
t formulas-as-types interpretation �a la Howard where the logi
al

derivation rules are mapped to derivation rules in the type system. The se
ond is by

viewing �P as a Logi
al Framework, following (Harper et al. 1987) and (Harper et al.

1993). Then the type system is used as the meta-language in whi
h various logi
s
an be

oded.

We give a (brief) overview of known (synta
ti
al) results about �P. Then we dis
uss two

issues in some more detail. The �rst is the
ompleteness of the formulas-as-types

embedding of minimal �rst-order predi
ate logi
 into �P. This is a remarkably

ompli
ated issue, a �rst proof of whi
h appeared in (Geuvers 1993), following ideas in

(Barendsen and Geuvers 1989) and (Swaen 1989). The se
ond issue is the minimality of

�P as a logi
al framework. We will show that some of the rules are a
tually super
uous

(even though they
ontribute ni
ely to the generality of presentation of �P).

At the same time we will attempt to provide a gentle inrodu
tion to �P and its various

aspe
ts and we will try to use little inside knowledge.

1. Introdu
tion and motivation

The typed �-
al
ulus �P is the extension of simple typed �-
al
ulus with (�rst order)

dependent types. It o

urs in di�erent variants in the work of (Martin-L�of 1975) (in-

tuitionisti
 type theory), (van Daalen 1973) (Automath), (Harper et al. 1987) (Logi
al

Framework) and also in (Hindley and Seldin 1986) (Generalized Type Assignment). The

pre
ise de�nition that we will be using is the one in (Barendregt 1992), whi
h is { of the

forementioned {
losest to (Harper et al. 1987). In the literature we �nd several ways

of motivating the de�nition of �P and explaining its use. These
an be devided in two:

�P
an be seen as a system for interpreting minimal �rst order predi
ate logi
 and �P

an be seen as a logi
al framework. In both views one uses a kind of formulas-as-types

interpretation to interpret (in the
ase of a logi
al framework one would say `en
ode')

the logi
, the di�eren
e being that in the �rst
ase there is one logi
, the internal logi
 of

�P, whereas in the se
ond
ase almost any formal system
an be en
oded. We will not

H. Geuvers and E. Barendsen 2

give a
omplete overview of the di�erent possible interpretations, but instead motivate

the de�nition of �P by explaining the two interpretations by examples.

Using �P to represent logi
, either by a dire
t interpretation or an en
oding, raises a

major question, namely: is the interpretation
omplete? Or, if one takes the view of �P

as a logi
al framework: is the en
oding adequate? If we take the point of view of a dire
t

en
oding of minimal �rst order predi
ate logi
, L, into �P, then the question would be

whether the impli
ation

�

�

`

�P

M : ') `

L

'

holds for all formulas ' of minimal �rst order predi
ate logi
. (Here �

�

represents the

ontext that de
lares the
onstants of the �rst order signature �; ' is a formula over this

signature �.) So, the question is whether, if ',
onsidered as a type in �P, is inhabited,

then ' is derivable in L. The same question obviously applies to �P seen as a logi
al

framework, with the di�eren
e that there is not just one logi
, but that for every logi

L we have to de�ne a
otext �

L

that
odes the logi
. How this works in detail will be

dis
ussed later by treating some examples.

One may wonder whether the soundness of the interpretation is not an issue. Well, it

is an issue: we have to prove that

`

L

') 9M [�

�

`

�P

M : '℄

holds for all formulas ' of minimal �rst order predi
ate logi
 L. However, soundness

is not a major issue, be
ause it is easily satis�ed. Also for the logi
al framework view,

soundness is usually relatively easy: it boils down to
hoosing the `
orre
t' �

L

as an

en
oding of the logi
 L.

The question of adequa
y of the en
oding of a logi
 L into �P, as a logi
al framework,

was �rst dealt with by (Harper et al. 1987). (A full version of this paper has appeared as

(Harper et al. 1993).) As a matter of fa
t, they were the �rst to a
tually state the problem.

To prove adequa
y of an en
oding (Harper et al. 1987) devise a general te
hnique that

applies to many di�erent logi
s L. The idea is to
onstru
t, out of a proof term M : ',

a
anoni
al proof term M

0

(te
hni
ally: the so
alled long-��-normal form of M). From

su
h a
anoni
al proof term a proof of ' in the logi
 L is immediately
onstru
ted. We

will illustrate this te
hnique brie
y in Se
tion 4 by an example. (For proving adequa
y

of the en
oding it is
onvenient to extend �P with �-
onversion. This yields the a
tual

type system of LF as de�ned in (Harper et al. 1987). However, for the adequa
y result

this is not needed { as we will also argue in 4 { be
ause �P is a subsystem of the LF

type system.) In Se
tion 4 we will also show how we
an de�ne a minimal version of �P

that
an serve as a logi
al framework.

The question of
ompleteness of the interpretation of minimal �rst order predi
ate logi

into �P will be treated in Se
tion 3. This issue was already raised by Martin-L�of in the

seventies. A proof of
ompleteness was �rst sket
hed in (Barendsen and Geuvers 1989).

A pre
ise proof { based on this proof { o

urs in (Geuvers 1993). We give it in Se
tion

3 with some more explanation and examples. Independently, (Berardi 1990) proved the

same
ompleteness result. It's maybe most remarkable that the
ompleteness is su
h an

intri
ate problem. To grasp this we have to understand how exa
tly minimal �rst order

First order dependent type theory, �P 3

predi
ate logi
 is interpreted in �P. This is done by interpreting both sets and formulas

as types. A predi
ate P on a set A is then interpreted as a fun
tion from (the type) A

to the
olle
tion of all types, type, so P : A!type. From this one
onstru
ts e.g. the

type �x:A:Px!Px, representing the formula 8x:a:Px!Px, but one
an also
onstru
t

types like �x:A:Px!A, whi
h does not represent any set or formula of the logi
. In the

ompleteness proof one has to take
are of all these `meaningless' types and it is not at

all
lear whether these meaningless types
an somehow spoil the
ompleteness.

2. The system �P

We begin by de�ning the system �P. Then we give some examples of well-typed terms

and list some of the general issues (and properties) of type systems. Finally we give a

brief list of some meta-theoreti
 properties.

De�nition 2.1. �P (Harper et al. 1987) is a system for deriving judgements of the

following two forms

� `M : B M is of type B in
ontext �;

� ` � is a
orre
t
ontext.

Here � is
alled the
ontext and M and B are terms, whi
h are taken from the set of

pseudoterms

T ::= Var j type jkind j (TT) j (�x:T:T) j (�x:T:T):

The derivation rules for deriving the judgements � `M : B and � ` are the following.

(s ranges over ftype;kindg.)

(base) ; ` (
txt)

� ` A : s

�; x:A `

if x not in �

(ax)

� `

� ` type : kind

(proj)

� `

� ` x : A

if x:A 2 �

(�)

� ` A : type �; x:A ` B : s

� ` �x:A:B : s

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(
onv)

� `M : B � ` A : s

� `M : A

A =

�

B

As usual, we omit bra
kets in sequen
es of appli
ations by asso
iating them to the left

and we omit bra
kets in sequen
es of abstra
tion terms by asso
iating them to the right.

SoMNP denotes ((MN)P), �x:A:�y:B:M denotes (�x:A:(�y:B:M)) and �x:A:�y:B:C

denotes (�x:A:(�y:B:C)).

We use the
onvention of writing A!B for �x:A:B if x =2 FV(B).

H. Geuvers and E. Barendsen 4

In (Harper et al. 1987), a system
alled LF is de�ned (`Logi
al Framework'), spe
i�
ally

geared towards the
oding of logi
s (and formal systems in general) in this typed �-

al
ulus. The system �P
an be seen as the `basi
 underlying type system' of LF. In

the de�nition of �P we have ignored some features of LF, the main one being the use

of so
alled `signatures'. These are spe
ial
ontexts in whi
h
onstants are de
lared.

In our de�nition a signature is part of the
ontext. Another di�eren
e is that we do

not
onsider �-
onversion. In LF, �-
onversion is used for proving the adequa
y of the

en
oding. However, we don't need �-
onversion for adequa
y, as will be argued in Se
tion

4.

The system �P is an extension of the simply typed �-
al
ulus �!. This is not entirely

obvious, as the types (and
ontexts) in �! are usually de�ned separately from the terms,

whereas in �P these de�nitions are interwoven. We therefore treat some examples of well-

typed terms in �!.

Example 2.2.

1 �:type; �:type;
:type ` �x:�!�!
:�y:�!�:�z:�:xz(yz) :

(�!�!
)!(�!�)!�!
:

2 �:type; �:type; y:� ` �x:(�!�)!�:x(�z:�:y) : ((�!�)!�)!�.

It is well-known that �! is isomorphi
 with minimal propositional logi
 (logi
 with

just impli
ation) via the formulas-as-types embedding. In the example above, the �rst

�-term represents a proof (natural dedu
tion derivation) of (�!�!
)!(�!�)!�!
,

whereas the se
ond represents a proof of ((�!�)!�)!� from the assumption �.

In a similar fashion one
an interpret in �P minimal �rst order predi
ate logi
 (logi

with just impli
ation and universal quanti�
ation). To be able to do this we have to

follow one basi
 prin
iple:

A formula is asso
iated with the type of its proofs, hen
e

a formula is provable if and only if the asso
iated type is not empty (`inhabited').

As a
onsequen
e, we asso
iate with a predi
ate over the set (type) A a term of type

A!type, the idea being that for a : A,

Pa holds if and only if the type Pa is inhabited.

This amounts to an interpretation of minimal predi
ate logi
 in �P where both sets and

formulas are interpreted as types. We will de�ne this interpretation pre
isely later and

restri
t to some motivating examples now.

Example 2.3.

1 �:type; P :�!type ` �x:�:�p:Px:p : �x:�:Px!Px:

2 �:type; f :�!�;R:�!�!type;

h

1

: �x:�:Rx(fx); h

2

: �x; y; z:�:(Rxy)!(Ryz)!(Rxz) `

�x:�:h

2

x(fx)(f(fx))(h

1

x)(h

1

(fx)) : �x:�:Rx(f(fx)):

In a predi
ate logi
al interpretation, the �rst term is a proof of 8x 2 A:P (x)!P (x)

and the se
ond is a proof of 8x 2 A:R(x; f(f(x)) from the hypotheses 8x 2 A:R(x; f(x))

and 8x; y; z 2 A:R(x; y)!R(y; z)!R(x; z).

As a third type of example we treat a
oding of minimal propositional logi
 in �P.

The idea is to de
lare a type prop in the
ontext to represent the type of (names) of

First order dependent type theory, �P 5

propositions and to add a T : prop!type, taking a name of a proposition to the type

of its proofs. (By adding suitable de
larations for the derivations we establish that for

a : prop, the terms of type Ta indeed represent natural dedu
tion proofs.)

Example 2.4. De�ne

� := prop : type; T : prop!type;

�: prop!prop!prop;

�

I

: �x; y:prop:(Tx!Ty)!T (�xy);

�

E

: �x; y:prop:T (�xy)!Tx!Ty:

Then we have the following typings.

1 �; x:prop ` �

I

(�xx(�p:Tx:p)) : T (�xx).

This term
odes a proof of `x!x'.

2 For the purpose of presentation we write �xy as x � y and we omit the �rst two

arguments of �

I

and �

E

. We then �nd

�; x; y:prop; h:Ty ` �

I

(�p:T ((x � y) � x):�

E

(�

I

(�q:Tx:h))) :

T (((x � y) � x) � x).

This term
odes a derivation of ((x!y)!x)!x from the hypothesis y.

2.1. Properties of �P

In the examples above we saw that the general use of �P is to
ode (or represent di-

re
tly) either terms (programs) or derivations (proofs). The �-redu
tion relation then

orresponds to evaluation (of programs) or
ut-elimination (of proofs). Important and

natural properties to have are then that the typing is preserved by evaluation, that

evaluation is
on
uent and that typing is de
idable.

We list the main properties of the typed �-
al
ulus �P. Proofs
an be found in (Harper

et al. 1987), (Barendregt 1992) or in (Geuvers and Nederhof 1991). (The proofs in (Harper

et al. 1987) are for �P with �; the proofs here are roughly the same, sometimes a bit

simpler due to the absen
e of �.)

Proposition 2.5. (Subje
t Redu
tion) If � `M : A andM �!

�

N , then � ` N : A.

The following Proposition follows from Subje
t Redu
tion and the fa
t that �-redu
tion

is
on
uent on the pseudo-terms T.

Proposition 2.6. (Typed Con
uen
e) If � ` M : A, � ` N : A and M =

�

N , then

there is a term P with M �!�!

�

P , N �!�!

�

P and � ` P : A.

Proposition 2.7. (Uniqueness of Types) If � `M : A and � `M : B, then A =

�

B.

Proposition 2.8. (Strong Normalization) All well-typed expressions of �P are Strongly

Normalizing with respe
t to �-redu
tion.

This Proposition was �rst proved in (Harper et al. 1987), by de�ning a redu
tion

preserving mapping to the simple typed �-
al
ulus.

In view of Example 2.3, strong normalization of �-redu
tion is very natural, as it

orresponds to
ut-elimination in the logi
 (evaluation of natural dedu
tions), whi
h we

know to be terminating for �rst order predi
ate logi
.

H. Geuvers and E. Barendsen 6

Proposition 2.9. (De
idability of Typing) Given a
ontext � and a pseudo-termM ,

it is de
idable whether M has a type in � and if M has a type it
an be
omputed.

As a matter of fa
t, `type
he
king a term' (i.e. �nd out whether a given pseudoterm

has a type in a given
ontext) pro
eeds by just
omputing it (with a `fail' option if the

pseudoterm does not have a type). Similarly,
he
king whether a given pseudoterm M

has a given type A pro
eeds by
omputing the type of M and
heking whether it is

�-equal to A.

De
idability of Typing holds be
ause the abstra
ted variables
ome with their types.

So, if we want to type
he
k �x:A:M in �, we
an pro
eed by type
he
king M in �; x:A.

If we want to type
he
kMN in �, we have to type
he
kM in � and see whether its type

redu
es to something of the form �x:A:B. Then we type
he
k N in � and see whether its

type is �-equal to A. In the type
he
king algorithm, an algorithm for
he
king �-equality

is used. As all terms in �P are Strongly Normalizing, this equality-
he
king algorithm

terminates, and hen
e the type-
he
king algorithm does.

If we pursue the view of �P as a logi
, one may wonder whether the inhabitation

problem is de
idable, that is, given a
ontext � and a type A, is it de
idable whether

there exists a term of type A in �?

Proposition 2.10. (Unde
idability of Inhabitation) (Bezem and Springintveld

1996) In general it is unde
idable whether, given a
ontext � and a type A in �, there

exists an M su
h that � `M : A.

The proof pro
eeds by translating register ma
hine programs P into a pair of a
ontext

�

P

and a type A

P

in su
h a way that A

P

is inhabited in �

P

i� P terminates.

>From a more
omputational perspe
tive, viewing the terms as programs, Strong Nor-

malization may not seem very natural to have. In the
omputational view, one may

wonder whether types
an be re
onstru
ted automati
ally, i.e. if they are not given in

the �-abstra
tion. This is known as the Type Assignment Problem, whi
h is known to be

de
idable for simple typed �-
al
ulus. To be more pre
ise, we de�ne the erasure, j � j,

of a pseudoterm by j�x:A:M j := �x:jM j and for the other
ases by stru
tural re
ursion.

Then, if � ` M : A(: type), the term jM j is an ordinary untyped �-term. Now, given

an untyped �-term N one may wish to �nd out whether N is typable, i.e. whether a

well-typed term M exists su
h that jM j � N .

Proposition 2.11. (Unde
idability of Type Assignment) (Dowek 1993) It is in

general unde
idable whether, given a
ontext � and an untyped � term N , there is a

term M su
h that M is well-typed in � and jM j � N .

The proof pro
eeds by de�ning a spe
ial
ontext � su
h that for every Post
orrespon-

den
e problem P there is a (untyped) term t

P

su
h that t

P

is typable in � i� the problem

P has a solution.

2.2. Minimal �P

It turns out that for many pra
ti
al uses, there is no need to be able to abstra
t over a

type to form a
onstru
tor (i.e. form �x:A:M for �x:A:B : kind). We therefore de�ne a

minimal version of �P.

First order dependent type theory, �P 7

De�nition 2.12. In �P we split the rule (�) in two, a (�

0

) and a (�

P

) rule. For
onve-

nien
e we atta
h a label to the abstra
tion that we introdu
e with the rule, so

(�

0

)

�; x:A `M : B � ` �x:A:B : type

� ` �

0

x:A:M : �x:A:B

(�

P

)

�; x:A `M : B � ` �x:A:B : kind

� ` �

P

x:A:M : �x:A:B

The system �P without the rule (�

P

) we
all �P

�

, and we write `

�

for judgements

in �P

�

. On the terms of �P we now distinguish �

0

-redu
tion from �

P

-redu
tion in the

obvious way:

(�

0

x:A:M)N �!

�

0

M [N=x℄;

(�

P

x:A:M)N �!

�

P

M [N=x℄:

Similarly we
an now talk about �

P

-normal forms et
etera.

All the ni
e properties that we know from �P remain to hold for �P

�

. In Se
tion 4

we show that this minimal version of �P is adequate as a logi
al framework. It is also

adequate for interpreting minimal �rst order predi
ate logi
, as we will see in the next

Se
tion.

3. �P as minimal �rst order predi
ate logi

We want to make a pre
ise study of the embedding of minimal �rst order predi
ate logi

into �P , following the so
alled formulas-as-types embedding, originally due to Curry,

Howard and De Bruijn. The embedded logi
, minimal �rst order predi
ate logi
, has

as
onne
tives only impli
ation � and �rst-order universal quanti�
ation. There is no

negation and (hen
e) there is no double negation rules, so the logi
 is
onstru
tive. A

pe
uliarity of the embedding is that both domains (of the logi
) and formulas are in-

terpreted as types, whi
h makes the
ompleteness of the formulas-as-types embedding

not at all obvious. Moreover, there are two
onstru
tions possible in �P that are { al-

though not alien to predi
ate logi
 { not in the realm of �rst order logi
. These are:

(1) The possibility to de�ne new predi
ates by abstra
tion. E.g. if R : A!A!type is

a binary predi
ate on A, then �x:A:Rxx is of type A!type, a unary predi
ate on A.

(2) The possibility to de
lare and
onstru
t higher order fun
tions. E.g. one
an de
lare

f : (A!A)!A in the
ontext, a fun
tion from A!A (fun
tions from A to A) to A. Also

one
an
onstru
t higher order fun
tions, like �f : (A!A)!A:f(�x:A:x) whi
h is of type

((A!A)!A)!A.

In the following we �rst give a pre
ise de�nition of the logi
al systems: minimal �rst

order predi
ate logi
, PRED and its extension with de�nable predi
ates and higher order

fun
tions, PRED

fr

. Then we de�ne a typed �-
al
ulus, �PRED

fr

that we show to be

isomorphi
 to PRED

fr

via the formulas-as-types embedding. Then we prove in two phases

that the embedding of minimal �rst order predi
ate logi
 (PRED) into �P is indeed

omplete. In the �rst phase we show
ompleteness of the embedding of �PRED

fr

into

�P. In the se
ond phase we show
onservativity of PRED

fr

over PRED.

H. Geuvers and E. Barendsen 8

In the following diagram the steps in the proof of
ompleteness of the formulas-as-typed

embedding from PRED into �P are depi
ted. An arrow denotes the in
lusion embedding

of one system in another.

PRED

3:17

-

PRED

fr

'

?

3:16

�PRED

fr

3:36

-

�P

3.1. Minimal �rst order predi
ate logi

De�nition 3.1. The language of the system PRED is de�ned as follows.

1 The domains are given by

D ::= B jP jF

where B is a set of basi
 domains, P is the set of predi
ate domains, de�ned by

P ::= Prop j B!P ;

and F is the set of fun
tional domains, de�ned by

F ::= B!� � �!B:

(We assume every fun
tional domain to be built up from at least two basi
 domains.)

The intention is that B

1

!B

2

!B

3

should be read as B

1

!(B

2

!B

3

), the set of fun
-

tions taking an argument in B

1

, an argument in B

2

and returning a value in B

3

.

Similarly, B

1

!B

2

!Prop is intended to represent the set of relations on B

1

�B

2

.

2 The terms of the language of PRED are des
ribed as follows.

| There are
ountably many
onstants

D

i

for every domain D 2 D,

| There are
ountably many variables of ea
h basi
 domain B 2 B,

| If

D

i

is a
onstant of domain D � B

1

!� � �!B

1

!C, where C 2 B[Prop and for

1 � i � p, t

i

is a term of domain B

i

, then

D

i

t

1

: : : t

p

is a term of domain C,

| If ' � Prop and x is a variable of basi
 domain B, then 8x�B:' is a term of domain

Prop.

| If ' and are terms of domain Prop, then ' � is a term of domain Prop.

If t is a term of domain D, we shall just write t � D.

The derivation rules of PRED are the following. (The usual rules for � and 8, where

First order dependent type theory, �P 9

quanti�
ation is restri
ted to the basi
 domains.)

(�-I)

['℄

i

.

.

.

' �

i

(�-E)

' � '

(8-I)

8x�B:

(�) (8-E)

8x�B:

 [t=x℄

if t � B

(�): in the 8-I rule we make the usual restri
tion that the variable x may not o

ur free

in a non-dis
harged assumption of the derivation. In the �-I rule, i is an index to label

the formulas that are dis
harged with that rule.

For � a set of formulas of PRED and ' a formula of PRED, we say that ' is derivable

from � in PRED, notation � `

PRED

', if there is a derivation with root ' and all

non-dis
harged formulas in �.

This is the usual system of minimal �rst order predi
ate logi
. We extend this de�nition

to allow for de�nable predi
ates (by �-abstra
tion) and higher order fun
tions.

De�nition 3.2. The system PRED

fr

is PRED plus the following extra
lauses. The

fun
tional domains F are de�ned by

F ::= B!B jF!B:

In the rules for term-formation we add

| There are
ountably many variables of ea
h fun
tional domain F 2 F ,

| If t � D

2

, D

2

2 D (an arbitrary domain) and x a variable of domain D

1

2 B[F , then

�x�D

1

:t � D

1

!D

2

,

| If t � D

1

!D

2

and q � D

1

, then tq � D

2

.

| If ' � Prop and x a variable of domain D

1

2 B [F , then 8x�D

1

:' � Prop.

The last rule repla
es the appli
ation rule in the terms of PRED. The �-abstra
tion (and

appli
ation) on terms
omes together with the usual notion of �-equality: two terms

are �-equal if they are equal via the transitive, symmetri
, re
exive
losure,
ompatible

with appli
ation and abstra
tion, of the one step �-redu
tion (�x�D:t)q�!

�

t[q=x℄. In

the derivation rules we add the rule

(
onv)

'

if ' =

So in PRED

fr

there is no real distin
tion { in treatment { between basi
 domains and

fun
tional domains. For
larity and to be able to
ompare the systems, we keep the

distin
tion.

The need for a
onversion rule, establishing that �-equal formulas are equivalent, is

felt in the following examples.

Examples 3.3.We work in the system PRED

fr

. Let A be a basi
 domain,R � A!A!Prop,

f � A!A!A, a � A.

H. Geuvers and E. Barendsen 10

| We
an de�ne a new predi
ate �x�A:Rxx � A!Prop by �-abstra
tion. Let's abbrevi-

ate it to Q. Now Raa ` Qa by the
onversion rule.

| We
an de�ne a new fun
tion �x�A:fx(fxa) � A!A by �-abstra
tion. Let's abbrevi-

ate it to g. Now 8x�A:Rx(fx(fxa)) ` 8x�A:Rx(gx).

3.2. A typed �-
al
ulus for minimal �rst order predi
ate logi

De�nition 3.4. �PRED

fr

is the typed �-
al
ulus de�ned as follows. Just like in �P,

there are two forms of judgement.

� `M : B M is of type B in
ontext �;

� ` � is a
orre
t
ontext.

The set of pseudoterms is now de�ned by

T ::= Var j Set jProp jType

s

jType

p

j (TT) j (�x:T:T) j (�x:T:T):

The intended interpretations are that Set represents the universe of basi
 sets (in
lud-

ing sets of higher type), Prop represents the universe of formulas, Type

p

represents the

universe of predi
ate sets and Type

s

ontains just Set. The derivation rules for deriving

the judgements � ` M : B and � ` are the following. Here, s; s

1

and s

2

range over

fSet;Prop;Type

p

;Type

s

g and R = f(Set; Set); (Prop;Prop); (Set;Prop); (Set;Type

p

)g:

(base) ; ` (
txt)

� ` A : s

�; x:A `

if x not in �

(proj)

� `

� ` x : A

if x:A 2 �

(ax)

� `

� ` Set : Type

s

(ax)

� `

� ` Prop : Type

p

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

2

if (s

1

; s

2

) 2 R

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(
onv)

� `M : B � ` A : s

� `M : A

A =

�

B

We use the same notational
onventions as for �P.

Example 3.5. A:Set; R:A!A!Prop; s:�x; y:A:Rxy!Ryx; t:�x; y; z:A:Rxy!Ryz!Rxz `

�x; y:A:�h:Rxy:txyxh(sxyh) : �x; y:A:Rxy!Rxx:

This is a proof of the fa
t that if R is symmetri
 and transitive, then R is re
exive on

its domain (the x for whi
h Rxy for some y).

We list the main properties of the �PRED

fr

. They are a
onsequen
e of the fa
t

First order dependent type theory, �P 11

that �PRED

fr

is a Pure Type System. Unless stated otherwise, proofs
an be found in

(Barendregt 1992) or in (Geuvers and Nederhof 1991).

Proposition 3.6. (Subje
t Redu
tion) If � `M : A andM �!�!

�

N , then � ` N : A.

Proposition 3.7. (Typed Con
uen
e) If � ` M : A, � ` N : A and M =

�

N , then

there is a term P with M �!�!

�

P , N �!�!

�

P and � ` P : A.

Proposition 3.8. (Uniqueness of Types) If � `M : A and � `M : B, then A =

�

B.

Proposition 3.9. (De
idability of Typing) Given a
ontext � and a pseudo-termM ,

it is de
idable whether M has a type in � and if M has a type it
an be
omputed.

Proposition 3.10. (Strong Normalization) All well-typed expressions of �PRED

fr

are Strongly Normalizing with respe
t to �-redu
tion.

Proposition 3.11. (Unde
idability of Inhabitation) In general it is unde
idable

whether, given a
ontext � and a type A in �, there exists an M su
h that � `M : A.

The proof of Unde
idability of Inhabitation for �P in (Bezem and Springintveld 1996)

(see also Proposition 2.10) applies immediately to �PRED

fr

. As a matter of fa
t, the

proof in (Bezem and Springintveld 1996) already shows that minimal �rst order predi
ate

logi
 PRED is unde
idable.

Proposition 3.12. (Unde
idability of Type Assignment) It is in general unde
id-

able whether, given a
ontext � and an untyped � term N , there is a term M su
h that

M is well-typed in � and jM j � N .

Modulo some small
hanges, the proof of Unde
idability of Type Assignment for �P

(see 2.11) in (Dowek 1993)
an be applied to �PRED

fr

as well.

The following is a spe
i�
 property of �PRED

fr

, that does not hold for �P. In fa
t it

states that �PRED

fr

is really a logi
al system, where �rst the terms are built up, then

the propositions and then the proofs.

Proposition 3.13. In �PRED

fr

, if � `M : A, then

�

D

;�

T

;�

P

`M : A

where

| �

D

;�

T

;�

P

is a permutation of �,

| �

D

only
ontains de
larations � : Set,

| �

T

only
ontains de
larations x : A with �

D

` A : Set=Type

p

,

| �

P

only
ontains de
larations p : ' with �

D

;�

T

` ' : Prop.

The �

D

, �

T

and �

P

are determined uniquely up to permutation. We refer to �

D

as the

set-
ontext of �, to �

T

as the obje
t-
ontext of � and to �

P

as the proof-
ontext of � and

to the
on
atenation �

D

;�

T

as a language-
ontext . Furthermore, if � `M : A, then

| if A � Set=Type

p

, then �

D

`M : A,

| if � ` A : Set=Type

p

, then �

D

;�

T

`M : A.

We will refer to the M su
h that �

D

, �

T

`M : A with A : Set as the obje
t-language.

The proof of this Proposition is not diÆ
ult and pro
eeds by indu
tion on the derivation

of � `M : A. A detailed proof
an be found in (Geuvers 1993).

H. Geuvers and E. Barendsen 12

By restri
ting the rules we obtain a system we
all �PRED whi
h
orresponds to

PRED in the same way that �PRED

fr

orresponds to PRED

fr

, via the formulas-as-

types embedding.

De�nition 3.14. The system �PRED is de�ned by

| Restri
ting in the rules of �PRED

fr

the (�)-rule to the
ase where s = Prop,

| Adding a universe Fun,

| Removing (Set; Set) from R,

| Allowing in triples (s

1

; s

2

; s

3

) of universes in R, where s

3

is the type in the
on
lusion

of the (�)-rule, and adding the triples (Set; Set;Fun) and (Set;Fun;Fun).

The intention of Fun is to represent the universe of fun
tion types. (The F in De�nition

3.1.) We
an now only form basi
 sets of type Set and A!A : Fun, A!A!A : Fun,

et
etera.

3.3. The
onservativity results

The formulas-as-types embedding from PRED

fr

into �PRED

fr

is de�ned as follws.

| A basi
 domain B is mapped to a de
laration B : Set in the
ontext. Hen
e, the

fun
tional domains are mapped to terms of type Set and the predi
ate domains are

mapped to terms of type Type

p

. For
onvenien
e, we don't distinguish between the

notation of the domain in the PRED

fr

and in �PRED

fr

.

| A
onstant

D

is mapped to a de
laration
 : D in the
ontext. Hen
e, a term

f(t

1

; : : : ; t

n

) is translated to ft

1

� � � t

n

.

| A proposition is mapped to a term of type Prop by translating 8x:A:' to �x:A:' and

' � to '! .

| An assumption ' is translated into a de
laration p : ' in the
ontext.

| A derivation is mapped to a typed term translating an I-rule into a �-abstra
tion and

an E-rule into an appli
ation.

As the translation alters so little for domains, terms and propositions, we usually don't

write it and identify e.g. 8x�A:Px � Qx with �x:A:Px!Qx. The translation from

derivations to proof-terms will be denoted by [(�)℄. So if � `

�

PRED

fr

', denoting that � is

a derivation of ' from �, then [(�)℄ is the asso
iated proof-term.

We do not de�ne the translation of derivations into proof-terms pre
isely, as it is rather

well-known and involves quite a lot of synta
ti
al detail. Instead we give an example of a

derivation and how it is (indu
tively) translated to a term in �PRED

fr

. Morevover, this

example should provide enough eviden
e for the fa
t that there is also a translation ba
k

from proof-terms (in �PRED

fr

) to derivations in PRED

fr

. The translation from terms

to derivations will be denoted by �(�): if t is a proof-term, then �(t) is the asso
iated

derivation.

The isomorphism between PRED

fr

and PRED

fr

arises from the fa
t that these two

translations [(�)℄ and �(�) are ea
hothers inverses. Details
an be found in (Geuvers

1993).

Example 3.15. Let a domain A, a predi
ate P on A and a binary relation Q on A be

given. The following is a deriavtion of (8x�A:Px) � (8x�A:Qxx) from the hypothesis

First order dependent type theory, �P 13

8x; y�A:Px � Py � Qxy. Let's
all this derivation �.

8x; y�A:Px � Py � Qxy

8y�A:Px � Py � Qxy

Px � Px � Qxx

[8x�A:Px℄

1

Px

Px � Qxx

[8x�A:Px℄

1

Px

Qxx

8x�A:Qxx

(8x�A:Px) � (8x�A:Qxx)

1

We de
orate � by �-terms, thus indu
tively de�ning the �-term [(�)℄ from the derivation

�.

g : 8x; y�A:Px � Py � Qxy

gx : 8y�A:Px � Py � Qxy

gxx : Px � Px � Qxx

h : 8x�A:Px

hx : Px

gxx(hx) : Px � Qxx

h : 8x�A:Px

hx : Px

gxx(hx)(hx) : Qxx

�x:A:gxx(hx)(hx) : 8x�A:Qxx

�h:(8x�A:Px):�x:A:gxx(hx)(hx) : (8x�A:Px) � (8x�A:Qxx)

So [(�)℄ := �h:(�x:A:Px)�x:A:gxx(hx)(hx). In �PRED

fr

, we
an derive

A:Set; P :A!Prop; Q:A!A!Prop; g:�x; y:A:Px!Py!Qxy `

�h:(�x:A:Px)�x:A:gxx(hx)(hx) : (�x:A:Px)!(�x:A:Qxx):

Proposition 3.16. Given a PRED

fr

-signature � (
ontaining a �nite number of domains

and relations and
onstants over these domains), a �nite set of formulas (over �) � and

a formula ',

� `

�

PRED

fr

') �

�

;�

�;';�

; ~p : � `

�PRED

fr
[(�)℄ : ';

where �

�

;�

�;';�

is the
anoni
ally de�ned language
ontext
ontaining de
larations for

all the
onstants and free variables in �;�; ';�.

Furthermore, if �

D

;�

T

` : Prop for all 2 � [f'g, then

�

D

;�

T

; ~p : � `

�PRED

fr M : ') � `

�(M)

PRED

fr

':

The mappings [(�)℄ and �(�)
onstitute a bije
tion between derivations in PRED

fr

and

proof-terms in �PRED

fr

.

For a detailed proof see (Geuvers 1993).

Proposition 3.17. PRED

fr

is
onservative over PRED, that is, for � a set of formulas

and ' a formula of PRED,

� `

PRED

fr ') � `

PRED

':

Proof. The proof is by eliminating
uts (in derivations) and normalizing the terms as

follows. In PRED

fr

all terms are Strongly Normalizing and all
uts in derivations
an be

eliminated. Moreover if � and ' are taken from PRED and � `

PRED

fr ' by a
ut-free

derivation in whi
h only normal terms o

ur, then this is already a derivation in PRED.

H. Geuvers and E. Barendsen 14

The easiest way to treat the normalization and
ut-elimination argument is by looking

at �PRED

fr

and �PRED instead. The argument then runs as follows.

1 The system �PRED

fr

is Strongly Normalizing (e.g. there is a redu
tion-preserving

embedding into the Cal
ulus of Constru
tions, whi
h is known to be SN).

2 Suppose that the term-
ontext �

T

is a
tually a �PRED-
ontext (i.e. there o

ur

no Set-types of higher type in it). Suppose furthermore that � [f'g
ontains only

�PRED-formula.

3 If �

D

;�

T

`

�PRED

fr t : A with t in normal form and A : Set 2 �

D

(i.e. A is a basi

domain), then �

D

;�

T

`

�PRED

t : A

4 If �

D

;�

T

;�

P

`

�PRED

fr q : ' with q in normal form, then �

D

;�

T

;�

P

`

�PRED

q : '.

The third and fourth step are proved by indu
tion on the stru
ture of terms (t and q).

Together, these four steps prove the proposition.

Now to show the
ompleteness of the formulas-as-types embedding from �rst order

predi
te logi
 (PRED) into �P, we only have to show the
ompleteness of the embedding

of �PRED

fr

into �P. Both �PRED

fr

and �P are Pure Type Systems (PTS) and the

embedding of �PRED

fr

into �P that we are looking at is a PTS-morphism H given by

H :=

8

>

>

<

>

>

:

Set 7! type

Prop 7! type

Type

s

7! kind

Type

p

7! kind

A PTS-embedding extends immediately to all terms and
ontexts and it preserves typing,

i.e.

� `

�PRED

fr M : A) H(�) `

�P

H(M) : H(A):

We now give the te
hni
al details of the proof of
ompleteness of H : �PRED

fr

!

�P. The proof uses te
hniques developped in (Swaen 1989) who shows
ompleteness

of the formulas-as-types embedding from �rst order predi
ate logi
 into Martin-L�of's

intuitionisti
 theory of types. A di�erent proof of our result
an be found in (Berardi

1990).

The question of
ompleteness is whether for any �PRED

fr

-
ontext �

D

;�

T

;�

P

and

proposition ' with �

D

;�

T

` ' : Prop, if

H(�

D

;�

T

;�

P

) `M : H(') in �P;

then there exists a term N with

�

D

;�

T

;�

P

` N : ' in �PRED

fr

:

Convention 3.18. In the following we assume for any �PRED

fr

-
ontext � that

1 � � �

D

;�

T

;�

P

,

2 �

D

ontains O : Set (so there is at least one basi
 domain),

3 all basi
 domains in �

D

are nonempty,

4 �

T

begins with a de
laration �:Prop and �

P

begins with z:�. This � will be referred

to as True, the z will be referred to as t.

First order dependent type theory, �P 15

The �rst
lause is validated by Proposition 3.13. If the se
ond
lause were not satis�ed

we would in fa
t be working in propositional logi
. The third and fourth
lause are added

for
onvenien
e. In
ase there are empty domains in the logi
, the
ompleteness result

would still hold with a slightly adapted argument.

We �x a language-
ontext of �PRED

fr

�

D

;�

T

. We �rst want to de�ne a map j � j

p

from �P-terms, typable in H(�

D

;�

T

), to the obje
t language of �PRED

fr

. This map

should be the inverse of H on the obje
t language. That is, if �

D

;�

T

`

�PRED

fr
M : A

with A : Set, then jH(M)j

p

� M . We need to de�ne j � j

p

not just on terms typable in

H(�

D

;�

T

), but in a elementary extension of H(�

D

;�

T

).

De�nition 3.19. For �

D

;�

T

a language-
ontext of �PRED

fr

and � a
ontext of �P, we

say that � is an elementary extension of H(�

D

;�

T

), notation � � H(�

D

;�

T

), if � �

H(�

D

;�

T

) and the extra de
larations in � are all of the form x:� with H(�

D

;�

T

) `

�P

� : type.

For example, H(�

D

;�

T

;�

P

) is always an elementary extension of H(�

D

;�

T

).

De�nition 3.20. Let � � H(�

D

;�

T

). The mapping j� j

p

from �P-terms in the
ontext

� to terms of �PRED

fr

is de�ned as follows.

(i) jtypej

p

:= Set;

(ii) jkindj

p

:= Type

s

;

(iii) jxj

p

:= x; if x 2 �

D

(so x : Set);

(iv) jxj

p

:= O; if x 2 �

T

and x : � � �!Prop;

(v) jxj

p

:= x; for x another variable;

(vi) j�x:A:Bj

p

:= jBj

p

if A:type; B:kind;

:= �x:jAj

p

:jBj

p

else;

(vii) j�x:A:M j

p

:= jM j

p

if A:type;M :B:kind; (for some B);

:= �x:jAj

p

:jBj

p

else;

(ix) jPM j

p

:= jP j

p

if M :A:type; P :B:kind; (for some A;B);

:= jP j

p

jM j

p

else

The de�nition extends immediately to the
ontext � itself, where a de
laration
oming

from x : � � �!Prop 2 �

T

(
ase (iv)) is removed.

Example 3.21. As a running example throughout this Se
tion, we will use the following

�PRED

fr

-
ontext.

O : Set; A : Set;

True : Prop;

O

: O;

A

: A; f : O!A; g : (O!A)!A;R : O!A!Prop;

t : True; p

1

: �x:O:Rx(fx); p

2

: �x:A:(�y:O:Ry(g(�z:O:x)))!R

O

x:

So here

�

D

= O : Set; A : Set;

�

T

= True : Prop;

O

: O;

A

: A; f : O!A; g : (O!A)!A;R : O!A!Prop;

�

P

= t : True; p

1

: �x:O:Rx(fx); p

2

: �x:A:(�y:O:Ry(g(�z:O:x)))!R

O

x:

(In the examples of this Se
tion we will use these abbreviations. Note that in the De�ni-

tions, Lemmas and Propositions, �

D

;�

T

is some �xed language
ontext.) Now
onsider

H. Geuvers and E. Barendsen 16

the following elementary extension � of H(�

D

;�

T

):

� := H(�

D

;�

T

;�

P

); z

1

: O!A; z

2

: �x:O:Rx(gz

1

)!A; z

3

: �x:A:R

O

x:

Note that the type of z

2

does not
orrespond to a logi
al formula (it is not in the image

of H). We
ompute the j � j

p

-image of this
ontext. It is

O : Set; A : Set;

O

: O;

A

: A; f : O!A; g : (O!A)!A;

t : O; p

1

: O!O; p

2

: A!(O!O)!O; z

1

: O!A; z

2

: O!O!A; z

3

: A!O:

That the mapping j � j

p

is indeed from �P-terms in the
ontext � to �PRED

fr

is

justi�ed by the following Proposition.

Proposition 3.22. Let � � H(�

D

;�

T

).

� `

�P

M : A) j�j

p

`

�PRED

fr jM j

p

: jAj

p

:

Proof. By indu
tion on the derivation of � ` M : A in �P. There are no diÆ
ult

ases. In the
onversion rule, it is used that, if M =

�

N , then jM j

p

� jN j

p

.

Example 3.23. (De�nitions are as in Example 3.21.) In �P we have � `

�P

z

3

A

: R

O

A

,

whi
h is mapped to j�j

p

`

�PRED

fr z

3

A

: O. Similarly, � `

�P

z

2

O

(z

3

(gz

1

)) : A, is

mapped to j�j

p

`

�PRED

fr z

2

O

(z

3

(gz

1

)) : A.

Fa
t 3.24. If �

D

;�

T

` M : A(: Set), then jH(A)j

p

� A and jH(M)j

p

� M . (Note that

H is the identity on these kind of terms.)

Corollary 3.25. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

we have

� `

�P

M : A(: type)) �

D

;�

T

; j�

0

j

p

`

�PRED

fr jM j

p

: jAj

p

:

Proof. We know by Proposition 3.22 that j�j

p

`

�PRED

fr jM j

p

: jAj

p

. Now note that

jH(�

D

)j

p

� �

D

. Furthermore, for a de
laration x : A in �

T

, if A:Set, then jx:Aj

p

� x:A

and if A:Type

p

, then jxj

p

� O and the de
laration of x is removed from the
ontext by

j � j

p

. So �

D

;�

T

; j�

0

j

p

� j�j

p

and so �

D

;�

T

; j�

0

j

p

` jM j

p

: jAj

p

by Thinning.

All this means that j�j

p

is a mapping ba
k from �P-terms (typable in � � H(�

D

;�

T

))

to the obje
t-language of �PRED

fr

that does not
hange the terms that originated from

the obje
t-language.

Now we de�ne a mapping Tr ba
k from �P to the proof-language of �PRED

fr

. So

types in �P will be
ome propositions and obje
ts will be
ome proofs of �PRED

fr

: If

� � H(�

D

;�

T

) and � `

�P

A : type, then j�j

p

`

�PRED

fr Tr(A) : Prop. Moreover,

if �

D

;�

T

`

�PRED

fr ' : Prop, then Tr(') should be equivalent to ', i.e. Tr(') should

be inhabited i� ' is. We prove that for su
h ' we
an �nd terms M

1

;M

2

su
h that

�

D

;�

T

`

�PRED

fr M

1

: '!Tr(') and �

D

;�

T

`

�PRED

fr M

2

: Tr(')!'. We introdu
e

some notation.

Notation 3.26. For � a
ontext in �PRED

fr

and � `

�PRED

fr
'; : Prop, we write

� `

�PRED

fr hM

1

;M

2

i : '$

if � `

�PRED

fr M

1

: '! and � `

�PRED

fr M

2

: !'.

First order dependent type theory, �P 17

The main tri
k in the de�nition of Tr is to de
ompose a type �x:A:B (A;B : type) into

a quanti�
ation over jAj

p

and an impli
ation Tr(A)!Tr(B). This idea o

urs in di�erent

pla
es in the literature. Our main inspiration is (Swaen 1989), who uses it for �rst-order

predi
ate logi
 and Martin L�of's type theory, but one
an also �nd it in (Mohring 1986),

who uses it for de�ning a realisability interpretation for the Cal
ulus of Constru
tions,

and in (Geuvers 1995), where it is used to prove Strong Normalization for the Cal
ulus

of Constru
tions.

De�nition 3.27. Let � � H(�

D

;�

T

). The map Tr on
onstru
tors of �P in � is de�ned

as follows.

(i) Tr(�) := True, if �:Set 2 �

D

;

(ii) Tr(�) := �, if �: � � �!Prop 2 �

T

;

(iii) Tr(�x:A:M) := �x:jAj

p

:Tr(M);

(iv) Tr(Qt) := Tr(Q)jtj

p

;

(v) Tr(�x:A:B) := �x:jAj

p

:Tr(A)!Tr(B):

Example 3.28.With the �P-
ontext � de�ned as in Example 3.21, we �nd the following

Tr translations for types in this
ontext.

Tr(�x:O:Rx(fx)) = �x:O:True!Rx(fx);

Tr(�x:O:Rx(gz

1

)!A) = �x:O:True!Rx(gz

1

)!True:

Proposition 3.29. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

we have

� `

�P

C : �x

1

:A

1

: : : :�x

n

:A

n

:type

) �

D

;�

T

; j�

0

j

p

`

�PRED

fr Tr(C) : jA

1

j

p

!� � �!jA

n

j

p

!Prop:

Proof. By indu
tion on the derivation. Note that if A:type in �P, then jAj

p

ontains

no obje
t-variables. Furthermore, if � `

�P

M : A(: type), then �

D

;�

T

; j�

0

j

p

`

�PRED

fr

jM j

p

: jAj

p

by Corollary 3.25.

All � : type in �P are mapped to a Tr(�) : Prop in �PRED

fr

. If � � H(A) with

A : Set in �PRED

fr

, then Tr(�) should be inhabited (`true').

Lemma 3.30. If �

D

`

�PRED

fr
A : Set, then

9M

1

;M

2

[�

D

;�

T

`

�PRED

fr hM

1

;M

2

i : True$ Tr(A)℄:

(To be pre
ise we would have to write Tr(H(A)) instead of Tr(A), but H is the identity

on terms of type Set.)

Proof. Immediate from the de�nition of Tr: if �

D

` A : Set, then A � � � �!� with

�:Set 2 �

D

. Hen
e Tr(A) � � � �!True, whi
h is logi
ally equivalent to True.

The mapping Tr preserves =

�

. This is proved using a substitution Lemma for Tr.

Lemma 3.31. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

, with � `

�P

A;B : type

and � `

�P

t : B we have

Tr(A)[jtj

p

=x℄ � Tr(A[t=x℄):

If � `

�P

A;A

0

: type and A =

�

A

0

,then

Tr(A) =

�

Tr(A

0

):

H. Geuvers and E. Barendsen 18

Proof. The �rst is easily proved by indu
tion on the stru
ture of A. The se
ond follows

from the fa
t that, if A �!

�

A

0

, then Tr(A) =

�

Tr(A

0

):

Proposition 3.32. For ea
h language-
ontext �

D

;�

T

and ' with �

D

;�

T

`

�PRED

fr
' :

Prop we have

9M

1

;M

2

[�

D

;�

T

`

�PRED

fr hM

1

;M

2

i : '$ Tr(H('))℄:

(Note that H is the identity on expressioons of type Prop, so we
an skip it.)

Proof. By indu
tion on the stru
ture of ', assuming that ' is in normal form. (By

Lemma 3.31, Tr(') =

�

Tr(nf(')).)

base If ' � �t

1

� � � t

n

with � a variable, then Tr(') � ' by the fa
t that jt

i

j

p

� t

i

. (Fa
t

3.24.)

� Say ' � !� with ; �:Prop. Then Tr('!) � �x:j'j

p

:Tr(')!Tr(). Now we are

done by IH: The variable x will not o

ur free in '! and one easily
onstru
ts the

required proof-terms.

8 Say ' � �x:A: with A : Set. Then Tr(�x:A:) � �x:jAj

p

:Tr(A)!Tr(). Now by Fa
t

3.24 and Lemma 3.30, �x:jAj

p

:Tr(A)!Tr() is equivalent to �x:A:Tr(), so we are

done by IH.

De�nition 3.33. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

, we de�ne the
ontext

TR(�) as

TR(�) := �

D

;�

T

; j�j

p

;Tr(�);

where Tr(�) is de�ned by repla
ing every de
laration z:A in �

0

by z

0

: Tr(A). (Of
ourse

we make sure that the de
lared variables in Tr(�) are di�erent from the ones in j�j

p

.)

Example 3.34. We look at the translation of � as in Example 3.21.

TR(�) = O : Set; A : Set;

True : Prop;

O

: O;

A

: A; f : A!O; g : (O!A)!A;R : O!A!Prop;

t : O; p

1

: O!O; p

2

: A!(O!O)!O; z

1

: O!A; z

2

: O!O!A; z

3

: A!O;

t

0

: True; p

0

1

: �x:O:True!Rx(fx);

p

0

2

: �x:A:True!(�y:O:True!Ry(g(�z:O:x)))!R

O

x:

Proposition 3.35. Let � � �

D

;�

T

, then

� `

�P

M : A(: type) in �P) 9N [TR(�) `

�PRED

fr N : Tr(A)℄ in �PRED

fr

:

Proof. By indu
tion on the derivation of � `

�P

M : A in �P.

(var)M � x then either x:A in �

T

or in �

0

. In the �rst
ase Tr(A) $ True and in the

se
ond
ase x:Tr(A) 2 TR(�).

(app) Say

� `

�P

M : �x:A:B � `

�P

t : A

� `

�P

Mt : B[t=x℄

By IH, TR(�) `

�PRED

fr N : Tr(�x:A:B) � �x:jAj

p

:Tr(A)!Tr(B) and

First order dependent type theory, �P 19

TR(�) `

�PRED

fr Q : Tr(A). We also have TR(�) `

�PRED

fr jtj

p

: jAj

p

, by Corollary

3.25. So we may
on
lude TR(�) `

�PRED

fr N jtj

p

Q : Tr(B)[jtj

p

=x℄ � Tr(B[t=x℄).

(�) Say

�; x:B `

�P

M : C � `

�P

�x:B:C : type

� `

�P

�x:B:M : �x:B:C

By IH, TR(�; x:B) `

�PRED

fr N : Tr(C). TR(�; x:B) � TR(�); x:jBj

p

; x

0

:Tr(B), so

we have

TR(�) `

�PRED

fr
�x:jBj

p

:�x

0

:Tr(B):N : �x:jBj

p

:Tr(B)!Tr(C) � Tr(�x:B:C):

(
onv)We are immediately done by Lemma 3.31.

Corollary 3.36. The embedding H from �PRED

fr

into �P is
omplete, i.e. if �

D

;�

T

is a language-
ontext with �

D

;�

T

`

�PRED

fr
' : Prop and �

P

a proof-
ontext, then

H(�

D

;�

T

;�

P

) `

�P

M : H(')) 9N [�

D

;�

T

;�

P

`

�PRED

fr N : '℄:

Proof. H(�

D

;�

T

;�

P

) is an elementary extension of �

D

;�

T

, so by the Proposition we

have

�

D

;�

T

; j�

P

j

p

;Tr(�

P

) `

�PRED

fr N : Tr(')

for some term N . Now every de
laration in j�

P

j

p

is of the form y : B where B : Set, so

we
an substitute for su
h a y a term of type B in the
ontext �

D

;�

T

. Furthermore, if

z:B 2 Tr(�

P

), then 9M

1

;M

2

:[�

D

;�

T

`

�PRED

fr hM

1

;M

2

i : B $ Tr(B)℄ by Proposition

3.32. So we
an repla
e ea
h z:Tr(B) by ẑ:B, at the same time substituting M

1

ẑ for z

inside N . (Su
h a variable z does not o

ur in Tr(').) We obtain a term N

0

su
h that

�

D

;�

T

;�

P

`

�PRED

fr N

0

: Tr('):

By again applying Proposition 3.32,we
an transform this N

0

into a N

00

with

�

D

;�

T

;�

P

`

�PRED

fr
N

00

: ':

As a Corollary to the proof of
ompleteness of H : �PRED

fr

!�P, we get
ompleteness

of H : �PRED!�P

�

: the same De�nitions apply and the same results
an be proven.

Corollary 3.37. The embedding H from �PRED into �P

�

is
omplete, i.e. if �

D

;�

T

is

a language-
ontext with �

D

;�

T

`

�PRED

' : Prop and �

P

a proof-
ontext, then

H(�

D

;�

T

;�

P

) `

�P

�
M : H(')) 9N [�

D

;�

T

;�

P

`

�PRED

N : '℄:

3.4. Some
omments on the
ompleteness result

The system PRED is too minimal to be of real interest for pra
ti
al mathemati
s, also

be
ause a system like �P is usually seen as a logi
al framework (like �P that will be

dis
ussed in Se
tion 4.) However, the
ompleteness result
an be extended a little bit to

systems with a bottom type. We are then
onsidering the formulas-as-types embedding

from PRED

?

to �P

?

, where PRED

?

is PRED, de�ned in 3.1, extended with a
onstant

H. Geuvers and E. Barendsen 20

? � Prop and the `ex falso sequitur quodlibet' rule, saying that ?!' is always inhabited.

The system �P

?

is �P extended with a
onstant type ? : type and a
onstant term E

?

with an extra rule

� `M : ? � ` A : type

� ` E

?

MA : A

The system PRED

?

is more interesting be
ause the full
lassi
al �rst order predi
ate

logi
 is a subsystem of it. More pre
isely, there is a faithful embedding of
lassi
al �rst

order predi
ate logi
 into PRED

?

by a double negation translation. The embedding of

lassi
al �rst order predi
ate logi
 in to �P

?

via the system PRED

?

is now
omplete,

due to the
ompleteness of the embedding of PRED

?

into �P

?

.

4. �P as a Logi
al Framework

The idea of using a �rst order dependent type theory as a Logi
al Framework originates

from De Bruijn and the Automath proje
t. (See (de Bruijn 1980), (van Daalen 1973) or

(Nederpelt et al. 1994).) However, the de�nition of �P, roughly as it is given here, and

its use as a Logi
al Framework, originate from (Harper et al. 1987). It is also in (Harper

et al. 1987) that the issue of adequa
y of the en
oding of a logi
 is �rst raised. Given a

logi
 L and its en
oding as a �P-
ontext �

L

, (see 2.4 for an example) we may wonder

whether this en
oding is adequate, i.e. whether for � = f

1

; : : : ;

n

; 'g a set of formulas

of L,

if �

L

; p

1

:T

1

; : : : ; p

n

:T

n

`

�P

M : T'; then � `

L

' ?

Of
ourse, soundness of the en
oding is also an important issue, but usually that is a

rather straightforward indu
tion on the derivation in L. As a matter of fa
t, the soundness

lies in
onstru
ting the right
ontext �

L

(that represents the logi
 L appropriately). So

we assume that we have
hosen the right �

L

and that the en
oding of L in �

L

is sound:

If � `

L

' then �

L

; p

1

:T

1

; : : : ; p

n

:T

n

`

�P

M : T'; for some M:

(This M will usually be a dire
t en
oding of the derivation of � `

L

'.)

4.1. Adequa
y of the LF en
oding

The way to prove adequa
y of the interpretation is by using so
alled `long-��-normal

forms'. A long-��-normal form is obtained by �rst taking the �-normal form and then

doing �-expansion: a term C[M ℄ in �-normal form �-expands to C[�x:A:Mx℄ if x =2

FV(M), M : �x:A:B and C[�x:A:Mx℄ is again in �-normal form. We write l��(M) for

the long-��-normal form of the term M .

So, for proving adequa
y of the en
oding, it is most
onvenient to repla
e the �-

onversion rule in �P with a ��-
onversion rule:

(
onv

��

)

� `M : B � ` A : s

� `M : A

A =

��

B

This is also what is done in LF: The type system of LF is �P extended with � in the

First order dependent type theory, �P 21

onversion rule. We will not go into this extension very deeply, but just remark that

adding this rule
ompli
ates the meta-theory quite a bit. Normalization is relatively

easy (shown in (Harper et al. 1987)), but
on
uen
e (of ��-redu
tion) is surprisingly

ompli
ated and was �rst proved by (Salvesen 1989) and (Geuvers 1992).

We note that for proving adequa
y of an en
oding, the extension with � is not stri
tly

required, but it does make the proof easier. (Maybe it is virtually the only way to prove

it.) The argument runs as follows. Suppose we have a ��-
onversion rule, so we work in

LF.

If �

L

; ~p : T

~

� `

LF

M : T';

then �

L

; ~p : T (

~

l��(�)) `

LF

l��(M) : T (l��(')) using =

��

;

then �

0

`

L

'

0

by a
anoni
al translation from long-��-nfs in the
ontext �

L

to L. Now, by the fa
t

that the en
oding of a formula of L as a a term of type prop yields a long-��-nf, we are

done: �, resp. ' are exa
tly the LF-en
oding of �

0

, resp. '

0

.

Having proved adequa
y of the en
oding in LF, we immediately
on
luse that the

en
oding in �P is adequate as well, be
ause �P � LF. More pre
isely: If �

L

; ~p : T

~

� `

�P

M : T', then also �

L

; ~p : T

~

� `

LF

M : T', and the rest of the argument runs as above.

We treat the adequa
y for the en
oding of minimal proposition logi
 (Example 2.4) in

some more detail. Here we don't need the ��-
onversion rule at all. Te
hni
ally: be
ause

there are no fun
tions of higher type in the
ontext � of 2.4; in terms of the argument

above: if � `

�P

A : prop, then A � l��(A). So, we only need that � `

�P

M : A) � `

�P

l��(M) : A, whi
h is easily proved in �P.

Now,
onsider the
ontext � of 2.4. The proof of adequa
y of the en
oding pro
eeds

in three steps.

(1) If �; ~x : prop `

�P

A : prop, then either one of the following two is the
ase.

A =

�

�BC with �; ~x : prop `

�P

B;C : prop;

A =

�

x with x:prop in the
ontext.:

(2) If �; ~x : prop; ~p : T (

~

A) `

�P

t : TB (with

~

A : prop and B : prop), then either one of

the following three is the
ase.

t =

�

p with B =

�

A; p:A in the
ontext, for some A;

t =

�

�

E

CDqr with �; ~x : prop; ~p : T (

~

A) `

�P

q : T (�CD); r : TC

and B =

�

D;

t =

��

�

I

CD(�z:TC:q) with �; ~x : prop; ~p : T (

~

A); z:TC `

�P

q : TD

and B =

�

�CD:

(3) From the long-��-nf of a term t with �; ~x : prop; ~p : T (

~

A) `

�P

t : TB (as in (2)) one

an indu
tively de�ne a derivation of the asso
iated proposition in minimal �rst order

proposition logi
.

So there is an isomorphism between ��-equivalen
e
lasses of terms of type TA in � and

derivations of A in the logi
. The isomorphism is de�ned on the long-��-normal forms,

whi
h form a
omplete set of representants for the ��-equivalen
e
lasses.

H. Geuvers and E. Barendsen 22

4.2. A minimal version of �P

Although the number of rules is limited, �P (or LF) is very powerful in interpreting

a wide variety of formal systems. (See (Harper et al. 1987) or (Avron et al. 1987) for

examples.) It is however not minimal yet: we
an do without part of the (�)-rule without

weakening the power of the system. This is partly due to the way in whi
h the system is

being used. On
e the
ontext �

L

that represents the formal system has been established,

one is only interested in judgements of the form

�

L

`

�P

M : A, with A : type

On the other hand there is no reason to let the
ontext �

L

not be in normal form. From

these two prin
iples we
an show that half of the rule (�) is super
uous: there is no need

to be able to form �x:A:M : �x:A:B in
ase �x:A:B : kind. That is: everything that
an

be en
oded in �P
an already be en
oded in �P

�

. See De�nition 2.12.

We show that a �

P

-normal form of a relevant judgement
ontains no �

P

and that if a

judgement
ontains no �

P

, it
an be derived without the rule (�

P

).

Lemma 4.1. If � `

�P

M : type or � `

�P

M : A(: type), then �

P

-nf(M)
ontains no

�

P

.

Proof. Suppose that M is in �

P

-nf and that � `

�P

M : type or � `

�P

M : A(: type).

We prove by indu
tion on the stru
ture of M that it
ontains no �

P

. Note that M �

�

P

x:B:N is not possible, be
ause then M : A : kind.

M � x

~

t Then for all i, � ` t

i

: B

i

(: type) and t

i

in �

P

-nf, so by indu
tion hypothesis, t

i

ontains no �

P

and we are done.

M � �

0

x:B:N Then �; x:B ` N : C(: type) and � ` B : type. Both are in �

P

-nf, so we

are done by using the indu
tion hypothesis.

M � �x:B:C Then �; x:B ` C : type and � ` B : type. Both are in �

P

-nf, so we are

done by using the indu
tion hypothesis.

Proposition 4.2. If � ` M : A, � and M are in �

P

-nf and
ontain no �

P

, then

� `

�

M : B for some B =

�

A.

Proof. By indu
tion on the length of � +M .

M � x Then � � �

1

; x:B;�

2

with A =

�

B. Now �

1

` B : type=kind and the indu
tion

hypothesis applies, so � `

�

B : type=kind, so �

1

; x:B `

�

x : B. Similarly for the

de
larations in �

2

, so we �nd � `

�

x : B.

M � �

0

x:C:N Then �; x:C ` N : D, so the indu
tion hypothesis applies and we �nd that

�; x:C `

�

N : D

0

for some D =

�

D

0

. Now it must be the
ase that � `

�

C : type

and �; x:C `

�

D

0

: type, so � `

�

�

0

x:C:N : �x:C:D

0

.

M � PN Then � ` P : �x:C:D and � ` N : C, so by indu
tion hypothesis we �nd that

� `

�

P : �x:C

0

:D

0

and � `

�

N : C

00

with C =

�

C

0

=

�

C

00

. But then � `

�

PN :

D

0

[N=x℄ and D

0

[N=x℄ =

�

A.

M � �x:C:N Easy.

First order dependent type theory, �P 23

Corollary 4.3. If � `M : A(: type), all in �

P

-normal form, then

� `

�

M : A(: type).

Proof. Suppose � ` M : A with � ` A : type, all in �

P

-normal-form. Then �;M

and A do not
ontain any �

P

(Lemma 4.1), so we
an apply the Proposition and �nd

a B =

�

A su
h that � `

�

M : B. Moreover, � `

�

A : type, so � `

�

M : A by the

onversion rule.

Now, if � is a �P
ontext representing some system of logi
 and A is a type that

represents some formula of this logi
, then we
an assume � and A to be in �

P

-normal

form. Now, when looking for a proof of A in �P, one only has to look at terms that do

not
ontain a �

P

: the (�

P

) rule
an totally be ignored.

The previous Proposition says that the only real need for �x:A:B : kind is to be

able to de
lare a variable in it. Even this use is usually of the most simple form where

x =2 FV(B). The standard appli
ation of it in both Automath systems and �P (
ertainly

for logi
al systems) is the de
laration of T : prop!type, where prop : type is another

de
laration.

We
ould even be more `minimal' and not allow fun
tion types of the form

�x

1

:A

1

: : : :�x

n

:A

n

:type, but instead add rules for `parametri

onstants':

�; x

1

:A

1

; : : : ; x

n

:A

n

`

�;
:�(x

1

:A

1

; : : : ; x

n

:A

n

):type `
 : �(x

1

:A

1

; : : : ; x

n

:A

n

):type

� `
 : �(x

1

:A

1

; : : : ; x

n

:A

n

):type � ` t

i

: A

i

[t

1

=x

1

℄ : : : [t

i�1

=x

i�1

℄ (8i � n)

� `

~

t : type

Then a de
lared
onstant of type �x

1

:A

1

: : : :�x

n

:A

n

:type
an only be used in its

`fully applied' form, i.e. by applying it to n values.

5. Con
luding Remarks

We have studied �rst order dependent typed �-
al
ulus from two perspe
tives: �rst as a

logi
al systems itself (via the formulas-as-types embedding) and se
ond as a framework

for de�ning logi
al systems. From the �rst perspe
tive, we have proved the
ompleteness

of the formulas-as-types embedding of minimal �rst order predi
ate logi
 into �P, whi
h

turned out to be remarkably intri
ate. It is known that this result does not extend to the

embedding of higher order predi
ate into the the Cal
ulus of Constru
tions (see (Berardi

1990) and (Geuvers 1993)):
ompleteness fails for the third order
ase and higher; for the

se
ond order
ase, the question of
ompleteness is still open.

We have also seen that the rule that allows to �-abstra
t over a type (A : type) to

reate a term of a kind (B : kind), does not
ontribute to the power of the system �P.

(This is de�ned as �

P

-abstra
tion in De�nition 2.12.) If we look at the formulas-as-types

embedding, this addition is a
onservative extension: see Corollary 3.37. If we look at �P

as a logi
al framework, Corollary 4.3 shows that �

P

-abstra
tion is super
uous.

H. Geuvers and E. Barendsen 24

Referen
es

A. Avron, F. Honsell and I. Mason, Using typed lambda
al
ulus to implement formal systems

on a ma
hine, Report 87-31, LFCS Edingurgh, UK.

H.P. Barendregt, Typed lambda
al
uli. In Handbook of Logi
 in Computer S
ien
e, eds.

Abramski et al., Oxford Univ. Press.

E. Barendsen and H. Geuvers, �P is
onservative over �rst order predi
ate logi
, Manus
ript,

Fa
ulty of Mathemati
s and Computer S
ien
e, University of Nijmegen, Netherlands,

S. Berardi, Type dependen
e and
onstru
tive mathemati
s, Ph.D. thesis, Universita di

Torino, Italy.

M. Bezem and J. Springintveld, A simple proof of the unde
idability of inhabitation in �P.

Journal of Fun
tional Programming, vol 6 (5), pp. 757{761.

N.G. de Bruijn, A survey of the proje
t Automath, In To H.B. Curry: Essays on Combinatory

Logi
, Lambda Cal
ulus and Formalism, eds. J.P. Seldin, J.R. Hindley, A
ademi
 Press, New

York, pp 580-606.

Th. Coquand, An algorithm for testing
onversion in type theory. In Huet and Plotkin (eds.),

Logi
al Frameworks, Cambridge Univ. Press.

Th. Coquand and G. Huet, The
al
ulus of
onstru
tions, Information and Computation, 76,

pp 95-120.

Th. Coquand and G. Huet, Constru
tions: a higher order proof system for me
hanizing

mathemati
s. Pro
eedings of EUROCAL '85, Linz, LNCS 203.

D. van Daalen, A des
ription of AUTOMATH and some aspe
ts of its language theory, In P.

Bra�ort, ed. Pro
eedings of the symposium on APL, Paris.

G. Dowek, The unde
idability of typability in the ��-
al
ulus, M. Bezem, J.F. Groote (Eds.),

Typed Lambda
al
uli and appli
ations, LNCS 664, Springer-Verlag (1993), pp. 139{145.

J.H. Geuvers and M.J. Nederhof, A modular proof of strong normalisation for the
al
ulus of

onstru
tions. Journal of Fun
tional Programming, vol 1 (2), pp. 155{189.

J.H. Geuvers, The Chur
h-Rosser property for ��-redu
tion in typed lambda
al
uli. In

Pro
eedings of the seventh annual symposium on Logi
 in Computer S
ien
e, Santa Cruz,

Cal., IEEE, pp 453-460.

J.H. Geuvers, Logi
s and Type systems, PhD. Thesis, University of Nijmegen, Netherlands.

J.H. Geuvers, A short and
exible proof of Strong Normalization for the Cal
ulus of

Constru
tions, in Types for Proofs and Programs, Int. Workshop, Bastad, Sweden, 1994,

Eds. P. Dybjer, B. Nordstr�om and J. Smith, LNCS 996, Springer, pp. 14{38.

R. Harper, F. Honsell and G. Plotkin, A framework for de�ning logi
s. Pro
eedings Se
ond

Symposium on Logi
 in Computer S
ien
e, (Itha
a, N.Y.), IEEE, Washington DC, pp

194-204.

R. Harper, F. Honsell and G. Plotkin, A framework for de�ning logi
s, Journal of the ACM,

pp 143{184.

J.R. Hindley and J.P. Seldin Introdu
tion to Combinators and �-Cal
ulus, London Math. So
.

Student Texts 1, Cambridge University Press, 1986.

W.A. Howard, The formulas-as-types notion of
onstru
tion. In To H.B. Curry: Essays on

Combinatory Logi
, Lambda Cal
ulus and Formalism, eds. J.P. Seldin, J.R. Hindley,

A
ademi
 Press, New York, pp 479-490.

P. Martin-L�of, An intuitionisti
 theory of types: predi
ative part, in Logi
 Colloquium 1973,

eds. H.E. Rose et al., North-Holland, 1975, pp 73{118.

Ch. Mohring, Algorithm development in the Cal
ulus of Constru
tions, in Pro
eedings First

Symposium on Logi
 in Computer S
ien
e, (Cambridge, Mass.) , 1986, IEEE, Washington

DC, pp. 84{91.

First order dependent type theory, �P 25

R.P. Nederpelt, J.H. Geuvers and R.C. de Vrijer (editors), Sele
ted Papers on Automath,

Volume 133 in Studies in Logi
 and the Foundations of Mathemati
s, North-Holland,

Amsterdam, 1994, pp 1024.

A. Salvesen, The Chur
h-Rosser Theorem for LF with � redu
tion. Notes of a talk presented

at the BRA-Logi
al Frameworks meeting, Antibes 1990.

M. Swaen, Weak and strong sum-elimination in intuitionisti
 type theory, Ph.D. thesis,

Fa
ulty of Mathemati
s and Computer S
ien
e, University of Amsterdam, Netherlands,

September 1989.

