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We look at two different ways of interpreting logic into the dependent type system AP.
The first is by a direct formulas-as-types interpretation a la Howard where the logical
derivation rules are mapped to derivation rules in the type system. The second is by
viewing AP as a Logical Framework, following (Harper et al. 1987) and (Harper et al.
1993). Then the type system is used as the meta-language in which various logics can be
coded.

We give a (brief) overview of known (syntactical) results about AP. Then we discuss two
issues in some more detail. The first is the completeness of the formulas-as-types
embedding of minimal first-order predicate logic into AP. This is a remarkably
complicated issue, a first proof of which appeared in (Geuvers 1993), following ideas in
(Barendsen and Geuvers 1989) and (Swaen 1989). The second issue is the minimality of
AP as a logical framework. We will show that some of the rules are actually superfluous
(even though they contribute nicely to the generality of presentation of AP).

At the same time we will attempt to provide a gentle inroduction to AP and its various
aspects and we will try to use little inside knowledge.

1. Introduction and motivation

The typed A-calculus AP is the extension of simple typed A-calculus with (first order)
dependent types. It occurs in different variants in the work of (Martin-Lof 1975) (in-
tuitionistic type theory), (van Daalen 1973) (Automath), (Harper et al. 1987) (Logical
Framework) and also in (Hindley and Seldin 1986) (Generalized Type Assignment). The
precise definition that we will be using is the one in (Barendregt 1992), which is — of the
forementioned — closest to (Harper et al. 1987). In the literature we find several ways
of motivating the definition of AP and explaining its use. These can be devided in two:
AP can be seen as a system for interpreting minimal first order predicate logic and AP
can be seen as a logical framework. In both views one uses a kind of formulas-as-types
interpretation to interpret (in the case of a logical framework one would say ‘encode’)
the logic, the difference being that in the first case there is one logic, the internal logic of
AP, whereas in the second case almost any formal system can be encoded. We will not
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give a complete overview of the different possible interpretations, but instead motivate
the definition of AP by explaining the two interpretations by examples.

Using AP to represent logic, either by a direct interpretation or an encoding, raises a
major question, namely: is the interpretation complete? Or, if one takes the view of AP
as a logical framework: is the encoding adequate? If we take the point of view of a direct
encoding of minimal first order predicate logic, L, into AP, then the question would be
whether the implication

Isbxp M:p = Fro

holds for all formulas ¢ of minimal first order predicate logic. (Here I's; represents the
context that declares the constants of the first order signature X; ¢ is a formula over this
signature X.) So, the question is whether, if ¢, considered as a type in AP, is inhabited,
then ¢ is derivable in L. The same question obviously applies to AP seen as a logical
framework, with the difference that there is not just one logic, but that for every logic
L we have to define a cotext 'y, that codes the logic. How this works in detail will be
discussed later by treating some examples.

One may wonder whether the soundness of the interpretation is not an issue. Well, it
is an issue: we have to prove that

|—ch = HM[FE I—)‘pM:(p]

holds for all formulas ¢ of minimal first order predicate logic L. However, soundness
is not a major issue, because it is easily satisfied. Also for the logical framework view,
soundness is usually relatively easy: it boils down to choosing the ‘correct’ 'y, as an
encoding of the logic L.

The question of adequacy of the encoding of a logic L into AP, as a logical framework,
was first dealt with by (Harper et al. 1987). (A full version of this paper has appeared as
(Harper et al. 1993).) As a matter of fact, they were the first to actually state the problem.
To prove adequacy of an encoding (Harper et al. 1987) devise a general technique that
applies to many different logics L. The idea is to construct, out of a proof term M : ¢,
a canonical proof term M’ (technically: the so called long-8n-normal form of M). From
such a canonical proof term a proof of ¢ in the logic L is immediately constructed. We
will illustrate this technique briefly in Section 4 by an example. (For proving adequacy
of the encoding it is convenient to extend AP with n-conversion. This yields the actual
type system of LF as defined in (Harper et al. 1987). However, for the adequacy result
this is not needed — as we will also argue in 4 — because AP is a subsystem of the LF
type system.) In Section 4 we will also show how we can define a minimal version of AP
that can serve as a logical framework.

The question of completeness of the interpretation of minimal first order predicate logic
into AP will be treated in Section 3. This issue was already raised by Martin-L&f in the
seventies. A proof of completeness was first sketched in (Barendsen and Geuvers 1989).
A precise proof — based on this proof — occurs in (Geuvers 1993). We give it in Section
3 with some more explanation and examples. Independently, (Berardi 1990) proved the
same completeness result. It’s maybe most remarkable that the completeness is such an
intricate problem. To grasp this we have to understand how exactly minimal first order
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predicate logic is interpreted in AP. This is done by interpreting both sets and formulas
as types. A predicate P on a set A is then interpreted as a function from (the type) A
to the collection of all types, type, so P : A—type. From this one constructs e.g. the
type Mz:A.Px— Pz, representing the formula Vz:a.Px— Px, but one can also construct
types like Iz:A.Px— A, which does not represent any set or formula of the logic. In the
completeness proof one has to take care of all these ‘meaningless’ types and it is not at
all clear whether these meaningless types can somehow spoil the completeness.

2. The system AP

We begin by defining the system AP. Then we give some examples of well-typed terms
and list some of the general issues (and properties) of type systems. Finally we give a
brief list of some meta-theoretic properties.

Definition 2.1. AP (Harper et al. 1987) is a system for deriving judgements of the
following two forms
'-M:B M is of type B in context T,
'k I" is a correct context.

Here T is called the context and M and B are terms, which are taken from the set of
pseudoterms

T == Var|type |kind | (TT) | (Az:T.T) | (T1z:T.T).
The derivation rules for deriving the judgements I' = M : B and T F are the following.
(s ranges over {type, kind}.)

''FA:s
(base) 0+ (ctxt) ———— ifznotinT
oAl
(1) ——— (proj) —— ifmAeT
ax) —————— ro I :A €
I' - type : kind pro) T+a2:A
m 'FA:type I''xz:AF B :s
FF1x:A.B:s
N D,z:AFM:B TFIz:AB:s (app) '-M:Mx:ABTHFN:A
app
Tk Ax:A.M :Tx:A.B ' MN : B[N/x]
''FM:BTFA:s
(conv) A=3B

r-M:A

As usual, we omit brackets in sequences of applications by associating them to the left
and we omit brackets in sequences of abstraction terms by associating them to the right.
So MNP denotes (M N)P), Ax: A y:B.M denotes (Az:A.(Ay:B.M)) and z:A.Tly:B.C
denotes (Mz:A.(Hy:B.C)).

We use the convention of writing A—B for lz:A.B if z ¢ FV(B).
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In (Harper et al. 1987), a system called LF is defined (‘Logical Framework’), specifically
geared towards the coding of logics (and formal systems in general) in this typed A-
calculus. The system AP can be seen as the ‘basic underlying type system’ of LF. In
the definition of AP we have ignored some features of LF, the main one being the use
of so called ‘signatures’. These are special contexts in which constants are declared.
In our definition a signature is part of the context. Another difference is that we do
not consider n-conversion. In LF, n-conversion is used for proving the adequacy of the
encoding. However, we don’t need n-conversion for adequacy, as will be argued in Section
4.

The system AP is an extension of the simply typed A-calculus A—. This is not entirely
obvious, as the types (and contexts) in A— are usually defined separately from the terms,
whereas in AP these definitions are interwoven. We therefore treat some examples of well-
typed terms in A—.

Example 2.2.

1 atype, B:type, y:type b Az:a— 8=y \y:a— L. z:a.x2(yz) :
(a—B—=7)—=(a—B)—a—y.

2 actype, S:itype,y:8 F Az:(a—8)—ax(Az:ay) : ((a—=8)—a)—a.

It is well-known that A— is isomorphic with minimal propositional logic (logic with
just implication) via the formulas-as-types embedding. In the example above, the first
A-term represents a proof (natural deduction derivation) of (a—3—7)—(a—8)—a—,
whereas the second represents a proof of ((a—f3)—a)—a from the assumption 3.

In a similar fashion one can interpret in AP minimal first order predicate logic (logic
with just implication and universal quantification). To be able to do this we have to
follow one basic principle:

A formula is associated with the type of its proofs, hence
a formula is provable if and only if the associated type is not empty (‘inhabited’).

As a consequence, we associate with a predicate over the set (type) A a term of type
A—type, the idea being that for a : A,

Pa holds if and only if the type Pa s inhabited.

This amounts to an interpretation of minimal predicate logic in AP where both sets and
formulas are interpreted as types. We will define this interpretation precisely later and
restrict to some motivating examples now.

Example 2.3.

1 a:type, P:a—type F Az:a\p:Pz.p : llz:ac. Px— Px.

2 actype, f:a—a, R:a—a—type,
hi : Oz:a.Rx(fx), he : Iz, y, 2:a.(Rey)— (Ryz)—(Rxz) +
Az:a.hox(fx)(f(fz))(hix)(hi (fz)) : Tz:a.Rz(f(fz)).

In a predicate logical interpretation, the first term is a proof of Vx € A.P(z)—P(x)
and the second is a proof of V& € A.R(z, f(f(x)) from the hypotheses Vx € A.R(z, f(z))
and Vz,y,z € A.R(z,y)—R(y,2)—>R(z, 2).

As a third type of example we treat a coding of minimal propositional logic in AP.
The idea is to declare a type prop in the context to represent the type of (names) of
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propositions and to add a T : prop—type, taking a name of a proposition to the type
of its proofs. (By adding suitable declarations for the derivations we establish that for
a : prop, the terms of type T'a indeed represent natural deduction proofs.)

Example 2.4. Define
I' := prop:type, T : prop—type,
D: prop—prop—prop,
Dr: lz, y:prop.(Tx—Ty) =T (Dzy),
Dp: Mz, y:prop.T (Dxy)—»Tr—Ty.

Then we have the following typings.
1 T,z:prop b Dr(Dzx(Ap:Tx.p)) : T(Dzx).
This term codes a proof of ‘z—x’.
2 For the purpose of presentation we write Dxy as ¢ O y and we omit the first two
arguments of D7 and Dp. We then find
T, z,y:prop, h:Ty - Dr(Ap:T((z D y) D x).De(Dr(Ag:Tz.h))) :
T(((x Dy) Dz) D x).
This term codes a derivation of ((z—y)—x)—x from the hypothesis y.

2.1. Properties of AP

In the examples above we saw that the general use of AP is to code (or represent di-
rectly) either terms (programs) or derivations (proofs). The S-reduction relation then
corresponds to evaluation (of programs) or cut-elimination (of proofs). Important and
natural properties to have are then that the typing is preserved by evaluation, that
evaluation is confluent and that typing is decidable.

We list the main properties of the typed A-calculus AP. Proofs can be found in (Harper
et al. 1987), (Barendregt 1992) or in (Geuvers and Nederhof 1991). (The proofs in (Harper
et al. 1987) are for AP with n; the proofs here are roughly the same, sometimes a bit
simpler due to the absence of 7.)

Proposition 2.5. (Subject Reduction) fI'+ A : Aand M —3 N, then T+ N : A.

The following Proposition follows from Subject Reduction and the fact that S-reduction
is confluent on the pseudo-terms T.

Proposition 2.6. (Typed Confluence) I T'F M : A, T F N :Aand M =3 N, then
there is a term P with M —»3 P, N —»g Pand ' P : A.

Proposition 2.7. (Uniqueness of Types) If ' - M : Aand '+ M : B, then A =3 B.

Proposition 2.8. (Strong Normalization) All well-typed expressions of AP are Strongly
Normalizing with respect to S-reduction.

This Proposition was first proved in (Harper et al. 1987), by defining a reduction
preserving mapping to the simple typed A-calculus.

In view of Example 2.3, strong normalization of (-reduction is very natural, as it
corresponds to cut-elimination in the logic (evaluation of natural deductions), which we
know to be terminating for first order predicate logic.
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Proposition 2.9. (Decidability of Typing) Given a context I and a pseudo-term M,
it is decidable whether M has a type in I and if M has a type it can be computed.

As a matter of fact, ‘typechecking a term’ (i.e. find out whether a given pseudoterm
has a type in a given context) proceeds by just computing it (with a ‘fail’ option if the
pseudoterm does not have a type). Similarly, checking whether a given pseudoterm M
has a given type A proceeds by computing the type of M and cheking whether it is
(B-equal to A.

Decidability of Typing holds because the abstracted variables come with their types.
So, if we want to typecheck Az:A.M in T, we can proceed by typechecking M in T, z:A.
If we want to typecheck M N in I', we have to typecheck M in I" and see whether its type
reduces to something of the form ITz:A.B. Then we typecheck N in I' and see whether its
type is B-equal to A. In the typechecking algorithm, an algorithm for checking -equality
is used. As all terms in AP are Strongly Normalizing, this equality-checking algorithm
terminates, and hence the type-checking algorithm does.

If we pursue the view of AP as a logic, one may wonder whether the inhabitation
problem is decidable, that is, given a context I' and a type A, is it decidable whether
there exists a term of type A in I'?

Proposition 2.10. (Undecidability of Inhabitation) (Bezem and Springintveld
1996) In general it is undecidable whether, given a context I' and a type A in T, there
exists an M such that '+ M : A.

The proof proceeds by translating register machine programs P into a pair of a context
I'p and a type Ap in such a way that Ap is inhabited in I'p iff P terminates.

iFrom a more computational perspective, viewing the terms as programs, Strong Nor-
malization may not seem very natural to have. In the computational view, one may
wonder whether types can be reconstructed automatically, i.e. if they are not given in
the A-abstraction. This is known as the Type Assignment Problem, which is known to be
decidable for simple typed A-calculus. To be more precise, we define the erasure, | — |,
of a pseudoterm by |Az:A.M| := Az.|M| and for the other cases by structural recursion.
Then, if ' F M : A(: type), the term |M| is an ordinary untyped A-term. Now, given
an untyped A-term N one may wish to find out whether N is typable, i.e. whether a
well-typed term M exists such that [M]| = N.
Proposition 2.11. (Undecidability of Type Assignment) (Dowek 1993) It is in
general undecidable whether, given a context I' and an untyped A term N, there is a
term M such that M is well-typed in " and |M| = N.

The proof proceeds by defining a special context I' such that for every Post correspon-
dence problem P there is a (untyped) term ¢p such that ¢p is typable in T iff the problem
P has a solution.

2.2. Minimal \P

It turns out that for many practical uses, there is no need to be able to abstract over a
type to form a constructor (i.e. form Az:A.M for Iz:A.B : kind). We therefore define a
minimal version of AP.
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Definition 2.12. In AP we split the rule (\) in two, a (Ao) and a (Ap) rule. For conve-
nience we attach a label to the abstraction that we introduce with the rule, so

(o) I'o:AFM:B I't+1Iz:A.B : type
° ' Xz:A.M :1Iz:A.B

De:A-M:B ' Tlz:A.B : kind
' Apz:A.M : IIz:A.B

The system AP without the rule (Ap) we call AP~, and we write -~ for judgements
in AP~. On the terms of AP we now distinguish Fy-reduction from Fp-reduction in the
obvious way:

(Ap

(Aox:AM)N —5, M[N/z],
(Apz:A.M)N —3, MI[N/z].

Similarly we can now talk about 8p-normal forms etcetera.

All the nice properties that we know from AP remain to hold for AP~. In Section 4
we show that this minimal version of AP is adequate as a logical framework. It is also
adequate for interpreting minimal first order predicate logic, as we will see in the next
Section.

3. AP as minimal first order predicate logic

We want to make a precise study of the embedding of minimal first order predicate logic
into AP , following the so called formulas-as-types embedding, originally due to Curry,
Howard and De Bruijn. The embedded logic, minimal first order predicate logic, has
as connectives only implication D and first-order universal quantification. There is no
negation and (hence) there is no double negation rules, so the logic is constructive. A
peculiarity of the embedding is that both domains (of the logic) and formulas are in-
terpreted as types, which makes the completeness of the formulas-as-types embedding
not at all obvious. Moreover, there are two constructions possible in AP that are — al-
though not alien to predicate logic — not in the realm of first order logic. These are:
(1) The possibility to define new predicates by abstraction. E.g. if R : A—»A—type is
a binary predicate on A, then A\z:A.Rzxz is of type A—type, a unary predicate on A.
(2) The possibility to declare and construct higher order functions. E.g. one can declare
f: (A= A)—A in the context, a function from A—A (functions from A to A) to A. Also
one can construct higher order functions, like \f : (A—A)—A. f(Az:A.z) which is of type
((A=A)—A)—A.

In the following we first give a precise definition of the logical systems: minimal first
order predicate logic, PRED and its extension with definable predicates and higher order
functions, PRED. Then we define a typed A-calculus, APRED/” that we show to be
isomorphic to PRED' via the formulas-as-types embedding. Then we prove in two phases
that the embedding of minimal first order predicate logic (PRED) into AP is indeed
complete. In the first phase we show completeness of the embedding of APRED’" into
AP. In the second phase we show conservativity of PRED™ over PRED.
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In the following diagram the steps in the proof of completeness of the formulas-as-typed
embedding from PRED into AP are depicted. An arrow denotes the inclusion embedding
of one system in another.

3.17

PRED PRED™

~13.16

APRED/" 336 AP

3.1. Minimal first order predicate logic
Definition 3.1. The language of the system PRED is defined as follows.

1 The domains are given by
D:=B|P|F
where B is a set of basic domains, P is the set of predicate domains, defined by
P ::= Prop | B=P,
and F is the set of functional domains, defined by
Fu=B—---—=B.

(We assume every functional domain to be built up from at least two basic domains.)
The intention is that By —Bs— Bs should be read as B;—(B2— Bs), the set of func-
tions taking an argument in B, an argument in B, and returning a value in Bs.
Similarly, B;— B>—Prop is intended to represent the set of relations on By x Bs.

2 The terms of the language of PRED are described as follows.

— There are countably many constants ¢ for every domain D € D,
— There are countably many variables of each basic domain B € B,

— If ¢P is a constant of domain D = B;— ---—B;—C, where C' € BU Prop and for
1 <i<p,t;isaterm of domain B;, then c¢Pt;...t, is a term of domain C,

— If p € Prop and « is a variable of basic domain B, then YzeB.yp is a term of domain
Prop.

— If ¢ and ¢ are terms of domain Prop, then ¢ D 9 is a term of domain Prop.
If ¢t is a term of domain D, we shall just write ¢t € D.

The derivation rules of PRED are the following. (The usual rules for D and V, where
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quantification is restricted to the basic domains.)

o]’

: pDYop
1 : E
(>-D) s (>-E) m
DY
] VzeB.1y
(V-1) VxeB.z/J(*) (V-E) o] ifte B

(%): in the V-I rule we make the usual restriction that the variable  may not occur free
in a non-discharged assumption of the derivation. In the D-I rule, ¢ is an index to label
the formulas that are discharged with that rule.

For I a set of formulas of PRED and ¢ a formula of PRED, we say that ¢ is derivable
from T in PRED, notation I' Fprgp ¢, if there is a derivation with root ¢ and all
non-discharged formulas in T'.

This is the usual system of minimal first order predicate logic. We extend this definition
to allow for definable predicates (by A-abstraction) and higher order functions.

Definition 3.2. The system PREDT is PRED plus the following extra clauses. The
functional domains F are defined by

F = B-B|F-B.

In the rules for term-formation we add

— There are countably many variables of each functional domain F' € F,

— Ift € Dy, Dy € D (an arbitrary domain) and z a variable of domain D, € BUF, then
AxeDi.t e Dl—)D2,

— Ift e D1—D> and g € Dy, then tq € Ds.

— If ¢ € Prop and z a variable of domain D; € BU F, then VxeD;.p € Prop.

The last rule replaces the application rule in the terms of PRED. The A-abstraction (and
application) on terms comes together with the usual notion of B-equality: two terms
are -equal if they are equal via the transitive, symmetric, reflexive closure, compatible
with application and abstraction, of the one step (-reduction (AzeD.t)g—>gt[g/z]. In
the derivation rules we add the rule

(4
(conv) —if p =1
%)
So in PRED'" there is no real distinction — in treatment — between basic domains and
functional domains. For clarity and to be able to compare the systems, we keep the
distinction.

The need for a conversion rule, establishing that #-equal formulas are equivalent, is
felt in the following examples.

Examples 3.3. We work in the system PRED'". Let A be a basic domain, R ¢ A—A—Prop,
feA—sA—A ae A
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— We can define a new predicate ArzeA.Rzx ¢ A—Prop by A-abstraction. Let’s abbrevi-
ate it to Q. Now Raa F Qa by the conversion rule.

— We can define a new function AzeA.fz(fxa) e A~ A by A-abstraction. Let’s abbrevi-
ate it to g. Now VzeA.Rx(fz(fra)) F VreA.Rx(gzx).

3.2. A typed \-calculus for minimal first order predicate logic
Definition 3.4. APRED/" is the typed A-calculus defined as follows. Just like in AP,

there are two forms of judgement.
'M:B M is of type B in context T,

'k I" is a correct context.
The set of pseudoterms is now defined by
T ::= Var|Set | Prop | Type® | Type? | (TT) | (Az:T.T) | (H2:T.T).

The intended interpretations are that Set represents the universe of basic sets (includ-
ing sets of higher type), Prop represents the universe of formulas, Type? represents the
universe of predicate sets and Type® contains just Set. The derivation rules for deriving
the judgements I' - M : B and I' F are the following. Here, s,s; and s range over
{Set, Prop, Type?, Type®} and R = {(Set, Set), (Prop, Prop), (Set, Prop), (Set, Type”)}.

'FA:s
(base) 0+ (ctxt) ———— ifznotinT
Iz:AF
Ik
(proj) ——— ifx:A€eTl
F'kFx: A
I'F T
(ax) ——— (ax) —————
I Set : Type® ' Prop : Type?
I'A:sy I'z:AF B : s,
(1) if (s1,82) € R
I'+TI2:A.B : s,
D,z:AFM:B T FIz:AB:s (app) '-M:Ixz:ABTFN:A
app
Tk Ax:A.M :Tx:A.B ' MN : B[N/x]
''FM:BTFA:s
(conv) A=3 B
'-M:A

We use the same notational conventions as for AP.

Example 3.5. A:Set, R:A— A—Prop, s:Ilz, y:A.Rxy— Ryx, t:1x,y, 2:A.Rey— Ryz—Rxz -
Az, y: A h: Rey teyxh(sxyh) : Uz, y:A.Rey— Rax.

This is a proof of the fact that if R is symmetric and transitive, then R is reflexive on
its domain (the z for which Rzy for some y).

We list the main properties of the APRED?". They are a consequence of the fact
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that APRED/" is a Pure Type System. Unless stated otherwise, proofs can be found in
(Barendregt 1992) or in (Geuvers and Nederhof 1991).

Proposition 3.6. (Subject Reduction) If ' M : Aand M —»g N, thenT' - N : A.

Proposition 3.7. (Typed Confluence) f ' M : A, TF N : Aand M =3 N, then
there is a term P with M —»3 P, N —»g Pand 'F P : A.

Proposition 3.8. (Uniqueness of Types) If ' M : Aand '+ M : B, then A =3 B.

Proposition 3.9. (Decidability of Typing) Given a context I' and a pseudo-term M,
it is decidable whether M has a type in I and if M has a type it can be computed.

Proposition 3.10. (Strong Normalization) All well-typed expressions of APRED/"
are Strongly Normalizing with respect to g-reduction.

Proposition 3.11. (Undecidability of Inhabitation) In general it is undecidable
whether, given a context I’ and a type A in T, there exists an M such that T'F M : A.

The proof of Undecidability of Inhabitation for AP in (Bezem and Springintveld 1996)
(see also Proposition 2.10) applies immediately to APRED/". As a matter of fact, the
proof in (Bezem and Springintveld 1996) already shows that minimal first order predicate
logic PRED is undecidable.

Proposition 3.12. (Undecidability of Type Assignment) It is in general undecid-
able whether, given a context I' and an untyped A term N, there is a term M such that
M is well-typed in T and |M| = N.

Modulo some small changes, the proof of Undecidability of Type Assignment for AP
(see 2.11) in (Dowek 1993) can be applied to APRED/" as well.

The following is a specific property of APRED/", that does not hold for AP. In fact it
states that APRED/" is really a logical system, where first the terms are built up, then
the propositions and then the proofs.

Proposition 3.13. In A\PRED’", if T+ M : A, then
FD,FT,FP FM:A

where

— I'p,I'r,T'p is a permutation of T,

— I'p only contains declarations « : Set,

— T'r only contains declarations z : A with I'p = A : Set/Type®,
— I'p only contains declarations p : ¢ with I'p, 't F ¢ : Prop.

The I'p, I'r and T'p are determined uniquely up to permutation. We refer to I'p as the
set-context of I', to I'r as the object-context of T and to I'p as the proof-context of I' and
to the concatenation I'p, 't as a language-context. Furthermore, if I' - M : A, then

— if A =Set/Type’ ,then T'p - M : A,

— if '+ A : Set/Type?, then T'p, T - M : A.

We will refer to the M such that I'p, I'r - M : A with A : Set as the object-language.

The proof of this Proposition is not difficult and proceeds by induction on the derivation
of T'H M : A. A detailed proof can be found in (Geuvers 1993).
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By restricting the rules we obtain a system we call APRED which corresponds to
PRED in the same way that APRED/" corresponds to PRED', via the formulas-as-
types embedding.

Definition 3.14. The system APRED is defined by

— Restricting in the rules of \PRED/” the (\)-rule to the case where s = Prop,

— Adding a universe Fun,

— Removing (Set, Set) from R,

— Allowing in triples (s1,s2, s3) of universes in R, where s3 is the type in the conclusion
of the (IT)-rule, and adding the triples (Set, Set, Fun) and (Set, Fun, Fun).

The intention of Fun is to represent the universe of function types. (The F in Definition
3.1.) We can now only form basic sets of type Set and A—A : Fun, A+A—A : Fun,
etcetera.

3.3. The conservativity results

The formulas-as-types embedding from PRED into APRED/" is defined as follws.

— A basic domain B is mapped to a declaration B : Set in the context. Hence, the
functional domains are mapped to terms of type Set and the predicate domains are
mapped to terms of type Type?. For convenience, we don’t distinguish between the
notation of the domain in the PRED® and in APRED/".

— A constant ¢” is mapped to a declaration ¢ : D in the context. Hence, a term
f(t1, ..., ty) is translated to ft1 -« -tp-

— A proposition is mapped to a term of type Prop by translating Vz:A.p to Iz:A.p and
© D Y to p—p.

— An assumption ¢ is translated into a declaration p : ¢ in the context.

— A derivation is mapped to a typed term translating an I-rule into a A-abstraction and
an E-rule into an application.

As the translation alters so little for domains, terms and propositions, we usually don’t
write it and identify e.g. VezeA.Pr O Qz with Iz:A.Pr—Qx. The translation from
derivations to proof-terms will be denoted by [—). So if A l_SREfo , denoting that © is
a derivation of ¢ from A, then (@) is the associated proof-term.

We do not define the translation of derivations into proof-terms precisely, as it is rather
well-known and involves quite a lot of syntactical detail. Instead we give an example of a
derivation and how it is (inductively) translated to a term in APRED/". Morevover, this
example should provide enough evidence for the fact that there is also a translation back
from proof-terms (in APRED?") to derivations in PRED. The translation from terms
to derivations will be denoted by X(—): if ¢ is a proof-term, then () is the associated
derivation.

The isomorphism between PRED and PRED™ arises from the fact that these two
translations (—) and X(—) are eachothers inverses. Details can be found in (Geuvers
1993).

Example 3.15. Let a domain A, a predicate P on A and a binary relation () on A be
given. The following is a deriavtion of (VzeA.Px) D (VxeA.Quz) from the hypothesis
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Vz,yeA.Px O Py D Qzy. Let’s call this derivation ©.

Vz,yeA.Px O Py D Qzy
VyeA.Px D Py D Qxy  [VzeA.Pz]!

Pz D Px D Qux Pz [VrzeA.Pz]!
Px D Qxx Pzx
Qrx
VreA.Qrx

(VzeA.Pz) D (VreA.Qux) L

We decorate © by A-terms, thus inductively defining the A-term [@) from the derivation
0.

g :Vr,yeA.Px O Py D Quxy

gr :VyeA.Px D Py D Qry | :VzeA.Pz
gzz : Pr D Pr D Qux hz - Pr |} . VzeA.Px

grz(hz) : Px D Qux hz : Px
grz(hz)(hz) : Qrz
Az:A.grx(hx)(hz) : VeeA.Qre
Ah:(VaxeA.Px)  x:A.grx(hz)(hx) : (VeeA.Pz) D (VreA.Qrx)
So (0) := Au:(Ilz:A.Px)\z:A.gzx(hz)(he). In \PRED!" | we can derive

A:Set, P:A—Prop, Q:A— A—Prop, g:Ilz, y:A.Pr—Py—Qzy F
Ah:(Tlz:A.Px)\x: A.gzx(hx)(he) @ (Tz:A.Px)— (Mz:A.Qzx).

Proposition 3.16. Given a PRED-signature ¥ (containing a finite number of domains
and relations and constants over these domains), a finite set of formulas (over ¥£) A and
a formula ¢,

Atgrppe ¢ = I's,Tap0,7: AFyprens (0) : ¢,
where I's;, I'a .0 is the canonically defined language context containing declarations for

all the constants and free variables in X, A, p, ©.
Furthermore, if T'p,T'p F 4 : Prop for all v € AU {p}, then

Lp,Tr,p: Abyprepsr M 1o = A '-gl%)yr 2

The mappings (—) and X(—) constitute a bijection between derivations in PRED and
proof-terms in APRED/".
For a detailed proof see (Geuvers 1993).

Proposition 3.17. PRED is conservative over PRED, that is, for A a set of formulas
and ¢ a formula of PRED,

Atprepr ¢ = A FprED .

Proof. The proof is by eliminating cuts (in derivations) and normalizing the terms as
follows. In PRED'" all terms are Strongly Normalizing and all cuts in derivations can be
eliminated. Moreover if A and ¢ are taken from PRED and A Fprepe @ by a cut-free
derivation in which only normal terms occur, then this is already a derivation in PRED.



H. Geuvers and E. Barendsen 14

The easiest way to treat the normalization and cut-elimination argument is by looking
at APRED’" and APRED instead. The argument then runs as follows.

1 The system APRED/" is Strongly Normalizing (e.g. there is a reduction-preserving
embedding into the Calculus of Constructions, which is known to be SN).

2 Suppose that the term-context 't is actually a APRED-context (i.e. there occur
no Set-types of higher type in it). Suppose furthermore that A U {¢} contains only
APRED-formula.

3 IfT'p,I'r FyprEpsr t @ A with ¢ in normal form and A : Set € I'p (i.e. A is a basic
domain), then I'p, T FxprEp £ : A

4 IfT'p,I'r,I'p Fypreps- ¢ @ ¢ with ¢ in normal form, then I'p,I'r,T'p FaprED ¢ : ©.

The third and fourth step are proved by induction on the structure of terms (¢ and q).
Together, these four steps prove the proposition. ]

Now to show the completeness of the formulas-as-types embedding from first order
predicte logic (PRED) into AP, we only have to show the completeness of the embedding
of APRED’" into AP. Both APRED/" and AP are Pure Type Systems (PTS) and the
embedding of APRED’" into AP that we are looking at is a PT'S-morphism H given by

Set — type
Prop +— type
Type® +— kind
Type? +— kind

A PTS-embedding extends immediately to all terms and contexts and it preserves typing,
ie.
Phryprepsr M : A = H(T)Fxp H(M) : H(A).

We now give the technical details of the proof of completeness of H : \APRED?" —
AP. The proof uses techniques developped in (Swaen 1989) who shows completeness
of the formulas-as-types embedding from first order predicate logic into Martin-Lof’s
intuitionistic theory of types. A different proof of our result can be found in (Berardi
1990).

The question of completeness is whether for any APRED/"-context I'p,I'7,I'p and
proposition ¢ with T'p,T'r F ¢ : Prop, if

H(Tp,Dp,Tp) F M : H(p) in AP,
then there exists a term N with
p,T7,Tp F N :pin APRED/".

Convention 3.18. In the following we assume for any APRED/"-context T that

1 T'= FD, FT, Fp,

2 T'p contains O : Set (so there is at least one basic domain),

3 all basic domains in I'p are nonempty,

4 T'r begins with a declaration 3:Prop and I'p begins with z:4. This g will be referred
to as True, the z will be referred to as t.
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The first clause is validated by Proposition 3.13. If the second clause were not satisfied
we would in fact be working in propositional logic. The third and fourth clause are added
for convenience. In case there are empty domains in the logic, the completeness result
would still hold with a slightly adapted argument.

We fix a language-context of \APRED/" T'p, T'r. We first want to define a map | — |?
from AP-terms, typable in H(I'p,T'r), to the object language of APRED/". This map
should be the inverse of H on the object language. That is, if 'p,I'r Fypreps- M : A
with A : Set, then |H(M)|? = M. We need to define | — |” not just on terms typable in
H(Tp,T'r), but in a elementary extension of H(T'p,T'r).

Definition 3.19. For I'p, I'; a language-context of \PRED?" and A a context of AP, we
say that A is an elementary extension of H(I'p,T'r), notation A = H(T'p,Ty), if A D
H(Tp,I'r) and the extra declarations in A are all of the form z:0 with H(T'p,['r) Fap

o : type.
For example, H(I'p,T'r,T'p) is always an elementary extension of H(I'p,'r).

Definition 3.20. Let A > H(I'p,'r). The mapping | —|? from AP-terms in the context
A to terms of \APRED/" is defined as follows.

(i) [typel? := Set,
(i1) |kind|P := Type®,
(i31) |z|P = =z, if x € Tp(sox: Set),
(iv) |z|P = O, ifze€lrandz:---—Prop,
(v) |z|P := =z, for x another variable,
(vi) |Mz:A.B|P := |BJPif A:type, B:kind,
= TIlz:|A|P.|B|P else,
(vii) |Az:A.MP = |M|Pif A:type, M:B:kind, (for some B),
= Az:|AP.|B|P else,
(ix) |[PMP = |P|Pif M:A:type, P:B:kind, (for some A, B),
= |P|P|M|? else
The definition extends immediately to the context A itself, where a declaration coming
from z : --- —Prop € I'r (case (iv)) is removed.

Example 3.21. As a running example throughout this Section, we will use the following
APRED/"-context.

O : Set, A : Set,
True : Prop,co : O,ca: A, f : O—A,g: (0—-A)—A, R : O—A—Prop,
t : True,pr : Hx:0.Rx(fz),pe : Hx:A.(Tly:0.Ry(g(Az:0.x)))— Reox.

So here
I'pb = O:Set, A: Set,
Iy = True:Prop,co:0,c4: A, f:0O—=A,g:(0O=A)—A,R: O—A—Prop,
p = t:True,ps : Uz:0.Rx(fz),p2 : lz:A.(Hy:0.Ry(g(Az:0.2)))— Reox.

(In the examples of this Section we will use these abbreviations. Note that in the Defini-
tions, Lemmas and Propositions, I'p, 't is some fixed language context.) Now consider
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the following elementary extension A of H(I'p,T'r):
A:=H(lp,Tr,Tp),z1 : O—=A, 25 : Iz:0.Rx(g21)—= A, 23 : [lz:A.Reox.

Note that the type of z2 does not correspond to a logical formula (it is not in the image
of H). We compute the | — [P-image of this context. It is

O :Set,A:Set,co:0,ca: A f:0—-4,g: (0O—=A)—A,
t:0,p1 : 0O=0,py : A5(0—=0)—0,21 : O=>A,25 : O50—A, 23 : A=O.

That the mapping | — |P is indeed from AP-terms in the context A to APRED’" is
justified by the following Proposition.

Proposition 3.22. Let A = H(I'p,T'r).
A I_)\P M : A = |A|p I_)\PR.EDfT‘ |M|p : |A|p

Proof. By induction on the derivation of A F M : A in AP. There are no difficult
cases. In the conversion rule, it is used that, if M =g N, then |M [P = |N|P. U

Example 3.23. (Definitions are as in Example 3.21.) In AP we have A Fyp 23¢4 : Rcoca,
which is mapped to |A|P FyprEpse 23¢4 @ O. Similarly, A Fap 2z2c0(23(g21)) : A, is
mapped to |A|p l_)\PREDf” ZQCO(Zg(gZ'l)) D A

Fact 3.24. If T'p,I'r = M : A(: Set), then |H(A)|P = A and |H(M)|P = M. (Note that
H is the identity on these kind of terms.)

Corollary 3.25. For A = H(I'p,T'r), say A= H(I'p,T'r), A’ we have
A "AP M : A( type) = FD,FT, |Al|p l_)\PR.EDf" |M|p . |A|p

Proof. We know by Proposition 3.22 that |A” Fypreps- |M|P : |A|P. Now note that
|H(I'p)|? = T'p. Furthermore, for a declaration = : A in I'p, if A:Set, then |2:A|P = 2:A
and if A:Type®, then |z|? = O and the declaration of z is removed from the context by
| = |P. So T'p,T'r, |A'|P D |A|P and so T'p, Ty, |A'|P = |M P : |AP by Thinning.

0

All this means that |—|? is a mapping back from AP-terms (typable in A = H(T'p,T'r))
to the object-language of APRED’" that does not change the terms that originated from
the object-language.

Now we define a mapping Tr back from AP to the proof-language of APRED/". So
types in AP will become propositions and objects will become proofs of APRED/": If
A > H(Tp,I'r) and A Fyp A : type, then |[A|P Fypreps Tr(A) : Prop. Moreover,
if T'p,T'r Fyprepsr @ : Prop, then Tr(¢) should be equivalent to ¢, i.e. Tr(¢) should
be inhabited iff ¢ is. We prove that for such ¢ we can find terms M7, M5 such that
Tp,Tr Fyprepie M1 p—Tr(p) and Tp, U7 Fyprepre Mo @ Tr(p)—¢@. We introduce
some notation.

Notation 3.26. For I a context in \APRED’" and Tk prpps- @, : Prop, we write
L ExprEnsr (My, M) 2 <4

if T I_APREDfT‘ Ml : QD—)'QZJ and T l_APREDfr M2 : 'QZJ—)()O
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The main trick in the definition of Tr is to decompose a type IIz: A.B (A, B : type) into
a quantification over |A|P and an implication Tr(A)—Tr(B). This idea occurs in different
places in the literature. Our main inspiration is (Swaen 1989), who uses it for first-order
predicate logic and Martin Lof’s type theory, but one can also find it in (Mohring 1986),
who uses it for defining a realisability interpretation for the Calculus of Constructions,
and in (Geuvers 1995), where it is used to prove Strong Normalization for the Calculus
of Constructions.

Definition 3.27. Let A = H(T'p,T'r). The map Tr on constructors of AP in A is defined
as follows.

(1) Tr(a) := True, if a:Set € 'p,
(i1) Tr(a) = a,if a:---—Prop € T'p,
(iit) Tr(Az:A.M) = Az:|AP.Tr(M),

v)  THQY = THQP,

(v) Tr(Ilz:A.B) := Ilz:|A|P.Tr(A)—>Tr(B).

Example 3.28. With the AP-context A defined as in Example 3.21, we find the following
Tr translations for types in this context.
Tr(Ilz:0.Rz(fx)) = Iz:0.True—Rz(fx),
Tr(Oz:0.Rx(gz1)—A) = Oz:0.True— Rx(gz1)— True.

Proposition 3.29. For A = H(T'p,'r), say A = H(T'p,Tr), A’ we have

Abyp C: 1z :A;. ... Iz, A, type
= Tp, 1, |A"? Fypreps Tr(C) 1 |[A1|P— - —|A, |P—Prop.

Proof. By induction on the derivation. Note that if A:type in AP, then |A|P contains
no object-variables. Furthermore, if A Fyp M : A(: type), then I'p,T'r, |A'|P FyprEps-
|M]|P : |A|P by Corollary 3.25. O

All o : type in AP are mapped to a Tr(o) : Prop in \APRED/". If ¢ = H(A) with
A : Set in APRED/" then Tr(o) should be inhabited (‘true’).

Lemma 3.30. If I'p Fyprppsr A4 : Set, then
HMl, MQ[FD,FT I_APREDfT‘ (Ml, M2> : True L a Tr(A)]
(To be precise we would have to write Tr(H (A)) instead of Tr(A4), but H is the identity

on terms of type Set.)

Proof. Immediate from the definition of Tr: if I'p + A : Set, then A = --- >« with
a:Set € I'p. Hence Tr(A4) = - - - —»True, which is logically equivalent to True. ]

The mapping Tr preserves =g. This is proved using a substitution Lemma for Tr.

Lemma 3.31. For A = H(I'p,T'r), say A = H(T'p,T'r),A’, with A Fyp A, B : type
and A Fyp t : B we have

Tr(A)[|t|P/z] = Tr(Alt/x]).
If Abyp A, A" : type and A =5 A’ then

Tr(A) =5 Tr(4A").
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Proof. The first is easily proved by induction on the structure of A. The second follows
from the fact that, if A — 5 A’, then Tr(4) =5 Tr(A"). 0

Proposition 3.32. For each language-context I'p, 't and ¢ with I'p,I'r Fypreps ¢ :
Prop we have

AMy, M2[FD7 U7 F\prED/" (My, Mz) : o TV(H(SO))]-

(Note that H is the identity on expressioons of type Prop, so we can skip it.)

Proof. By induction on the structure of ¢, assuming that ¢ is in normal form. (By
Lemma 3.31, Tr(p) =3 Tr(nf(p)).)

base If ¢ = aty - - - t,, with a a variable, then Tr(¢) = ¢ by the fact that |¢;|? = t;. (Fact
3.24.)

D Say ¢ = ¢—x with ¢, x:Prop. Then Tr(p—) = Iz:|p|P.Tr(p)—=Tr(v). Now we are
done by IH: The variable z will not occur free in p—1 and one easily constructs the
required proof-terms.

V Say ¢ = Ilz: A.¢p with A : Set. Then Tr(Ilz:A.¢p) = Hx:| AP Tr(A)—Tr(¢). Now by Fact
3.24 and Lemma 3.30, ITz:|A|".Tr(A)—Tr(z)) is equivalent to Ilz:A.Tr(y)), so we are
done by IH.

O
Definition 3.33. For A = H(I'p,I'r), say A = H(T'p,T'r),A’, we define the context
TR(A) as
TR(A) :=Tp,Tr, AP, Tr(A),
where Tr(A) is defined by replacing every declaration z:A4 in A’ by 2’ : Tr(A4). (Of course
we make sure that the declared variables in Tr(A) are different from the ones in |A|P.)
Example 3.34. We look at the translation of A as in Example 3.21.
TR(A) = O:Set, A: Set,
True : Prop,co : O,ca : A, f: A=0,g: (O—A)—A, R : O—A—Prop,
t:0,p1 : 0=0,py : A=(0—=0)—0,21 : O=>A,20 : O50—A, 23 : A=O,
t' : True, p} : Ilz:0.True— Rz (fx),
ph : Hz:A. True— (Ily:0.True— Ry (g(\2:0.7)))— Reow.
Proposition 3.35. Let A = I'p,I'7, then
Abxp M : A(: type) in AP = IN[TR(A) Fypreps N : Tr(4)] in APRED’".

Proof. By induction on the derivation of A Fyp M : A in AP.
(var) M = x then either z:4 in I'y or in A'. In the first case Tr(A) <> True and in the
second case x:Tr(A) € TR(A).
(app) Say
A I—)‘p M :TIxz:A.B A I—)‘p t: A
A l—)\p Mt : B[t/:l?]
By IH, TR(A) Fypreps N : Tr(lz:A.B) = Iz:|A|P.Tr(A)—Tr(B) and
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TR(A) Fypreps- @ : Tr(A). We also have TR(A) Fypreps- [tP @ |A|P, by Corollary
3.25. So we may conclude TR(A) Fyprrps- NEPQ : Tr(B)[|t[P/x] = Tr(B[t/z]).
(A) Say
Ax:BFyp M :C Abyp llz:B.C : type
A Fyp Az:B.M : IIz:B.C
By IH, TR(A,z:B) Fyprepsr N @ Tr(C). TR(A,2:B) = TR(A), z:|B|P, z":Tr(B), so

we have

TR(A) Fyprepsr Az:|B|P.Az":Tr(B).N : Iz:| B[P Tr(B)—=Tr(C) = Tr(llz:B.C').

(conv) We are immediately done by Lemma 3.31.

O

Corollary 3.36. The embedding H from APRED/" into AP is complete, i.e. if Tp, 'y
is a language-context with I'p,I'r Fyprrps ¢ : Prop and I'p a proof-context, then

H(FD,FT,FP) l‘,\p M : H((p) = HN[FD,FT,FP '_)\PREDf" N : (p]

Proof. H(T'p,T'r,Tp) is an elementary extension of I p, 'y, so by the Proposition we

have
FD,FT, |Fp|p,Tr(Fp) '—/\PREDfr N : Tr(go)

for some term N. Now every declaration in [I'p|P is of the form y : B where B : Set, so
we can substitute for such a y a term of type B in the context I'p,'r. Furthermore, if
z:B € Tr(T'p), then IM;, M>.[T'p,T'r Fypreps- (M1, Mz) : B < Tr(B)] by Proposition
3.32. So we can replace each z:Tr(B) by 2:B, at the same time substituting M2 for z
inside N. (Such a variable z does not occur in Tr(p).) We obtain a term N’ such that

Tp,T7,Tp Fyprens N2 Tr(p).
By again applying Proposition 3.32,we can transform this N’ into a N with
FD,FT,FP '_APREDfr N” . (p.

[
As a Corollary to the proof of completeness of H : \PRED/" AP, we get completeness
of H : \APRED— AP~ : the same Definitions apply and the same results can be proven.
Corollary 3.37. The embedding H from APRED into AP~ is complete, i.e. if I'p,I'r is
a language-context with I'p, 't Faprep ¢ : Prop and I'p a proof-context, then

H(FD,FT,FP) l—)\p— M : H((p) = HN[FD,FT,FP l_/\PRED N : (p]

3.4. Some comments on the completeness result

The system PRED is too minimal to be of real interest for practical mathematics, also
because a system like AP is usually seen as a logical framework (like AP that will be
discussed in Section 4.) However, the completeness result can be extended a little bit to
systems with a bottom type. We are then considering the formulas-as-types embedding
from PRED™ to AP+, where PRED* is PRED, defined in 3.1, extended with a constant
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L € Prop and the ‘ex falso sequitur quodlibet’ rule, saying that 1. —¢ is always inhabited.
The system AP is AP extended with a constant type L : type and a constant term &,

with an extra rule
'FM:1 T'FA:type

r-& MA:-A

The system PRED" is more interesting because the full classical first order predicate
logic is a subsystem of it. More precisely, there is a faithful embedding of classical first
order predicate logic into PRED" by a double negation translation. The embedding of
classical first order predicate logic in to AP+ via the system PRED™ is now complete,
due to the completeness of the embedding of PRED™ into APt.

4. AP as a Logical Framework

The idea of using a first order dependent type theory as a Logical Framework originates
from De Bruijn and the Automath project. (See (de Bruijn 1980), (van Daalen 1973) or
(Nederpelt et al. 1994).) However, the definition of AP, roughly as it is given here, and
its use as a Logical Framework, originate from (Harper et al. 1987). It is also in (Harper
et al. 1987) that the issue of adequacy of the encoding of a logic is first raised. Given a
logic L and its encoding as a AP-context I'y,, (see 2.4 for an example) we may wonder
whether this encoding is adequate, i.e. whether for A = {41,...,¥,, ¢} a set of formulas
of L,

ifCp,p1: T, o, o T bxp M : T, then Abp o ?

Of course, soundness of the encoding is also an important issue, but usually that is a
rather straightforward induction on the derivation in L. As a matter of fact, the soundness
lies in constructing the right context 'y, (that represents the logic L appropriately). So
we assume that we have chosen the right 'y, and that the encoding of L in I'y, is sound:

If Abp o then T, pr: T, ..., pn:Tn Fap M : Ty, for some M.

(This M will usually be a direct encoding of the derivation of A Fj, ¢.)

4.1. Adequacy of the LF encoding

The way to prove adequacy of the interpretation is by using so called ‘long-3n-normal
forms’. A long-fn-normal form is obtained by first taking the S-normal form and then
doing n-expansion: a term C[M] in S-normal form n-expands to C[Az:A.Mz] if = ¢
FV(M), M : Tlz:A.B and C[Az:A.Mz] is again in S-normal form. We write [3n(M) for
the long-Br-normal form of the term M.

So, for proving adequacy of the encoding, it is most convenient to replace the (-
conversion rule in AP with a n-conversion rule:

( \FI—M:BFI—A:SA B
conv =
T M A o

This is also what is done in LF: The type system of LF is AP extended with 7 in the
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conversion rule. We will not go into this extension very deeply, but just remark that
adding this rule complicates the meta-theory quite a bit. Normalization is relatively
easy (shown in (Harper et al. 1987)), but confluence (of Sn-reduction) is surprisingly
complicated and was first proved by (Salvesen 1989) and (Geuvers 1992).

We note that for proving adequacy of an encoding, the extension with 7 is not strictly
required, but it does make the proof easier. (Maybe it is virtually the only way to prove
it.) The argument runs as follows. Suppose we have a Bn-conversion rule, so we work in
LF.

T, 7: TA bFrp M:To,

-

then I'r, - T(I8n(A)) trr 1Bn(M) : T(I8n(y)) using =gy,
then A" Fp ¢

by a canonical translation from long-#n-nfs in the context I'y, to L. Now, by the fact
that the encoding of a formula of L as a a term of type prop yields a long-Gn-nf, we are
done: A, resp. ¢ are exactly the LF-encoding of A’, resp. ¢'.

Having proved adequacy of the encoding in LF, we immediately concluse that the
encoding in AP is adequate as well, because AP C LF. More precisely: If 'y, p': TA Fyp
M : Ty, then also ', p': TA Frr M : Ty, and the rest of the argument runs as above.

We treat the adequacy for the encoding of minimal proposition logic (Example 2.4) in
some more detail. Here we don’t need the Bn-conversion rule at all. Technically: because
there are no functions of higher type in the context I' of 2.4; in terms of the argument
above: if ' yp A : prop, then A =16n(A). So, we only need that ' Fyp M : A =T Fyp
IBn(M) : A, which is easily proved in AP.

Now, consider the context I' of 2.4. The proof of adequacy of the encoding proceeds
in three steps.

(1) T, #: prop Fap A : prop, then either one of the following two is the case.

A=3DBC with T,#:propt,p B,C :prop,
A=z with z:prop in the context..

(2) T, %: prop,p: T([f) Fap t: TB (with A prop and B : prop), then either one of
the following three is the case.

t=gp with B =g A,p:A in the context, for some A,
t =3 DpCDqr with T,Z:prop,p: T(A) Fxp ¢ : T(OCD),r : TC
and B =B l)7
t =g, D1CD(A\z:TC.q) with T,Z:prop,p: T(A'), 2TCrFyxp q:TD
and B =3 DCD.

(3) From the long-An-nf of a term ¢ with T,  : prop, p': T(/T) Fap t: TB (asin (2)) one
can inductively define a derivation of the associated proposition in minimal first order
proposition logic.

So there is an isomorphism between n-equivalence classes of terms of type T'A in I’ and
derivations of A in the logic. The isomorphism is defined on the long-B8n-normal forms,
which form a complete set of representants for the Sn-equivalence classes.
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4.2. A minimal version of AP

Although the number of rules is limited, AP (or LF) is very powerful in interpreting
a wide variety of formal systems. (See (Harper et al. 1987) or (Avron et al. 1987) for
examples.) It is however not minimal yet: we can do without part of the (\)-rule without
weakening the power of the system. This is partly due to the way in which the system is
being used. Once the context I'y, that represents the formal system has been established,
one is only interested in judgements of the form

Iy bFxp M : A, with A : type

On the other hand there is no reason to let the context I'z, not be in normal form. From
these two principles we can show that half of the rule (\) is superfluous: there is no need
to be able to form Az:A.M : IIz:A.B in case IIz:A.B : kind. That is: everything that can
be encoded in AP can already be encoded in AP~ . See Definition 2.12.

We show that a Sp-normal form of a relevant judgement contains no Ap and that if a
judgement contains no Ap, it can be derived without the rule (Ap).

Lemma 4.1. If T Fyp M : type or ' Fap M : A(: type), then 8p-nf(M) contains no
Ap.

Proof. Suppose that M is in Sp-nf and that T Fyxp M : type or ' Fyp M : A(: type).
We prove by induction on the structure of M that it contains no Ap. Note that M =
Apz:B.N is not possible, because then M : A : kind.

M = xi Then for all i, ' - ; : B;(: type) and t; in 8p-nf, so by induction hypothesis, ;
contains no Ap and we are done.

M = Xz:B.N Then I',z:B+ N : C(: type) and T' F B : type. Both are in 8p-nf, so we
are done by using the induction hypothesis.

M =Tz:B.C Then I';z:B F C : type and I' - B : type. Both are in Sp-nf, so we are
done by using the induction hypothesis.

O

Proposition 4.2. If ' - M : A, T and M are in 8p-nf and contain no Ap, then
I' == M : B for some B =3 A.

Proof. By induction on the length of T" + M.

M =2z Then ' =T,2:B,T'; with A =3 B. Now I'; F B : type/kind and the induction
hypothesis applies, so I' v~ B : type/kind, so ['y,z:B F~ z : B. Similarly for the
declarations in I's, so we find ' F~ z : B.

M = Mz:C.N Then ', x:C + N : D, so the induction hypothesis applies and we find that
I'z:C += N : D' for some D =g D'. Now it must be the case that I' -~ C : type
and I',z:C +— D' : type, so '+~ \oz:C.N : lIz:C.D'.

M =PN Then '+ P:lz:C.D and ' - N : C, so by induction hypothesis we find that
'~ P:Mz:C'.D' and T = N : C" with C =3 C' =3 C". But then I' = PN :
D'[N/z] and D'[N/z] =5 A.

M = Mz:C.N Easy.
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Corollary 4.3. If ' - M : A(: type), all in Sp-normal form, then
L+~ M : A(: type).

Proof. Suppose I' W M : A with ' F A : type, all in Sp-normal-form. Then T, M
and A do not contain any Ap (Lemma 4.1), so we can apply the Proposition and find
a B =3 A such that ' =~ M : B. Moreover, I' = A : type, so ' -V~ M : A by the

conversion rule.

O

Now, if T is a AP context representing some system of logic and A is a type that
represents some formula of this logic, then we can assume I'" and A to be in Bp-normal
form. Now, when looking for a proof of A in AP, one only has to look at terms that do
not contain a Ap: the (Ap) rule can totally be ignored.

The previous Proposition says that the only real need for ITx:A.B : kind is to be
able to declare a variable in it. Even this use is usually of the most simple form where
x ¢ FV(B). The standard application of it in both Automath systems and AP (certainly
for logical systems) is the declaration of T : prop—type, where prop : type is another
declaration.

We could even be more ‘minimal’ and not allow function types of the form
Mzq:A,. ... IIz,:A, . type, but instead add rules for ‘parametric constants’:

Cye: Ay, o Ap B
D,ell(z:Ar, ..., zn:Ay) type F c: I(z1: A4y, ..., z,:A,) type

Tke:M(z1:A4y, ... ,20:Ay).type T'F ;0 Ailt1 /2] .. [timi [2i—1] (Vi < n)
[t et type

Then a declared constant of type Hxzq:A;....1z,:A,.type can only be used in its
‘fully applied’ form, i.e. by applying it to n values.

5. Concluding Remarks

We have studied first order dependent typed A-calculus from two perspectives: first as a
logical systems itself (via the formulas-as-types embedding) and second as a framework
for defining logical systems. From the first perspective, we have proved the completeness
of the formulas-as-types embedding of minimal first order predicate logic into AP, which
turned out to be remarkably intricate. It is known that this result does not extend to the
embedding of higher order predicate into the the Calculus of Constructions (see (Berardi
1990) and (Geuvers 1993)): completeness fails for the third order case and higher; for the
second order case, the question of completeness is still open.

We have also seen that the rule that allows to A-abstract over a type (A : type) to
create a term of a kind (B : kind), does not contribute to the power of the system AP.
(This is defined as Ap-abstraction in Definition 2.12.) If we look at the formulas-as-types
embedding, this addition is a conservative extension: see Corollary 3.37. If we look at AP
as a logical framework, Corollary 4.3 shows that Ap-abstraction is superfluous.
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