
Equational Reasoning via Partial Reetion

H. Geuvers, F. Wiedijk, J. Zwanenburg

fherman,freek,janzg�s.kun.nl

Department of Computer Siene, Nijmegen University, the Netherlands

Abstrat. We modify the reetion method to enable it to deal with

partial funtions like division. The idea behind reetion is to program

a tati for a theorem prover not in the implementation language but in

the objet language of the theorem prover itself. The main ingredients

of the reetion method are a syntati enoding of a lass of problems,

an interpretation funtion (mapping the enoding to the problem) and a

deision funtion, written on the enodings. Together with a orretness

proof of the deision funtion, this gives a fast method for solving prob-

lems. The ontribution of this work lies in the extension of the reetion

method to deal with equations in algebrai strutures where some fun-

tions may be partial. The primary example here is the theory of �elds.

For the reetion method, this yields the problem that the interpretation

funtion is not total. In this paper we show how this an be overome by

de�ning the interpretation as a relation. We give the preise details, both

in mathematial terms and in Coq syntax. It has been used to program

our own tati `Rational', for verifying equations between �eld elements.

1 Introdution

We present a method for proving equations between �eld elements (e.g. real

numbers) in a theorem prover based on type theory. Our method uses the re-

etion method as disussed in [6, 5℄: we enode the set of syntati expressions

as an (indutive) data type, together with an interpretation funtion [[�℄℄ that

maps the syntati expressions to the �eld elements. Then one writes a `normal-

ization' funtion N that simpli�es syntati expressions and one proves that this

funtion is orret, i.e. if N (t) = q, then the interpretations of t and q ([[t℄℄ and

[[q℄℄) are equal in the �eld. Now, to prove an equality between �eld elements a

and b, one has to �nd syntati expressions t

1

and t

2

suh that N (t

1

) = N (t

2

)

and [[t

1

℄℄ is a and [[t

2

℄℄ is b. This method has been applied suessfully [2℄ to ring

expressions in the theorem prover Coq, where it is implemented as the `Ring

tati': when presented with a goal a = b, where a and b are elements of a ring,

the Ring tati �nds the underlying syntati expressions for a and b, exeutes

the normalization funtion and heks the equality of the normal forms.

The appliation of the reetion method to the situation of �elds poses one

big extra problem: syntati expressions may not have an interpretation, e.g.

1

0

.

So, there is no interpretation funtion from the syntati expressions to the atual

�eld ([[�℄℄ would be partial). The solution that we propose here is to write an



interpretation relation instead: a binary relation between syntati expressions

and �eld elements. Then we prove that this relation is a partial funtion. The

preise way of using this approah is disussed below, inluding the tehnial

details of its implementation in Coq. For the preise enodings in Coq see [4℄.

The reetion method in general

Reetion is the method of `reeting' part of the meta language in the objet

language. Then meta theoreti results an be used to prove results from the

obejt langauge. Reetion is also alled internalization or the two level approah:

the meta language level is internalised in the objet language. The reetion

method an (and it has, see e.g. [7℄) be used in general in situations where

one has a spei� lass of problems with a deision funtion. It is also not just

restrited to the theorem prover Coq. If the theorem prover allows (A) user

de�ned (indutive) data types, (B) writing exeutable funtions over these data

types and (C) user de�ned tatis in the meta language, then the reetion

method an be applied. The lasses of problems that it an be applied to are those

where (1) there is a syntati enoding of the lass of problems as a data type,

say via the type Problem, with (2) a deoding funtion [[�℄℄ : Problem ! Prop

(where Prop is the olletion of propositions in the language of our theorem

prover), (3) there is a deision funtion De : Problem! f0; 1g suh that (4) one

an prove 8p:Problem((De(p) = 1)! [[p℄℄). Now, if the goal is to verify whether

a problem P from the lass of problems holds, one has to �nd a p : Problem suh

that [[p℄℄ = P . Then De(p) (together with the proof of (4)) yields either a proof

of P (if De(p) = 1) or it `fails' (if De(p) = 0 we obtain no information about

P ). Note that if De is omplete, i.e. if 8p:Problem((De(p) = 1) $ [[p℄℄), then

De(p) = 0 yields a proof of :P . The onstrution of p (the syntati enoding)

from P (the original problem) an be done in the implementation language of

the theorem prover. Therefore it is onvenient that the user has aess to this

implementation language; this is ondition (C) above. If the user has no aess

to the meta language, the reetion method still works, but the user has to

onstrut the enoding p himself, whih is very umbersome.

In this paper we �rst explain the reetion method by looking at the example

of numbers with multipliation. We point out preisely whih are the essential

ingredients. Then we extend the example by looking at numbers with multi-

pliation and division. Here the partiality problem arises. We explain how the

reetion method an be applied to this example. This is an illustration of what

we have implemented in Coq: a tati for solving equations between elements of

a �eld (a set with multipliation, division, addition, subtration, onstants and

variables). The tati has been applied suessfully in a formalization of real

numbers in Coq that we are urrently working on.

2 Equational reasoning using the reetion method

We explain the reetion method by the simple example of numbers with mul-

tipliation. Suppose we have F : Set, � : F!F!F , 1 : F and an equivalene



relation =

F

on F (either a built-in equality of the theorem prover or a user

de�ned relation) suh that

(i) =

F

is a ongruene for � (i.e. if a =

F

b and  =

F

d, then a �  =

F

b � d),

(ii) � is assoiative and ommutative,

(iii) 1 is the unit with respet to �.

Phrased di�erently, hF; �; 1i is an Abelian monoid. When dealing with F , we will

want to prove equations like

(a � ) � (1 � (a � b)) =

F

(a � a) � (b � ) (1)

where a; b;  are arbitrary elements of F . To prove this equation in a theorem

prover eah of the properties (i){(iii) above has to be used (several times). It is

possible to write a `tati' in the theorem prover that does just that:

Apply eah of the steps (i){(iii) to rewrite the left and right hand side

of equation (1) until the two sides of the equation are literally the same.

Obviously this is not a very smart tati (e.g. it does not terminate when the

equality does not hold) and of ourse we an do better than this by applying

(i){(iii) in a lever order. For the ase of Abelian monoids, this an be done by

rewriting all terms into a normal form whih has the shape

a

1

� (a

2

� (: : : � (a

n

� 1) : : :))

where n � 0 and a

1

; : : : ; a

n

are elements of F that an not be deomposed,

listed in alphabeti order. So a

i

may be a variable of type F or some other term

of type F , that is not of the form ��� or 1. A tati, whih is written in the

meta language, has aess to the ode of a

i

, hene it an order the a

i

aording

to some pre-de�ned total order, say the lexiographi one. (Note that a normal

form as above an not be ahieved via a term rewrite system, beause we have

to order the variables.) So, a more lever tati does the following.

Rewrite the left and right hand side of equation (1) to normal form and

hek if the two sides of the equation are literally the same.

Following [5℄, there are three ways to augment the theorem prover with this

proof tehnique for equational reasoning.

1. Add it to the primitives of the theorem prover,

2. Write (in the meta language) a tati, built up from basi primitive steps,

that performs the normalization and heks the equality.

3. Write a normalization funtion in the language of the theorem prover itself

and prove it orret inside the theorem prover; use this as the ore of the

tati.

The �rst is obviously undesirable in general, as it gives no guarantee that the

method is orret (one ould add any primitive rule one likes). The seond and

third both have their own pros and ons, whih are disussed extensively in [5℄.

It is our experiene (and of others, see [2℄) that espeially for theorem provers

based on type theory, the third method is the most onvenient one if one wants

to verify a large numbers of problems from one and the same lass. We will

motivate why.



Reetion in type theory

We still work with the Abelian monoid hF; �; 1i from before and we want to verify

equation (1). The equality on this monoid will be denoted by =

F

, whih may be

user de�ned or not, as long as it is an equivalene relation and a ongruene for �.

Note that there is also the de�nitional equality, built-in into Coq. This is usually

denoted as =

�Æ�

, as it is generated from the literal (�-) equality by adding the

omputation steps �, Æ (for unfolding de�nitions) and � (for reursion). De�ni-

tional equality is deidable and built into the type heker; it is inluded in the

equality =

F

(if two terms are de�nitionally equal, they are equal in any respet).

We introdue an indutive type of syntati expressions, E, by

E ::= V j C jE �E

where V is the type of variables, let's take

V ::= IN

and C is the type of onstant expressions, ontaining in this ase just one element,

u. In type theory (using Coq syntax) the de�nition of V and E would be as

follows.

Definition V : Set := nat.

Indutive E : Set :=

evar : V->E

| eone : E

| emult : E->E->E.

To de�ne the semantis of an expression e : E, we need a valuation � : V ! F

to assign a value to the variables. The interpretation funtion onneting the level

of the syntati expressions E and the semantis F is then de�ned as usual by

reursion over the expression.

[[�℄℄

�

: E ! F

In Coq syntax the interpretation funtion I is de�ned as follows, given the

Abelian monoid <F, fmult, fone>:

Variable rho : V->F.

Fixpoint I [e:E℄ : F :=

Cases e of

(evar v) => (rho v)

| eone => fone

| (emult e1 e2) => (fmult (I e1) (I e2))

end.



Now we write a `normalization funtion':

N : E ! E

that sorts variables, removes the unit (apart from the tail position) and assoiates

brakets to the left. We don't give its enoding N : E -> E in Coq, but give the

following examples.

N ((v

0

� u) � (v

1

� v

2

)) =

�Æ�

(v

0

� (v

1

� (v

2

� u)));

N ((v

2

� v

0

) � v

1

) =

�Æ�

(v

0

� (v

1

� (v

2

� u))):

The equality =

�Æ�

is the internal (omputational) equality of the theorem prover:

no proof is required for its veri�ation; a veri�ation of suh an equality is

performed by the type heker.

We prove the following key lemma for the normalization funtion.

normorret : [[e℄℄

�

=

F

[[N (e)℄℄

�

In Coq terminology: we onstrut a proof term

normorret : (rho: V -> F)(e:E)((I rho e) = (I rho (N e))).

The situation is depited in the following diagram; normorret states that the

diagram ommutes.

E

N

-

E

[[�℄℄

? ?

[[�℄℄

F

=

F

F

Solving equation f =

F

f

0

with f and f

0

elements of F now amounts to the

following.

{ Find (by tati) e; e

0

and � with

[[e℄℄

�

=

�Æ�

f and [[e

0

℄℄

�

=

�Æ�

f

0

{ Chek (by type heker) whether

N (e) =

�Æ�

N (e

0

)

The proof of f =

F

f

0

is then found by

f =

�Æ�

[[e℄℄

�

=

F

[[N (e)℄℄

�

=

�Æ�

[[N (e

0

)℄℄

�

=

F

[[e

0

℄℄

�

=

�Æ�

f

0



from normorret for e and e

0

and trans of =

F

. In a diagram:

E

N

-

E

�

N

E

[[�℄℄

? ?

[[�℄℄

?

[[�℄℄

F

=

F

F

=

F

F

In Coq this means that we have to onstrut a proof term of type

f = f'

This is done from normorret using the proofs of symmetry and transitivity

of =

F

, sym and trans.

sym : (x,y:F) (x = y) -> (y = x).

trans : (x,y,z:F) (x = y) -> (y = z) -> (x = z).

The ruial point is that

(normorret rho e) : ((I rho e) = (I rho (N e))).

(normorret rho e') : ((I rho e') = (I rho (N e'))).

an only be �tted together using trans, when (N e) and (N e') are �Æ�-

onvertible. In that ase we �nd that (I rho (N e)) is �Æ�-onvertible with

(I rho (N e')) as well, so if we all that g by de�ning:

g := (I rho (N e))

then we �nd that:

(normorret rho e) : (f = g).

(normorret rho e') : (f' = g).

So using this, we an onstrut a proof term

(trans f g f' (normorret rho e) (sym f' g (normorret rho e')))

: f = f'.

The important points to note here are

(1) This proof term of an equality has a relatively small size, ompared to a

proof term that is spelled out ompletely in terms of ongruene (of =

F

w.r.t. �)

and reexivity, symmetry and transitivity (of =

F

). The terms refl, sym, trans,

and normorr are just de�ned onstants. The terms rho, e and e' are generated

by the tati; rho being of size linear in f and f' with a rather small onstant.

A proof term that is ompletely spelled out has a polynomial size in f and f'.

If we unfold the de�nitions, we observe that the bulk of the proof term is in

normorr. This will be rather large but it only has to be extended with a part



of { roughly { the size of the input elements themselves. So, then the proof term

is still linear in the size of the input terms.

(2) Cheking this proof term (i.e. verifying whether it has the type f = f')

an in general take rather long. This is beause type heking now involves

serious omputation, as we use the language of the theorem prover as a small

programming language. The bulk of the work for the type heker is in verifying

whether (N e) and (N e') are �Æ�-onvertible.

We ompare this to the approah of using a tati that is written ompletely

in the meta laguage. This tati will do roughly the same thing as our reetion

method: redue expressions to normal form and generate step by step a proof

term that veri�es that this redution is orret. Cheking suh a proof term will

take about the same time. Some inrease in speed may only be gained if we hek

a user generated proof term, beause this will (in general) avoid reduing to full

normal form (assuming the user sees the possible `shortuts').

(3) Generating the proof term is very easy, both for the reetion method

as for the tati written in the meta language. The tatis generate the full

proof term without further interation. Note that a ompletely user generated

proof term of an equality (whih may be fastest to type hek, see above), is not

realisti.

Here we also see why the reetion approah is partiularly appealing for

theorem provers based on type theory: one has to onstrut a proof term, whih

remains relatively small using reetion. Moreover, these theorem provers pro-

vide the required programming language to enode the normalization and inter-

pretation funtions in.

Looking bak at the example from the beginning, enoded in Coq, we have

as goal

Goal

((fmult (fmult a ) (fmult fone (fmult a b)))

= (fmult (fmult a a) (fmult b ))).

Now the tati generates

(emult (emult (evar 0) (evar 2))

(emult eone (emult (evar 0) (evar 1)))).

(* the e : E * )

(emult (emult (evar 0) (evar 0)) (emult (evar 1) (evar 2))).

(* the e' : E * )

and a funtion rho : V -> F whih is de�ned in suh a way that

(rho (evar 0)) = a

(rho (evar 1)) = b

(rho (evar 2)) = 

Then it onstruts a term as above,

(trans f g f' (normorret rho e) (sym f' g (normorret rho e')))



where g is (I rho (N e)). Note that (I rho (N e)) =

�Æ�

(I rho (N e'))

=

�Æ�

(I rho (emult (evar 0) (emult (evar 0)

(emult (evar 1) (emult (evar 2) eone)))))

=

�Æ�

(fmult a (fmult a (fmult b (fmult  fone)))). This term is given to

the type heker. If it type heks with as type the goal, the tati sueeds (and

it has onstruted a proof term proving the goal); if the type hek fails, the

tati fails.

3 Reetion With Partial Operations

We explain partial reetion by adapting the example to inlude division. We

view division as a ternary operation:

a� b == p with p a proof of b 6=

F

0:

This is very muh a type theoreti view. One may alternatively write

a� b for b 2 fz j z 6=

F

0g;

but note that this also requires a proof of b 6=

F

0, before � an be applied to it.

As a side remark, we note that we use the priniple of irrelevane of proofs

when extending the equality on F to expressions of the form a� b == p. That is,

if p and p

0

are both proofs of b 6=

F

0, then (a � b == p) =

F

(a � b == p

0

). In our

enoding in Coq, this is ahieved by representing fz j z 6=

F

0g by the type Pos

of pairs hb; pi with p : (b 6=

F

0) with the equality on Pos the one inherited from

F . Then we let � be a funtion from F � Pos to F .

If we extend our struture with a zero element and a division operator, like

in �elds, we enounter the problem of unde�ned elements. These ause trouble

in various plaes. First of all, there is the question of whih syntati expression

one allows: if 1=0 is aepted, whih interpretation does it have (one has to

hoose one). This is of ourse related to the question whether the theorem prover

allows to write down

a

0

(whatever its meaning may be). The seond problem is

that a naive normalization funtion might rewrite 0=(0=v) to v (just beause

x=(x=v) = x=x�v = 1�v = v). But then,

0

0

a

= a, whih is undesirable. Note that

the `division by 0' problem an our in a more disguised form, e.g. in

y

y

a

= a,

with y a variable, whih is orret under the side-ondition that y 6=

F

0. So,

it seems that, when normalizing an expression e, one would have to take the

interpretation [[e℄℄

�

into aount (and the interpretation of subexpressions of e)

to verify that the normalization steps are orret.

We have solved the problems just mentioned by

{ Allowing syntati expressions (like 1=0) that have no interpretation. So

[[�℄℄

�

is de�ned as a relation, for whih it has to be proved that it is a partial

funtion.

{ Writing the normalization funtion N in suh a way that, if expression e has

an interpretation, then expression N(e) has the same interpretation as e.



Syntati expressions We now de�ne the indutive type of syntati expressions,

E, by

E ::= V j C jE �E j E=E

where V is again the type of variables, for whih we take V ::= IN again. C is

the type of onstant expressions, now ontaining a zero, z, and a one expression,

u. In type theory (using Coq syntax):

Indutive E : Set :=

evar : V->E

| eone : E

| ezero : E

| emult : E->E->E

| ediv : E->E->E.

Note that E doesn't depend on F and �; we have `light' syntati expressions

(without any semanti information). This implies that 1=0 is allowed in E: it is

a well-formed expression.

Interpretation relation The semantis of an expression is now not given by a

funtion but an interpretation relation:

℄[

�

� E � F

Again, we need a valuation � : V ! F to assign a value to the variables. The

interpretation relation an then be de�ned indutively as follows.

v

n

℄[

�

f i� �(n) =

F

f;

u ℄[

�

f i� f =

F

1;

z ℄[

�

f i� f =

F

0;

(e

1

� e

2

) ℄[

�

f i� 9f

1

; f

2

2 F (e

1

℄[

�

f

1

) ^ (e

2

℄[

�

f

2

) ^ (f =

F

f

1

� f

2

);

(e

1

=e

2

) ℄[

�

f i� 9f

1

; f

2

2 F (e

1

℄[

�

f

1

) ^ (e

2

℄[

�

f

2

) ^ (f

2

6=

F

0) ^ (f =

F

f

1

� f

2

):

In Coq let there be given a struture <F, fmult, fdiv, fone, fzero>,

with

fdiv: (x,y:F)(~(y =_F fzero))->F

and the other operations and the equality as expeted. The indutive de�nition

of ℄[

�

is as follows.

Indutive I : E->F->Prop :=

ivar : (n:V)(f:F) ((rho n) = f) -> (I (evar n) f)

| ione : (f:F) (fone = f) -> (I eone f)

| izero : (f:F) (fzero = f) -> (I ezero f)

| imult : (e,e':E)(f,f',f'':F)

((fmult f f') = f'') -> (I e f) -> (I e' f')



-> (I (emult e e') f'')

| idiv : (e,e':E)(f,f',f'':F)(nz:~(f' = fzero))

((fdiv f f' nz) = f'') -> (I e f) -> (I e' f')

-> (I (ediv e e') f'').

Note that we do not just let ione : (I eone fone), but take fone modulo the

equality on F, and similarly for the onstant, the variables and the two operators.

This is beause I should be a partial funtion modulo the equality on F. In more

tehnial terms: orretness of normalization an only be proved with this version

of I.

Normalization and orretness The `normalization funtion':

N : E ! E

now brings the expressions that have an interpretation in one of the following

two normal forms

(v

1

� (v

2

� : : : (v

n

� u) : : :)) = (w

1

� (w

2

� : : : (w

m

� u) : : :));

z = u;

with v

1

; : : : ; v

n

; w

1

; : : : w

m

variables and the two lists v

1

; : : : ; v

n

and w

1

; : : : w

m

disjoint. So, N reates two mutually exlusive lists of sorted variables, one rep-

resenting the enumerator and one representing the denominator. The sorting of

these lists is the same as for multipliative expressions. In ase N enounters a z

in the enumerator, the whole expression is replaed by z=u (whih has interpre-

tation 0). For the expressions that do not have an interpretation (those e 2 E

for whih there are no � : V!F; f 2 F with e ℄[

�

f), the normalization funtion

an return anything.

We don't give the enoding N : E -> E in Coq, but restrit ourselves to

some examples.

N (v

0

=(v

1

=v

3

)) � v

1

=

�Æ�

(v

0

� (v

3

� u))=u;

N ((v

0

=(v

1

� v

2

))=(v

3

=v

2

)) =

�Æ�

(v

0

� u)=(v

1

� (v

3

� u)):

We an understand the way N atually works as follows.

1. From an expression e, two sequenes of variables and onstants are reated

s

1

and s

2

, the �rst representing the enumerator and the seond the denom-

inator. The intention is that, if e has an interpretation, then s

1

=s

2

has the

same interpretation.

2. These two sequenes are put in normal form, following the normalization

proedure for multipliative expressions.

3. Variables that our both in s

1

and s

2

are aneled, units are removed and

s

1

is replaed by z if it ontains a z.



Note that we taitly identify a sequene s

1

with the expression that arises from

onseutively applying � to all its omponents. This is also the way we have

implemented it in Coq: we do not use a separate list data struture, but enode

it via � and u. On these lists, we de�ne an `append' operation, whih we denote

by �. So, if s

1

and s

2

denote two expressions in multipliative normal form,

s

1

�s

2

is the multipliative normal form of s

1

�s

2

. As a matter of fat, N doesn't

do eah of these steps sequentially, but in a slightly smarter (and faster) way.

In proving the orretness of N , one has to preserve the property that all

denominators are 6=

F

0. In that, the �rst step is the ruial one. (The seond step

is only a reordering of variables; one has to prove that this reordering preserves

the 6=

F

0 property, whih is easy. In the third step one has to prove that 6=

F

0

is preserved under anellation, whih is the ase: if a � b 6=

F

0, then a 6=

F

0.)

The �rst step has a nie reursion: if N (e) = (s

1

; s

2

) and N(e

0

) = (s

0

1

; s

0

2

), then

N (e � e

0

) := (s

1

�s

0

1

; s

2

�s

0

2

);

N (e=e

0

) := (s

1

�s

0

2

; s

2

�s

0

1

):

Now, if e � e

0

has an interpretation, then (by indution) s

2

and s

0

2

have an

interpretation di�erent from 0 and hene the interpretation of s

2

�s

0

2

is di�erent

from 0. Similarly, if e=e

0

has an interpretation, then (by indution) s

2

, s

0

1

and s

0

2

have an interpretation di�erent from 0 and hene the interpretation of s

2

�s

0

1

is

di�erent from 0.

This is also how the orretness proof of N works: N itself doesn't have to

bother about the interpretation of the expressions it operates on, beause it is

written in suh a way that, the fat that e has an interpretation implies (in a

rather simple way, skethed above) that N (e) has an interpretation (whih is

the same as for e).

Again we note that N annot be found as a term rewriting system, for one

beause it orders variables, but more importantly beause it only works properly

for expressions that have an interpretation. We an use this information, beause

the expression we start from is derived from an existing f : F , whih is well-

de�ned (otherwise we ouldn't write it down in the theorem prover). So, we

already know that the �rst e has an interpretation (namely f) and by virtue of

the onstrution of N , this property is preserved.

We prove the following key lemmas.

normorret : e ℄[

�

f ) N (e) ℄[

�

f

extensionality : (e ℄[

�

f) ^ (e ℄[

�

f

0

)) f =

F

f

0

:

Extensionality states that ℄[

�

is really a partial funtion (w.r.t. the equality

=

F

).

Reetion The reetion method for solving f =

F

f

0

is now:

{ �nd (by tati) e; e

0

and � with

e ℄[

�

f and e

0

℄[

�

f

0



{ onstrut (see below) proof terms for these two statements

{ hek (by type heker) whether

N (e) =

�Æ�

N (e

0

)

(=

�Æ�

means �Æ�-onvertible)

The proof of f =

F

f

0

is then found by:

e ℄[

�

f ) N (e) ℄[

�

f

e

0

℄[

�

f

0

) N (e

0

) ℄[

�

f

0

9

=

;

) f = f

0

from normorret (applied to (e; f) and (e

0

; f

0

), respetively) and extensionality

(applied to (N (e); f; f

0

)).

Just as in the ase for reetion in Setion 2, a preise proof term an be

onstruted, whih type heks with type f =

F

f

0

if and only if these terms are

an be shown to be equal in the equational theory. In the next Setion we will

exhibit suh a proof term. The main work in type heking this proof term lies

in the exeution of the algorithm N (but this is done by the type heker).

One problem remains. As we now have an interpretation relation, there arise

some proof obligations: it is not just enough to �nd enodings e and e

0

of f and

f

0

; we have to prove that they are enodings indeed. That is, we have as new

goals

e ℄[

�

f and e

0

℄[

�

f

0

Of ourse, we don't want the user to have to take are of these goals; the tati

should solve them. This problem is dealt with in the next Setion.

4 Proof Loaded Syntati Objets

At the seond step of the partial reetion method, we need proofs of e ℄[

�

f .

One way is to let the tati onstrut these; so from f : F , the tati extrats

both e : E and � and a proof term p with p : e ℄[

�

f . This is possible, but it is

not what has been implemented. We have hosen to have one data type for both

expressions and proofs. The strategy for doing so (and whih �ts very well with

the type theoreti approah) is to reate syntati expressions with proof objets

inside

�

E

with a forgetful funtion j � j and an interpretation funtion [[�℄℄

�

,

j � j :

�

E ! E

[[�℄℄

�

:

�

E ! F

The key property to be proved is then

j�ej ℄[

�

[[�e℄℄

�



But note that

�

E depends on F and � (it should `know' about semantis), so

�

E is a type of `heavy' syntati expressions (inluding proof terms). This an

only work if we let

�

E be a dependent type over F :

�

E

f

whih in Coq terms is de�ned as:

Indutive xE : F -> Set :=

xevar : (i:V)(xE (rho i))

| xeone : (xE fone)

| xezero : (xE fzero)

| xemult : (f,f':F)(e:(xE f))(e':(xE f'))(xE (fmult f f'))

| xediv : (f,f':F)(e:(xE f))(e':(xE f'))(nz:~(f' = fzero))

(xE (fdiv f f' nz)).

The type

�

E

f

represents the type of `heavy' syntati expressions whose inter-

pretation is f . The interpretation funtion is now

[[�℄℄

�

:

�

E

f

! F

for whih it should hold that

[[�e℄℄

�

=

�Æ�

f

so [[�℄℄

�

is onstant on its domain. In Coq terms we de�ne:

xI := [f:F℄[e:(xE f)℄f : (f:F)(xE f) -> F.

Note that we do not de�ne the interpretation by indution on e : (xEf), but we

just return f (the intended interpretation). The obligation is now to prove that

the underlying `light' syntati expression has indeed f as interpretation. The

forgetful funtion, extrating the `light' syntati expression, now is

j � j :

�

E

f

! E

It maps the `heavy' syntati expressions to the `light' ones. In Coq terms:

Fixpoint xX [f:F; e:(xE f)℄ : E :=

Cases e of

(xevar i) => (evar i)

| xeone => eone

| xezero => ezero

| (xemult f' f'' e' e'') => (emult (xX f' e') (xX f'' e''))

| (xediv f' f'' e' e'' p) => (ediv (xX f' e') (xX f'' e''))

end.

whih is de�ned by indution over (xE f). The maps [[�℄℄

�

and j� j `extrat' the

two omponents (syntati expression and semanti element) from the `heavy'

enoding. The key result now is that the seond extration is an interpretation

of the �rst:

extratorret : 8x 2

�

E

f

(jxj ℄[

�

[[x℄℄

�

)

whih is just 8x 2

�

E

f

(jxj ℄[

�

f).

The tati now works as follows, given a problem f =

F

f

0

.



{ �nd (by tati) �e 2

�

E

f

, �e

0

2

�

E

f

0

and � with

j�ej ℄[

�

f and j�e

0

j ℄[

�

f

0

{ obtain (from extratorret) proof terms for these two statements

{ hek (by type heker) whether

N (j�ej) =

�Æ�

N (j�e

0

j)

So, the tati reates e; e

0

of type E indiretly by reating �e; �e

0

of types

�

E

f

;

�

E

f

0

. In a diagram the situation is now as follows.

�

E

f

j � j

-

E

N

-

E

�

N

E

�

j � j

�

E

f

0

�

�

�

[[�℄℄

�

�

�R

℄[

�

�

�

�

℄[

�

�

�

� �

�

�

℄[

�

�

�

�

℄[

�

	�

�

�

[[�℄℄

�

�

�

F

=

F

F

The outside triangles ommute due to extratorret; the large middle triangle

ommutes due to extensionality; the other two triangles ommute due to norm-

orret. If we make the proof term given by this method expliit, it is

(extensionality rho ne f f'

(normorret rho e f (extratorret rho f xe ))

(normorret rho e' f' (extratorret rho f' xe')))

: f = f'

where xe and xe' orrespond to �e and �e

0

, and where we have de�ned

e := (xX f xe).

e' := (xX f' xe').

ne := (N e).

This term is only well-typed when (N e) is �Æ�-onvertible with (N e').

Normalizing Proof Loaded Objets

In presene of the type

�

E

f

, we ould do without the type E all-together. Then

we would de�ne a normalization funtion

�

N to operate on the `heavy' syntati

expressions of type

�

E

f

. This is possible (and it yields a simpler diagram), but it

is not desirable, beause then the omputation (reduing

�

N (�e) to normal form)

beomes muh heavier. Moreover, it would be more diÆult to program

�

N (hav-

ing to take all the proof terms into aount) and the two levels in the reetion

approah would be less visible, therefore slightly blurring the exposition.



Nevertheless, for reasons of ompleteness we have also onstruted (see [4℄)

the funtion

�

N together with proofs that it is orret. Ideally, this would amount

to the following diagram

�

E

f

�

N

-
�

E

f

�

�

N

�

E

f

?

[[�℄℄

?

[[�℄℄

?

[[�℄℄

F F F

However,

�

N an not have the dependent type

�

E

f

!

�

E

f

(for f : F ), beause the

value (in F ) of the output of the normalization funtion is not literally the same

as its input value, but only provably equal to it. So, we an not onstrut

�

N as a

term xN : (z:F) (xE z) -> (xE z). Instead we onstrut xN : fE -> fE,

where fE is the type of pairs < f, e >, with f : F and e : (xE f). (In type

theoreti terms, this is the �-type of dependent pairs hf; ei with f : F and

e :

�

E

f

.) Then we have to prove that if

�

N (hf; ei) yields hf

0

; e

0

i, then f and f

0

are

(provably) equal in F.

If we ast this in purely mathematial terms, the situation is as follows. De�ne

�

E := �f :F:

�

E

f

and let wf be the prediate on syntati expressions stating that

it has an interpretation (it is well-formed). It is de�ned as follows (for e : E).

wf (e) := 9f :F (e ℄[

�

f):

Now there are maps lift : fe : E j wf (e)g !

�

E and j � j :

�

E ! fe : E j wf (e)g.

Furthermore, we an onstrut a proof-objet

normwf : 8e:E(wf (e)! wf (N (e)))g:

Then we an read o� the normalization funtion

�

N :

�

E !

�

E from the following

diagram.

�

E

�

N

- �

E

6 6

j � j

?

lift j � j

?

lift

fe : E jwf (e)g

N

-

fe : E j wf (e)g

The proof term normwf shows that N is indeed a funtion from the set of

well-formed expressions to itself. The orretness of

�

N is given by

normorret : 8�e:

�

E([[�e℄℄ =

F

[[

�

N (�e)℄℄):

Here [[�℄℄ :

�

E ! F is the interpretation funtion mapping (heavy) syntati

expressions to elements of F . (As a matter of fat, it is just the �rst projetion.)



5 Partial Reetion in Pratie

The approah of partial reetion is suessfully used in our urrent FTA projet

(Fundamental Theorem of Algebra). First of all, we have a tati alled Rational

for proving equalities. This tati is implemented as outlined above.

But often we do not just want to prove an equality, but rather to use an

equality to rewrite a goal in a di�erent form. In order to explain how we have

implemented rewrite tatis, we �rst say something about the equality in the

FTA projet. Our equality is just a ongruene relation, respeted by operations

(suh as + and *) and ertain prediates (suh as <). This means we annot just

replae equals by equals in any expression, but only those built-up from terms

respeting our equality. (This stands in ontrast to the standard Leibniz-equality

in Coq; Leibniz-equals may be replaed in any proposition.) For instane, we have

the following lemma:

less_wd_left : (a,b,:F)(a=b) -> (b<) -> (a<).

Hene, we have de�ned rewriting tatis for eah important prediate that

respets our equality. For instane, the tati Step_less_left t applies to a

goal p<q: it lets Rational solve the equation t=p and returns the new goal t<q.

It is de�ned for eah t as

(Apply less_wd_left with b:=t) ;

[ Rational | (* Use Rational tati to prove equality *)

Idta ℄ (* Do nothing with new inequality *)

The following example illustrates its use. (Note that 1/z//H2 denotes 1 di-

vided by z with as proof of the side ondition z#0 { z 6=

F

0 { the variable

H2.)

H1 : 0 < z

H2 : z # 0

H3 : x*z < y*z

==============

x < y

< Step_less_left x*z*(1/z//H2)

H1 : 0 < z

H2 : z # 0

H3 : x*z < y*z

==============

x*z*(1/z//H2) < y

6 Conlusion

We have extended the reetion method to inlude partial funtions. The power

of the method lies in the fat that no new proof obligations arise. So, if the user

wants to prove a simple equation involving partial funtions, the system does not



(have to) generate a new set of goals (in order to prove that all partiality side

onditions are ful�lled). That the neessary side onditions are ful�lled is already

proven by the orretness of the normalization funtion. Phrased di�erently:

normalization preserves well-de�nedness. The other ruial point is the fat that,

although some syntati expressions may be unde�ned, the ones that our tati

generates never are, for the simple reason that they are enodings of well-de�ned

semanti objets in the theorem prover. So, the normalization funtion starts o�

from a syntati expression that is well-de�ned (for the simple reason that the

semanti objet is its interpretation) and the well-de�nedness is preserved under

normalization.

As a side remark, we point out that the fat that the enoding always yields

a well-de�ned syntati expression is a statement on the meta-level. As the en-

oding funtion is a meta-funtion we an not expet to state this literally in the

theorem prover. We an state 8f : F9e : E9�(e ℄[

�

f), but this does not apture

what we want to say: it is trivially true, taking a variable v for e and �(v) = f ,

and it does not say anything about the enoding funtion.

The atual implementation of the method as a tati for solving equations

between �eld elements has shown that this is a very useful tehnique. We believe

it is very generally appliable in situations where partiality ours.

Aknowledgements We thank Henk Barendregt for the many useful disus-

sions on the subjet and the anonymous referees for their omments on the

paper.

Referenes

1. G. Barthe, M. Ruys and H. Barendregt (1996), A Two-Level Approah towards

lean Proof-Cheking.

2. S. Boutin, Using reetion to build eÆient and erti�ed deision proedures. In

Martin Abadi and Takahashi Ito, editors, TACS'97, volume 1281. LNCS, Springer-

Verlag, 1997.

3. G. Huet et al. (1997), The Coq Proof Assistant, Referene Manual, Version 6.1,

INRIA-Roquenourt | CNRS-ENS Lyon.

4. The "Fundamental Theorem of Algebra" Projet, Departmet of

Computer Siene, University of Nijmegen, the Netherlands. See

http://www.s.kun.nl/gi/projets/fta/

5. J. Harrison (1995), Meta theory and Reetion in Theorem Proving: a Survey

and Critique, Tehnial Report CRC-053, SRI International Cambridge Computer

Siene Researh Center.

6. D. Howe (1988) Computational Meta theory in Nuprl, The Proeedings of the

Ninth International Conferene of Automated Dedution, eds. E. Lusk and R.

Overbeek, LNCS 310, pp. 238{257.

7. M. Oostdijk and H. Geuvers (2000), Proof by Computation in Coq, to appear in

TCS.


