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We look at two di�erent ways of interpreting logi into the dependent type system �P.

The �rst is by a diret formulas-as-types interpretation �a la Howard where the logial

derivation rules are mapped to derivation rules in the type system. The seond is by

viewing �P as a Logial Framework, following (Harper et al. 1987) and (Harper et al.

1993). Then the type system is used as the meta-language in whih various logis an be

oded.

We give a (brief) overview of known (syntatial) results about �P. Then we disuss two

issues in some more detail. The �rst is the ompleteness of the formulas-as-types

embedding of minimal �rst-order prediate logi into �P. This is a remarkably

ompliated issue, a �rst proof of whih appeared in (Geuvers 1993), following ideas in

(Barendsen and Geuvers 1989) and (Swaen 1989). The seond issue is the minimality of

�P as a logial framework. We will show that some of the rules are atually superuous

(even though they ontribute niely to the generality of presentation of �P).

At the same time we will attempt to provide a gentle inrodution to �P and its various

aspets and we will try to use little inside knowledge.

1. Introdution and motivation

The typed �-alulus �P is the extension of simple typed �-alulus with (�rst order)

dependent types. It ours in di�erent variants in the work of (Martin-L�of 1975) (in-

tuitionisti type theory), (van Daalen 1973) (Automath), (Harper et al. 1987) (Logial

Framework) and also in (Hindley and Seldin 1986) (Generalized Type Assignment). The

preise de�nition that we will be using is the one in (Barendregt 1992), whih is { of the

forementioned { losest to (Harper et al. 1987). In the literature we �nd several ways

of motivating the de�nition of �P and explaining its use. These an be devided in two:

�P an be seen as a system for interpreting minimal �rst order prediate logi and �P

an be seen as a logial framework. In both views one uses a kind of formulas-as-types

interpretation to interpret (in the ase of a logial framework one would say `enode')

the logi, the di�erene being that in the �rst ase there is one logi, the internal logi of

�P, whereas in the seond ase almost any formal system an be enoded. We will not
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give a omplete overview of the di�erent possible interpretations, but instead motivate

the de�nition of �P by explaining the two interpretations by examples.

Using �P to represent logi, either by a diret interpretation or an enoding, raises a

major question, namely: is the interpretation omplete? Or, if one takes the view of �P

as a logial framework: is the enoding adequate? If we take the point of view of a diret

enoding of minimal �rst order prediate logi, L, into �P, then the question would be

whether the impliation

�

�

`

�P

M : ' ) `

L

'

holds for all formulas ' of minimal �rst order prediate logi. (Here �

�

represents the

ontext that delares the onstants of the �rst order signature �; ' is a formula over this

signature �.) So, the question is whether, if ', onsidered as a type in �P, is inhabited,

then ' is derivable in L. The same question obviously applies to �P seen as a logial

framework, with the di�erene that there is not just one logi, but that for every logi

L we have to de�ne a otext �

L

that odes the logi. How this works in detail will be

disussed later by treating some examples.

One may wonder whether the soundness of the interpretation is not an issue. Well, it

is an issue: we have to prove that

`

L

' ) 9M [�

�

`

�P

M : '℄

holds for all formulas ' of minimal �rst order prediate logi L. However, soundness

is not a major issue, beause it is easily satis�ed. Also for the logial framework view,

soundness is usually relatively easy: it boils down to hoosing the `orret' �

L

as an

enoding of the logi L.

The question of adequay of the enoding of a logi L into �P, as a logial framework,

was �rst dealt with by (Harper et al. 1987). (A full version of this paper has appeared as

(Harper et al. 1993).) As a matter of fat, they were the �rst to atually state the problem.

To prove adequay of an enoding (Harper et al. 1987) devise a general tehnique that

applies to many di�erent logis L. The idea is to onstrut, out of a proof term M : ',

a anonial proof term M

0

(tehnially: the so alled long-��-normal form of M). From

suh a anonial proof term a proof of ' in the logi L is immediately onstruted. We

will illustrate this tehnique briey in Setion 4 by an example. (For proving adequay

of the enoding it is onvenient to extend �P with �-onversion. This yields the atual

type system of LF as de�ned in (Harper et al. 1987). However, for the adequay result

this is not needed { as we will also argue in 4 { beause �P is a subsystem of the LF

type system.) In Setion 4 we will also show how we an de�ne a minimal version of �P

that an serve as a logial framework.

The question of ompleteness of the interpretation of minimal �rst order prediate logi

into �P will be treated in Setion 3. This issue was already raised by Martin-L�of in the

seventies. A proof of ompleteness was �rst skethed in (Barendsen and Geuvers 1989).

A preise proof { based on this proof { ours in (Geuvers 1993). We give it in Setion

3 with some more explanation and examples. Independently, (Berardi 1990) proved the

same ompleteness result. It's maybe most remarkable that the ompleteness is suh an

intriate problem. To grasp this we have to understand how exatly minimal �rst order
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prediate logi is interpreted in �P. This is done by interpreting both sets and formulas

as types. A prediate P on a set A is then interpreted as a funtion from (the type) A

to the olletion of all types, type, so P : A!type. From this one onstruts e.g. the

type �x:A:Px!Px, representing the formula 8x:a:Px!Px, but one an also onstrut

types like �x:A:Px!A, whih does not represent any set or formula of the logi. In the

ompleteness proof one has to take are of all these `meaningless' types and it is not at

all lear whether these meaningless types an somehow spoil the ompleteness.

2. The system �P

We begin by de�ning the system �P. Then we give some examples of well-typed terms

and list some of the general issues (and properties) of type systems. Finally we give a

brief list of some meta-theoreti properties.

De�nition 2.1. �P (Harper et al. 1987) is a system for deriving judgements of the

following two forms

� `M : B M is of type B in ontext �;

� ` � is a orret ontext.

Here � is alled the ontext and M and B are terms, whih are taken from the set of

pseudoterms

T ::= Var j type jkind j (TT) j (�x:T:T) j (�x:T:T):

The derivation rules for deriving the judgements � `M : B and � ` are the following.

(s ranges over ftype;kindg.)

(base) ; ` (txt)

� ` A : s

�; x:A `

if x not in �

(ax)

� `

� ` type : kind

(proj)

� `

� ` x : A

if x:A 2 �

(�)

� ` A : type �; x:A ` B : s

� ` �x:A:B : s

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(onv)

� `M : B � ` A : s

� `M : A

A =

�

B

As usual, we omit brakets in sequenes of appliations by assoiating them to the left

and we omit brakets in sequenes of abstration terms by assoiating them to the right.

SoMNP denotes ((MN)P ), �x:A:�y:B:M denotes (�x:A:(�y:B:M)) and �x:A:�y:B:C

denotes (�x:A:(�y:B:C)).

We use the onvention of writing A!B for �x:A:B if x =2 FV(B).
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In (Harper et al. 1987), a system alled LF is de�ned (`Logial Framework'), spei�ally

geared towards the oding of logis (and formal systems in general) in this typed �-

alulus. The system �P an be seen as the `basi underlying type system' of LF. In

the de�nition of �P we have ignored some features of LF, the main one being the use

of so alled `signatures'. These are speial ontexts in whih onstants are delared.

In our de�nition a signature is part of the ontext. Another di�erene is that we do

not onsider �-onversion. In LF, �-onversion is used for proving the adequay of the

enoding. However, we don't need �-onversion for adequay, as will be argued in Setion

4.

The system �P is an extension of the simply typed �-alulus �!. This is not entirely

obvious, as the types (and ontexts) in �! are usually de�ned separately from the terms,

whereas in �P these de�nitions are interwoven. We therefore treat some examples of well-

typed terms in �!.

Example 2.2.

1 �:type; �:type; :type ` �x:�!�!:�y:�!�:�z:�:xz(yz) :

(�!�!)!(�!�)!�!:

2 �:type; �:type; y:� ` �x:(�!�)!�:x(�z:�:y) : ((�!�)!�)!�.

It is well-known that �! is isomorphi with minimal propositional logi (logi with

just impliation) via the formulas-as-types embedding. In the example above, the �rst

�-term represents a proof (natural dedution derivation) of (�!�!)!(�!�)!�!,

whereas the seond represents a proof of ((�!�)!�)!� from the assumption �.

In a similar fashion one an interpret in �P minimal �rst order prediate logi (logi

with just impliation and universal quanti�ation). To be able to do this we have to

follow one basi priniple:

A formula is assoiated with the type of its proofs, hene

a formula is provable if and only if the assoiated type is not empty (`inhabited').

As a onsequene, we assoiate with a prediate over the set (type) A a term of type

A!type, the idea being that for a : A,

Pa holds if and only if the type Pa is inhabited.

This amounts to an interpretation of minimal prediate logi in �P where both sets and

formulas are interpreted as types. We will de�ne this interpretation preisely later and

restrit to some motivating examples now.

Example 2.3.

1 �:type; P :�!type ` �x:�:�p:Px:p : �x:�:Px!Px:

2 �:type; f :�!�;R:�!�!type;

h

1

: �x:�:Rx(fx); h

2

: �x; y; z:�:(Rxy)!(Ryz)!(Rxz) `

�x:�:h

2

x(fx)(f(fx))(h

1

x)(h

1

(fx)) : �x:�:Rx(f(fx)):

In a prediate logial interpretation, the �rst term is a proof of 8x 2 A:P (x)!P (x)

and the seond is a proof of 8x 2 A:R(x; f(f(x)) from the hypotheses 8x 2 A:R(x; f(x))

and 8x; y; z 2 A:R(x; y)!R(y; z)!R(x; z).

As a third type of example we treat a oding of minimal propositional logi in �P.

The idea is to delare a type prop in the ontext to represent the type of (names) of
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propositions and to add a T : prop!type, taking a name of a proposition to the type

of its proofs. (By adding suitable delarations for the derivations we establish that for

a : prop, the terms of type Ta indeed represent natural dedution proofs.)

Example 2.4. De�ne

� := prop : type; T : prop!type;

�: prop!prop!prop;

�

I

: �x; y:prop:(Tx!Ty)!T (�xy);

�

E

: �x; y:prop:T (�xy)!Tx!Ty:

Then we have the following typings.

1 �; x:prop ` �

I

(�xx(�p:Tx:p)) : T (�xx).

This term odes a proof of `x!x'.

2 For the purpose of presentation we write �xy as x � y and we omit the �rst two

arguments of �

I

and �

E

. We then �nd

�; x; y:prop; h:Ty ` �

I

(�p:T ((x � y) � x):�

E

(�

I

(�q:Tx:h))) :

T (((x � y) � x) � x).

This term odes a derivation of ((x!y)!x)!x from the hypothesis y.

2.1. Properties of �P

In the examples above we saw that the general use of �P is to ode (or represent di-

retly) either terms (programs) or derivations (proofs). The �-redution relation then

orresponds to evaluation (of programs) or ut-elimination (of proofs). Important and

natural properties to have are then that the typing is preserved by evaluation, that

evaluation is onuent and that typing is deidable.

We list the main properties of the typed �-alulus �P. Proofs an be found in (Harper

et al. 1987), (Barendregt 1992) or in (Geuvers and Nederhof 1991). (The proofs in (Harper

et al. 1987) are for �P with �; the proofs here are roughly the same, sometimes a bit

simpler due to the absene of �.)

Proposition 2.5. (Subjet Redution) If � `M : A andM �!

�

N , then � ` N : A.

The following Proposition follows from Subjet Redution and the fat that �-redution

is onuent on the pseudo-terms T.

Proposition 2.6. (Typed Conuene) If � ` M : A, � ` N : A and M =

�

N , then

there is a term P with M �!�!

�

P , N �!�!

�

P and � ` P : A.

Proposition 2.7. (Uniqueness of Types) If � `M : A and � `M : B, then A =

�

B.

Proposition 2.8. (Strong Normalization) All well-typed expressions of �P are Strongly

Normalizing with respet to �-redution.

This Proposition was �rst proved in (Harper et al. 1987), by de�ning a redution

preserving mapping to the simple typed �-alulus.

In view of Example 2.3, strong normalization of �-redution is very natural, as it

orresponds to ut-elimination in the logi (evaluation of natural dedutions), whih we

know to be terminating for �rst order prediate logi.
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Proposition 2.9. (Deidability of Typing) Given a ontext � and a pseudo-termM ,

it is deidable whether M has a type in � and if M has a type it an be omputed.

As a matter of fat, `typeheking a term' (i.e. �nd out whether a given pseudoterm

has a type in a given ontext) proeeds by just omputing it (with a `fail' option if the

pseudoterm does not have a type). Similarly, heking whether a given pseudoterm M

has a given type A proeeds by omputing the type of M and heking whether it is

�-equal to A.

Deidability of Typing holds beause the abstrated variables ome with their types.

So, if we want to typehek �x:A:M in �, we an proeed by typeheking M in �; x:A.

If we want to typehekMN in �, we have to typehekM in � and see whether its type

redues to something of the form �x:A:B. Then we typehek N in � and see whether its

type is �-equal to A. In the typeheking algorithm, an algorithm for heking �-equality

is used. As all terms in �P are Strongly Normalizing, this equality-heking algorithm

terminates, and hene the type-heking algorithm does.

If we pursue the view of �P as a logi, one may wonder whether the inhabitation

problem is deidable, that is, given a ontext � and a type A, is it deidable whether

there exists a term of type A in �?

Proposition 2.10. (Undeidability of Inhabitation) (Bezem and Springintveld

1996) In general it is undeidable whether, given a ontext � and a type A in �, there

exists an M suh that � `M : A.

The proof proeeds by translating register mahine programs P into a pair of a ontext

�

P

and a type A

P

in suh a way that A

P

is inhabited in �

P

i� P terminates.

>From a more omputational perspetive, viewing the terms as programs, Strong Nor-

malization may not seem very natural to have. In the omputational view, one may

wonder whether types an be reonstruted automatially, i.e. if they are not given in

the �-abstration. This is known as the Type Assignment Problem, whih is known to be

deidable for simple typed �-alulus. To be more preise, we de�ne the erasure, j � j,

of a pseudoterm by j�x:A:M j := �x:jM j and for the other ases by strutural reursion.

Then, if � ` M : A(: type), the term jM j is an ordinary untyped �-term. Now, given

an untyped �-term N one may wish to �nd out whether N is typable, i.e. whether a

well-typed term M exists suh that jM j � N .

Proposition 2.11. (Undeidability of Type Assignment) (Dowek 1993) It is in

general undeidable whether, given a ontext � and an untyped � term N , there is a

term M suh that M is well-typed in � and jM j � N .

The proof proeeds by de�ning a speial ontext � suh that for every Post orrespon-

dene problem P there is a (untyped) term t

P

suh that t

P

is typable in � i� the problem

P has a solution.

2.2. Minimal �P

It turns out that for many pratial uses, there is no need to be able to abstrat over a

type to form a onstrutor (i.e. form �x:A:M for �x:A:B : kind). We therefore de�ne a

minimal version of �P.
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De�nition 2.12. In �P we split the rule (�) in two, a (�

0

) and a (�

P

) rule. For onve-

niene we attah a label to the abstration that we introdue with the rule, so

(�

0

)

�; x:A `M : B � ` �x:A:B : type

� ` �

0

x:A:M : �x:A:B

(�

P

)

�; x:A `M : B � ` �x:A:B : kind

� ` �

P

x:A:M : �x:A:B

The system �P without the rule (�

P

) we all �P

�

, and we write `

�

for judgements

in �P

�

. On the terms of �P we now distinguish �

0

-redution from �

P

-redution in the

obvious way:

(�

0

x:A:M)N �!

�

0

M [N=x℄;

(�

P

x:A:M)N �!

�

P

M [N=x℄:

Similarly we an now talk about �

P

-normal forms etetera.

All the nie properties that we know from �P remain to hold for �P

�

. In Setion 4

we show that this minimal version of �P is adequate as a logial framework. It is also

adequate for interpreting minimal �rst order prediate logi, as we will see in the next

Setion.

3. �P as minimal �rst order prediate logi

We want to make a preise study of the embedding of minimal �rst order prediate logi

into �P , following the so alled formulas-as-types embedding, originally due to Curry,

Howard and De Bruijn. The embedded logi, minimal �rst order prediate logi, has

as onnetives only impliation � and �rst-order universal quanti�ation. There is no

negation and (hene) there is no double negation rules, so the logi is onstrutive. A

peuliarity of the embedding is that both domains (of the logi) and formulas are in-

terpreted as types, whih makes the ompleteness of the formulas-as-types embedding

not at all obvious. Moreover, there are two onstrutions possible in �P that are { al-

though not alien to prediate logi { not in the realm of �rst order logi. These are:

(1) The possibility to de�ne new prediates by abstration. E.g. if R : A!A!type is

a binary prediate on A, then �x:A:Rxx is of type A!type, a unary prediate on A.

(2) The possibility to delare and onstrut higher order funtions. E.g. one an delare

f : (A!A)!A in the ontext, a funtion from A!A (funtions from A to A) to A. Also

one an onstrut higher order funtions, like �f : (A!A)!A:f(�x:A:x) whih is of type

((A!A)!A)!A.

In the following we �rst give a preise de�nition of the logial systems: minimal �rst

order prediate logi, PRED and its extension with de�nable prediates and higher order

funtions, PRED

fr

. Then we de�ne a typed �-alulus, �PRED

fr

that we show to be

isomorphi to PRED

fr

via the formulas-as-types embedding. Then we prove in two phases

that the embedding of minimal �rst order prediate logi (PRED) into �P is indeed

omplete. In the �rst phase we show ompleteness of the embedding of �PRED

fr

into

�P. In the seond phase we show onservativity of PRED

fr

over PRED.
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In the following diagram the steps in the proof of ompleteness of the formulas-as-typed

embedding from PRED into �P are depited. An arrow denotes the inlusion embedding

of one system in another.

PRED

3:17

-

PRED

fr

'

?

3:16

�PRED

fr

3:36

-

�P

3.1. Minimal �rst order prediate logi

De�nition 3.1. The language of the system PRED is de�ned as follows.

1 The domains are given by

D ::= B jP jF

where B is a set of basi domains, P is the set of prediate domains, de�ned by

P ::= Prop j B!P ;

and F is the set of funtional domains, de�ned by

F ::= B!� � �!B:

(We assume every funtional domain to be built up from at least two basi domains.)

The intention is that B

1

!B

2

!B

3

should be read as B

1

!(B

2

!B

3

), the set of fun-

tions taking an argument in B

1

, an argument in B

2

and returning a value in B

3

.

Similarly, B

1

!B

2

!Prop is intended to represent the set of relations on B

1

�B

2

.

2 The terms of the language of PRED are desribed as follows.

| There are ountably many onstants 

D

i

for every domain D 2 D,

| There are ountably many variables of eah basi domain B 2 B,

| If 

D

i

is a onstant of domain D � B

1

!� � �!B

1

!C, where C 2 B[ Prop and for

1 � i � p, t

i

is a term of domain B

i

, then 

D

i

t

1

: : : t

p

is a term of domain C,

| If ' � Prop and x is a variable of basi domain B, then 8x�B:' is a term of domain

Prop.

| If ' and  are terms of domain Prop, then ' �  is a term of domain Prop.

If t is a term of domain D, we shall just write t � D.

The derivation rules of PRED are the following. (The usual rules for � and 8, where
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quanti�ation is restrited to the basi domains.)

(�-I)

['℄

i

.

.

.

 

' �  

i

(�-E)

' �  '

 

(8-I)

 

8x�B: 

(�) (8-E)

8x�B: 

 [t=x℄

if t � B

(�): in the 8-I rule we make the usual restrition that the variable x may not our free

in a non-disharged assumption of the derivation. In the �-I rule, i is an index to label

the formulas that are disharged with that rule.

For � a set of formulas of PRED and ' a formula of PRED, we say that ' is derivable

from � in PRED, notation � `

PRED

', if there is a derivation with root ' and all

non-disharged formulas in �.

This is the usual system of minimal �rst order prediate logi. We extend this de�nition

to allow for de�nable prediates (by �-abstration) and higher order funtions.

De�nition 3.2. The system PRED

fr

is PRED plus the following extra lauses. The

funtional domains F are de�ned by

F ::= B!B jF!B:

In the rules for term-formation we add

| There are ountably many variables of eah funtional domain F 2 F ,

| If t � D

2

, D

2

2 D (an arbitrary domain) and x a variable of domain D

1

2 B[F , then

�x�D

1

:t � D

1

!D

2

,

| If t � D

1

!D

2

and q � D

1

, then tq � D

2

.

| If ' � Prop and x a variable of domain D

1

2 B [ F , then 8x�D

1

:' � Prop.

The last rule replaes the appliation rule in the terms of PRED. The �-abstration (and

appliation) on terms omes together with the usual notion of �-equality: two terms

are �-equal if they are equal via the transitive, symmetri, reexive losure, ompatible

with appliation and abstration, of the one step �-redution (�x�D:t)q�!

�

t[q=x℄. In

the derivation rules we add the rule

(onv)

 

'

if ' =  

So in PRED

fr

there is no real distintion { in treatment { between basi domains and

funtional domains. For larity and to be able to ompare the systems, we keep the

distintion.

The need for a onversion rule, establishing that �-equal formulas are equivalent, is

felt in the following examples.

Examples 3.3.We work in the system PRED

fr

. Let A be a basi domain,R � A!A!Prop,

f � A!A!A, a � A.
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| We an de�ne a new prediate �x�A:Rxx � A!Prop by �-abstration. Let's abbrevi-

ate it to Q. Now Raa ` Qa by the onversion rule.

| We an de�ne a new funtion �x�A:fx(fxa) � A!A by �-abstration. Let's abbrevi-

ate it to g. Now 8x�A:Rx(fx(fxa)) ` 8x�A:Rx(gx).

3.2. A typed �-alulus for minimal �rst order prediate logi

De�nition 3.4. �PRED

fr

is the typed �-alulus de�ned as follows. Just like in �P,

there are two forms of judgement.

� `M : B M is of type B in ontext �;

� ` � is a orret ontext.

The set of pseudoterms is now de�ned by

T ::= Var j Set jProp jType

s

jType

p

j (TT) j (�x:T:T) j (�x:T:T):

The intended interpretations are that Set represents the universe of basi sets (inlud-

ing sets of higher type), Prop represents the universe of formulas, Type

p

represents the

universe of prediate sets and Type

s

ontains just Set. The derivation rules for deriving

the judgements � ` M : B and � ` are the following. Here, s; s

1

and s

2

range over

fSet;Prop;Type

p

;Type

s

g and R = f(Set; Set); (Prop;Prop); (Set;Prop); (Set;Type

p

)g:

(base) ; ` (txt)

� ` A : s

�; x:A `

if x not in �

(proj)

� `

� ` x : A

if x:A 2 �

(ax)

� `

� ` Set : Type

s

(ax)

� `

� ` Prop : Type

p

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

2

if (s

1

; s

2

) 2 R

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(onv)

� `M : B � ` A : s

� `M : A

A =

�

B

We use the same notational onventions as for �P.

Example 3.5. A:Set; R:A!A!Prop; s:�x; y:A:Rxy!Ryx; t:�x; y; z:A:Rxy!Ryz!Rxz `

�x; y:A:�h:Rxy:txyxh(sxyh) : �x; y:A:Rxy!Rxx:

This is a proof of the fat that if R is symmetri and transitive, then R is reexive on

its domain (the x for whih Rxy for some y).

We list the main properties of the �PRED

fr

. They are a onsequene of the fat
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that �PRED

fr

is a Pure Type System. Unless stated otherwise, proofs an be found in

(Barendregt 1992) or in (Geuvers and Nederhof 1991).

Proposition 3.6. (Subjet Redution) If � `M : A andM �!�!

�

N , then � ` N : A.

Proposition 3.7. (Typed Conuene) If � ` M : A, � ` N : A and M =

�

N , then

there is a term P with M �!�!

�

P , N �!�!

�

P and � ` P : A.

Proposition 3.8. (Uniqueness of Types) If � `M : A and � `M : B, then A =

�

B.

Proposition 3.9. (Deidability of Typing) Given a ontext � and a pseudo-termM ,

it is deidable whether M has a type in � and if M has a type it an be omputed.

Proposition 3.10. (Strong Normalization) All well-typed expressions of �PRED

fr

are Strongly Normalizing with respet to �-redution.

Proposition 3.11. (Undeidability of Inhabitation) In general it is undeidable

whether, given a ontext � and a type A in �, there exists an M suh that � `M : A.

The proof of Undeidability of Inhabitation for �P in (Bezem and Springintveld 1996)

(see also Proposition 2.10) applies immediately to �PRED

fr

. As a matter of fat, the

proof in (Bezem and Springintveld 1996) already shows that minimal �rst order prediate

logi PRED is undeidable.

Proposition 3.12. (Undeidability of Type Assignment) It is in general undeid-

able whether, given a ontext � and an untyped � term N , there is a term M suh that

M is well-typed in � and jM j � N .

Modulo some small hanges, the proof of Undeidability of Type Assignment for �P

(see 2.11) in (Dowek 1993) an be applied to �PRED

fr

as well.

The following is a spei� property of �PRED

fr

, that does not hold for �P. In fat it

states that �PRED

fr

is really a logial system, where �rst the terms are built up, then

the propositions and then the proofs.

Proposition 3.13. In �PRED

fr

, if � `M : A, then

�

D

;�

T

;�

P

`M : A

where

| �

D

;�

T

;�

P

is a permutation of �,

| �

D

only ontains delarations � : Set,

| �

T

only ontains delarations x : A with �

D

` A : Set=Type

p

,

| �

P

only ontains delarations p : ' with �

D

;�

T

` ' : Prop.

The �

D

, �

T

and �

P

are determined uniquely up to permutation. We refer to �

D

as the

set-ontext of �, to �

T

as the objet-ontext of � and to �

P

as the proof-ontext of � and

to the onatenation �

D

;�

T

as a language-ontext . Furthermore, if � `M : A, then

| if A � Set=Type

p

, then �

D

`M : A,

| if � ` A : Set=Type

p

, then �

D

;�

T

`M : A.

We will refer to the M suh that �

D

, �

T

`M : A with A : Set as the objet-language.

The proof of this Proposition is not diÆult and proeeds by indution on the derivation

of � `M : A. A detailed proof an be found in (Geuvers 1993).
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By restriting the rules we obtain a system we all �PRED whih orresponds to

PRED in the same way that �PRED

fr

orresponds to PRED

fr

, via the formulas-as-

types embedding.

De�nition 3.14. The system �PRED is de�ned by

| Restriting in the rules of �PRED

fr

the (�)-rule to the ase where s = Prop,

| Adding a universe Fun,

| Removing (Set; Set) from R,

| Allowing in triples (s

1

; s

2

; s

3

) of universes in R, where s

3

is the type in the onlusion

of the (�)-rule, and adding the triples (Set; Set;Fun) and (Set;Fun;Fun).

The intention of Fun is to represent the universe of funtion types. (The F in De�nition

3.1.) We an now only form basi sets of type Set and A!A : Fun, A!A!A : Fun,

etetera.

3.3. The onservativity results

The formulas-as-types embedding from PRED

fr

into �PRED

fr

is de�ned as follws.

| A basi domain B is mapped to a delaration B : Set in the ontext. Hene, the

funtional domains are mapped to terms of type Set and the prediate domains are

mapped to terms of type Type

p

. For onveniene, we don't distinguish between the

notation of the domain in the PRED

fr

and in �PRED

fr

.

| A onstant 

D

is mapped to a delaration  : D in the ontext. Hene, a term

f(t

1

; : : : ; t

n

) is translated to ft

1

� � � t

n

.

| A proposition is mapped to a term of type Prop by translating 8x:A:' to �x:A:' and

' �  to '! .

| An assumption ' is translated into a delaration p : ' in the ontext.

| A derivation is mapped to a typed term translating an I-rule into a �-abstration and

an E-rule into an appliation.

As the translation alters so little for domains, terms and propositions, we usually don't

write it and identify e.g. 8x�A:Px � Qx with �x:A:Px!Qx. The translation from

derivations to proof-terms will be denoted by [(�)℄. So if � `

�

PRED

fr

', denoting that � is

a derivation of ' from �, then [(�)℄ is the assoiated proof-term.

We do not de�ne the translation of derivations into proof-terms preisely, as it is rather

well-known and involves quite a lot of syntatial detail. Instead we give an example of a

derivation and how it is (indutively) translated to a term in �PRED

fr

. Morevover, this

example should provide enough evidene for the fat that there is also a translation bak

from proof-terms (in �PRED

fr

) to derivations in PRED

fr

. The translation from terms

to derivations will be denoted by �(�): if t is a proof-term, then �(t) is the assoiated

derivation.

The isomorphism between PRED

fr

and PRED

fr

arises from the fat that these two

translations [(�)℄ and �(�) are eahothers inverses. Details an be found in (Geuvers

1993).

Example 3.15. Let a domain A, a prediate P on A and a binary relation Q on A be

given. The following is a deriavtion of (8x�A:Px) � (8x�A:Qxx) from the hypothesis
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8x; y�A:Px � Py � Qxy. Let's all this derivation �.

8x; y�A:Px � Py � Qxy

8y�A:Px � Py � Qxy

Px � Px � Qxx

[8x�A:Px℄

1

Px

Px � Qxx

[8x�A:Px℄

1

Px

Qxx

8x�A:Qxx

(8x�A:Px) � (8x�A:Qxx)

1

We deorate � by �-terms, thus indutively de�ning the �-term [(�)℄ from the derivation

�.

g : 8x; y�A:Px � Py � Qxy

gx : 8y�A:Px � Py � Qxy

gxx : Px � Px � Qxx

h : 8x�A:Px

hx : Px

gxx(hx) : Px � Qxx

h : 8x�A:Px

hx : Px

gxx(hx)(hx) : Qxx

�x:A:gxx(hx)(hx) : 8x�A:Qxx

�h:(8x�A:Px):�x:A:gxx(hx)(hx) : (8x�A:Px) � (8x�A:Qxx)

So [(�)℄ := �h:(�x:A:Px)�x:A:gxx(hx)(hx). In �PRED

fr

, we an derive

A:Set; P :A!Prop; Q:A!A!Prop; g:�x; y:A:Px!Py!Qxy `

�h:(�x:A:Px)�x:A:gxx(hx)(hx) : (�x:A:Px)!(�x:A:Qxx):

Proposition 3.16. Given a PRED

fr

-signature � (ontaining a �nite number of domains

and relations and onstants over these domains), a �nite set of formulas (over �) � and

a formula ',

� `

�

PRED

fr

') �

�

;�

�;';�

; ~p : � `

�PRED

fr
[(�)℄ : ';

where �

�

;�

�;';�

is the anonially de�ned language ontext ontaining delarations for

all the onstants and free variables in �;�; ';�.

Furthermore, if �

D

;�

T

`  : Prop for all  2 � [ f'g, then

�

D

;�

T

; ~p : � `

�PRED

fr M : ') � `

�(M)

PRED

fr

':

The mappings [(�)℄ and �(�) onstitute a bijetion between derivations in PRED

fr

and

proof-terms in �PRED

fr

.

For a detailed proof see (Geuvers 1993).

Proposition 3.17. PRED

fr

is onservative over PRED, that is, for � a set of formulas

and ' a formula of PRED,

� `

PRED

fr ' ) � `

PRED

':

Proof. The proof is by eliminating uts (in derivations) and normalizing the terms as

follows. In PRED

fr

all terms are Strongly Normalizing and all uts in derivations an be

eliminated. Moreover if � and ' are taken from PRED and � `

PRED

fr ' by a ut-free

derivation in whih only normal terms our, then this is already a derivation in PRED.



H. Geuvers and E. Barendsen 14

The easiest way to treat the normalization and ut-elimination argument is by looking

at �PRED

fr

and �PRED instead. The argument then runs as follows.

1 The system �PRED

fr

is Strongly Normalizing (e.g. there is a redution-preserving

embedding into the Calulus of Construtions, whih is known to be SN).

2 Suppose that the term-ontext �

T

is atually a �PRED-ontext (i.e. there our

no Set-types of higher type in it). Suppose furthermore that � [ f'g ontains only

�PRED-formula.

3 If �

D

;�

T

`

�PRED

fr t : A with t in normal form and A : Set 2 �

D

(i.e. A is a basi

domain), then �

D

;�

T

`

�PRED

t : A

4 If �

D

;�

T

;�

P

`

�PRED

fr q : ' with q in normal form, then �

D

;�

T

;�

P

`

�PRED

q : '.

The third and fourth step are proved by indution on the struture of terms (t and q).

Together, these four steps prove the proposition.

Now to show the ompleteness of the formulas-as-types embedding from �rst order

predite logi (PRED) into �P, we only have to show the ompleteness of the embedding

of �PRED

fr

into �P. Both �PRED

fr

and �P are Pure Type Systems (PTS) and the

embedding of �PRED

fr

into �P that we are looking at is a PTS-morphism H given by

H :=

8

>

>

<

>

>

:

Set 7! type

Prop 7! type

Type

s

7! kind

Type

p

7! kind

A PTS-embedding extends immediately to all terms and ontexts and it preserves typing,

i.e.

� `

�PRED

fr M : A ) H(�) `

�P

H(M) : H(A):

We now give the tehnial details of the proof of ompleteness of H : �PRED

fr

!

�P. The proof uses tehniques developped in (Swaen 1989) who shows ompleteness

of the formulas-as-types embedding from �rst order prediate logi into Martin-L�of's

intuitionisti theory of types. A di�erent proof of our result an be found in (Berardi

1990).

The question of ompleteness is whether for any �PRED

fr

-ontext �

D

;�

T

;�

P

and

proposition ' with �

D

;�

T

` ' : Prop, if

H(�

D

;�

T

;�

P

) `M : H(') in �P;

then there exists a term N with

�

D

;�

T

;�

P

` N : ' in �PRED

fr

:

Convention 3.18. In the following we assume for any �PRED

fr

-ontext � that

1 � � �

D

;�

T

;�

P

,

2 �

D

ontains O : Set (so there is at least one basi domain),

3 all basi domains in �

D

are nonempty,

4 �

T

begins with a delaration �:Prop and �

P

begins with z:�. This � will be referred

to as True, the z will be referred to as t.
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The �rst lause is validated by Proposition 3.13. If the seond lause were not satis�ed

we would in fat be working in propositional logi. The third and fourth lause are added

for onveniene. In ase there are empty domains in the logi, the ompleteness result

would still hold with a slightly adapted argument.

We �x a language-ontext of �PRED

fr

�

D

;�

T

. We �rst want to de�ne a map j � j

p

from �P-terms, typable in H(�

D

;�

T

), to the objet language of �PRED

fr

. This map

should be the inverse of H on the objet language. That is, if �

D

;�

T

`

�PRED

fr
M : A

with A : Set, then jH(M)j

p

� M . We need to de�ne j � j

p

not just on terms typable in

H(�

D

;�

T

), but in a elementary extension of H(�

D

;�

T

).

De�nition 3.19. For �

D

;�

T

a language-ontext of �PRED

fr

and � a ontext of �P, we

say that � is an elementary extension of H(�

D

;�

T

), notation � � H(�

D

;�

T

), if � �

H(�

D

;�

T

) and the extra delarations in � are all of the form x:� with H(�

D

;�

T

) `

�P

� : type.

For example, H(�

D

;�

T

;�

P

) is always an elementary extension of H(�

D

;�

T

).

De�nition 3.20. Let � � H(�

D

;�

T

). The mapping j� j

p

from �P-terms in the ontext

� to terms of �PRED

fr

is de�ned as follows.

(i) jtypej

p

:= Set;

(ii) jkindj

p

:= Type

s

;

(iii) jxj

p

:= x; if x 2 �

D

( so x : Set);

(iv) jxj

p

:= O; if x 2 �

T

and x : � � �!Prop;

(v) jxj

p

:= x; for x another variable;

(vi) j�x:A:Bj

p

:= jBj

p

if A:type; B:kind;

:= �x:jAj

p

:jBj

p

else;

(vii) j�x:A:M j

p

:= jM j

p

if A:type;M :B:kind; (for some B);

:= �x:jAj

p

:jBj

p

else;

(ix) jPM j

p

:= jP j

p

if M :A:type; P :B:kind; (for some A;B);

:= jP j

p

jM j

p

else

The de�nition extends immediately to the ontext � itself, where a delaration oming

from x : � � �!Prop 2 �

T

(ase (iv)) is removed.

Example 3.21. As a running example throughout this Setion, we will use the following

�PRED

fr

-ontext.

O : Set; A : Set;

True : Prop; 

O

: O; 

A

: A; f : O!A; g : (O!A)!A;R : O!A!Prop;

t : True; p

1

: �x:O:Rx(fx); p

2

: �x:A:(�y:O:Ry(g(�z:O:x)))!R

O

x:

So here

�

D

= O : Set; A : Set;

�

T

= True : Prop; 

O

: O; 

A

: A; f : O!A; g : (O!A)!A;R : O!A!Prop;

�

P

= t : True; p

1

: �x:O:Rx(fx); p

2

: �x:A:(�y:O:Ry(g(�z:O:x)))!R

O

x:

(In the examples of this Setion we will use these abbreviations. Note that in the De�ni-

tions, Lemmas and Propositions, �

D

;�

T

is some �xed language ontext.) Now onsider
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the following elementary extension � of H(�

D

;�

T

):

� := H(�

D

;�

T

;�

P

); z

1

: O!A; z

2

: �x:O:Rx(gz

1

)!A; z

3

: �x:A:R

O

x:

Note that the type of z

2

does not orrespond to a logial formula (it is not in the image

of H). We ompute the j � j

p

-image of this ontext. It is

O : Set; A : Set; 

O

: O; 

A

: A; f : O!A; g : (O!A)!A;

t : O; p

1

: O!O; p

2

: A!(O!O)!O; z

1

: O!A; z

2

: O!O!A; z

3

: A!O:

That the mapping j � j

p

is indeed from �P-terms in the ontext � to �PRED

fr

is

justi�ed by the following Proposition.

Proposition 3.22. Let � � H(�

D

;�

T

).

� `

�P

M : A ) j�j

p

`

�PRED

fr jM j

p

: jAj

p

:

Proof. By indution on the derivation of � ` M : A in �P. There are no diÆult

ases. In the onversion rule, it is used that, if M =

�

N , then jM j

p

� jN j

p

.

Example 3.23. (De�nitions are as in Example 3.21.) In �P we have � `

�P

z

3



A

: R

O



A

,

whih is mapped to j�j

p

`

�PRED

fr z

3



A

: O. Similarly, � `

�P

z

2



O

(z

3

(gz

1

)) : A, is

mapped to j�j

p

`

�PRED

fr z

2



O

(z

3

(gz

1

)) : A.

Fat 3.24. If �

D

;�

T

` M : A(: Set), then jH(A)j

p

� A and jH(M)j

p

� M . (Note that

H is the identity on these kind of terms.)

Corollary 3.25. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

we have

� `

�P

M : A(: type)) �

D

;�

T

; j�

0

j

p

`

�PRED

fr jM j

p

: jAj

p

:

Proof. We know by Proposition 3.22 that j�j

p

`

�PRED

fr jM j

p

: jAj

p

. Now note that

jH(�

D

)j

p

� �

D

. Furthermore, for a delaration x : A in �

T

, if A:Set, then jx:Aj

p

� x:A

and if A:Type

p

, then jxj

p

� O and the delaration of x is removed from the ontext by

j � j

p

. So �

D

;�

T

; j�

0

j

p

� j�j

p

and so �

D

;�

T

; j�

0

j

p

` jM j

p

: jAj

p

by Thinning.

All this means that j�j

p

is a mapping bak from �P-terms (typable in � � H(�

D

;�

T

))

to the objet-language of �PRED

fr

that does not hange the terms that originated from

the objet-language.

Now we de�ne a mapping Tr bak from �P to the proof-language of �PRED

fr

. So

types in �P will beome propositions and objets will beome proofs of �PRED

fr

: If

� � H(�

D

;�

T

) and � `

�P

A : type, then j�j

p

`

�PRED

fr Tr(A) : Prop. Moreover,

if �

D

;�

T

`

�PRED

fr ' : Prop, then Tr(') should be equivalent to ', i.e. Tr(') should

be inhabited i� ' is. We prove that for suh ' we an �nd terms M

1

;M

2

suh that

�

D

;�

T

`

�PRED

fr M

1

: '!Tr(') and �

D

;�

T

`

�PRED

fr M

2

: Tr(')!'. We introdue

some notation.

Notation 3.26. For � a ontext in �PRED

fr

and � `

�PRED

fr
';  : Prop, we write

� `

�PRED

fr hM

1

;M

2

i : '$  

if � `

�PRED

fr M

1

: '! and � `

�PRED

fr M

2

:  !'.
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The main trik in the de�nition of Tr is to deompose a type �x:A:B (A;B : type) into

a quanti�ation over jAj

p

and an impliation Tr(A)!Tr(B). This idea ours in di�erent

plaes in the literature. Our main inspiration is (Swaen 1989), who uses it for �rst-order

prediate logi and Martin L�of's type theory, but one an also �nd it in (Mohring 1986),

who uses it for de�ning a realisability interpretation for the Calulus of Construtions,

and in (Geuvers 1995), where it is used to prove Strong Normalization for the Calulus

of Construtions.

De�nition 3.27. Let � � H(�

D

;�

T

). The map Tr on onstrutors of �P in � is de�ned

as follows.

(i) Tr(�) := True, if �:Set 2 �

D

;

(ii) Tr(�) := �, if �: � � �!Prop 2 �

T

;

(iii) Tr(�x:A:M) := �x:jAj

p

:Tr(M);

(iv) Tr(Qt) := Tr(Q)jtj

p

;

(v) Tr(�x:A:B) := �x:jAj

p

:Tr(A)!Tr(B):

Example 3.28.With the �P-ontext � de�ned as in Example 3.21, we �nd the following

Tr translations for types in this ontext.

Tr(�x:O:Rx(fx)) = �x:O:True!Rx(fx);

Tr(�x:O:Rx(gz

1

)!A) = �x:O:True!Rx(gz

1

)!True:

Proposition 3.29. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

we have

� `

�P

C : �x

1

:A

1

: : : :�x

n

:A

n

:type

) �

D

;�

T

; j�

0

j

p

`

�PRED

fr Tr(C) : jA

1

j

p

!� � �!jA

n

j

p

!Prop:

Proof. By indution on the derivation. Note that if A:type in �P, then jAj

p

ontains

no objet-variables. Furthermore, if � `

�P

M : A(: type), then �

D

;�

T

; j�

0

j

p

`

�PRED

fr

jM j

p

: jAj

p

by Corollary 3.25.

All � : type in �P are mapped to a Tr(�) : Prop in �PRED

fr

. If � � H(A) with

A : Set in �PRED

fr

, then Tr(�) should be inhabited (`true').

Lemma 3.30. If �

D

`

�PRED

fr
A : Set, then

9M

1

;M

2

[�

D

;�

T

`

�PRED

fr hM

1

;M

2

i : True$ Tr(A)℄:

(To be preise we would have to write Tr(H(A)) instead of Tr(A), but H is the identity

on terms of type Set.)

Proof. Immediate from the de�nition of Tr: if �

D

` A : Set, then A � � � �!� with

�:Set 2 �

D

. Hene Tr(A) � � � �!True, whih is logially equivalent to True.

The mapping Tr preserves =

�

. This is proved using a substitution Lemma for Tr.

Lemma 3.31. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

, with � `

�P

A;B : type

and � `

�P

t : B we have

Tr(A)[jtj

p

=x℄ � Tr(A[t=x℄):

If � `

�P

A;A

0

: type and A =

�

A

0

,then

Tr(A) =

�

Tr(A

0

):
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Proof. The �rst is easily proved by indution on the struture of A. The seond follows

from the fat that, if A �!

�

A

0

, then Tr(A) =

�

Tr(A

0

):

Proposition 3.32. For eah language-ontext �

D

;�

T

and ' with �

D

;�

T

`

�PRED

fr
' :

Prop we have

9M

1

;M

2

[�

D

;�

T

`

�PRED

fr hM

1

;M

2

i : '$ Tr(H('))℄:

(Note that H is the identity on expressioons of type Prop, so we an skip it.)

Proof. By indution on the struture of ', assuming that ' is in normal form. (By

Lemma 3.31, Tr(') =

�

Tr(nf(')).)

base If ' � �t

1

� � � t

n

with � a variable, then Tr(') � ' by the fat that jt

i

j

p

� t

i

. (Fat

3.24.)

� Say ' �  !� with  ; �:Prop. Then Tr('! ) � �x:j'j

p

:Tr(')!Tr( ). Now we are

done by IH: The variable x will not our free in '! and one easily onstruts the

required proof-terms.

8 Say ' � �x:A: with A : Set. Then Tr(�x:A: ) � �x:jAj

p

:Tr(A)!Tr( ). Now by Fat

3.24 and Lemma 3.30, �x:jAj

p

:Tr(A)!Tr( ) is equivalent to �x:A:Tr( ), so we are

done by IH.

De�nition 3.33. For � � H(�

D

;�

T

), say � � H(�

D

;�

T

);�

0

, we de�ne the ontext

TR(�) as

TR(�) := �

D

;�

T

; j�j

p

;Tr(�);

where Tr(�) is de�ned by replaing every delaration z:A in �

0

by z

0

: Tr(A). (Of ourse

we make sure that the delared variables in Tr(�) are di�erent from the ones in j�j

p

.)

Example 3.34. We look at the translation of � as in Example 3.21.

TR(�) = O : Set; A : Set;

True : Prop; 

O

: O; 

A

: A; f : A!O; g : (O!A)!A;R : O!A!Prop;

t : O; p

1

: O!O; p

2

: A!(O!O)!O; z

1

: O!A; z

2

: O!O!A; z

3

: A!O;

t

0

: True; p

0

1

: �x:O:True!Rx(fx);

p

0

2

: �x:A:True!(�y:O:True!Ry(g(�z:O:x)))!R

O

x:

Proposition 3.35. Let � � �

D

;�

T

, then

� `

�P

M : A(: type) in �P) 9N [TR(�) `

�PRED

fr N : Tr(A)℄ in �PRED

fr

:

Proof. By indution on the derivation of � `

�P

M : A in �P.

(var)M � x then either x:A in �

T

or in �

0

. In the �rst ase Tr(A) $ True and in the

seond ase x:Tr(A) 2 TR(�).

(app) Say

� `

�P

M : �x:A:B � `

�P

t : A

� `

�P

Mt : B[t=x℄

By IH, TR(�) `

�PRED

fr N : Tr(�x:A:B) � �x:jAj

p

:Tr(A)!Tr(B) and
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TR(�) `

�PRED

fr Q : Tr(A). We also have TR(�) `

�PRED

fr jtj

p

: jAj

p

, by Corollary

3.25. So we may onlude TR(�) `

�PRED

fr N jtj

p

Q : Tr(B)[jtj

p

=x℄ � Tr(B[t=x℄).

(�) Say

�; x:B `

�P

M : C � `

�P

�x:B:C : type

� `

�P

�x:B:M : �x:B:C

By IH, TR(�; x:B) `

�PRED

fr N : Tr(C). TR(�; x:B) � TR(�); x:jBj

p

; x

0

:Tr(B), so

we have

TR(�) `

�PRED

fr
�x:jBj

p

:�x

0

:Tr(B):N : �x:jBj

p

:Tr(B)!Tr(C) � Tr(�x:B:C):

(onv)We are immediately done by Lemma 3.31.

Corollary 3.36. The embedding H from �PRED

fr

into �P is omplete, i.e. if �

D

;�

T

is a language-ontext with �

D

;�

T

`

�PRED

fr
' : Prop and �

P

a proof-ontext, then

H(�

D

;�

T

;�

P

) `

�P

M : H(')) 9N [�

D

;�

T

;�

P

`

�PRED

fr N : '℄:

Proof. H(�

D

;�

T

;�

P

) is an elementary extension of �

D

;�

T

, so by the Proposition we

have

�

D

;�

T

; j�

P

j

p

;Tr(�

P

) `

�PRED

fr N : Tr(')

for some term N . Now every delaration in j�

P

j

p

is of the form y : B where B : Set, so

we an substitute for suh a y a term of type B in the ontext �

D

;�

T

. Furthermore, if

z:B 2 Tr(�

P

), then 9M

1

;M

2

:[�

D

;�

T

`

�PRED

fr hM

1

;M

2

i : B $ Tr(B)℄ by Proposition

3.32. So we an replae eah z:Tr(B) by ẑ:B, at the same time substituting M

1

ẑ for z

inside N . (Suh a variable z does not our in Tr(').) We obtain a term N

0

suh that

�

D

;�

T

;�

P

`

�PRED

fr N

0

: Tr('):

By again applying Proposition 3.32,we an transform this N

0

into a N

00

with

�

D

;�

T

;�

P

`

�PRED

fr
N

00

: ':

As a Corollary to the proof of ompleteness of H : �PRED

fr

!�P, we get ompleteness

of H : �PRED!�P

�

: the same De�nitions apply and the same results an be proven.

Corollary 3.37. The embedding H from �PRED into �P

�

is omplete, i.e. if �

D

;�

T

is

a language-ontext with �

D

;�

T

`

�PRED

' : Prop and �

P

a proof-ontext, then

H(�

D

;�

T

;�

P

) `

�P

�
M : H(')) 9N [�

D

;�

T

;�

P

`

�PRED

N : '℄:

3.4. Some omments on the ompleteness result

The system PRED is too minimal to be of real interest for pratial mathematis, also

beause a system like �P is usually seen as a logial framework (like �P that will be

disussed in Setion 4.) However, the ompleteness result an be extended a little bit to

systems with a bottom type. We are then onsidering the formulas-as-types embedding

from PRED

?

to �P

?

, where PRED

?

is PRED, de�ned in 3.1, extended with a onstant
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? � Prop and the `ex falso sequitur quodlibet' rule, saying that ?!' is always inhabited.

The system �P

?

is �P extended with a onstant type ? : type and a onstant term E

?

with an extra rule

� `M : ? � ` A : type

� ` E

?

MA : A

The system PRED

?

is more interesting beause the full lassial �rst order prediate

logi is a subsystem of it. More preisely, there is a faithful embedding of lassial �rst

order prediate logi into PRED

?

by a double negation translation. The embedding of

lassial �rst order prediate logi in to �P

?

via the system PRED

?

is now omplete,

due to the ompleteness of the embedding of PRED

?

into �P

?

.

4. �P as a Logial Framework

The idea of using a �rst order dependent type theory as a Logial Framework originates

from De Bruijn and the Automath projet. (See (de Bruijn 1980), (van Daalen 1973) or

(Nederpelt et al. 1994).) However, the de�nition of �P, roughly as it is given here, and

its use as a Logial Framework, originate from (Harper et al. 1987). It is also in (Harper

et al. 1987) that the issue of adequay of the enoding of a logi is �rst raised. Given a

logi L and its enoding as a �P-ontext �

L

, (see 2.4 for an example) we may wonder

whether this enoding is adequate, i.e. whether for � = f 

1

; : : : ;  

n

; 'g a set of formulas

of L,

if �

L

; p

1

:T 

1

; : : : ; p

n

:T 

n

`

�P

M : T'; then � `

L

' ?

Of ourse, soundness of the enoding is also an important issue, but usually that is a

rather straightforward indution on the derivation in L. As a matter of fat, the soundness

lies in onstruting the right ontext �

L

(that represents the logi L appropriately). So

we assume that we have hosen the right �

L

and that the enoding of L in �

L

is sound:

If � `

L

' then �

L

; p

1

:T 

1

; : : : ; p

n

:T 

n

`

�P

M : T'; for some M:

(This M will usually be a diret enoding of the derivation of � `

L

'.)

4.1. Adequay of the LF enoding

The way to prove adequay of the interpretation is by using so alled `long-��-normal

forms'. A long-��-normal form is obtained by �rst taking the �-normal form and then

doing �-expansion: a term C[M ℄ in �-normal form �-expands to C[�x:A:Mx℄ if x =2

FV(M), M : �x:A:B and C[�x:A:Mx℄ is again in �-normal form. We write l��(M) for

the long-��-normal form of the term M .

So, for proving adequay of the enoding, it is most onvenient to replae the �-

onversion rule in �P with a ��-onversion rule:

(onv

��

)

� `M : B � ` A : s

� `M : A

A =

��

B

This is also what is done in LF: The type system of LF is �P extended with � in the
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onversion rule. We will not go into this extension very deeply, but just remark that

adding this rule ompliates the meta-theory quite a bit. Normalization is relatively

easy (shown in (Harper et al. 1987)), but onuene (of ��-redution) is surprisingly

ompliated and was �rst proved by (Salvesen 1989) and (Geuvers 1992).

We note that for proving adequay of an enoding, the extension with � is not stritly

required, but it does make the proof easier. (Maybe it is virtually the only way to prove

it.) The argument runs as follows. Suppose we have a ��-onversion rule, so we work in

LF.

If �

L

; ~p : T

~

� `

LF

M : T';

then �

L

; ~p : T (

~

l��(�)) `

LF

l��(M) : T (l��(')) using =

��

;

then �

0

`

L

'

0

by a anonial translation from long-��-nfs in the ontext �

L

to L. Now, by the fat

that the enoding of a formula of L as a a term of type prop yields a long-��-nf, we are

done: �, resp. ' are exatly the LF-enoding of �

0

, resp. '

0

.

Having proved adequay of the enoding in LF, we immediately onluse that the

enoding in �P is adequate as well, beause �P � LF. More preisely: If �

L

; ~p : T

~

� `

�P

M : T', then also �

L

; ~p : T

~

� `

LF

M : T', and the rest of the argument runs as above.

We treat the adequay for the enoding of minimal proposition logi (Example 2.4) in

some more detail. Here we don't need the ��-onversion rule at all. Tehnially: beause

there are no funtions of higher type in the ontext � of 2.4; in terms of the argument

above: if � `

�P

A : prop, then A � l��(A). So, we only need that � `

�P

M : A) � `

�P

l��(M) : A, whih is easily proved in �P.

Now, onsider the ontext � of 2.4. The proof of adequay of the enoding proeeds

in three steps.

(1) If �; ~x : prop `

�P

A : prop, then either one of the following two is the ase.

A =

�

�BC with �; ~x : prop `

�P

B;C : prop;

A =

�

x with x:prop in the ontext.:

(2) If �; ~x : prop; ~p : T (

~

A) `

�P

t : TB (with

~

A : prop and B : prop), then either one of

the following three is the ase.

t =

�

p with B =

�

A; p:A in the ontext, for some A;

t =

�

�

E

CDqr with �; ~x : prop; ~p : T (

~

A) `

�P

q : T (�CD); r : TC

and B =

�

D;

t =

��

�

I

CD(�z:TC:q) with �; ~x : prop; ~p : T (

~

A); z:TC `

�P

q : TD

and B =

�

�CD:

(3) From the long-��-nf of a term t with �; ~x : prop; ~p : T (

~

A) `

�P

t : TB (as in (2)) one

an indutively de�ne a derivation of the assoiated proposition in minimal �rst order

proposition logi.

So there is an isomorphism between ��-equivalene lasses of terms of type TA in � and

derivations of A in the logi. The isomorphism is de�ned on the long-��-normal forms,

whih form a omplete set of representants for the ��-equivalene lasses.
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4.2. A minimal version of �P

Although the number of rules is limited, �P (or LF) is very powerful in interpreting

a wide variety of formal systems. (See (Harper et al. 1987) or (Avron et al. 1987) for

examples.) It is however not minimal yet: we an do without part of the (�)-rule without

weakening the power of the system. This is partly due to the way in whih the system is

being used. One the ontext �

L

that represents the formal system has been established,

one is only interested in judgements of the form

�

L

`

�P

M : A, with A : type

On the other hand there is no reason to let the ontext �

L

not be in normal form. From

these two priniples we an show that half of the rule (�) is superuous: there is no need

to be able to form �x:A:M : �x:A:B in ase �x:A:B : kind. That is: everything that an

be enoded in �P an already be enoded in �P

�

. See De�nition 2.12.

We show that a �

P

-normal form of a relevant judgement ontains no �

P

and that if a

judgement ontains no �

P

, it an be derived without the rule (�

P

).

Lemma 4.1. If � `

�P

M : type or � `

�P

M : A(: type), then �

P

-nf(M) ontains no

�

P

.

Proof. Suppose that M is in �

P

-nf and that � `

�P

M : type or � `

�P

M : A(: type).

We prove by indution on the struture of M that it ontains no �

P

. Note that M �

�

P

x:B:N is not possible, beause then M : A : kind.

M � x

~

t Then for all i, � ` t

i

: B

i

(: type) and t

i

in �

P

-nf, so by indution hypothesis, t

i

ontains no �

P

and we are done.

M � �

0

x:B:N Then �; x:B ` N : C(: type) and � ` B : type. Both are in �

P

-nf, so we

are done by using the indution hypothesis.

M � �x:B:C Then �; x:B ` C : type and � ` B : type. Both are in �

P

-nf, so we are

done by using the indution hypothesis.

Proposition 4.2. If � ` M : A, � and M are in �

P

-nf and ontain no �

P

, then

� `

�

M : B for some B =

�

A.

Proof. By indution on the length of � +M .

M � x Then � � �

1

; x:B;�

2

with A =

�

B. Now �

1

` B : type=kind and the indution

hypothesis applies, so � `

�

B : type=kind, so �

1

; x:B `

�

x : B. Similarly for the

delarations in �

2

, so we �nd � `

�

x : B.

M � �

0

x:C:N Then �; x:C ` N : D, so the indution hypothesis applies and we �nd that

�; x:C `

�

N : D

0

for some D =

�

D

0

. Now it must be the ase that � `

�

C : type

and �; x:C `

�

D

0

: type, so � `

�

�

0

x:C:N : �x:C:D

0

.

M � PN Then � ` P : �x:C:D and � ` N : C, so by indution hypothesis we �nd that

� `

�

P : �x:C

0

:D

0

and � `

�

N : C

00

with C =

�

C

0

=

�

C

00

. But then � `

�

PN :

D

0

[N=x℄ and D

0

[N=x℄ =

�

A.

M � �x:C:N Easy.
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Corollary 4.3. If � `M : A(: type), all in �

P

-normal form, then

� `

�

M : A(: type).

Proof. Suppose � ` M : A with � ` A : type, all in �

P

-normal-form. Then �;M

and A do not ontain any �

P

(Lemma 4.1), so we an apply the Proposition and �nd

a B =

�

A suh that � `

�

M : B. Moreover, � `

�

A : type, so � `

�

M : A by the

onversion rule.

Now, if � is a �P ontext representing some system of logi and A is a type that

represents some formula of this logi, then we an assume � and A to be in �

P

-normal

form. Now, when looking for a proof of A in �P, one only has to look at terms that do

not ontain a �

P

: the (�

P

) rule an totally be ignored.

The previous Proposition says that the only real need for �x:A:B : kind is to be

able to delare a variable in it. Even this use is usually of the most simple form where

x =2 FV(B). The standard appliation of it in both Automath systems and �P (ertainly

for logial systems) is the delaration of T : prop!type, where prop : type is another

delaration.

We ould even be more `minimal' and not allow funtion types of the form

�x

1

:A

1

: : : :�x

n

:A

n

:type, but instead add rules for `parametri onstants':

�; x

1

:A

1

; : : : ; x

n

:A

n

`

�; :�(x

1

:A

1

; : : : ; x

n

:A

n

):type `  : �(x

1

:A

1

; : : : ; x

n

:A

n

):type

� `  : �(x

1

:A

1

; : : : ; x

n

:A

n

):type � ` t

i

: A

i

[t

1

=x

1

℄ : : : [t

i�1

=x

i�1

℄ (8i � n)

� ` 

~

t : type

Then a delared onstant of type �x

1

:A

1

: : : :�x

n

:A

n

:type an only be used in its

`fully applied' form, i.e. by applying it to n values.

5. Conluding Remarks

We have studied �rst order dependent typed �-alulus from two perspetives: �rst as a

logial systems itself (via the formulas-as-types embedding) and seond as a framework

for de�ning logial systems. From the �rst perspetive, we have proved the ompleteness

of the formulas-as-types embedding of minimal �rst order prediate logi into �P, whih

turned out to be remarkably intriate. It is known that this result does not extend to the

embedding of higher order prediate into the the Calulus of Construtions (see (Berardi

1990) and (Geuvers 1993)): ompleteness fails for the third order ase and higher; for the

seond order ase, the question of ompleteness is still open.

We have also seen that the rule that allows to �-abstrat over a type (A : type) to

reate a term of a kind (B : kind), does not ontribute to the power of the system �P.

(This is de�ned as �

P

-abstration in De�nition 2.12.) If we look at the formulas-as-types

embedding, this addition is a onservative extension: see Corollary 3.37. If we look at �P

as a logial framework, Corollary 4.3 shows that �

P

-abstration is superuous.
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