Inconsistency of classical logic in type theory

Herman Geuvers

November 2007

1 Introduction

In this note, we show the inconsistency of a strong version of classical logic in the type theory of Coq. More precisely, we show that from the assumption \(\forall A: \text{Prop} \{A\} + \{\neg A\} \), we can derive \(\bot \). The type \(\forall A: \text{Prop} \{A\} + \{\neg A\} \) (in Coq notation: \((A: \text{Prop}) \{A\} + \{\neg A\}\)) is more powerful than the ‘ordinary classical axiom’ \(\forall A: \text{Prop} A \lor \neg A \) (in Coq notation: \((A: \text{Prop}) A \lor \neg A\)), because it allows to define a function to a \text{Set} type by cases. This is precisely one of the crucial steps in the proof of the inconsistency: the construction of two functions \(b2P : \text{bool} \rightarrow \text{Prop} \) and \(P2b : \text{Prop} \rightarrow \text{bool} \) that form a retract from \text{Prop} to \text{bool}: \(\forall A: \text{Prop}. (b2P(P2bA)) \leftrightarrow A \).

The fact that we can derive an inconsistency from a retract from \text{Prop} to \text{bool} has already been noticed by Coquand in [2], in a slightly different form. There the inconsistency is established by showing how the (inconsistent) type system \(\lambda U^- \) can be embedded if we have such a retract. Here we show the inconsistency directly, by adapting Hurkens’ version of Girard’s paradox (see [4]). The result is presented below by giving the Coq code of the inconsistency proof. To make the whole a bit more understandable, we first present the Lego code of the Hurkens inconsistency proof in \(\lambda U^- \).

2 Hurkens’ proof of the inconsistency of \(\lambda U^- \)

In [4], a very short version of Girard’s paradox is presented, showing the inconsistency of type theory where \(\text{Type} : \text{Type} \). As a matter of fact, the inconsistency can already be derived in \(\lambda U^- \), which corresponds to higher order predicate logic over polymorphic domains. (In terms of Pure Type Systems, the system with sorts \(\text{Prop}, \text{Type}, \text{Type}^- \), axioms \(\text{Prop} : \text{Type} \), \(\text{Type}^- \) and the rules (for forming II-types and \(\lambda \)-abstractions) \((\text{Prop}, \text{Prop}), (\text{Type}, \text{Prop}), (\text{Type}, \text{Type})\) and \((\text{Type}^-, \text{Type})\).)

Having seen the proof of Hurkens, Randy Pollack and the author wanted to formalize the proof in Lego, also to see whether a fixed point combinator could be obtained from it. This was done in the summer of 1994 and the Lego code is presented below. Of course, this proof development cannot be done in standard Lego (or Coq), as they do not allow \(\text{Type} : \text{Type} \) (nor do they allow \(\text{Type} \) to be
polymorphic). However, if one uses `TypeInType()` in Lego, one tells the type checker not to verify the universe conditions, hence allowing `Type : Type`. Then the following is a correct proof development in Lego.

Note for those familiar with Coq: `{i:U->Type}` denotes the Π-abstraction, written in Coq as `(i:U->Type)`. Also `{A|Type}` denotes a Π-abstraction, but now with A being an implicit argument, to be filled in by the type checker. In Lego, application binds stronger than abstraction, allowing to write `[z:V]r (z r) a`, where one would have to write `[z:V](r (z r) a)` in Coq. The `Refine` tactic corresponds – roughly – to the `Apply` tactic in Coq. The `;` symbol ends a Lego-command, just like the `.` in Coq.

```plaintext
[V = {A|Type}((A->Type)->(A->Type))->A->Type];
[U = V->Type];
[sb [A|Type][r:(A->Type)->(A->Type)][a:A] = [z:V]r (z r) a : U];
[le [i:U->Type][x:U] =
  x ([A|Type][r:(A->Type)->(A->Type)][a:A]i (sb r a)) : Type];
[induct [i:U->Type] = {x:U}(le i x)->i x : Type];
[WF = [z:V]induct (z le) : U];
[B:Type];
[I [x:U] = (z:U->Type)(le i x)->i (sb le x))->B : Type];
```

Goal `{i:U->Type}(induct i)->i WF;
intros i y;
Refine y WF ((x:U) y (sb le x));
Save omega;

Goal induct I;
Intros x p q;
Refine q I p ([z:U->Type]q ([y:U]i (sb le y)));
Save lemma;

Goal `{i:U->Type}(induct i)->i WF)->B;
intros x;
Refine x I lemma ([z:U->Type]x ([y:U]i (sb le y)));
Save lemma2;

Goal B;
Refine lemma2 omega;
Save paradox;
```

This is a direct encoding of the proof of [4]. If one adds a declaration `F : B->B` and replaces the line `Refine q I p ([z:U->Type]q ([y:U]i (sb le y)))` by `Refine F(q I p ([z:U->Type]q ([y:U]i (sb le y))));`, one obtains also a proof of B, which now is a looped combinator. This is a list of terms `Y_1`, `Y_2`, ..., such that `Y_1 F` is convertible with `F(Y_2 F)`, `Y_2 F` is convertible with `F(Y_3 F)`, etcetera. See [3] for a description of looped combinators in type theory. If one looks at these looped combinators in a Curry-style way,
i.e. ignoring all the types, both in the \( \lambda \)-abstractions and in the polymorphic applications, they are all fixed-point combinators. So, if we ignore the types, we find that \( YF \) is convertible with \( F(YF) \).

### 3 Adapting Hurkens’ paradox to an inconsistency of classical logic in Coq

The above paradox can be adapted to Coq, by adding (a strong form of) the classical axiom and by replacing \( \text{Type} \) with \( \text{bool} \). In the original paradox, \( A \rightarrow \text{Type} \) is used as the type of predicates over \( A \), and then \( \Pi A : \text{Type}(A \rightarrow \text{Type}) \) can not itself be of type \( \text{Type} \) (unless of course we allo \( \text{Type} : \text{Type} \)). However, if we replace \( \text{Type} \) with \( \text{bool} \), we have – due to the impredicativity of \( \text{Set} \) – that \( \Pi A : \text{Set}(A \rightarrow \text{bool}) : \text{Set} \). To get an inconsistency, we now only need to be able to reflect \( \text{Prop} \) inside \( \text{bool} \), which can be done if we assume the strong form of classical logic:

\[
cl : \forall A : \text{Prop}. \{ A \} + \{ \neg A \}
\]

This allows us to define mappings \( P2b \) and \( b2P \) from \( \text{Prop} \) to \( \text{bool} \) and back that form a retract, i.e. we can prove

\[
\forall A : \text{Prop}. (b2P(P2bA)) \leftrightarrow A.
\]

The proof of inconsistency of \( cl : (A : \text{Prop})\{A\} + \{\neg A\} \) in Coq, now is as follows.

```
Require Bool.
Axiom cl : (A:Prop){A} + {\neg A}.

Definition P2b : Prop -> bool := [A:Prop]
 Cases (cl A) of
 (left _) => true |
 (right _) => false
 end.
Definition b2P : bool -> Prop := [b:bool]
 Cases b of
 true => True |
 false => False
 end.

Lemma p2p : (A:Prop)(b2P(P2bA))<->A.
Intro A;Split.
Unfold b2P P2b.
Elim (cl A).
Auto.
Intros; Contradiction.
Unfold b2P P2b.
```
Intro; Elim (cl A); Auto.
Qed.

Syntactic Definition p2p_1 := (proj1 ?? (p2p ?)).
Definition retract : (A:Prop)(A->(b2P(P2b A)))
   := [A:Prop](proj2 ?? (p2p A)).
Definition V : Set
Definition U : Set
   := V->bool.
Definition sb : (A:Set)((A->bool)->A->bool)->A->V->bool
   := [A:Set;r:(A->bool)->(A->bool);a:A][z:V](r (z ? r) a).
Syntactic Definition Sb := (sb ?).
Definition le : (U->bool)->U->bool
   := [i:U->bool][x:U](r (z ? r) a).
Definition induct : (U->bool)->bool
   := [i:U->bool](P2b((x:U)(b2P(le i x)) -> (b2P(i x)))).
Definition WF : V->bool
   := [z:V](induct (z ? le)).
Variable B:Prop.
Definition I : U->bool
   := [x:U] (P2b((i:U->bool)(b2P(le i x)) -> (b2P(i (Sb le x)))) ->B)).

Lemma omega: (i:U->bool)(b2P(induct i)) -> (b2P(i WF)).
Intros i y.
Unfold induct in y.
Generalize (p2p_1 y).
Intros.
Apply H.
Unfold le WF induct.
Apply retract.
Intros x H0.
Apply H.
Exact H0.
Qed.

Lemma lemma:(b2P(induct I)).
Unfold induct.
Apply retract.
Intros x p.
Unfold I.
Apply retract.
Intro q.
Generalize (q I p).
Intro H.
Unfold I in H.
Generalize (p2p_1 H).
Intro H0.
Apply H0.
Intro i; Exact (q ([y:U](i (Sb le y))).
Qed.

Lemma lemma2: ( (i:U->bool)(b2P(induct i)) -> (b2P(i WF)) ) -> B.
Intro x.
Generalize (x I lemma).
Intro H.
Unfold I WF in H.
Generalize (p2p_1 H).
Intro H1.
Apply H1.
Intro i.
Generalize (x ([y:U](i (Sb le y))).
Intros H0 H3.
Apply H0.
Exact H3.
Qed.

Lemma par : B.
Exact (lemma2 omega).
Qed.

3.1 Inconsistency in $\lambda P^2$

Coquand has shown in [2] that the following context $\Gamma_0$ is inconsistent in the Calculus of Constructions.

$$\Gamma_0 := A : Prop, \epsilon : A \rightarrow Prop, E : Prop \rightarrow A, h : \Pi A : Prop.(\epsilon(EA)) \leftrightarrow A$$

This was proved by embedding the (inconsistent) type system $\lambda U^-$ in this context. In [2], Coquand also raised the question whether a direct (simpler) proof of the inconsistency of $\Gamma_0$ could be given. This can indeed be done if we adapt our proof of inconsistency of $\forall A:Prop.(A) + \{\neg A\}$ as follows. Replace the definitions b2P, P2b and the proof P2P in the above piece of Coq code by

Variable boo:Prop.
Variable b2P:boo->Prop.
Variable P2b:Prop->boo.
Variable P2P : (A:Prop)(b2P(P2b A))<->A.

and replace, in the rest of the proof, bool by boo and Set by Prop. In this way we find a proof of inconsistency of the context $\Gamma_0$ in the type system $\lambda P^2$ (second order dependent type theory).
3.2 A slight weakening of the inconsistency proof

The inconsistency proof uses the inductive booleans, with dependent elimination over it and an inductive sum type with dependent elimination over it. The dependent elimination over the sum type can be weakened. We can restrict it to elimination over polymorphic dependent predicates. The standard dependent elimination rule yields

\[
\text{sumbool\_ind} : \forall A, B : \text{Prop}. \forall P : \{A\} + \{B\} \rightarrow \text{Prop}.
\]

\[
(\forall a : A. P(\text{left } ABa))
\]

\[
\rightarrow (\forall b : B. P(\text{right } ABb))
\]

\[
\rightarrow \forall s : \{A\} + \{B\}. (Ps)
\]

This can be restricted to polymorphic predicates over sum types (i.e. \(P : \Pi X, Y : \text{Prop}. \{X\} + \{Y\} \rightarrow \text{Prop}\)). Then we have the following.

\[
\text{OR\_ind} : \forall P : \Pi X, Y : \text{Prop}. \{X\} + \{Y\} \rightarrow \text{Prop}. \forall A, B : \text{Prop}.
\]

\[
(\forall a : A. PAB(\text{left } ABa))
\]

\[
\rightarrow (\forall b : B. PAB(\text{right } ABb))
\]

\[
\rightarrow \forall s : \{A\} + \{B\}. (PABs)
\]

Using this restricted form of dependent elimination over sum types, we can still prove the inconsistency, as is shown by the Coq code below. To be sure that we don’t use the dependent elimination, we have declared a new sum type axiomatically. We only show the code until we have defined the mappings \(P2b : \text{Prop} \rightarrow \text{bool}\) and \(b2P : \text{bool} \rightarrow \text{Prop}\) and we have proved that they form a retract:

```
Lemma P2P : (A : Prop)(b2P(P2b A)) <-> A.
```

The rest of the inconsistency proof is the same as in the previous case.
\[(\text{OR}_{\text{rec}} \ ??? f1 \ f2 \ (\text{OR}_{\text{left}} ?? a)) = (f1 \ a)\].

**Axiom eqor2** : \((A, B : \text{Prop}; P : \text{Set}) \ (f1 : (a : A) P) \ (f2 : (b : B) P) \ (b : B) \ (\text{OR}_{\text{rec}} \ ??? f1 \ f2 \ (\text{OR}_{\text{right}} ?? b)) = (f2 \ b)\).

**Axiom cl** : \((A : \text{Prop}) (\text{OR} \ A \ (\sim \ A))\).

**Definition P2b** : \(\text{Prop} \rightarrow \text{bool} := [A : \text{Prop}] (\text{OR}_{\text{rec}} A \ (\sim A) \ \text{bool} \ ([x : A] \text{true}) \ ([y : \sim A] \text{false}) \ (\text{cl} A))\).

**Definition b2P** : \(\text{bool} \rightarrow \text{Prop} := [b : \text{bool}] \cases{ true \Rightarrow \text{True} }{ false \Rightarrow \text{False} } \end{cases}\)

**Lemma P2P** : \((A : \text{Prop})(b2P(P2b A)) \leftrightarrow A\).

Proof.
Intro A; Split.
Unfold b2P P2b.
Apply (\text{OR}_{\text{ind}} ([X, Y : \text{Prop}; o : (\text{OR} X Y)] (if (\text{OR}_{\text{rec}} X Y \ \text{bool} \ [\sim X] \text{true} \ [\sim Y] \text{false} \ o) then True else False) \rightarrow A)).
Intros.
Auto.
Intros.
Rewrite eqor2 in H.
Contradiction.
Unfold b2P P2b.
Intro.
Apply (\text{OR}_{\text{ind}} ([X, Y : \text{Prop}; o : (\text{OR} X Y)] (if (\text{OR}_{\text{rec}} X Y \ \text{bool} \ [\sim X] \text{true} \ [\sim Y] \text{false} \ o) then True else False))).
Intro a; Rewrite eqor1.
Auto.
Intro b; Rewrite eqor2.
Elim b Auto.
Qed.
References


