
The 2007 Federated Conference on

Rewriting, Deduction and Programming

Paris, France

June 25 – 29, 2007

PATE’07
International Workshop on Proof Assistants and Types in

Education

June 25th, 2007

Proceedings

Editors:
Herman Geuvers (Nijmegen, NL)

Pierre Courtieu (CNAM, Paris, France)
Program Committee:

Herman Geuvers (co-chair)
Pierre Courtieu (co-chair)

Hugo Herbelin (INRIA Paris, France)
Adam Naumowicz (Białystok, Poland)
Claudio Sacerdoti Coen (Bologna, Italy)
Pawel Urzyczyn (Warsaw, Poland)

Preface

We would like to thank the institutional sponsors of RDP’07 without whom
it would not have been possible to organize RDP’07: the Conservatoire des
Arts et Métiers (CNAM), the Centre National de la Recherche Scientifique
(CNRS), the École Nationale Supérieure d’Informatique pour l’Industrie et
l’Entreprise (ENSIEE), the GDR Informatique Mathématique, the Institut Na-
tional de Recherche en Informatique et Automatique (INRIA) unit Futurs, and
the Région Île de France.

Contents

William Farmer (Invited Speaker)
The Use of Formal Reasoning Technology in Mathematics Education:
Opportunities and Challenges . 1

Claudio Sacerdoti Cohen, Enrico Zoli
A Note on Formalising Undefined Terms in Real Analysis 3

Agnieszka Kozubek and Paweł Urzyczyn
In the search of a naive type theory . 17

Cezary Kaliszyk, Freek Wiedijk, Maxim Hendriks, Femke van
Raamsdonk
Teaching logic using a state-of-the-art proof assistant 33

Serge Autexier and Marc Wagner
Status Report on the Tight Integration of a Scientific Text-Editor and a
Proof Assistance System . 49

Adam Naumowicz
How to Teach to Write a Proof . 65

Jakub Sakowicz and Jacek Chrząszcz
Papuq: a Coq assistant . 75

Jérémy Blanc and J.P. Giacometti and André Hirschowitz and
Löıc Pottier
Proofs for freshmen with Coqweb . 93

René David and Christophe Raffalli
Some considerations about proof assistants for education 108

The Use of Formal Reasoning Technology in
Mathematics Education: Opportunities and

Challenges

William Farmer
McMaster University

Abstract

Abstract: Mathematics education is a very attractive market for applications of formal languages and
reasoning tools. The number of people who study mathematics in school and university is enormous,
and there is strong support for improving mathematics education with the aid of computer technology.
There are also excellent opportunities to use formal reasoning technology to enhance, if not transform, how
students learn mathematics. For example, proof assistants offer a way to reinvigorate the teaching of proof
and deductive reasoning in high school and university. Great as these opportunities may be, they are not
easy to pursue. Many challenges stand in their way. Not the least of which is the wide-spread scepticism
with which formal reasoning technology is regarded in the mathematics community. This talk will discuss
these opportunities and challenges and will argue that bold applications, like an interactive mathematics
laboratory based on formal reasoning technology, have the best chance of realizing the opportunities and
overcoming the challenges.

Invited Talk

Farmer

2

A Note on Formalising Undefined Terms in
Real Analysis

Claudio Sacerdoti Coen1,2 Enrico Zoli1,3

Department of Computer Science
University of Bologna

Bologna, Italy

Abstract

To adopt proof assistants based on logic of total functions in education, one major problem is that of
representing partial functions. In particular, one wishes to capture undefinedness in a rigorous way, while
staying as close as possible to traditional mathematical practice. In this paper, we propose to represent
potentially undefined terms with partial setoids on lifted terms, and to understand book equalities occurring
in equality chains as special directed relations that hold only under assumptions of definedness for some
terms. We also employ a suitable notion of strict morphism to fully automate propagation of these directed
relations in strict contexts.

Keywords: undefinedness, strictness, proof assistant, Real Analysis, education, Matita

1 Introduction

DAMA (Dimostrazione Assistita per la Matematica e l’Apprendimento) is a recently
started locally funded project of the University of Bologna aimed at the develop-
ment of a self-assessment tool for students of a first Real Analysis course. The tool
will be able to check the correctness of proofs and provide hints or counterexam-
ples. It should also force the student to prove every necessary side condition in
computational exercises.

The tool, still under development, will be based on the core of the Matita inter-
active theorem prover [1], also under development by the research group of Prof. As-
perti at the University of Bologna. Matita is based on the Calculus of (Co)Induction
Constructions, a logic of total functions. Since partial functions play a major role
in Real Analysis, the first problem we have to address is that of the representation
of partial functions.

1 Partially supported by the strategic project DAMA (Dimostrazione Assistita per la Matematica e
l’Apprendimento) of the University of Bologna.
2 sacerdot@cs.unibo.it
3 zoli@math.unifi.it

Sacerdoti Coen, and Zoli

Several papers have already been devoted to the subject. Müller and Slind
in [6] provide a good comparison of the techniques proposed and give many useful
references. However, in didactics we cannot adopt those solutions that are far from
the usual mathematical practice. The latter, called in [4] the traditional approach
to undefinedness, can be summarized as: 1) atomic terms (variables and constants)
are always defined; 2) a function application is undefined either when the argument
or the function is undefined or when the function is undefined on the argument; 3)
formulas are always defined, and are false when undefined terms occur within them.

Among the proposals close to the usual mathematical practice, Farmer’s [4] is
certainly very interesting, but it requires an ad-hoc logic with undefinedness. A
similar remark applies to other proposals requiring ad-hoc logics, e.g. [7]. Since
we do not plan to change the logic of Matita, we cannot adopt these solutions.
In this paper, we therefore encode partial functions as total functions on lifted
terms. To hide the details of this formalisation from the student, we exploit an
automation tactic that deal with partial setoids [8]. Indeed, lifted terms naturally
form a partial setoid, when equipped with the partial equivalence relation that
coincides with equality on defined terms, and is false otherwise.

The main contribution of the paper is the observation that there is more than
reasoning on partial setoids in the traditional handling of equality chains over po-
tentially undefined terms. Indeed, in equality chains some steps also reduce the
proof of definedness of one side to that of the other. Hence we need to extend
automation to fully capture this form of reasoning.

We claim that in practice our approach is suitable for didactics. However, it is
still to be completely automated and tested extensively on students.

To be more concrete, consider the following running example as it usually ap-
pears in textbooks.

Theorem 1.1 Suppose that x is a real number with |x| < 1. Then
∑∞

n=0 x
n = 1

1−x .

Proof.
∑n

i=0 x
i = 1−xn+1

1−x by an easy induction over n. Thus

∞∑
n=0

xn = lim
n→∞

n∑
i=0

xi

= lim
n→∞

1− xn+1

1− x
=

limn→∞(1− xn+1)
1− x

=
1− limn→∞ xn+1

1− x
=

1
1− x.

2

In our opinion, this exercise is interesting for it consists in two distinct parts:
the first is a simple proof by induction that exercises proving skills; the second part
is an easy computational proof where the main difficulty (completely hidden in the
text) is to check that every expression is well-defined. Note that in the given proof

4

Sacerdoti Coen, and Zoli

no rewriting step is explicitly justified at all. Therefore, in our judgement, it is too
lax for an exercise solution, since we expect students to show at least where the
hypotheses are employed.

The first question about this exercise we should pose ourselves concerns our
teaching goals when proposing it to the student. We identify some alternatives in
Sect. 2, and give a rigorous account of the justification of each proof step. Formal-
isation in a logic of total functions is discussed in Sect. 3. In the same section we
also discuss how to provide automation to hide the intricacies of the formalization,
allowing natural manipulation of formulas. Automation is achieved by coupling
the ideas in [8] with the notion of strict morphism, i.e., a function that preserves
equalities and undefinedness. Conclusions follow in Sect. 4.

2 Teaching goals

In principle, proof assistants can become a useful aid for self-assessment of prov-
ing skills. However, the gap between the usual pen&paper mathematical practice
and the formalised mathematics these systems understand is significant and diffi-
cult to fill. Two phenomena yield this gap: the lack of absolute rigour in the usual
manipulation of formulas; the limitations of formal systems, which render formalisa-
tion difficult and formalised proofs obscure. We postpone discussion on the second
phenomenon to Sect. 3.

The first phenomenon is already evident in our running example where we ma-
nipulate limits of sequences before proving convergence of the sequences. Similarly,
it often happens to compute derivatives of functions before proving their differentia-
bility. Admittedly, an excess of rigour may lead to drown the essence of a proof in
pedantic details. However, we argue that a first Real Analysis course for students in
Mathematics or Computer Science should both frame rigorously their minds — our
first teaching goal — and teach effective high-level formulas manipulation — our
second teaching goal. The two teaching goals may require different sets of exercises
(or different approaches to them).

For instance, our running example could be proposed as an exercise twice. The
first time, just after the introduction of the “tends to” relation, where no partial
operator is employed and each limit must explicitly be shown (or assumed) to exist.
The expected solution to the exercise would be the following:

Theorem 2.1
Suppose that x is a real number with |x| < 1. Then

∑n
i=0 x

i −−−→
n→∞

1
1−x .

Proof.
We prove

∑n
i=0 x

i = 1−xn+1

1−x by induction over n.
. . .
Moreover xn+1 −−−→

n→∞ 0 since |x| < 1.

Hence 1− xn+1 −−−→
n→∞ 1.

Hence 1−xn+1

1−x −−−→
n→∞

1
1−x as 1− x 6= 0.

Hence the thesis. 2

Note that, with respect to Theorem 1.1, the equality chain has been replaced

5

Sacerdoti Coen, and Zoli

with a chain of implications. Moreover, the two chains proceed in opposite order.
The chosen order appears more natural in this context, because we need to rigorously
prove the existence of limits before computing with them. The two proofs are
different in an even more radical sense: in the original proof we can see formulas,
such as 1−limn→∞ xn+1

1−x , that have no exact counterpart in the new proof. Note also
the need to explicitly prove denominators to be different from 0, because of the lack
of undefined terms (which is consistent with the choice of avoiding the partial limit
operator).

It is possible to follow the original proof a little more closely by adopting the
original order of the chain. However, the solution looks rather artificial:

Proof.
. . .
We have 1− x 6= 0 since |x| < 1.
We need to prove 1−xn+1

1−x −−−→
n→∞

1
1−x .

It is sufficient to prove 1− xn+1 −−−→
n→∞ 1.

It is sufficient to prove xn+1 −−−→
n→∞ 0.

The thesis follows from |x| < 1. 2

To reach our second teaching goal, we could propose the same exercise a second
time just after the introduction of the limit operator. This time the emphasis is
on exercising the students on effective limit computation, where (usually) as many
side conditions as possible are avoided. Thus, we look for a solution quite adherent
to that of Theorem 1.1. In particular, we admit the existence of undefined terms to
be handled according to the traditional approach discussed in the introduction.

In Theorem 1.1, the definedness of each expression containing a partial operator
(a limit or a division) is not justified. Consistently with our first teaching goal, we
would like to avoid such a lax approach, but we look for lightweight justifications.
We propose to make sense of the proof by assuming that, at each step in the equation
chain, ground for the definedness of the left hand side is derived by the assumption
that the right hand side will be proved to be defined later on. This property does
not always hold in general, unless side conditions are required. E.g., if axa is defined,
then so is x and x = ax

a ; but the definedness of x yields neither that of ax
a nor

the equality x = ax
a . The latter property holds when the additional hypothesis

a 6= 0 is assumed. Thus, replacing ax
x with x in an equality chain or the other

way around yields different side conditions; this suggests that, when terms can
possibly be undefined, rewriting chains are not symmetric. As far as we know,
this phenomenon has not extensively been studied in the literature. We propose to
understand it rigorously by introducing two oriented relations: �= and its dual �=.

Definition 2.2
x

�= y when x is defined if y is, and in this case they are equal.
x

�= y when y �= x or equivalently when y is defined if x is, and in this case they are
equal.

These relations are oriented variants of Farmer’s quasi equality relation: x is
quasi equal to y when x and y are either both undefined or equal. Quasi equality

6

Sacerdoti Coen, and Zoli

can be reduced to our definitions: x is quasi equal to y if x �= y and x �= y. Therefore
we call our relations directed quasi equalities.

Our running example can now be rigorously justified using �=:

Proof.
. . .

∞∑
n=0

xn
def= lim

n→∞

n∑
i=0

xi

�= lim
n→∞

1− xn+1

1− x
�=

limn→∞(1− xn+1)
1− x (1)

�=
1− limn→∞ xn+1

1− x (2)

�=
1

1− x since |x| < 1 (3)

which is defined since |x| < 1.

2

It is to be noted that, since the existence of each expression is reduced by �= to
the definedness of 1

1−x , in the final step we have to show this term to be defined in
order to conclude

∑∞
n=0 x

n = 1
1−x . Without this justification, the final conclusion

of the equality chain would become (the weaker)
∑∞

n=0 x
n �= 1

1−x .
In general, given an equality chain

. . .
�= M1

�= E1
�= . . .

�= En
�= T1

�= En+1
�= . . .

�= Em
�= M2

�= Em+1
�= . . . ,

to conclude that all terms in the chain are equal (and thus defined), we have to
prove that every term Mi is defined. This done, we recursively obtain that any
other term in the equality chain is defined and, ultimately, that all terms are equal.

More formally, an equality chain fragment E1 R E2 R′ E3 must be al-
ways understood as an application of an ad-hoc generalized transitivity principle
∀x, y, z.x R y ∧ y R′ z ⇒ x S z, where the relation S depends on R and R′ and is
usually the strongest of them. The following generalized transitivity principles hold
for our directed quasi equalities:

7

Sacerdoti Coen, and Zoli

Lemma 2.3 For x, y, z potentially undefined terms

x
�= y ∧ y �= z ⇒ x

�= z

x
�= y ∧ y �= z ⇒ x

�= z

x = y ∧ y �= z ⇒ x = z

x
�= y ∧ y = z ⇒ x = z

x
�= y ∧ y �= z ⇒ x = z when y is defined

x
�= y ∧ y �= z ⇒ x = z when x and z are defined

The proof of this lemma is trivial (just recall that in the traditional approach
two terms are equal only when they are both defined and have the same value).

As another example that employs an equality chain, let us look at the corre-
sponding proof obtained by reversing the direction of the chain:

Proof.
. . .
Since |x| < 1 the expression 1

1−x is defined. Hence

1
1− x

�=
1− limn→∞ xn+1

1− x since |x| < 1

�=
limn→∞(1− xn+1)

1− x
�= lim

n→∞
1− xn+1

1− x
�= lim

n→∞

n∑
i=0

xi

def=
∞∑
n=0

xn

2

This time, the expression that is directly shown to be defined is the leftmost end of
the chain.

Observe that the corresponding rewriting steps in the direct and backward proof
are justified by exactly the same lemma, since x �= y is equivalent to y �= x (because
of the symmetry of the equality). For instance, both (1) �=(2) and (2) �=(1) are
justified by

Lemma 2.4 For all c and all real sequences f(n),

lim
n→∞(c− f(n)) �= c− lim

n→∞ f(n)

The lemma used to justify (2) �=(3) as well as (3) �=(2) is

Lemma 2.5 If |x| < 1, then limn→∞ xn
�= 0.

8

Sacerdoti Coen, and Zoli

Note that the hypothesis |x| < 1 is to be explicitly justified in the equality
chain by a side proof. Incidentally, the following corresponding “dual” lemma (that
could justify (2) �=(3) or (3) �=(2)) has no extra hypotheses, as the definedness of
limn→∞ xn already gives |x| < 1.

Lemma 2.6 0 �= limn→∞ xn.

Finally, we would like to spend a few additional words on teaching goals. So
far, we have recognized two teaching goals in adopting proof assistants and types in
mathematical education. The first one is the emphasis on mathematical rigour, so
as to augment both the comprehension of the role played by axioms and hypotheses
in inferences and the awareness of common pitfalls in mathematical reasoning. The
second one is the enhancement of skills in mathematical practice, where rigour
is not forced. In both cases it is important for a didactic tool to hide all the
difficulties arising from the formalisation process. In particular, we expect the
system to provide enough automation to completely hide from the student the side
proofs arising from technical side conditions. These are justifications we do not
expect to see on paper, independently from the teaching goal.

We can also identify a third alternative goal, i.e., teaching (mathematical) for-
malisation techniques, which are largely independent from the mathematical sub-
ject being formalized, and definitely outside standard curricula in Mathematics and
Computer Science. For this reason we will not address this subject any longer.

The exercise dealing with the “tends to” relation can be straightforwardly for-
malised in a logic of total functions, provided that division requires either a proof
that the quotient is not 0 or a formalisation via alternative techniques such as, e.g.,
Σ-types. The one that deals with the limit operator requires a preliminary encoding
of undefined terms and operators, and a substantial amount of automation to hide
the intricacies of this encoding. This is the subject of the next section.

3 Formalisation

Plenty of functions and operators in elementary calculus are partial. The following
are examples of undefined expressions: division by zero; supremum of an unbounded
set; limit of an oscillating sequence; value of a non-converging series; derivative of
a discontinuous function; definite integral of a non-integrable function.

The usual “lax” mathematical practice manipulates partial expressions in a way
that is often difficult to understand rigorously. In Sect. 1 we have partially discussed
the issue by sticking to what Farmer calls “the traditional approach to undefined-
ness”, enriched by two new directed quasi equality relations �= and �= that replace
book equality in chains of equations. However, we have kept the description at an
informal level. We now address the problem of capturing these ideas in a formal
system.

In the unlikely case that our system is based on a logic with undefinedness [4]
or a three value logic [7], the formalisation proceeds very smoothly: the logic is
already aware of undefined terms, equality is already the proposed relation, �= and
�= can be directly defined and appropriate replacement principles are likely to be

9

Sacerdoti Coen, and Zoli

derivable.
When the logic is a logic of totally defined terms, we need a way to represent

undefinedness and we need to change the equality (and every other predicate) to
behave correctly over undefined terms. Since equality is replaced by a coarser rela-
tion, it is no longer true that x = y ⇒ C[x] ⇐⇒ C[y] for each context C. In order
to keep term manipulation simple, the system is now in charge of automatically
proving the side conditions that make the previous implication true for a particular
C. In [8], the first author has given the Coq proof assistant this explicit support in
the case of generalized setoids, including partial setoids. Partial setoids can be ex-
ploited in our context, since the well-known representation of potentially undefined
terms of type T as elements of the lifted type T⊥

def= T ⊕{⊥} gives rise to a partial
setoid.

Even when partial setoids automation is exploited, the user is still requested
to prove many side conditions that are implicitly discharged in the mathematical
practice, and that we plan to avoid basing our equality chains on �= and �=. Hence,
we now provide automation for �= and �=. Let us recall the notion of partial setoid
and the associated morphisms.

A partial setoid is a couple (T,'T), where T is a type and 'T is a symmetric
and transitive relation over T . An element x of T is said to be proper when x 'T x.
We will also write x ↓T for x 'T x. We drop the subscript/superscript T when the
partial equality relation is clear from the context.

A morphism of partial setoids (S,'S), (T,'T) is a function f : S → T such that
f(x) 'T f(y) whenever x 'S y. We will write f : (S,'S) ⇒ (T,'T) for f being a
morphism between (S,'S) and (T,'T). With a little notational abuse, we will say
that f has type (S,'S)⇒ (T,'T).

If (S,'S) and (T,'T) are partial setoids, so is (S,'S)× (T,'T) def= (S×T,'S
× 'T) (the cartesian product equipped with the partial equivalence relation induced
by 'S and 'T acting componentwise). The type Prop of propositions together with
coimplication forms the (total) setoid (Prop, ⇐⇒).

Alternative formulations of the notion of partial setoids are explored in [3]. The
one we adopt is that of Bailey [2].

For each type T , we represent potentially undefined terms of T with elements
of the lifted type T⊥. We equip T⊥ with a partial setoid structure by defining the
partial equivalence relation ' as x ' y iff x, y 6= ⊥ and x = y as elements of T .
According to this definition, proper elements are defined elements and we can read
x ↓ as “x is defined”. Moreover, from x ' y we immediately know x ↓ and y ↓ since
for no x, not even ⊥, we have ⊥ ' x.

The reader acquainted with the work of Farmer should note that our notation
is not consistent with [4]: he denotes our relation ' with =, whereas we reserve
the symbol = for either Leibniz’s or book equality; moreover, he uses ' for quasi
equality, whereas we only have special symbols for directed quasi equalities. Fi-
nally, in Farmer’s logic with undefinedness all atoms are implicitly defined, while
our variables are always quantified over T⊥ for some T . Thus, according to the
terminology used by Feferman in [5], Farmer’s logic is a logic of definedness, while
we are encoding a logic of existence.

10

Sacerdoti Coen, and Zoli

The following facts over morphisms are exploited in manual and automatic proofs
over setoids. The identity function over S is always a morphism of type (S,') ⇒
(S,'′) whenever ' and '′ are partial equivalence relations over S such that the
graph of ' is included in the graph of '′ (i.e. x ' x′ implies x '′ x′ for each
x, x′). The constant function f(x) def= c of type S → T is a morphism of type
(S,'S) ⇒ (T,'T) iff c ↓T . The function Cf (x) def= f(x, x) is a morphism of type
(S,'S)⇒ (T,'T) whenever f is a morphism of type (S,'S)× (S,'S)⇒ (T,'T).
Composition of morphisms is a morphism. Finally, any partial equivalence relation
' over S is a morphism of type (S,')×(S,')⇒ (Prop, ⇐⇒), since it is symmetric
and transitive (proof given in [8]).

Let us now consider how to formalise our running example in this setting. Sub-
traction between real numbers is represented as a morphism of type (R⊥,') ⇒
(R⊥,'); exponentiation as a morphism of type (R⊥,') ⇒ (N,=) ⇒ (R⊥,');
the limit operator as a morphism of type (N → R⊥,'→), where f '→ g when
f(n) ' g(n) for each n; finally, division is represented as a morphism of type
(R⊥,') × (R⊥,'0) ⇒ (R⊥,') where x '0 y iff x ' y and x 6= 0. Note that the
identity function over real numbers is a morphism from (R,'0) to (R,'); hence,
we can compose a morphism of type (R,') ⇒ (S,'S) with a morphism of type
(T,'T) ⇒ (R,'0). Note also that it is impossible to prove division to be a mor-
phism of type (R⊥,') × (R⊥,') ⇒ (R⊥,'), as 1 ' 1 and 0 ' 0 but 1/0 is ⊥ and
it is not true 4 that ⊥ ' ⊥.

Consider the third equality in our running example:

limn→∞(1− xn+1)
1− x

�=
1− limn→∞ xn+1

1− x

and suppose that Lemma 2.4 has already been proved. To justify the equality we
need to contextualise (an instance of) the lemma to the context C(w) def= w

1−x . In
other words, we need to prove

lim
n→∞(1− xn+1) �= 1− lim

n→∞x
n+1 ⇒ limn→∞(1− xn+1)

1− x
�=

1− limn→∞ xn+1

1− x

or, more generally, that x �= y ⇒ (C(x) ⇒ C(y)). Adopting the terminology of
[8], we need to prove that C(·) is a covariant morphism from the partial and asym-
metric setoid (R, �=) to the asymmetric setoid (Prop,⇒). This can be done, even
automatically, exploiting all the lemmas in [8]. However, to our knowledge Coq is
the only system that implements automation over “generalised” setoids (i.e., setoids
whose relation is not required to be reflexive, symmetrical or transitive). Moreover,
when asymmetric setoids are employed, user-provided proofs that basic morphisms
are indeed morphisms become more involved. Therefore, we now propose a simpler
alternative automation technique that does not require asymmetric setoids.

To avoid the latter, we can expand the definition of �= both in the lemma and

4 We do not write ⊥ 6' ⊥ since that latter symbol is better understood as book diversity, i.e., x 6' y iff x
and y are both defined and different. Thus, it is not true that ⊥ 6' ⊥.

11

Sacerdoti Coen, and Zoli

in the equality to be justified; they become, respectively,

∀c, f.(c− lim
n→∞) ↓⇒ lim

n→∞(c− f(n)) ' c− lim
n→∞ f(n)

1− limn→∞ xn+1

1− x ↓⇒ limn→∞(1− xn+1)
1− x ' 1− limn→∞ xn+1

1− x
The equality can now be justified, thanks to the lemma and the definition of a

morphism, by assuming (H) 1−limn→∞ xn+1

1−x ↓ and showing:

(i) (1 − x) ↓ and (1 − limn→∞ xn+1) ↓. Both are consequences of the assump-
tion (H). The second proof is used to discharge the hypothesis of the lemma.

(ii) C(w) def= w
1−x is a morphism of type (R⊥,')⇒ (R⊥,').

This is of course the case, for id(w) def= w is an identity morphism, c(w) def= 1−
x is a constant morphism returning the element 1−x (which is defined because
of (i)), division is a morphism, and C(w) is a composition of division, c(·) and
the identity morphism.

When implementing automation over partial setoids as explained in [8], (ii) is
proved automatically by the system. Hence we only need to provide automation
for (i). Now, (i) holds since we can prove that ∀n, d.nd ↓⇒ n ↓ ∧d ↓. In other
words, if the application of division to some arguments yields a defined term, then
the arguments are defined as well. This is a general property of morphisms and
predicates in the traditional approach to undefinedness, and it can be recognized to
be just strictness (see, for instance, [5]):

Definition 3.1
A morphism f : (S⊥,'S)⇒ (T⊥,'T) is strict if f(x) ↓T implies x ↓S .
A morphism P : (S⊥,')⇒ (Prop, ⇐⇒) is strict if P (x) implies x ↓.

The partial equivalence relation 'S over S⊥ is strict for each type S. Moreover,
all morphisms in our running example are strict. For instance, if x − y is defined
then both x and y are.

The following facts help showing that a predicate is strict and can be easily
exploited in a tactic that proves syntactic composition of morphisms to be strict.
The identity morphism is strict, whereas constant morphisms are not. Composition
of strict morphisms yields a strict morphism. The morphism f(x) def= (g(x), h(x))
is strict on x if (at least) one of g(x) and h(x) is. The morphism P (x) ∨Q(x) on x
is strict if P (x) and Q(x) are; P (x) ∧Q(x) is strict on x if P (x) is strict or if Q(x)
is; ∃y.P (x, y) is strict on x whenever P (x, y) is strict on x for each y; moreover,
∀y.P (x, y) is strict on x if there exists a y such that P (x, y) is strict on x. There
is no relation between the strictness of P (x) and that of ¬P (x). In particular, in
the traditional approach to undefinedness all predicates over undefined terms are
false, so that the negative form of a predicate P (x) is not the logical negation of P ,
but the predicate “x ↓ ∧¬P (x)”. In turn, we obtain the following restriction over
implication: the predicate P (x) ⇒ Q(x) is strict on x if Q(x) is strict on x and P

is constant over x. The latter check is necessary, as the following counterexample
shows: x ' x⇒ x ' x always holds, but it does not imply x ↓.

12

Sacerdoti Coen, and Zoli

Similarly to what the first author did in [8], we can easily implement a semi-
reflexive tactic to prove automatically when a morphism P : (S,')⇒ (Prop, ⇐⇒
), that is a syntactic composition of strict and non-strict morphisms, is strict in one
argument. The tactic is based on the lemmas above.

Exploiting such a tactic, we can specialise [8] (or its restriction to symmetric
and transitive setoids) to automatically prove, for a context P that is a suitable
syntactic composition of strict and non strict morphisms,

P (x)⇒ (y �= x)⇒ P (y)

Coming back to our running example, we can now use automation to reduce,
for instance, a proof of limn→∞(1−xn+1)

1−x ' 1
1−x to a proof of 1−limn→∞ xn+1

1−x ' 1
1−x

by means of a proof of limn→∞(1 − xn+1) �= 1 − limn→∞ xn+1 and no other side
condition.

For the sake of generality, we remark that strict morphisms are a special case of
co-guarded morphisms.

Definition 3.2
A morphism f : (S⊥,'S)⇒ (T⊥,'T) is Q-co-guarded if f(x) ↓T⇒ Q(x).

Strict morphisms are ↓-co-guarded morphisms. Note that for a strict morphism
P : (S,')⇒ (Prop, ⇐⇒) the condition P (x) ↓⇐⇒ can be omitted since it is not
informative.

For a Q-co-guarded strict morphism P over Prop, we can specialise [8] to au-
tomate proofs of

P (x)⇒ (Q(x)⇒ y ' x)⇒ P (y)

So far, the only interesting class of co-guarded morphisms we currently know is
that of strict morphisms.

To summarise, we suggest how to formalise chains of directed quasi equalities
by automating “directed rewritings” justified by lemmas of the form ∀x̄, P (x̄) ⇒
F (x̄) �= F ′(x̄), being x̄ a vector of variables and the extra hypotheses P (·) justified
as side conditions in the chain. Since F (x̄) �= F ′(x̄) is equivalent to F ′(x̄) ↓⇒
F (x̄) ' F ′(x̄), a number of lemmas can exploit the hypothesis F ′(x̄) ↓ to drop
many extra conditions such as the definedness of quantified variables occurring in
F ′(x̄).

For instance, in our running examples all lemmas can be given in this form
and only Lemma 2.5 requires an extra hypothesis. As a comparison, corresponding
lemmas in Farmer’s approach [4] would also miss the additional hypotheses, but for
a different reason: since his logic is a logic of definedness, all quantified variables
are implicitly assumed to be defined.

We finally add that we have not discussed two other simple and well-known
approaches to undefined terms (not far away from the usual mathematical prac-
tice, but too lax according to our first teaching goal). Contrary to the traditional
approach to undefinedness, in both approaches some dubious properties can hold
even for undefined terms. The first approach extends every partial function and
operation to the whole domain by assigning an arbitrary value outside the original

13

Sacerdoti Coen, and Zoli

domain. For instance, 1/0 becomes a perfectly valid real number, say 17, that en-
joys the property (1/0)/17 = 1. The approach is often used in HOL, Isabelle and
Mizar, and always in ACL2. The second approach extends axiomatically every par-
tial function and operation to the whole domain, but this value remains unknown
by prefixing each axiom of the theory with hypotheses that avoid characterising
the partial functions outside their domain of definitions. For instance, it is true
that 1/0 is a perfectly valid number, but we can never get rid of the division since
(a/b) ∗ b = a iff b 6= 0. However, all universal properties are enjoyed also by “un-
defined” terms: 0 ∗ (1/0) = 0 since ∀x, 0 ∗ x = 0, (1/0) = (1/0) as ∀x, x = x, etc.
Even if these properties are unlikely to be noticed by the student, it may happen
to unconsciously employ them, for instance omitting side conditions that are made
unnecessary by the additional properties. Users of HOL, Isabelle and Mizar often
mix the two approaches.

Coq, NuPRL and PVS, being based on dependent types, can use yet another
approach: they can encode the domain of a partial function in its type, so that
application to arguments outside the domain is not allowed by the type system.
We have not considered this approach in the paper since it is not well suited for
students for several reasons. For instance, applications of partial functions require
a new argument that is the proof that the argument belongs to the domain of the
function. First year students do not understand that derivations can be represented
syntactically and used as arguments to functions; moreover, when a mathematical
operator has a standard notation, there is no natural place where the new argument
can be put. PVS avoids this problem by removing the extra arguments and replacing
them with side proofs for domain conditions. Wiedijk and Zwanenburg in [9] apply
the approach of PVS to obtain a first order logic with domain conditions, without
dependent types. Looking at the examples in the paper it is pretty obvious that
the user is faced with too many side conditions. We believe that their number can
be highly reduced in equality chains exploiting directed quasi equalities.

4 Conclusions

The most important problem to be faced when adopting proof assistants and types
in education is probably that of representating and manipulating undefined expres-
sions. In the case that adopting a logic with undefinedness is not an option, we are
led to represent partial functions and operators in logics of total functions. Many
formalisations have been proposed in the literature, but most of them are of limited
use in education. We suggest that types of potentially undefined terms can be suit-
ably represented with partial setoids and that partial functions can be represented
as morphisms over partial setoids. This suggestion is not new: support for term
manipulation in the partial setoids setting has already been implemented for Coq
in [8]. However, in this setting equality chains require too many side conditions to
be proved.

While analysing an informal equality chain that deals with potentially unde-
fined terms we have noticed that a number of side conditions can be dropped by
reducing definedness of both equality arguments to that of just one of them (to be
proved later on). We have captured this behavior by introducing two oriented quasi

14

Sacerdoti Coen, and Zoli

equalities �= and �= that can be exploited in equality chains. We have also proposed
the automation of the propagation of these equalities by combining automation for
partial setoids with the notion of a strict morphism. A strict morphism is a mor-
phism P such that P (x) implies x defined. Hence, for a given strict morphism P ,
the system can automatically prove P (x) ⇒ (y �= x) ⇒ P (y), which means that
P is a contra-variant morphism over the partial asymmetric relation �= (compare
with [8]).

Thanks to automation, we have shown how an informal proof that computes
the limit of a convergent series could be formalised in a proof assistant like Matita,
providing only the minimal amount of rigorous justifications we expect from clever
students even in a pen&paper proof.

As a future work, we plan to complete the implementation in Matita of the
proposed automation and to test the proposed approach on a significant set of
exercises to be submitted to a good number of students. We also plan a deeper
comparison with alternative approaches. In particular, directed quasi equalities and
their combinations with strict morphisms are likely to be exploitable with similar
benefits in other contexts.

References

[1] A. Asperti, C. Sacerdoti Coen, E. Tassi, S. Zacchiroli. “User Interaction with the Matita Proof
Assistant”, in Journal of Automated Reasoning, Special Issue on User Interfaces for Theorem Proving.
To appear.

[2] A. Bailey. “Representing Algebra in LEGO”, M. Phil. thesis, University of Edinburgh.

[3] G. Barthe, O. Pons, V. Capretta. “Setoids in type theory”, Journal of Functional Programming, 13(2),
pages 261-293, 2003.

[4] W.M. Farmer. “Formalizing Undefinedness Arising in Calculus”, in Automated Reasoning, Lecture
Notes in Computer Science (LNCS), 3097:475-489, 2004.

[5] S. Feferman, “Definedness”, Erkenntnis 43 (1995) 295-320.

[6] O. Müller, K. Slind. “Treating partiality in a logic of total functions”, the Computer Journal, 40:640–
652, 1997.

[7] M. Kerber, M. Kohlhase. “A Mechanization of Strong Kleene Logic for Partial Functions”, CADE 1994:
371-385.

[8] C. Sacerdoti Coen, “A Semi-reflexive Tactic for (Sub-)Equational Reasoning”, in Types for Proofs and
Programs International Workshop, TYPES 2004. Lecture Notes in Computer Science (LNCS), Vol.
3839, 99–115, 2006.

[9] F. Wiedijk, J. Zwanenburg, “First order logic with domain conditions”, in Theorem Proving in Higher
Order Logics, Proceedings of TPHOLs 2003, D. Basin and B. Wolff (eds.), Springer LNCS 2758, 221-237,
2003.

15

Sacerdoti Coen, and Zoli

16

In the search of a naive type theory 1

Agnieszka Kozubek and Pawe l Urzyczyn2

Institute of Informatics,
Warsaw University

Poland

Abstract

This paper argues that an appropriate “naive type theory” should replace naive set theory (as understood
in Halmos’ book) in everyday mathematical practice, especially teaching mathematics to Computer Science
students. As an initial formalism to represent the basics of such a theory we propose a certain pure type
system. The consistency of this system is established by proving strong normalization.

Keywords: Naive type theory, pure type systems.

1 Why not set theory?

Set theory is an enormous success in the contemporary mathematics, including the
mathematics relevant to Computer Science. Virtually all maths is developed within
the framework of set theory, and virtually all books and papers are written under the
silent assumption of ZF or ZFC axioms occurring “behind the back”. We sometimes
feel as if we actually lived in set theory, as if it was the only true and real world.

The set-theoretical background has made its way to education, from the uni-
versity to the kindergarten level, and what once was a foundational subject on the
border of logic and philosophy now has become a part of elementary mathematics.

And indeed, set theory deserves its pride. From an extremely modest
background—the notion of “being an element” and the idea of equality—it develops
complex notions and objects serving the needs of even most demanding researcher.
Enjoying the paradise of sets we tend to forget about the price we pay for that.

Of course, we must avoid paradoxes, and thus the set formation patterns are
severely restricted. We must give up Cantor’s idea of “putting together” any col-
lection of objects, resigning therefore, at least partly, from the very basic intuition
that a set of objects can be selected by any criterion at all.

1 Partly supported by the Polish Government Grant 3 T11C 002 27, and by the EU Coordination Action
510996 “Types for Proofs and Programs”.
2 Email: {kozubek,urzy}@mimuw.edu.pl

Kozubek and Urzyczyn

Universes vs predicates
In fact, there are two very basic intuitions that are glued together into the notion
of a “set”:

• Set as a domain or universe;
• Set as a “materialization” of a predicate.

We used to treat this identification as natural and obvious. But perhaps only
because we were taught to do it. These two ideas are in fact different, and this very
confusion is responsible for Russel’s paradox. In addition, ordinary mathematical
practice often makes an explicit difference between the two aspects. Mathematicians
have been classifying objects according to their domain, kind, sort or type since the
antiquity [2,19]. An empty set of numbers and an empty set of apples are intuitively
not the same, as well as in most cases we do not need and do not want to treat
a function in the same way as its arguments.

The difference between domains (types) and predicates is made explicit in type
theory. This results in various simplifications. For instance, the difference between
operations on universes (product, disjoint sum) and operations on predicates (in-
tersection, set union) becomes immediately apparent and natural. A class-based
example is that a union

⋃
A of a family A of sets is typically of the same “type” as

members of A rather than as A itself. In set theory, this argument is not sufficient
to disprove e.g., A ⊆ ⋃

A, because classifying sets (a priori) into types is illegal.

Everyday maths vs foundations of mathematics
The purpose of set theory was to give a universal foundation for a consistent math-
ematics. That happened at the beginning of 20th century, when consistency of
elementary notions was a serious issue, threatened by the danger of antinomies,
and when modern formal mathematics was in its infancy. It was then important
that the new foundation guarantees as much security as possible. Therefore, all the
development had to be done from first principles. Using the Axiom of Foundation,
one can actually prove in set theory that all the world is built from curly braces.

This foundational tool is now being widely used for a quite different purpose.
We use set theory as a basic everyday framework for all kinds of mathematics, and
we teach it to students, beginning at a very elementary level. But that puts us
into an awkward situation. On the one hand, we want to use as much common-
sense as possible, on the other hand we do not want paradoxes and inconsistency.
So if we do not want to cheat, what we can do? One possibility is to hide the
problem and pretend that everything is OK: “Emmm. . . We assume that all sets
under consideration are subsets of a certain large set.” This is what often happens
in elementary and high-school textbooks. But is it really different than saying that
the world is placed on the back of a giant turtle? An intelligent student must
eventually ask on whose back the turtle is standing. And then all we can say is “Sit
up straight!”

The other option is to take the skeleton out of the closet, put all axioms on
the table, and pay a heavy overhead by spending a lot of effort on constructing
ordered pairs in the style of Kuratowski, integers in the style of von Neumann, and
so on. This approach is common at the university level and has been considerably

18

Kozubek and Urzyczyn

mastered. For half a century, the book [17] by Halmos has been giving guidance
to lecturers how to achieve a balance between precision and simplicity. (Contrary
to its title, the book is not about “naive” set theory. It is about axiomatic set
theory taught in a “naive” style.) But even this didactic masterpiece is a certain
compromise.

The idea vs the implementation
This is because the overhead is unavoidable. One reason is that very basic math-
ematical ideas must be encoded in set theory before they can be used, and a sub-
stantial part of student’s attention is paid to the details of the encoding. To a large
extent this is a wasted effort and it would be certainly more efficient to concentrate
on “top-level” issues. Using an old comparison in a different context, it is quite like
teaching the details of fuel injection in a driving school while we should rather let
students practice driving.

To work with the set theoretical “implementation” of mathematics we must get
accustomed to it, and this is painful to many students. But the problem does not
end here. It begins here. The implementation is not “encapsulated” at all and we
can smell the fuel in the passenger’s cabin. One of the most fundamental God’s
creations is turned into a transitive set of von Neumann’s numbers so we must live
with phenomena like 1 ∈ 2 ⊆ 3 ∈ 4 or N =

⋃
N.

We do not really need these phenomena. The actual use of various objects
and notions in mathematics is based on their intensional “specification” rather than
formal implementation. We still have to ask students to remember the rule

〈 a, b 〉 = 〈 c, d 〉 iff a = c ∧ b = d,

rather than just the definition 〈 a, b 〉 = {{a}, {a, b}}. But we must spend time on
proving the above equivalence. A doubtful reward is the malicious homework“Prove
that

⋃
(N×N) = N.” We got used to such homeworks so much that we do not notice

that they are nonsense. Perhaps it is time for re-thinking the curriculum.

2 Why type theory and what type theory?

We believe that an appropriate type theory should give a chance to build a frame-
work for “naive” mathematics that would not exhibit many of the drawbacks men-
tioned above. In particular, it is reasonable to expect that a “naive type theory” can
be more adequate than “naive set theory” from our point of view, in that it should

• be free from both paradoxes and from unnecessary and artificial formalization;
• distinguish between domains (universes) and sets understood as materialized

predicates;
• begin with intensional specifications rather than from bare first principles;
• be closer to the everyday maths and computer science practice;
• be more appropriate for automatic verification.

We do not want to depart from ordinary mathematical practice, and thus our naive
type theory should be adequate for classical reasoning, and extensional with respect

19

Kozubek and Urzyczyn

to functions and predicates. We find it however methodologically appropriate that
these choices are not built in the design principles, but rather introduced explicitly
by appropriate axioms. We also would like to include a Curry-Howard flavor, taking
seriously De Bruijn’s slogan [6]:

Treating propositions as types is definitely not in the way of thinking of the ordi-
nary mathematician, yet it is very close to what he actually does.

The basic idea is of course to divide the two roles played by sets, namely to put
apart domains (i.e. types) and predicates, i.e. formulas depending on objects of
a given type. Thus for any type A we need a powerset type P (A). We see no reason
to make a distinction between P (A) and A→ ∗, where ∗ is the sort of propositions.
That is, we would like to treat “M ∈ {a : A | ϕ(a)}” as syntactic sugar for “ϕ(M)”.

Although our principal aim is a “naive” approach, we should be aware of the
need for a formalization. Firstly, because we still need some justification for consis-
tency, secondly, because it may be desirable that“naive”reasoning can be computer-
assisted. We find it quite natural and straightforward to attempt such a formaliza-
tion in the form of a PTS, to be extended with additional constructs and axioms.

Related systems
Simple type theory: In Church’s simple type theory [8,19] there are two base types:
the type i of individuals and the type b of truth values. Expressions have types and
formulas are simply expressions of type b. There is no built-in notion of proof and
formulas are not types. In addition to lambda-abstraction, there is another binding
operator that can be used to build expressions, namely the definite description
ιx. ϕ(x), meaning “the only object x that satisfies ϕ(x)”. While various forms of
definite description are often used in the informal language of mathematics, the
construct does not occur in most contemporary logical systems. As argued by
William Farmer in a series of papers [11,12,13,14], simple type theory could be
efficiently used in mathematical practice and teaching. Also the textbook [2] by
P.B. Andrews develops a version of simple type theory as a basis for everyday
mathematics. This is very much in line with our way of thinking. We choose
a slightly different approach though, mostly to avoid the inherently two-valued
Boolean logic built in Church’s type theory.

Weyl’s predicative mathematics: In a recent paper [1] Robin Adams and Zhaohui
Luo propose a logic-enriched predicative type theory based on Weyl’s Das Kontin-
uum [21]. This framework is developed as a basis for classical mathematics with
predicativity in mind, as a basic criterion. In particular, there is an explicit distinc-
tion made in this approach between “categories” and sets understood respectively
as universes and predicates. However, eliminating “vicious circles” is a primary goal
here, even entirely innocuous ones, and this certainly departs from the “naive” way.

Constable’s computational naive type theory: We have to admit that R. Consta-
ble [9] was the first to rephrase the title of Halmos’ book this way. But Constable’s
idea of a “naive type theory” is quite different than ours. It is inspired by Martin-
Löf’s way of thinking and based on the idea that a type is determined by a domain
of objects plus an appropriate notion of equality. For instance, the field Z3 has the
same domain as the set of integers Z, only a different equality. And Z6 is defined

20

Kozubek and Urzyczyn

by taking an “intersection” of Z2 and Z3. All this makes a consistent exposition,
and makes e.g. quotient formation easy. However (even putting aside the little
counterintuitivity of the “contravariant” intersection) we still believe that a “naive”
notion of equality should be more strict: two objects should not be considered the
same in one context but different in another.

Coq and the calculus of inductive constructions: An almost adequate framework
for a naive type theory is the Calculus of Constructions extended with inductive
types. This is essentially the basic part of the type theory of the Coq proof assis-
tant [5]. The paper [7] describes an attempt to use Coq in teaching rudiments of set
theory. But in Coq, if A is a type (A : Set is provable) then the powerset A→ Prop
of A is a kind (A → Prop : Type is provable). That is, a set and its powerset do
not live in the same sort.

In this paper

We collect a few postulates concerning the possible exposition of a naive type theory,
in the hope of starting a discussion in the community. We hope that this discussion
will help establishing a new approach to both teaching and using mathematics in
a way that will avoid the set-theoretic ”overheads” and remain sufficiently precise
and paradox-free. These postulates are discussed in Section 3.

We realize however that a naive approach to type theory can result in an incon-
sistency, as it happened to naive set theory and many other ideas. Therefore we
consider it necessary to build the naive approach on top of a rigouristic formal sys-
tem, to be developed in parallel. The relation between the formal language and the
naive theory should be similar to the relation between the first-order ZFC formal
theory, and Halmos’ book [17].

In what follows, we address a very initial but important problem. A set X and
its powerset P (X) should be objects of the same sort, and we also assume that
subsets of X should be identified with predicates on X. In the language of pure
type systems that leads to the idea of a type assignment of the form X→∗ : ∗,
which turns out to imply inconsistency. In Section 4 we show that this inconsistency
can be eliminated if the difference between propositions and types is made explicit.

3 Informal exposition

In this section we sketch some basic ideas of how a “naive” informal presentation of
basic mathematics could look when set theory is replaced by type theory.

Types
Every object is assigned a type. Types themselves are not objects. 3 Certain types
are postulated by axioms, and many of these should be special cases of a general
scheme for introducing inductive (perhaps also co-inductive) types. In particular,
the following should be assumed:

• A unit type with a single element nil .

3 At least not yet. We may have to relax this restriction, if we want to deal with e.g. objects of type
“semigroup”. This may lead to an infinite hierarchy of universes.

21

Kozubek and Urzyczyn

• Product types A×B and co-product types A+B, for any types A, B.
• The type N of integers.
• The powerset type P (A), for any type A.
• Function types A→ B, perhaps as a special case of a more general product type.

Types come together with their constructors, eliminators etc., the properties of
which are postulated by axioms. For instance, the following should be an axiom:

〈 a, b 〉 = 〈 c, d 〉 iff a = c ∧ b = d,

Equality
In the informal exposition of set theory equality is equality: two objects are equal
iff they are the same object. One can do the same in the typed framework. There
is however no reason to refrain from using Leibniz’s equality for explanation. In the
formal model one should probably assume Leibniz’s equality as an axiom.

Sets
A predicate ϕ(x), where x : A, is identified with a subset {x : A | ϕ(x)} of type A.
Subsets are assumed to be extensional, i.e.,

ϕ = ϕ′ iff ∀x:A.ϕ(x)↔ ϕ′(x).

Inclusion is defined as usual by ϕ ⊆ ϕ′ iff ∀x:A.ϕ(x) → ϕ′(x). Set union and
intersection as well as the complement −ϕ = {x : A | ¬ϕ(x)} are well-defined
operations on sets.

An indexed family of sets is given by any 2-argument predicate, so that e.g. we
can write the ordinary definition

⋂
y:Y Ay = {x : X | ∀y:Y.Ay(x)}. Should we need

an intersection indexed by elements of a set rather than a type we must explicitly
include it in the definition by writing⋂

y∈ψ
Ay = {x : X | ∀y:Y (ψ(y)→ Ay(x))}.

At this stage, one can prove standard results about the properties of the algebra of
sets. Subsets of a Cartesian product A × A are of course called relations, and we
can discuss properties of relations and introduce constructions like transitive closure
and so on.

Equivalences and quotients
While a definition of an equivalence relation over a type A presents no difficulty,
the notion of a quotient type must be postulated separately. Clearly, for every a : A
we could consider a set [a]r = {b : A | b r a}, and form a subset of P (A) consisting
of all such sets, but that would be inconsistent with our main idea: a domain of
interpretation is always a type and not a set. The one-to-one correspondence be-
tween the quotient type and the set of equivalence classes should then be proven
as a theorem (“the principle of equivalence”). Note that while this correspondence
should of course be highlighted, there is no actual reason to identify members of the

22

Kozubek and Urzyczyn

quotient type, which are abstract objects (classes of abstraction), with the equiva-
lence sets, as it is done in set theory. We must see a difference between abstraction
and implementation. When we define a new notion by means of abstraction, we do
not think in terms of sets. For instance when rationals are defined from integers,
we do not really think of 1/2 as of a set.

Functions: total or partial?
The notion of a function brings the first serious difficulty. In typed systems, once
we assert f : A→ B and a : A we usually conclude f(a) : B. That means we treat
f(a) as a legitimate, well-defined object of type B. Everything works well as long
as we can assume that all functions from A to B are total. However, it can happen
that a function is defined only on a certain subset A′ of a given domain. In set
theory this is not a problem, because both the type of arguments and the actual
domain are simply sets, and we can always take f : A′ → B rather than f : A→ B.
In the typed framework, we would like to still say that e.g. λx:R. 1/x maps reals to
reals, but the domain of the function is a proper subset of the type R. There are
several possible solutions of this problem, see [11] for an in-depth discussion.

Perhaps the most adequate solution for our needs is to pretend that all functions
are total, but in some cases the values are simply unknown. One should make sure
that all reasoning involving function values only applies to “known” values. For
a more explicit treatment of partial functions, one can assign a domain predicate
dom(f) to every function f .

This essentially implies a restriction on the use of the expression f(a) to the
cases when a ∈ dom(f), which seems to be quite consistent with the ordinary
mathematical practice. In this respect it may turn out to be useful to return to the
old idea of explicit description. A standard function definition should then have the
form f(x) = ιy.ϕ(x, y), or equivalently f = λx ιy.ϕ(x, y), and we would postulate
an axiom of the form

x ∈ dom(λx ιy.ϕ(x, y)) iff ∃!y ϕ(x, y).

Extensionality for functions would then be stated as

f = g ↔ (dom(f) = dom(g)) ∧ ∀x (x ∈ dom(f)→ f(x) = g(x)).

The drawback of this solution is that f(a) remains a well-formed expression of
the appropriate type, no matter whether a ∈ dom(f) or not. Thus, we still have
f(a) = f(a) and this implies ∀x∃y (f(x) = y). Although very little can be actually
concluded about the value f(a), this seems confusing enough to suggest that we
may have to adopt the idea of partial equality. Then we would be able to claim:

∃z (f(x) = z)→ x ∈ dom(f).

Note that this problem does not formally 4 occur in set theory, where f(x) = y

is syntactic sugar for 〈x, y 〉 ∈ f . In type theory, it is more natural to refrain

4 But it does occur in practice: note e.g. that f(x) 6= y can be understood differently than 〈x, y 〉 6∈ f .

23

Kozubek and Urzyczyn

from entering this level of extensionality, and to assume function application as
a primitive.

Subtypes
The difference between types and subsets becomes inconvenient in certain situations.
One specific example is when we have an algebra with a domain represented as
a type, and we need to consider a subalgebra based on a subset of that domain.
Then we would prefer to have the “large” and the “small” domain living in the same
sort. To overcome this difficulty, one may have to postulate a selection scheme: for
every subset S of type A there exists a type A|S, such that objects of type A|S
are in a bijective correspondence with elements of S. This partially brings back the
identification of domains and predicates, but it is happening in a controlled way.

4 Naive type theory as a pure type system

The assumption that a set and a powerset should live in the same sort leads naturally
to the following idea: consider a pure type system with the usual axiom ∗ : � and
with the rule (∗,�, ∗). This rule makes possible to build products of the form
Πx:A. κ, where A : ∗ and κ : �, and the product itself is then a type (is assigned
the sort ∗). In particular, the function space A → ∗ is a type, and this is exactly
the powerset of A. A subset of A is then represented by any abstraction λx:A.ϕ(x),
where ϕ(x) is a (dependent) proposition.

Unfortunately, this idea is too naive. As pointed out by A.J.C. Hurkens and
H. Geuvers, this theory suffers from Girard’s paradox, and thus it is inconsistent.

Theorem 4.1 (Geuvers, Hurkens [16]) Let VNTT (Very Naive Type Theory)
be an extension of λP by the additional rule (∗,�, ∗). Then every type is inhabited
in VNTT (every proposition has a proof).

Proof. The proof is essentially the same as Hurkens’ proof in [18], (cf. the version
given in [20, chapter 14]) for the system λU−. There are two essential factors that
imply that Russel’s paradox can be implemented in a theory:

• A powerset construction P (x) on any object x of a sort s lives in the same sort s.
• There is enough polymorphism available in s to implement a construction of an

inductive object µx:s.P (s).

In λU− we have s = � and polymorphism on the kind level is directly available.
But almost the same can happen in VNTT, for s = ∗. Indeed, the powerset A→ ∗
of any type A is a type, and although type polymorphism as such is not present,
it sneaks in easily by the back door. Instead of quantifying over types, one can
quantify over object variables of type T → ∗, where T is any type. Thus instead of
using µt : ∗.P (t) = ∀t(∀u: ∗ ((u → t) → P (u) → t) → t) one takes a : T and then
defines

µt : ∗.P (t) = ∀x :T→∗ (∀y :T→∗ ((ya→ xa)→ P (ya)→ xa)→ xa),

with essentially the same effect. 2

24

Kozubek and Urzyczyn

It follows that our naive type theory cannot be too naive, and must avoid the
danger of Girard’s paradox. The solution is to distinguish between propositions and
sets, like in Coq.

Define a pure type system LNTT (Less Naive Type Theory) with four sorts

∗t, ∗p, �t, �p,

with axioms (∗t : �t) and (∗p : �p) and with the following rules:

(∗t, ∗t, ∗t), (∗p, ∗p, ∗p), (∗t,�t,�t), (∗t, ∗p, ∗p), (∗t,�p, ∗t).

The first and second rule represent, respectively, the formation of function types,
and logical implication; the third rule is for dependent types and the fourth one
introduces higher-order logic. The last rule is for the powerset type.

In the next section we prove the strong normalization property for LNTT. Of
course, that is only the first step. We need a much richer consistent system to back
up our “practical” exposition of sets, functions, and composite types, as sketched in
the previous section. This will most likely require extending LNTT by various addi-
tional constructs, in particular a general scheme for inductive types, and additional
axioms. All this is future work.

Strong normalization

First note that, as all PTSs with only β-reduction, the system LNTT has the
Church-Rosser property on well-typed terms [15]. Moreover, LNTT is a singly
sorted PTS [3], so the uniqueness of types and subject reduction property hold.

Definition 4.2 In a fixed context Γ we use the following terminology.

(i) A is a term if and only if there exists B such that Γ ` A : B or Γ ` B : A.

(ii) A is a kind if and only if Γ ` A : �t.

(iii) A is a constructor if and only if there exists B such that Γ ` A : B : �t.

(iv) A is a type if and only if Γ ` A : ∗t.
(v) A is a formula if and only if Γ ` A : ∗p.
(vi) A is an object if and only if there exists B such that Γ ` A : B : ∗t.
(vii) A is a proof if and only if there exists B such that Γ ` A : B : ∗p.

We use the notation TermΓ, KindΓ, ConstrΓ, TypeΓ, PropΓ, ObjΓ, and ProofΓ,
to denote respectively terms, kinds, constructors, types, formulas, objects, and
proofs of the context Γ. We may describe the structure of various categories of
terms.

Lemma 4.3 Assume a fixed context Γ.

• If A is a term such that Γ ` A : �p then A = ∗p.
• If A is a kind then A is of the following form
· A = ∗t or
· A = Πx : τ.B where τ is a type and B is a kind.

25

Kozubek and Urzyczyn

• If A is a constructor then
· A is a type, or
· A is a variable, or
· A is of the form λx : τ.κ where τ is a type and κ is a constructor, or
· A is of the form κM where M is an object and κ is a constructor.

• If A is a type then
· A is a type variable, or
· A is of the form Πx : τ.σ where τ and σ are types, or
· A is of the form Πx : τ.∗p where τ is a type, or
· A is of the form κM where M is an object and κ is a constructor.

• If A is a formula then
· A is a propositional variable, or
· A is of the form Πx : ϕ.ψ where ϕ and ψ are formulas, or
· A is of the form Πx : τ.ϕ where τ is a type and ϕ is a formula, or
· A is of the form MN where M and N are objects.

• If A is an object then
· A is an object variable, or
· A is of the form λx : τ.N where τ is a type and N is an object, or
· A is of the form λx : τ.ϕ where τ is a type and ϕ is a formula, or
· A is of the form MN where M and N are objects.

• If A is a proof then
· A is a proof variable, or
· A is of the form λx : τ.D where τ is a type and D is a proof, or
· A is of the form λx : ϕ.D where ϕ is a formula and D is a proof, or
· A is of the form D1D2 where D1 and D2 are proofs, or
· A is of the form DN where D is a proof and N is an object.

Lemma 4.4 If A is a term which is not a proof and B is a subterm of A then B

is not a proof.

Proof. This is an immediate consequence of Lemma 4.3. 2

Note that it follows from Lemma 4.4 that all formulas of the form Πx :ϕ.ψ,
where ϕ and ψ are formulas, are actually implications (can be written as ϕ → ψ)
because the proof variable x cannot occur in ψ.

The first part of our strong normalization proof applies to all terms but proofs.
For a fixed context Γ we define the translation TΓ : TermΓ−ProofΓ → Term(λP2)
from terms of LNTT into the system λP2. Special variables Bool, Forall and Impl
will be used in the definition of T . Types for these variables are given by the
following context:

Γ0 = {Bool : ∗, Forall : Πτ : ∗.(τ → Bool)→ Bool, Impl : Bool→ Bool→ Bool}

Definition of the translation TΓ follows:

• TΓ(�t) = �;
• TΓ(�p) = ∗;

26

Kozubek and Urzyczyn

• TΓ(∗t) = ∗;
• TΓ(∗p) = Bool;
• TΓ(x) = x, when x is a variable;
• TΓ(Πx : A.B) = Πx : TΓ(A).TΓ,x:A(B) for products created with the rules

(∗t, ∗t, ∗t), (∗t,�p, ∗t), (∗t,�t,�t);
• TΓ(Πx : τ.ϕ) = Forall TΓ(τ)(λx : TΓ(τ).TΓ,x:τ (ϕ)) for products created with the

rule (∗t, ∗p, ∗p);
• TΓ(Πx : ϕ.ψ) = Impl TΓ(ϕ)TΓ(ψ), for products created with the rule (∗p, ∗p, ∗p);
• TΓ(λx : A.B) = λx : TΓ(A).TΓ,x:A(B);
• TΓ(AB) = TΓ(A)TΓ(B).

We extend the translation T to contexts as follows:

• T (〈〉) = Γ0,
• T (Γ, x : A) = T (Γ), x : TΓ(A) if A is a kind, a type, or ∗p,
• T (Γ, x : A) = T (Γ) if A is a formula.

For the sake of simplicity we omit the subscript Γ if it is clear which context we
are using. 5

We now state some technical lemmas which are used in the proof of soundness
of the translation T .

Definition 4.5 We say that contexts Γ and Γ′ are equivalent with respect to the
set of variables X = {x1, . . . , xn} if and only if Γ and Γ′ are legal contexts and for
all x ∈ X we have Γ(x) =β Γ′(x).

Lemma 4.6 If Γ and Γ′ are equivalent with respect to X, and N ∈ TermΓ is such
that FV (N) ⊆ X and Γ ` N : A, then Γ′ ` N : A′ where A =β A

′. In particular, if
N ∈ TermΓ then N ∈ TermΓ′.

Proof. Induction with respect to the structure of the derivation Γ ` N : A. 2

Lemma 4.7 If Γ and Γ′ are equivalent with respect to FV (M) and M ∈ TermΓ

then TΓ(M) = TΓ′(M).

Proof. Induction with respect to the structure of M . 2

Now we prove that the translation T preserves beta-reduction.

Lemma 4.8 If Γ ` a : A and Γ, x : A ` B : C for some C and a,B are not proofs
then TΓ(B[x := a]) = TΓ,x:A(B)[x := TΓ(a)].

Proof. Induction with respect to the structure of B, using Lemma 4.7. 2

Lemma 4.9 If B and B′ are not proofs and B →β B
′ then TΓ(B) �+

β TΓ(B′).

Proof. The proof is by a routine induction with respect to B →β B
′. If B is a redex

then, by Lemma 4.4, it must be of one of the following forms:

(λx : τ.ϕ)N, (λx : τ.M)N, (λx : τ.κ)N,

5 I.e., when the context is clear from the context ;)

27

Kozubek and Urzyczyn

where τ is a type, ϕ is a formula, and M,N are objects. In each of these cases we
apply Lemma 4.8. If B is not a redex, we apply the induction hypothesis, using
Lemma 4.7. 2

Lemma 4.10 If B =β B′ and B, B′ are kinds, types or objects then TΓ(B) =β

TΓ(B′).

Proof. By Church-Rosser property there exists a well-typed term C such that
B �β C and B′ �β C. We have TΓ(B) �β TΓ(C) and TΓ(B′) �β TΓ(C), by
Lemma 4.9, whence TΓ(B) =β TΓ(B′). 2

Lemma 4.11 (Soundness of the translation T) If Γ ` A : B and A is not
a proof then T (Γ) ` TΓ(A) : TΓ(B) in λP2.

Proof. Induction with respect to the structure of the derivation of Γ ` A : B using
Lemmas 4.7, 4.8 and 4.10. 2

Corollary 4.12 If M is a term which is not a proof then M is strongly normalizing.

Proof. Assume that M is not strongly normalizing. Then there is an infinite re-
duction

M →β M1 →β M2 →β · · ·
By Lemma 4.9 then

T (M) �+
β T (M1) �+

β T (M2) �+
β · · ·

But T (M) is a valid term of λP2, by Lemma 4.11, thus it is strongly normalizing.
The contradiction shows that also M is strongly normalizing. 2

To show strong normalization for proofs we use another translation t from LNTT
to the calculus of constructions λC. This translation depends on a given context Γ.

• tΓ(∗t) = ∗;
• tΓ(∗p) = ∗;
• tΓ(x) = x, if x is a variable.
• tΓ(Πx : τ.B) = tΓ,x:τ (B), for products constructed using the rule (∗t,�t,�t);
• tΓ(Πx : A.B) = Πx : tΓ(A).tΓ,x:A(B) for all other products;
• tΓ(λx : τ.κ) = tΓ,x:τ (κ), if κ is a constructor and τ is a type;
• tΓ(λx : A.B) = λx : tΓ(A).tΓ,x:A(B) for all other abstractions;
• tΓ(κN) = tΓ(κ) if κ is a constructor;
• tΓ(AB) = tΓ(A)tΓ(B) for all other applications.

We extend the translation t to contexts by taking
t(〈〉) = 〈〉 and t(Γ, x : A) = t(Γ), x : tΓ(A).

Lemma 4.13 If Γ and Γ′ are equivalent with respect to FV (M) and M is a term
in Γ then tΓ(M) = tΓ′(M).

Proof. Induction with respect to the structure of M . 2

Lemma 4.14 Assume that Γ, x : A ` B : C and Γ ` N : A and N is an object or
a proof.

28

Kozubek and Urzyczyn

• If N is an object and B is a type or a constructor then tΓ(B[x := N]) = tΓ,x:A(B).
• If B is neither a type nor a constructor then

tΓ(B[x := N]) = tΓ,x:A(B)[x := tΓ(N)].

Proof. Induction with respect to the structure of B, using Lemma 4.7. 2

Definition 4.15 A reduction step A→β A
′ is silent if

• A = (λx : τ.κ)N →β κ[x := N] = A′, where κ is a constructor and N is an object,
or

• A = Πx : τ.B →β Πx : τ ′.B = A′ where τ →β τ
′ and B is a kind, or

• A = κN →β κN
′ = A′, where N →β N

′ and κ is a constructor, or
• A = λx : τ.κ→β λx : τ ′.κ = A′, where κ is a constructor, or
• A = C[B] →β C[B′] = A′, where C[] is any context and B →β B

′ is a silent
reduction.

Lemma 4.16 If A →β B then TΓ(A) �β TΓ(B). In addition, if the reduction
A→β B is not silent then TΓ(A) �+

β TΓ(B).

Proof. Induction with respect to A →β B, using Lemma 4.14 when A is a redex,
and Lemma 4.13 in the other cases. 2

Corollary 4.17 If B =β B
′ then tΓ(B) =β tΓ(B′).

Lemma 4.18 Assume a fixed environment Γ.

(i) If M is a proof, an object, or a formula and Γ ` M : T then t(Γ) ` tΓ(M) :
tΓ(T).

(ii) If M is a type or a constructor then t(Γ) ` tΓ(M) : ∗ or t(Γ) ` tΓ(M) : �.

(iii) If M is a kind then t(Γ) ` tΓ(M) : �.

Proof. Simultaneous induction with respect to the structure of the appropriate
derivation, using Lemma 4.13. 2

Theorem 4.19 System LNTT has the strong normalization property.

Proof. We already know that all expressions except proofs are strongly normaliz-
ing. Arguing as in the proof of Corollary 4.12, and using Lemma 4.16, we conclude
that almost all steps in an infinite reduction sequence must be silent. Thus it suffices
to prove that if D is a proof than there is no infinite silent reduction of D. This
goes by induction with respect to the size of D, by cases depending on its shape.2

No conclusion

The above is by no means a complete proposal of either theoretical or didactic
character. It is essentially a collection of questions and partial suggestions of how
such a proposal should be eventually designed. These questions are of double nature,
and we would like to pursue the two directions. The first one is to find means to
talk about basic mathematics without referring to set theory in either a naive (i.e.,
inconsistent) or axiomatic way, using instead an appropriate type-based language.

29

Kozubek and Urzyczyn

That should happen in a possibly non-invasive way, keeping as much linguistic
compatibility with the “standard” style as possible.

The second problem is to give a formal foundation to this informal type-based
language. This formalization is to be used for two purposes: to guarantee logical
consistency of the naive exposition and to facilitate computer assisted verification
and teaching. That requires building a complex system, of which our PTS-style
Less Naive Type Theory is just a very basic core. This system must involve various
extensions in the style of [4], perhaps include a hierarchy of sorts, etc.

Acknowledgement

Thanks to Herman Geuvers for helpful discussions, e.g. about Girard’s paradox.

References

[1] R. Adams and Z. Luo. Weyl’s predicative classical mathematics as a logic-enriched type theory.
Manuscript, 2007.

[2] P.B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof,
volume 27 of Applied Logic Series. Kluwer, second edition, 2002.

[3] H.P. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, volume II, pages 117–309. Oxford University Press,
1992.

[4] G. Barthe. Extensions of pure type systems. In Dezani-Ciancaglini and Plotkin [10], pages 16–31.

[5] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 2004.

[6] N.G. de Bruijn. A survey of the project automath. In J.P. Seldin and J.R. Hindley, editors, To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 579–606. Academic
Press, 1980.

[7] J. Chrz ↪aszcz and J. Sakowicz. Papuq: A Coq assistant. Manuscript, 2007.

[8] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):56–68, 1940.

[9] R.L Constable. Naive computational type theory. In H. Schwichtenberg and R. Steinbruggen, editors,
Proof and System-Reliability, pages 213–259. Kluwer Academic Press, 2002.

[10] M. Dezani-Ciancaglini and G. Plotkin, editors. Typed Lambda Calculi and Applications, volume 902 of
Lecture Notes in Computer Science. Springer-Verlag, 1995.

[11] W.M. Farmer. A partial functions version of Church’s simple theory of types. Journal of Symbolic
Logic, 55(3):1269–1291, 1990.

[12] W.M. Farmer. A simple type theory with partial functions and subtypes. Annals of Pure and Applied
Logic, 64:211–240, 1993.

[13] W.M. Farmer. A basic extended simple type theory. Technical Report 14, McMaster University, 2003.

[14] W.M. Farmer. The seven virtues of simple type theory. Technical Report 18, McMaster University,
2003.

[15] H. Geuvers. The Church-Rosser property for beta-eta-reduction in typed lambda calculi. In Logic in
Computer Science, pages 453–460, 1992.

[16] H. Geuvers. Private communication, 2006.

[17] P.R. Halmos. Naive Set Theory. Van Nostrand, 1960. Reprinted by Springer-Verlag in 1998.

[18] A.J.C. Hurkens. A simplification of Girard’s paradox. In Dezani-Ciancaglini and Plotkin [10], pages
266–278.

[19] F. Kamareddine, T. Laan, and R. Nederpelt. Types in logic and mathematics before 1940. Bulletin of
Symbolic Logic, 8(2):185–245, 2002.

[20] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.

[21] H. Weyl. The Continuum. Dover, 1994.

30

Kozubek and Urzyczyn

31

Kozubek and Urzyczyn

32

Teaching logic using a state-of-the-art
proof assistant

Cezary Kaliszyk Freek Wiedijk

Radboud Universiteit Nijmegen, The Netherlands

Maxim Hendriks Femke van Raamsdonk
Vrije Universiteit Amsterdam, The Netherlands

Abstract

This article describes the system ProofWeb that is currently being developed in Nijmegen and Amsterdam
for teaching logic to undergraduate computer science students. This system is based on the higher order
proof assistant Coq, and is made available to the students through an interactive web interface. Part of
this system will be a large database of logic problems. This database will also hold the solutions of the
students. This means that the students do not need to install anything to be able to use the system (not
even a browser plug-in), and that the teachers will be able to centrally track progress of the students.
The system makes the full power of Coq available to the students, but simultaneously presents the logic
problems in a way that is customary in undergraduate logic courses. Both styles of presenting natural
deduction proofs (Gentzen-style ‘tree view’ and Fitch-style ‘box view’) are supported. Part of the system
is a parser that indicates whether the students used the automation of Coq to solve their problems or that
they solved it themselves using only the inference rules of the logic. For these inference rules dedicated
tactics for Coq have been developed.
The system has already been used in a type theory course, and is currently being further developed in the
first year logic course of computer science in Nijmegen.

Keywords: Logic Education, Proof Assistants, Coq, Web Interface, AJAX, DOM, Natural Deduction,
Gentzen, Fitch

1 Introduction

1.1 Motivation

At every university, part of the undergraduate computer science curriculum is an
introductory course that teaches the rules of propositional and predicate logic. At
the Radboud Universiteit (RU) in Nijmegen this course is taught in the first year
and is called ‘Beweren en Bewijzen’ (Dutch for ‘Stating and Proving’). At the
Vrije Universiteit (VU) in Amsterdam this course is taught in the second year and

1 Email: {cek,freek}@cs.ru.nl {mhendri,femke}@few.vu.nl
2 This research was funded by SURF project ‘Web-deductie voor het onderwijs in formeel denken’.

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

is called ‘Inleiding Logica’ (‘Introduction to Logic’). Almost all computer science
curricula will have similar undergraduate courses.

For learning this kind of elementary mathematical logic it is crucial to make
many exercises. Those exercises can of course be made in the traditional way,
using pen and paper. The student is completely on his own, and in practice it
often happens that proofs that are almost-but-not-completely-right are produced.
Alternatively, they can be made using some computer program, which guides the
student through the development of a completely correct proof. A disadvantage of
the computerized way of practicing mathematical logic is that a student often will be
able to finish proofs by random experimentation with the commands of the system
(accidentally hitting a solution), without really having understood how the proof
works. Of course, a combination of the two styles of practicing formal proofs seems
to be the best option. So computer assistance for learning to construct derivations
in mathematical logic is desirable. Currently the most popular program that is
used for this kind of ‘computer-assisted logic teaching’ is a system called Jape [2],
developed at the university of Oxford.

Besides exercises there is also the issue of examination. It would be good if the
student has the opportunity to do at any moment a (part of the) logic exam by
logging in to the system and be presented with a set of exercises from a database
that have to be solved within a certain time. This may require human supervision
to prevent cheating. We did not yet work on this, but just mention it as a possible
interesting application of computer-assisted logic teaching.

1.2 Our contribution

This paper describes a system, currently named ProofWeb, that is in development
at the RU in Nijmegen and at the VU in Amsterdam. This system is much like
Jape (it might be considered to be an ‘improved Jape-clone’).

The two main innovations that our system offers over other similar systems are:

• The system makes the students work on a centralized server that has to be ac-
cessed through a web interface. The proof assistant that the students use will not
run on their computer, but instead will run on the server.

A first advantage is flexibility. The web interface is extremely light: the student
will not need to install anything to be able to use it, not even a plug-in. When
designing our system we tried to make it as low-threshold and non-threatening
as possible. The student can work from any internet-connection at any time.

A second advantage is that the student does not need to worry about version
problems with the software or the exercises. Since everything is on the same
centralized server, the students have at any time the right version of the software,
exercises, and possibly solutions to exercises available, and moreover the teachers
know at any time the current status of the work of the students.

• The system makes use of a state-of-the-art proof assistant, namely Coq [3], and
not of a ‘toy’ system.

Coq has been in development since 1984 at the INRIA institute in France. It is
based on a type theoretical system called the Calculus of Inductive Constructions.
It has been implemented in the dialect of the ML programming language called

34

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Objective Caml, and has been used for the formal verification of many proofs,
both from mathematics and from computer science. The most impressive verifi-
cation using Coq is the verification of the proof of the Four Colour Theorem by
Georges Gonthier [5]. Another important verification has been the development
of a verified C compiler by Xavier Leroy and others [9].

The choice for a state-of-the-art proof assistant fell on Coq because both at the
RU and at the VU it is already used in research and teaching.

An advantage of using a state-of-the-art proof assistant is again flexibility. The
same interface can be used (possibly adapted) for teaching more advanced courses
in logic or concerning the use of the proof assistant.

The system ProofWeb comes equipped with two more products.

• A large collection of logic exercises. The exercises range from very easy to very
difficult, and will be graded for their difficulty. The exercise set is sufficiently
large (presently over 200 exercises) so the student will not soon run out of practice
material. More about the exercise set can be found in Section 6.

• Course notes, with a basic presentation of propositional and predicate logic, and
a description of how to use the system ProofWeb. We want the presentation
of the proofs in the system to be identical to the presentation of the proofs in
the textbook. Therefore we develop both the ‘Gentzen-style’ and the ‘Fitch-style’
natural deduction variants. The course notes are still under development.

1.3 Related work

There are already numerous systems for doing logic by computer, of which Jape
is the best known. A relatively comprehensive list is maintained by Hans van
Ditmarsch [10]. Of course many of these system are quite similar to our system (as
well as to each other.) For instance, quite a number of these systems are already
web-based.

The distinctive features of our system are the use of a serious proof assistant,
together with a centralized ‘web application’ architecture. The work of the students
remains on the web server, can be saved and loaded back in, and the progress of
the student is at all times available both to the student, the teacher and the system
(i.e., the system has at all times an accurate ‘user model’ of the abilities of the
student).

1.4 Contents

In the rest of the paper we present both our project and the current state of the
system that we are building. We start with a short description of our project in
Section 2, and discuss our experiences so far in Section 3. Next, in Section 4 we
present the architecture of the interface. Section 5 is concerned with the supporting
infrastructure of tactics and exercises, and Section 6 with the presentation of the
collection of exercises. Finally, in Section 7 we give an outlook on future work and
work that is currently in progress.

35

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

2 Structure of the project

The project of developing ProofWeb is financed by the SURF foundation [12] (the
Dutch organization for computers in academic teaching) and runs in the period fall
2006 till fall 2007 (three semesters). Cezary Kaliszyk is employed for a full year at
half time to program the system, while Maxim Hendriks is employed for half a year
at full time to develop the educational materials (the database of problems and the
course notes), as well as to evaluate the educational success of the project.

We identified the following nine sub-tasks, called ‘work packages’:

(i) the database of the system,

(ii) Coq tactics that exactly correspond to the rules the logic,

(iii) graphical representations for the proofs,

(iv) checking a Coq file against an exercise,

(v) a large set of logic problems,

(vi) course notes that explain the system,

(vii) using the system in actual courses,

(viii) dissemination of the results of the project,

(ix) evaluation of the project.

3 Experience so far

The system ProofWeb is used in the following advanced courses:

(i) In fall 2006: the course ‘Logical Verification’ [11] at the VU, taught by Femke
van Raamsdonk. This is a computer science master’s course about the type
theory of the Coq system. The course is meant for more mature students but
also recapitulates some undergraduate logic. It is therefore suitable for testing
a first version of ProofWeb. Natural deduction is taught in Gentzen style,
that is, proofs have a tree-like structure, and grow upward from the conclusion
of the proof.

(ii) In spring 2007: the course ‘Type Theory’ at the RU, taught by Freek Wiedijk
and Milad Niqui. This course is also a master’s level course about the type
theory of the Coq system, and corresponds to the Logical Verification course
at the VU.

(iii) In spring 2007: the course ‘Type Theory and Proof Assistants’ in the ‘Master
Class Logic 2006-2007’, taught by Herman Geuvers and Bas Spitters. This
course is similar to the previous one, but is not exclusively aimed at students
of the RU but at master’s students from all over the Netherlands.

Moreover, ProofWeb is or will be used in the following introductory courses:

(i) In spring 2007: the course ‘Beweren en Bewijzen’ [1] at the RU, taught by
Hanno Wupper and Erik Barendsen. This is a computer science undergraduate
course in logic, with natural deduction in Gentzen style.

(ii) In fall 2007: the course ‘Inleiding Logica’ [6] at the VU, taught by Roel de

36

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Vrijer. This is a computer science undergraduate course in logic, with natural
deduction in Fitch style (cf. Section 7), that is, proofs have a structure of
nested boxes, which structure a sequential list of proof steps. Another name
for this kind of proofs is ‘flag-style proofs’, because often the assumptions of a
subproof are written in the shape of ‘flags’.

The course ‘Logical Verification’ at the VU in fall 2006 was a first opportunity to
test the system. About 25 students followed and completed the course. They were
all mature (graduate) students, very well able to deal with a system that was still
in beta. A part of the course consists of learning type theory and Coq via basic
(undergraduate) logic exercises, which were done using the system ProofWeb. We
learned the following from the use of the system ProofWeb in this course.

Initially we did not have a dedicated server, so it was running on one of the
group servers of the research group in Nijmegen on a non-standard port. One of
the issues was, that the web-proxy at the VU did not allow the students to access
pages running on non-standard ports, so they were required to turn the proxy off.

One of the assignments involves program extraction. Of course we did not allow
running the extracted programs on the server, and therefore a mechanism allowing
the students to obtain the extracted program was implemented.

The efficiency of the server turned out not to be a problem. At peak times
the twenty-five students were able to use about 400Mb memory and a fraction of
a CPU. This might be thanks to the fact that the students were not using tactics
that involve automation.

During this course there was not yet support for visualizing proofs. Instead the
students had to do their proofs using the customary Coq proof style, which consists
of building a tactic script using the standard Coq tactics. This was not problematic,
since one of the aims of the course is to learn Coq.

The second course in which ProofWeb is used is the course ‘Type Theory’
in spring 2007 at the RU. The first half of this course is basically an accelerated
clone of the ‘Logical Verification’ course. As it turned out that initially there were
only very few students who wanted to follow this course, it was decided that there
would be no lectures, and that the students just would be given the course notes
of ‘Logical Verification’ together with access to the server. They then would work
on their own, with an opportunity to call for help if needed. It turns out that this
worked unexpectedly well. The students just studied the lecture notes and did the
exercises of the course. And even without much pressure on them in the form of
requiring them to meet deadlines, they managed to keep on schedule reasonably
well. The only thing that at some point confused them (after which a lecture was
organized to make things clear) was the part of the course that did not correspond
to Coq work: derivations in Pure Type Systems.

All in all our experience so far is that the system ProofWeb seems to work
very well in teaching. Indeed, hardly any students used more traditional Coq in-
terfaces like Proof General or CoqIDE. The courses so far are more advanced ones,
so it remains to be seen whether ProofWeb also works well for larger numbers of
undergraduate students, but we are optimistic about that. In addition, as of May
2007, the progress on all of the nine work packages seems to be well on target.

37

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

4 Architecture of the interface

In this section we shortly describe the architecture of the interface to Coq used in
ProofWeb. The interface is an implementation of an architecture for creating
responsive web interfaces for proof assistants [7]. It combines the current web de-
velopment technologies with the functionality of local interfaces for proof assistants
to create an interface that behaves like a local one, but is available completely with
just a web browser (no Java, Flash or plugins are required).

To obtain this it uses the asynchronous DOM modification technology (some-
times referred to as AJAX or Web Application). This technique is a combination
of three available web technologies:

• JavaScript — a scripting programming language interpreted by web browsers;
• Document Object Model (DOM) — a way of referring to subelements of a web

page that allows modification of the page on the fly, creating dynamic elements;
• XmlHttp — an API available to client side scripts, that allows requesting infor-

mation from the web server without reloading the page.

The asynchronous DOM modification consists in creating a web page that captures
events on the client side and processes them without reloading the page. Events
that require information from the server send the data in asynchronous XmlHttp
requests and modify the web page in place. Other events are processed only locally.

ProofWeb uses an implementation of this architecture that is used to create
a web interface for proof assistants. The server stores sessions for all users, and
the clients are presented with an interface that is completely contained in a web
browser, but resembles and is comparably responsive to a local interface like Proof
General or CoqIDE (see Figure 1).

The architecture described in [7] was designed as a publicly available web service.
Using it for teaching required the creation of groups of logins for particular courses.
The students are allowed to access only their own files via the web interface, and
teachers of particular courses have access to the directories of the students of these
courses.

An example of the use of the interface in the ‘Logical Verification’ course can be
seen in Figure 2.

5 Natural deduction for first-order logic

This section is concerned with natural deduction proofs for first-order logic in
‘Gentzen style’, where a proof is a tree.

5.1 Tactics

A first aim is to enable students of logic courses to construct derivations that corre-
spond exactly to the derivations in the presentation of natural deduction that they
use. Because in principle the full power of Coq is available, this means that we had
to write tactics (in effect, to dumb Coq down) to match the traditional logic rules.
What then arose was that, whereas in a Coq proof one can look at a hypothesis and

38

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

User of ProofWeb

Web
Browser

JavaScript

Web
Server

User’s
Session

User’s
Session

Presented page

handling of
keypresses
and clicks

DOM

Callback

XmlHttp

User’s
Prover

User’s
Prover

Fig. 1. ProofWeb architecture.

Fig. 2. ProofWeb in the ‘Logical Verification’ course.

39

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

eliminate it, ending up in a new proof state, traditional natural deduction offers no
such jumps. So we naturally arrived at a set of backward working tactics: every
proposition (the current goal) is deduced from another proposition (the new goal)
using a deduction rule. The display style that fits most naturally to this kind of
proof is a proof tree (for flag-style proofs see Section 7).

This imposes a relatively strict way of working. The proof trees have to be
constructed from ‘bottom to top’. On the one hand, this makes the construction of
a deduction more difficult than on paper, because there is no possibility of building
snippets of the proof in a forward way, using what is known from the hypotheses and
their consequences. But on the other hand, the method forces the student to ponder
the general structure of the proof before deciding by what step he will eventually end
up with the current proposition. And the imposed rigidity is congenial with the aim
of a logic course to encourage rigorous analytical thinking. Moreover, it becomes
very clear where ingenuity comes in, such as with the disjunction elimination rule.
The student is supposed to prove some proposition C. It is a creative step to find
a disjunction A ∨ B, prove this, and also prove that C follows from both A and B

separately. The same goes for the introduction and elimination of negation.
As an example we present the tactic for disjunction elimination, which gives a

good impression of the way additional tactics are implemented:

Ltac dis_el X H1 H2 :=
match X with
| (_ \/ _) =>
assert X;
[idtac |

match goal with
| x : X |- _ =>

elim x; [intro H1 | intro H2]; clear x
end

]
| _ => fail "The first argument is not a disjunction"

end.

If the current goal is C, the tactic dis_el (A \/ B) G H will create the following
three new goals:

(i) A ∨B;

(ii) C, but now with the extra assumption A with name (or proof, if viewed con-
structively) G;

(iii) C, but now with the extra assumption B with name (or proof, if viewed con-
structively) H.

Also, the tactic gives a nice and understandable error message. All the tactics have
been given a name by using three letters of the connective’s name and indicating
whether the tactic implements an introduction rule or an elimination rule (and if
necessary, if that is a left or a right variant). We give a small example of a proof
with our set of tactics, and hope it speaks for itself:

40

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Theorem example : ((A \/ B) /\ ~A) -> B.
Proof.
imp_in z.
dis_el (A \/ B).
con_ell (~A).
ass z.
imp_in y.
neg_el A.
con_elr (A \/ B).
ass z.
ass y.
imp_in x.
ass x.
Qed.

5.2 Visualization

A second aim is a visual presentation of proofs as in Jape. This meant requesting
the proof information from Coq and converting it to a graph format. Coq internally
keeps a proof state. This proof state is a recursive OCaml structure, that holds
a goal, a rule which allows to obtain this goal from the subgoals, and the subgoals
themselves. It is not just a tree structure, since a rule can be a compound rule that
contains another proof state. Tactics and tacticals modify the proof state. Coq
includes commands that allow inspecting the proof state. Show allows the user to
see a non-current goal, Show Tree shows the succession of conclusions, hypotheses
and tactics used to obtain the current goal and Show Proof displays the CIC term
(possibly with holes).

The output of these commands was not sufficient to build a natural deduction
tree for the proof. We added a new command Dump Tree to Coq that allows ex-
porting the whole proof state in an XML format. An example of the output of the
Dump Tree command for a very simple Coq proof:

<tree><goal><concl type="A -> A"/></goal>
<cmpdrule><tactic cmd="intro x"/>

<tree><goal><concl type="A -> A"/></goal>
<cmpdrule><tactic cmd="intro x"/>

<tree><goal><concl type="A -> A"/></goal>
<rule text="intro x"/>
<tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>
</cmpdrule>
<tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>
</cmpdrule><tree><goal><concl type="A"/><hyp id="x" type="A"/>

</goal></tree></tree>

We modified ProofWeb to be able to parse XML trees dumped by Coq and gen-
erate natural deduction diagrams (see Figure 3). Those diagrams may be requested

41

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

by the user’s browser in special query requests. The diagrams are displayed in a
separate frame in the interface along with the usual Coq proof state. If the user
switches on the display of the diagrams, the client side requests them when no text
is being processed.

Fig. 3. A natural deduction tree as seen on the webpage (cropped screenshot).

6 The exercise set

Also part of the project is the development of a set of exercises for the students. For
a particular course, a number of exercises assigned to the students. It is desirable
that ProofWeb can be used as a complete course environment. So when a student
logs in via the web interface as participant to a specific course, he is able to see the
list of all the assigned tasks (see Figure 4). Every task has a certain status. The
status can be one of the following:

• Not touched — When a particular exercise has not been opened, or has been
opened but has not been saved.

• Does not compile — When the file has been edited and saved, but is not a correct
Coq file. It can be because of real errors or because proofs are missing.

• Incorrect — The students are supposed to modify the given file only in designated
places and to use only a set of allowed tactics. If the student uses a non-allowed
too powerful tactic or just removes a task from the file it is marked as incorrect.

• Correct — Passed the verification by our tool.

The verification tool lexes the original task and the student’s solution in parallel.
The original solution includes placeholders that are valid Coq comments. Those
placeholders mean that a particular place needs to contain a valid Coq term or
a valid proof. For proofs the kind of proof determines the set of allowed tactics.
For proofs and terms of given types the automatic verification is enough. However,
there are tasks where students are required to give a definition of a particular object
in type theory. For this kind of tasks manual verification by a teaching assistant of
a course is required.

42

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Fig. 4. Tasks assigned to students and their status.

7 Outlook

At the moment of writing, the project ProofWeb is more or less half way, so this
paper reports on work in progress. In this section we first discuss a main issue we
are currently working on: adding the possibility of using the system for ‘Fitch-style’
natural deduction derivations. We then briefly comment on further points of current
and future work.

7.1 Fitch-style deductions

The most important improvement is to add the possibility to use the system for so-
called Fitch-style natural deduction proofs. 3 Fitch-style proofs have the graphical
advantage over Gentzen-style proofs of being linear (as opposed to having a branch-
ing tree structure), which makes them more convenient to display for large proofs,
like the ones constructed by the students for final assignments. Another name for
these kind of proofs is flag-style proofs, because the assumptions of a subproof are
often written in the shape of ‘flags’. We are working on having the system display
Fitch-style deductions. A basic version of this has already been implemented (see
Figure 5), but needs further development. A number of issues arise. When a tactic
creates a number of assumptions, should these be kept in one flag or should the sys-
tem create multiple flags? Also, Fitch-style deductions may include repetitions of
assertions assumed by flags. Most of these repetitions are redundant. However, not
repeating assumptions immediately before they are used leads to very unreadable
proofs. What should be done? We are currently looking at adapting the approach
presented in [4] to Coq tactics.

7.2 Future work

Some of the other issues that currently are being worked on are:

• The course notes that are to accompany the system. These are still in a rudi-
mentary stage.

• There is no separate web interface yet for the teacher to manage the student logins
and the set of exercises for the course, nor to inspect the work of the students.

3 This style of proof was initially developed by Stanis law Jaśkowski in 1934 and perfected by Frederic
Brenton Fitch in 1952.

43

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

Fig. 5. A Fitch-style deduction as currently displayed by the system (implementation in progress).

At the moment this is only possible by logging on to the server through an ssh
connection, and then listing and editing files manually. Clearly, a proper web
interface for this is necessary.

• The deduction trees are currently rendered in an HTML IFrames, and can be op-
tionally opened in a separate browser window to allow easy printing as PostScript
or PDF. However students may need to use the trees in texts, and for that a ded-
icated TEX or image rendering of the trees could be implemented.

• The interface uses some web technologies that are not implemented in the same
way in all browsers. It includes a small layer that is supposed to abstract over
incompatible functionalities. Currently this works well with Mozilla compatible
browsers (Firefox, Galeon, Epiphany, Netscape, . . .). Also, some effort has been
made to make the system work reasonably well with the most common versions of
Internet Explorer. However, the compatibility of the system with most common
web browsers is something that will need further attention.

• At the moment there is hardly any documentation of how to install and maintain
the server. Our server currently is available to everyone who wants to experiment
with our system, but there is no good guide available that explains how to install
a server of his own. Because the server is still very much in a constant state of

44

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

flux, documenting the installation and maintenance processes is at this moment
not yet reasonable. However, in the final phase of the project it will be important
to also create this kind of documentation.

• With the current version of the system a log of each interaction of each stu-
dent session is already stored on the server. Using these logs, it is possible to
develop software for ‘replaying’ such a student session (possibly speeded up or
slowed down). We are currently discussing whether it is useful to develop such
an extension of the system.

• The system was designed in a way to be used in standard university courses. It
might be useful to create a more complete online environment that would include
introductory explanations and adaptive user profiles, therefore allowing students
to learn logic without teacher interaction.

7.3 Beyond the project

If the development of ProofWeb is finished, a possibility is to integrate it with a
system that supports the development of more serious proofs with the Coq system.
One of the other projects that currently is being pursued in Nijmegen is the creation
of a so-called ‘math wiki’ [8]. Here, traditional wiki technology is integrated with
the same Coq front end that our system is based on.

7.4 Using the system

We think that it is important that our system is experimented with (and hope-
fully someday frequently used) by as many people as possible. For this reason, we
currently offer the use of our system to anyone on the internet, even without any
registration. The ProofWeb system can be tried at

http://prover.cs.ru.nl

References

[1] Beweren en Bewijzen.
URL http://www.cs.ru.nl/~wupper/B&B/index.html

[2] Bornat, R. and B. Sufrin, Jape’s quiet interface, in: N. Merriam, editor, User Interfaces for Theorem
Provers (UITP ’96), Technical Report (1996), pp. 25–34.

[3] Coq Development Team, “The Coq Proof Assistant Reference Manual Version 8.1,” INRIA-
Rocquencourt (2005).
URL http://coq.inria.fr/doc-eng.html

[4] Geuvers, H. and R. Nederpelt, Rewriting for Fitch style natural deductions., in: V. van Oostrom, editor,
RTA, Lecture Notes in Computer Science 3091 (2004), pp. 134–154.

[5] Gonthier, G., A computer-checked proof of the Four Colour Theorem (2006).
URL http://research.microsoft.com/~gonthier/4colproof.pdf

[6] Inleiding Logica.
URL http://www.cs.vu.nl/~tcs/il/

[7] Kaliszyk, C., Web interfaces for proof assistants, in: S. Autexier and C. Benzmüller, editors, Proceedings
of the FLoC Workshop on User Interfaces for Theorem Provers (UITP’06), Seattle, 2006, pp. 53–64,
to be published in ENTCS.

[8] Kaliszyk, C. and P. Corbineau, Cooperative repositories for formal proofs (2007), to be published in
the proceedings of MKM 2007.

45

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

[9] Leroy, X., Formal certification of a compiler back-end or: programming a compiler with a proof
assistant, in: POPL ’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (2006), pp. 42–54.

[10] Logic courseware.
URL http://www.cs.otago.ac.nz/staffpriv/hans/

[11] Logical Verification.
URL http://www.cs.vu.nl/~tcs/lv/

[12] SURF foundation.
URL http://www.surf.nl/

46

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

47

Hendriks, Kaliszyk, van Raamsdonk & Wiedijk

48

Status Report on the Tight Integration of a Scientific
Text-Editor and a Proof Assistance System

Serge Autexier
DFKI GmbH & Fachbereich Informatik, Universität des Saarlandes

66041 Saarbrücken, Germany (www. dfki. de/ ~ serge)

Marc Wagner
Fachbereich Informatik, Universität des Saarlandes

66041 Saarbrücken, Germany (www. ags. uni-sb. de/ ~ mwagner)

Abstract

In order to foster the use of proof assistance systems, we integrated the proof assistance system ΩMEGA with the standard
scientific text-editor TEXMACS. We aim at a document-centric approach to formalizing and verifying mathematics and soft-
ware. Assisted by the proof assistance system, the author writes her document entirely inside the text-editor in a language
she is used to, that is a mixture of natural language and formulas in LATEX style. In this paper we briefly describe the PLATΩ-
system that realizes the integration and the mechanism that allows the author to define her own notation inside a document
in a natural way, which is used to parse the formulas written by the author as well as to render the formulas generated by the
proof assistance system. We illustrate the different facets of the support offered to the author by the proof assistance system
by giving a worked example.

1 Introduction

The vision of a powerful mathematical assistance environment that provides computer-
based support for most tasks of a mathematician has stimulated new projects and inter-
national research networks in recent years across disciplinary boundaries. Even though
the functionalities and strengths of proof assistance systems are generally not sufficiently
developed to attract mathematicians on the edge of research, their capabilities are often
sufficient for applications in e-learning and engineering contexts. However, a mathemati-
cal assistance system that shall be of effective support has to be highly user-oriented. We
believe that such a system will only be widely accepted by users if the communication be-
tween human and machine satisfies their needs, in particular only if the extra time spent
on the machine is by far compensated by the system support. One aspect of the user-
friendliness is to integrate formal modeling and reasoning tools with software that users
routinely employ for typical tasks.

One standard activity in mathematics and the areas that are based on mathematics is
the preparation of documents using some standard text preparation system like LATEX.

Autexier, Wagner

TEXMACS [20] is a scientific text-editor in the WYSIWYG paradigm that provides pro-
fessional type-setting and supports authoring with powerful macro definition facilities like
those in LATEX. As a first step towards assisting the authoring of mathematical documents,
we integrated the proof assistance system ΩMEGA into TEXMACS using the generic medi-
ator PLATΩ [22]. In this setting the formal content of a document must be amenable to
machine processing, without imposing any restrictions on how the document is structured,
on the language used in the document, or on the way the document can be changed. The
PLATΩ system [21] transforms the representation of the formal content of a document into
the representation used in a proof assistance system and maintains the consistency between
both representations throughout the changes made on either side.

Such an integrated authoring environment should allow the user to write her mathemat-
ical documents in the language she is used to, that is a mixture of natural language and for-
mulas in LATEX style with her own notation. To understand as far as possible the semantics
of full natural language in a mathematical document we currently rely on annotations for
the document structure that must be provided manually by the user. Although it might still
be acceptable for an author to indicate the macro-structures like theories, definitions and
theorems, writing annotated formulas (e.g. “\F{in}{\V{x},\F{cup}{\V{A},\V{B}}}”
instead of “x \in A \cup B”) is definitely not. We present a mechanism that allows au-
thors to define their own notation and to use it when writing formulas within the same
document. Furthermore, this mechanism enables the proof assistance system to access the
formal content and use the same notation when presenting formulas to the author.

The paper is organized as follows: Section 2 gives a short introduction to the proof
assistance system ΩMEGA, its main components MAYA and the TASK LAYER, as well as
to the PLATΩ system that realizes the integration with the text-editor TEXMACS. Section 3
presents the annotation language for documents of the PLATΩ system, in particular for for-
mulas. Inspired by notational definitions in text-books, we present the means the author has
to define notations, from which an abstraction parser to read formulas and a corresponding
rendering parser to render formulas according to the user-defined notation are generated.
We sketch the basic mechanisms to accommodate efficiently modifications of the notations,
to restrain ambiguities, to allow for the redefinition of notations and to use notations de-
fined in other documents. Section 4 gives a worked example that illustrates the different
facets of the support offered on that basis. We discuss related works in Section 5 before
concluding in Section 6.

2 Preliminaries: ΩMEGA, MAYA, TASK LAYER and PLATΩ

The development of the proof assistance system ΩMEGA is one of the major attempts to
build an all-encompassing assistance tool for the working mathematician or for the formal
work of a software engineer. It is a representative of systems in the paradigm of proof
planning and combines interactive and automated proof construction for domains with
rich and well-structured mathematical knowledge. The ΩMEGA-system is currently un-
der re-development where, among others, it has been augmented by the development graph
manager MAYA, and the underlying natural deduction calculus has been replaced with the
CORE-calculus [5].

The MAYA system [8] supports an evolutionary formal development by allowing users
to specify and verify developments in a structured manner, it incorporates a uniform mech-

50

Autexier, Wagner

Figure 1. Architecture of integration of the text-editor and the ΩMEGA via the mediator PLATΩ

anism for verification in-the-large to exploit the structure of the specification, and it main-
tains the verification work already done when changing the specification. Proof assistance
systems like ΩMEGA rely on mathematical knowledge formalized in structured theories of
definitions, axioms and theorems. The MAYA system is the central component in the new
ΩMEGA system that takes care about the management of change of these theories via its
OMDOC-interface [13].

The CORE-calculus supports proof development directly at the assertion level [11],
where proof steps are justified in terms of applications of definitions, axioms, theorems or
hypotheses (collectively called assertions). It provides the logical basis for the so-called
TASK LAYER [9], that is the central component for computer-based proof construction in
ΩMEGA. The proof construction steps are: (1) the introduction of a proof sketch [23], (2)
deep structural rules for weakening and decomposition of subformulas, (3) the application
of a lemma that can be postulated on the fly, (4) the substitution of meta-variables, and
(5) the application of an inference. Inferences are the basic reasoning steps of the TASK

LAYER, and comprise assertion applications, proof planning methods or calls to external
theorem provers or computer algebra systems (see [9,6] for more details about the TASK

LAYER).
A formal proof requires to break down abstract proof steps to the CORE calculus level

by replacing each abstract step by a sequence of calculus steps. This has usually the effect
that a formal proof consists of many more steps than a corresponding informal proof of
the same conjecture. Consequently, if we manually construct a formal proof many inter-
action steps are typically necessary. Formal proof sketches [23] in contrast allow the user
to perform high-level reasoning steps without having to justify them immediately. The un-
derlying idea is that the user writes down only the interesting parts of the proof and that
the gaps between these steps are filled in later, ideally fully automatically (see also [19]).
Proof sketches are thus a highly adequate means to realize the tight integration of a proof
assistance system and a scientific text-editor.

The mediator PLATΩ [22] has been designed as a support system to realize the tight
integration of a proof assistance system and a text-editor (see Figure 1). PLATΩ is con-
nected with the text-editor by an informal representation language which flexibly supports
the usual textual structure of mathematical documents. This semantic annotation language,
called proof language (PL), allows for underspecification as well as alternative (sub)proof
attempts. In order to generate the formal counterpart of a PL representation, PLATΩ sepa-
rates theory knowledge like definitions, axioms and theorems from proofs. The theories are
formalized in the development graph language (DL), which is close to the OMDOC the-

51

Autexier, Wagner

ory language supported by the MAYA system, whereas the proofs are transformed into the
tasklayer language (TL) which are descriptions of TASK LAYER proofs. Hence, PLATΩ is
connected with the proof assistance system ΩMEGA by a formal representation close to its
internal datastructure.

Besides the transformation of complete documents, it is essential to be able to propa-
gate small changes from an informal PL representation to the formal DL/TL one and the
way back. If we always perform a global transformation, we would on the one hand rewrite
the whole document in the text-editor which means to lose large parts of the natural lan-
guage text written by the user. On the other hand we would reset the datastructure of the
proof assistance system to the abstract level of proof sketches. For example, any already
developed expansion towards calculus level or any computation result from external sys-
tems would be lost. Therefore, one of the most important aspects of PLATΩ’s architecture
is the propagation of changes.

The formal representation finally allows the underlying proof assistance system to sup-
port the user in various ways. PLATΩ provides the possibility to interact through context-
sensitive service menus. If the user selects an object in the document, PLATΩ requests
service actions from the proof assistance system regarding the formal counterparts of the
selected object. Hence, the mediator needs to maintain the mapping between objects in the
informal language PL and the formal languages DL and TL.

In particular, the proof assistance system supports the user by suggesting possible in-
ference applications for a particular proof situation. Since the computation of all possible
inferences may take a long time, a multi-level menu with the possibility of lazy evaluation
is provided. PLATΩ supports the execution of nested actions inside a service menu which
may result in a patch description for this menu.

Through service menus the user also gets access to automatic theorem provers and
computer algebra systems which can be used to automatically verify conclusions and com-
putations as well as suggest possible corrections. These and many more functionalities are
supported by PLATΩ through its mechanism to propagate changes as well as the possibility
of custom answers to the user of the text-editor.

A more detailed description of PLATΩ is given in [22]. Note that, generally we aim at
an approach that is independent of the particular proof assistance system to be integrated.
Therefore the proof language as well as the service menu language are parameterized over
the sublanguages for definitions, formulas, references and menu argument content.

Presentational convention: The work presented in this paper has been realized in TEXMACS.
Although the TEXMACS markup-language is analogous to LATEX-macros, one needs to get
used to it: For instance a macro application like \frac{A}{B} in LATEX gets <frac|A|B>
in TEXMACS-markup. Assuming that most readers are more familiar with LATEX than with
TEXMACS, we will use a LATEX-syntax for the sake of readability.

3 Dynamic Notation

The PLATΩ system supports users to interact with a proof assistance system from inside
the text-editor TEXMACS by offering service menus and by propagating changes of the doc-
ument to the system and vice versa. Mediating between a text-editor and a proof assistance
system requires to extract the formal content of a document, which is already a challenge in

52

Autexier, Wagner

Element Arguments
\F {name}{\B?, (\F |\V |\S)? }
\B {\V+ }
\V {name, (\T |\TX |\TF)?}
\S {name}
\T {name}
\TX {(\T |\TX |\TF), (\T |\TX |\TF) }
\TF {(\T |\TX |\TF), (\T |\TX |\TF) }
Figure 2. Grammar of the annotation language for formulas.

itself if one wants to allow the author to write in natural language without any restrictions.
Therefore we currently use the semantic annotation language presented in [21] to se-

mantically annotate different parts of a document. The annotations can be nested and
subdivide the text into dependent theories that contain definitions, axioms, theorems and
proofs, which themselves consist of proof steps like for example subgoal introduction,
assumption or case split. The annotations are a set of macros predefined in a TEXMACS
style file and must be provided manually by the author. We were particularly cautious
that adding the annotations to a text does not impose any restrictions to the author about
how to structure her text. Note that for the communication with the proof assistance sys-
tem, also the formulas must be written in a fully annotated format whose grammar is
shown in the table of Figure 2. \F{name}{args} represents the application of the func-
tion name to the given arguments args. \B{vars} specifies the variables vars that are
bound by a quantifier. A variable name is denoted by \V{name} and may be optionally
typed. A type name is represented by \T{name}. Complex types are composed using
the function type constructor → represented by \TF{type1, type2}, or the pair type
operator × represented by \TX{type1,type2}. Finally, a symbol name is denoted by
\S{name}. For example, the formula x ∈ A∩ (B∪C) is represented by the fully annotated
form \F{in}{\V{x},\F{cap}{\V{A},F{cup}{\V{B},V{C}}}}, the quantified formula
∀x. x = x as \F{forall}{\B{\V{x}},\F{=}{\V{x},\V{x}}}. In many cases the type
of a variable can be reconstructed using type inference or from bounded context variables,
therefore typing variables is optional in our system.

The vision is on the one hand to combine our approach with the MATHLANG project [12]
and on the other hand to use natural language analysis techniques for the semi-automatic
annotation of the document structure, e.g. to automatically detect macro-structures like
theories, definitions and theorems. Although these macro-structures might be annotated
manually by the user at the moment, it is not acceptable to write formulas in fully an-
notated form. This motivates the need for an abstraction parser that converts formulas
in LATEX syntax into their fully annotated form. Furthermore, we also need a rendering
parser to convert fully annotated formulas obtained from the proof assistance system into
LATEX-formulas according to the user-defined notation.

The usual software engineering approach would be to write grammars for both direc-
tions and integrate the generated parsers into the system. Of course, this method is highly
efficient but the major drawback is obvious: the user has to maintain the grammar files
together with her documents. In our document-centric philosophy, the only source of
knowledge for the mediator and the proof assistance system should be the document in
the text-editor. Therefore, instead of maintaining special grammar files for the parser, the

53

Autexier, Wagner

idea of dynamic notation is to synthesize these grammar informations from the definitions
and notations occurring in the same document where they are used. This WYSIWYG style
of defining notation starts from basic abstraction and rendering grammars for types and for-
mulas, where only the base type bool, the complex type constructors→,× 1 and the logic
operators ∀,∃,λ,>,⊥,∧,∨,¬,⇒,⇔ are predefined. This set of basic types and logic oper-
ators is a parameter of the PLATΩ system that has to be specified for each proof assistant
system. A component of PLATΩ maps them into the input syntax of the particular proof
assistant (e.g. Π,o) and the way back. Since mathematicians in general are not familiar
with the type o, we decided to use the name bool instead. Based on that initial grammar
the definitions and notations occurring in the document are analyzed in order to extend in-
crementally both grammars for dealing with new symbols, types and operators. The scope
of a notation should thereby respect the visibility of its defining symbol or type, i.e. the
transitive closure of dependent theories. Finally, all formulas are parsed using their theory
specific abstraction parser.

Notations defined by authors are typically not specified as grammar rules. Therefore,
we first need a user friendly WYSIWYG method to define notations and to automatically
generate grammar rules from it. Looking at standard mathematical textbooks, one observes
sentences like “Let x be an element and A be a set, then we write x ∈ A, x is element of A,
x is in A or A contains x.”. Supporting this format requires the ability to locally introduce
the variables x and A in order to generate grammar rules from a notation pattern like x ∈ A.
Without using a linguistic database, patterns like x is in A are only supported as pseudo
natural language. Beside that, the author should be able to declare a symbol to be right- or
left-associative as well as precedences of symbols.

We introduce the following annotation format to define the operator ∈ and to introduce
multiple alternative notations for ∈ as closely as possible to the textbook style.

\begin{definition}{Function \in}
The predicate \concept{\in}{elem \times set \rightarrow bool}
takes an individual and a set and tells whether that
individual belongs to this set.

\end{definition}

\begin{notation}{Function \in}
Let \declare{x} be an individual and \declare{A} a set,
then we write \denote{x \in A}, \denote{x is element of A},
\denote{x is in A} or \denote{A contains x}.

\end{notation}

Figure 3 shows how the above example definition and notation appear in a TEXMACS
document. A definition may introduce a new type by \type{name} or a new typed sym-
bol by \concept{name}{type}. We allow to group symbols to simplify the definition of
precedences and associativity. By writing \group{name} inside the definition of a sym-
bol, this particular symbol is added to the group name which is automatically created if
it does not exist. A notation may contain some variables declared by \declare{name}
as well as the patterns written as \denote{pattern}. Furthermore, one can specify a

1 Here × is not a pair type constructor, but only syntactic sugar that allows to write τ1× τ2 → τ0 as short-hand for τ1 →
(τ2→ τ0).

54

Autexier, Wagner

Figure 3. TEXMACS document with dynamic notation

symbol or group of symbols to be left- or right-associative by writing \left{name} or
\right{name} inside the notation. Finally, precedences between symbols or groups are
defined by \prec{name1,...,nameN}, which partially orders the precedence of these
symbols and groups of symbols from low to high. Declarations are rejected if conflict-
ing information is detected during the computation of the transitive closure. Information
about association and precedence is considered to be visible in the whole theory whereas
the visibility of notation starts at the position of its declaration. Please note that a notation
is related to a specific definition by referring its name, in our example Function \in.

Starting the processing of a semantically annotated document, as for example the doc-
ument shown in Figure 3, all surrounding natural language parts in the document are re-
moved and the abstraction and rendering parsers and scanners are initialized with the initial
grammars for types and formulas. The goal of processing the document is to produce a set
of grammar rules for the respective grammars from the notational definitions given in the
text. A top-down approach, that processes each definition or notation on its own, extending
the grammars and recompiling the parsers before processing the next element, is far too in-
efficient for real time usage due to the expensive parser generation process 2 . The diagram
shown in Figure 4 describes the procedure that we use to minimize the amount of parser
generations as much as possible.

• Phase 1: All definitions are processed sequentially. For each definition the name of the

2 The parser generator is implemented and compiled in Lisp to be part of PLATΩ. For instance, the parser generation for
the example document takes ≈ 3sec.

55

Autexier, Wagner

Definitions Notations Document

scanning

symbols
base types

adding terminals

scanning

operators

adding rules

parsing

Figure 4. Procedure to minimize the amount of parser generations

introduced type or symbol is added to both grammars.
• Phase 2: All notations are processed sequentially. For each notation the introduced

patterns are analyzed to generate rules for both grammars.
• Phase 3: Abstraction and rendering parsers are rebuilt and all formulas are processed.

The definitions and notations are analyzed to generate grammar rules for the abstrac-
tion grammar; in case different notations are defined for a symbol, this results in multiple
grammar rules. For the rendering grammar we currently select the first given notation. The
parser generator then creates the respective abstraction and rendering parsers. The details
of the analysis and the parser creation can be found in [7].

3.1 Management of Change for Notations

The constructed abstraction parser is for one version of the document. When the author
continues to edit the document, it may be modified in arbitrary ways, including the change
of existing definitions and notations. Before the modified semantic content of the document
is uploaded into the proof assistance system, we need to recompute the parsers and parse the
formulas in the document. Always starting from scratch following the procedure described
in the previous section is highly inefficient and may jeopardize the acceptance by the author
of the system if that process takes too long. Therefore there is a need for management of
change for the notational parts of a document and those parts that depend on them. The
management of change task has three aspects:

• First, we must determine any modifications in the notational parts: we re-process all
definitions and notations of the document and obtain a new set of grammar rules. By
caching these sets of rules for each symbols, we can determine the grammar changes.

• Second, we must adjust only those parts of the grammar that are affected by the de-
termined modifications and adjust the parsers accordingly. If the modification of the
grammar is non-monotonic, i.e. some rules have been removed or changed, we currently
have to recompute the whole parser from scratch. This is for instance the case if we
change a notation for some symbol, e.g. replacing “A ⊂ B” by “B ⊃ A”, but not if we
add an additional alternative notation for a symbol, like allowing “A is subset of B” in
addition to “A ⊂ B”. If the grammar is simply extended, we can optimize the creation
of the new parser (see [7] for details).

• Third, we must re-parse (resp. re-render) the formulas of the document that are affected
by the changes. Once the parser has been adjusted we need to re-parse those formulas
the author has written or changed manually, e.g. if the formula in the axiom of Fig-
ure 3 would have been replaced by ∀U,V. (U is subset o f V)⇔ (∀x. (x is in U)⇒
(V contains x)). Furthermore, we have to re-render those formulas that were generated

56

Autexier, Wagner

by the proof assistance system. To this end we store the following information on for-
mulas in the document: for each formula we have a flag indicating if it was generated
by the proof assistance system, the corresponding fully annotated formula, and the set of
grammar rules that were used for parsing (resp. rendering) that formula:

· If the formula was written by the author, the associated fully annotated formula and
the grammar rules are the result of the abstraction parser.
· If a formula was generated by the proof assistance system, that formula is the result

of rendering the fully annotated formula obtained from the proof assistance system.
The stored grammar rules are those returned by the rendering parser.

Note that we do not prevent the author from editing a generated formula. As soon as
the author edits such a formula, the flag attached to the formula is toggled to “user”
and the cached fully annotated version and grammar rules are replaced during the next
abstraction parsing of the formula. The stored information is used to optimize the next
parsing (resp. rendering) pass over the document: A formula is only parsed from scratch
if at least one of the used grammar rules has been modified or deleted, or if either the
user or the proof assistance system has changed the formula (resp. the fully annotated
formula).

3.2 Ambiguities, Dependencies and Libraries

In order to enable a document-centric approach for formalizing mathematics and software,
the added-values offered by the authoring environment must outweigh the additional bur-
den imposed to the author compared to the amount of work for a non-assisted preparation
of a document. We exploit the theory structure contained in a document to reduce the
ambiguities the author would have to deal with and also support the redefinition of nota-
tions. With respect to added-values, we provide checks if a notation is used before it has
been introduced in a document and, most importantly, we support an author to build on
formalizations contained in other documents.

Ambiguities. The abstraction parser returns all possible readings and during the parsing
process can try to make use of type-reconstruction provided by a so-called refiner [18] to
eliminate possible readings that are not type-correct. This uses the logical context of a
formula which is determined by the theory it occurs in: the different parts of a document
must be assigned to specific theories. New theories can be defined inside a document and
built on top of other theories. The notion of theory is that of OMDOC [13] respectively
development graphs [15]. The other possibility consists of avoiding some ambiguities that
would arise when sticking to have a single parser by having different parsers for different
theories. As an example consider a theory of the integers with multiplication with the nota-
tion “x× y” and a completely unrelated theory about sets and Cartesian products with the
same notation. This typically is a source of ambiguities that would require the use of type
information to resolve the issue. Using different parsers for different theories completely
avoids that problem.

Redefining Notations. When importing a theory, we want to reuse the formal content,
but possibly adapt the notation used to write formulas. This occurs less frequently inside
a single document, but occurs very often when using a theory formalized in a different

57

Autexier, Wagner

document. Since we linked the parsing (and hence the rendering) to the individual theories,
we allow to redefine notations for symbols inherited from other theories. The grammar
rules for a parser are determined by including for each imported symbol that notation which
is closest in the import hierarchy of theories. If there are two such theories 3 , a conflict is
raised and the author must interactively advise which notation to use.

Dependencies. A parser and the associated renderer are attached to a theory and each
position in the document belongs to a theory. Therefore, it is possible that within a spe-
cific theory, a formula uses the notation of some symbol although the definition of that
notation only occurs afterwards in the document. We notice such situations by comparing
the position in the document where grammar rules are defined and where they have been
used to parse a formula 4 . If we determine such a situation, we could try to re-arrange
the document by inspecting the grammar rules used for abstraction and rendering. How-
ever, our impression is that most authors would be upset if their document is rearranged
automatically. Therefore, we only notify the author in these situations.

Libraries. A library mechanism is the key prerequisite to support the development of
large structured theories. We carry over that concept to the document-centric approach we
are aiming at by extending the citation mechanism that is commonly used in documents.
PLATΩ provides a macro to cite a document semantically, i.e. it will not only be included
in the normal bibliography of the document, but the formalized content of the document
is included. Aside from the extracted formalizations we extract the notations contained in
that document. The structured theory approach for parsers turns out to be again particularly
beneficial to support that process and to redefine the notations for imported symbols.

4 A Worked Example

In this section we will illustrate the integration by discussing a worked example in the
theory of Simple Sets. The mediation between the informal representation in the text-
editor and the formal representation in the proof assistance system will be described on an
abstract level. All details on the communicated documents, patch descriptions and menus
for this example can be found in [21].

Since the TEXMACS interface for proof assistance systems is under continuous develop-
ment, a PLATΩ plugin for TEXMACS has been developed by the ΩMEGA group that maps
the interface functions of PLATΩ to the current ones of TEXMACS and which defines a style
file for PL macros in TEXMACS. In the following example, we use this plugin to establish a
connection between TEXMACS and PLATΩ’s XML-RPC server.

In the text-editor, we have written an example document with the semantic annotation
language PL (defined in [21]). The theory Simple Sets in this document contains for ex-
ample definitions and axioms for ⊂, =, ∪ and ∩. Figure 3 (p. 55) and the top of Figure 5
(p. 59) show the theory as seen in TEXMACS. Furthermore, we have written a theory Dis-
tributivity in Simple Sets which imports all knowledge from the first theory Simple Sets.
This second theory consists of a theorem about the Distributivity of ∩. The user has already
started a proof for this theorem by introducing two subgoals. Figure 6 shows the theory as

3 The theories can form an acyclic graph which may lead to the Nixon diamond scenario.
4 A similar dependency is between a definition of a concept and the definition of its notation.

58

Autexier, Wagner

Figure 5. Theories Simple Sets and Distributivity in Simple Sets in TEXMACS

Figure 6. Manually written partial proof in TEXMACS

seen in TEXMACS.
The PL macros contained in the document must be provided by the user and are used

to automatically extract the corresponding PL document, the informal representation of the
document for PLATΩ. Uploading this PL document, PLATΩ creates a DL document con-
taining definitions, axioms and theorems in a representation close to OMDOC that MAYA

takes as input for the creation of a development graph. The partial proof is transformed into
a TL document, an abstract representation for the TASK LAYER.

Further developing the document, the user has started to prove the first subgoal by deriv-
ing a new subgoal and introducing an assumption (see Figure 6). In general, the difference

59

Autexier, Wagner

Figure 7. Interactive Proof Construction via Service Menus

with respect to the last synchronized version of the document should be computed and sent
to PLATΩ. At the moment, TEXMACS is not able to compute these differences, therefore
the whole document is uploaded again and PLATΩ computes the differences in the form
of a patch. That patch for the informal PL document is then transformed by PLATΩ to a
patch for the formal representations in DL and TL. In our example, the modifications do
not affect the theory knowledge and the transformation only results in modifications for the
representation of the TASK LAYER. Altogether, the user is able to synchronize her infor-
mal representation in the text-editor document with the formal representation in the proof
assistance system.

The next interesting feature of PLATΩ is the possibility of getting system support from
the underlying proof assistance system. Selecting the recently introduced formula in the
assumption, the user requests a service menu from PLATΩ. Requesting services for the
corresponding task in the TASK LAYER, a list of available inferences is returned to PLATΩ.
In order to answer quickly to the text-editor, we generate nested actions that allow to incre-
mentally compute the formulas resulting from the application of an inference rather than
to precompute all possible resulting formulas for all available inferences. Note that the
inferences are automatically generated from the axioms, lemmas and theorems contained
in the document.

The menu is displayed to the user in TEXMACS, who can select which inference to ap-
ply. The selection triggers the computation of all resulting formulas, for instance for the
inference Definition of ∩, defined by the corresponding axiom. PLATΩ tells the text-editor
how to change the menu by sending a patch description for the menu. The user selects the
desired formula (see Figure 7) which triggers the application of the inference. PLATΩ calls
the TASK LAYER for the application of the selected inference in order to obtain the chosen
formula. The TASK LAYER performs the requested operation which typically modifies the
proof of TASK LAYER. This modification is transformed by PLATΩ into a patch descrip-
tion for the formal representation in TL and subsequently into a PL patch for the informal
document in TEXMACS, which is then sent to the text-editor. Furthermore, the menu is
closed by sending a patch description which removes it. Currently, the new proof frag-

60

Autexier, Wagner

Figure 8. Modification of the Proof in TEXMACS by PLATΩ

Figure 9. Automatically Constructed Proof in TEXMACS.

ments are inserted using predefined natural language fragments to describe the proof steps
and the current rendering parser is used to render the formula in the notation defined by the
author. Future work will consist of integrating the natural language proof presentation sys-
tem P.REX [10] into PLATΩ, in order to generate true natural language output for the proof
steps added by the proof assistance system. The text-editor finally patches the document
according to this patch description. The resulting document is shown in Figure 8.

Aside from interactive proof construction, the author can call a proof procedure that
searches for a proof on the TASK LAYER. In this case a sequence of proof steps is added
to the TASK LAYER which are then transformed into patches for PLATΩ. Figure 9 shows
such a proof in TEXMACS which uses the rendering parser to present the new formulas.

Note that the user can change any part of the document, including the parts generated
by the proof assistance system. Due to the maintenance of consistent versions, the further
development of the document can be a mix of manual authoring by the user and interactive
authoring with the proof assistance system.

61

Autexier, Wagner

5 Related Work

To our knowledge there has not been any attempt to integrate a proof assistance system with
text-editors in the tight and flexible way as done via PLATΩ. Approaches like AUTOMATH,
MIZAR, ISAR, and THEOREMA do not consider the input document as an independent,
first-class citizen with an internal state that has to be kept consistent with the formal rep-
resentations in the proof assistance system while allowing arbitrary changes on each side.
The first attempts in that direction have been carried out in the context of the MATITA

prototype which used to have an integrated component to re-annotate computer generated
representation of proofs. Since re-generation was a slow non-incremental operation based
on complex XSLT style-sheets, re-annotating the text was an unpleasant experience for the
user, which hampered user-acceptance of that part of the MATITA system. A similar attempt
in that direction has been carried in the context of PROOF GENERAL [3]. In PROOF GEN-
ERAL the user edits a central document in a suitable editing environment, from which it can
be evaluated by various tools, such as a proof assistance system, which checks whether the
document contains valid proofs, or a renderer which typesets or renders the document into
a human-oriented documentation readable outside the system. However, the system is only
an interface to proof assistance systems that process their input incrementally. Hence, the
documents edited in PROOF GENERAL are processed incrementally in a top-down manner,
parts that have been processed by the proof assistance system are locked and cannot be
edited by the user. Furthermore, the documents are in the input format of the proof assis-
tance systems rather than in the format of some type-setting program. Though we have tried
to design the functionalities and representation languages in PLATΩ’s interface as general
as possible, future work will have to show that PLATΩ can be easily adapted to different
proof assistance systems (like PROOF GENERAL).

With respect to supporting the definition of new notations that are used for type-setting,
the systems ISABELLE [16] and MATITA [2] are closest. ISABELLE comes with type-
setting facilities of formulas and proofs for LATEX and supports the declaration of the nota-
tion for symbols as prefix, infix, postfix and mix-fix. Furthermore, it allows the definition
of translations which are close to our style of defining notations. The main differences
are: ISABELLE processes the input document containing the declaration of the notation
with a top-down mechanism and finally generates an output document in LATEX. Since in
our WYSIWYG setting, input and output document are physically the same document, the
document is processed in multiple phases: first the definition of types and symbols are
identified, second the parser rules are synthesized from the declarations of notation, third
the document is processed with a family of local parsers. Due to the batch processing
paradigm of ISABELLE, there are no mechanisms to efficiently deal with modifications of
the notation, which is crucial in our interactive authoring environment.

In the context of MATITA Padovani and Zacchiroli also proposed a mechanism of ab-
straction and rendering parsers [17] that are created from notational equations which are
comparable to the grammar rules we generate from the notational definitions. Their mech-
anism is mainly devoted to obtain MathML representations [1] where a major concern also
is to maintain links between the objects in MathML to the internal objects. Similar to
ISABELLE, the input document is processed top-down and is separated from the output
document in MathML. Also, they do not consider the effect of changing the notations and
to efficiently adjust the parsers. The main difference to the approaches in ISABELLE and

62

Autexier, Wagner

MATITA is that in our approach the parsers and renderers are part of the user interface and
not of the proof assistance system.

Audebaud and Rideau presented in the context of the COQ proof assistant a command
line interface connection with TEXMACS called TMCOQ [4]. Furthermore Mamane and
Geuvers are developing a more document-centric proof script interface called TMEGG [14]
which uses similar techniques as PROOF GENERAL with respect to the batch processing of
the document.

6 Conclusion

In order to enable a document-centric approach for formalizing mathematics and software,
the added-values offered in an assisted authoring environment must outweigh the additional
burden imposed to the author compared to the amount of work for a non-assisted prepara-
tion of a document. We presented the mediator PLATΩ that allows the user to write her
mathematical documents in the language she is used to, that is a mixture of natural language
and formulas, and to define and use her own notation inside a document.

Building theory-specific parsers from these notation definitions, PLATΩ automatically
builds up the corresponding formal representation from formulas written by the user in the
LATEX-style she is used to and renders the formulas produced by the proof assistance system.
It provides a sophisticated management of change for notations and takes further care of the
maintenance of consistent versions in TEXMACS and the proof assistance system. All kinds
of services of the underlying proof assistance system regarding the formal representation
can be provided inside the text-editor through PLATΩ as context-sensitive service menus.

This paper illustrates the major aspects that are supported in the current version of the
integration. Further work will consist of reducing the amount of annotations the user has
to provide by employing natural language analysis techniques. Finally, we plan to increase
the interoperability with other proof assistant systems as well as tutorial dialogue systems.

References
[1] Mathematical Markup Language (MathML) Version 2.0. W3c recommendation 21 february 2001. Technical report,

http://www.w3.org/TR/MathML2, 2003.

[2] A.Asperti, C. Sacerdoti-Coen, E.Tassi, and S.Zacchiroli. User interaction with the Matita proof assistant. Journal of
Automated Reasoning, Special Issue on User Interfaces for Theorem Proving, 2007. To appear.

[3] D. Aspinall, C. Lüth, and B. Wolff. Assisted proof document authoring. In M. Kohlhase, editor, Mathematical
Knowledge Management MKM 2005, volume 3863 of LNAI, pages 65– 80. Springer, 2006.

[4] P. Audebaud and L. Rideau. TEXMACS as authoring tool for publication and dissemination of formal developments. In
D. Aspinall and C. Lüth, editors, 5th Workshop on User Interfaces for Theorem Provers (UITP’03), ENTCS. Elsevier,
September 2003.

[5] S. Autexier. The CORE calculus. In R. Nieuwenhuis, editor, Proceedings of CADE-20, LNAI 3632, Tallinn, Estonia,
July 2005. Springer.

[6] S. Autexier and D. Dietrich. Synthesizing proof planning methods and Ωants agents from mathematical knowledge. In
J. Borwein and B. Farmer, editors, Proceedings of MKM’06, volume 4108 of LNAI, pages 94–109. Springer, 2006.

[7] S. Autexier, A. Fiedler, T. Neumann, and M. Wagner. Supporting user-defined notations when integrating scientific
text-editors with proof assistance systems. In M. Kerber and R. Miner, editors, Proceedings of MKM’07. Springer,
2007.

[8] S. Autexier and D. Hutter. Formal software development in Maya. In D. Hutter and W. Stephan, editors, Festschrift in
Honor of J. Siekmann, volume 2605 of LNAI. Springer, February 2005.

[9] D. Dietrich. The Task Layer of the ΩMEGA System. Diploma thesis, Saarland University, Saarbrücken, Germany,
2006.

63

Autexier, Wagner

[10] A. Fiedler. User-adaptive Proof Explanation. Phd thesis, Naturwissenschaftlich-Technische Fakultät I, Universität des
Saarlandes, Saarbrücken, Germany, 2001.

[11] X. Huang. Human Oriented Proof Presentation: A Reconstructive Approach. Number 112 in DISKI. Infix, Sankt
Augustin, Germany, 1996.

[12] F. Kamareddine, M. Maarek, and J. B. Wells. Toward an object-oriented structure for mathematical text. In
M. Kohlhase, editor, MKM 2005, Fourth International Conference on Mathematical Knowledge Management, LNAI
3863, pages 217–233. Springer, 2006.

[13] M. Kohlhase. OMDOC - An Open Markup Format for Mathematical Documents [Version 1.2], volume 4180 of LNAI.
Springer, August 2006.

[14] L. E. Mamane and H. Geuvers. A document-oriented Coq plugin for TEXMACS. In M. Kerber and R. Miner, editors,
Proceedings of MKM’07. Springer, June 2007.

[15] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - proof management for structured specifications.
Journal of Logic and Algebraic Programming, special issue on Algebraic Specification and Development Techniques,
67(1-2):114–145, April 2006.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer, 2.

[17] L. Padovani and S. Zacchiroli. From notation to semantics: There and back again! In J. Borwein and B. Farmer, editors,
Proceedings of MKM’06, volume 4108 of LNAI. Springer, August 2006.

[18] C. Sacerdoti-Coen and S. Zacchiroli. Efficient ambiguous parsing of mathematical formulae. In A. Asperti,
G. Bancerek, and A. Trybulec, editors, Proceedings of the Third International Conference on Mathematical Knowledge
Management, volume 3119 of LNCS, pages 347–362, Bialystok, Poland, September 2004. Springer.

[19] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, and M. Pollet. Proof development with OMEGA:
√

2 is irrational.
In M. Baaz and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, 9th International
Conference, LPAR 2002, number 2514 in LNAI, pages 367–387. Springer, 2002.

[20] J. van der Hoeven. Gnu TEXMACS: A free, structured, WYSIWYG and technical text editor. Number 39-40 in Cahiers
GUTenberg, May 2001.

[21] M. Wagner. Mediation between text-editors and proof assistance systems. Diploma thesis, Saarland University,
Saarbrücken, Germany, 2006.

[22] M. Wagner, S. Autexier, and C. Benzmüller. PLATΩ: A mediator between text-editors and proof assistance systems. In
C. Benzmüller S. Autexier, editor, 7th Workshop on User Interfaces for Theorem Provers (UITP’06), ENTCS. Elsevier,
August 2006.

[23] F. Wiedijk. Formal proof sketches. In S. Berardi, M. Coppo, and F. Damiani, editors, Types for Proofs and Programs:
Third International Workshop, TYPES 2003, LNCS 3085, pages 378–393, Torino, Italy, 2004. Springer.

64

How to Teach to Write a Proof

Adam Naumowicz1,2

Institute of Computer Science
University of Bia lystok

Poland

Abstract

In this paper we present methodological foundations of courses employing the Mizar proof-checking sys-
tem, which are currently part of the obligatory curriculum for computer science students at the University
of Bia lystok.

Keywords: Mizar in education, the art of proving, natural deduction, automated proof checking.

1 Introduction

The title of this paper is intended to cause the reader’s recollection of the widely-
discussed and seminal Leslie Lamport’s paper “How to Write a Proof” ([3]). In that
paper Lamport proposed a method of writing proofs which “makes it much harder
to prove things that are not true”. Nowadays there are numerous systems that
make it “almost completely impossible” to prove things that are not true, with the
“almost” covering the always-non-zero probability of hardware and software faults.
A recent comparison of leading proof systems compiled by Wiedijk ([11]) shows that
today there is no monopoly for the best proof style – writing proofs considered as
formal depends very much on the applied system’s foundations and philosophy as
well as the intended goal of creating the proof.

Mizar is a proof-checking system aimed at developing formal mathematics in a
rigorous way under the control of a computer, but without unnecessary departure
from the standard mathematical practice (see e.g. [7], [10]). To this end, the system
has been equipped with an underlying proof language quite close to the so-called
“mathematical vernacular” based on a declarative style of natural deduction. Its
distinctive features, which can be inferred from the aforementioned comparison (see

1 This work has been partially supported by the FP6 IST project no. 510996 Types for Proofs and Programs
(TYPES).
2 Email: adamn@mizar.org

Naumowicz

[11]), make it one of the most “mathematical in spirit” of all the systems and include
inter alia:

• readable proof input files,
• ZFC set theory and classical logic forming the base,
• the use of (dependent) types,
• low but quite efficient automation,
• large mathematical standard library.

Considering these features, it is not surprising that the bibliography of this
project 3 shows a long history of using its various versions in mathematics instruc-
tion on different levels – from secondary school courses to writing PhD theses (see
e.g. [4],[8] and [6]).

Owing especially to the readability and writability of proofs, the Mizar system
is now renowned for the biggest library of formalized mathematical data, Mizar
Mathematical Library (MML) 4 . The system has been involved in several big for-
malization projects, attracted almost two hundred authors of serious contributions
who represent more than a dozen countries, despite being initially developed in a
much disadvantageous environment behind the ’Iron Curtain’ in Poland through
1980s and 1990s.

2 Whom to teach writing proofs?

For over three decades now it has been tried to get working mathematicians more
involved in the use and development of proof-assistants. Nowadays mathematicians
utilize lots of scientific software to name just computer algebra systems, geometric
presentation tools, etc. but for some reasons a widespread adoption and dissemina-
tion of proof-assistants in mathematical practice is still far ahead on the horizon.
This dissemination process seems to be mainly impeded by the fact that the state-of-
the-art proof-assistants are still not considered useful enough in the research aimed
at obtaining new results. As Lamport puts it in [3], “Mathematicians tend to be
conservative, and many are unwilling to consider that there might be a better way
of writing proofs.”

Worse still, the mathematical community presents a very sceptical attitude to-
wards various initiatives, like the utopian but very inspiring QED project 5 for
instance, directed at advancing research in this field. Despite the evidence collected
recently that it is certainly possible to write fully formal mathematical exposi-
tions/formalizations for quite advanced mathematics, be it classical theories with
well-established theorems ([2]), specialized monographs ([1]) or recent mathematical
journal papers ([5]), the de Bruijn factor seems still too high to persuade working
mathematicians to make the extra effort required by proving at least parts of their
work rigorously under the control of a proof-assistant system.

Therefore, as mathematicians find the length of formal proofs and the unfamiliar

3 The Bibliography of the Mizar Project, URL: http://mizar.org/project/bibliography.html.
4 See the statistics presented at http://mmlquery.mizar.org.
5 There is a QED archive at http://www-unix.mcs.anl.gov/qed/.

66

Naumowicz

format rather intimidating, it has been observed that instead of trying to convince
this community, a new approach worth trying is to appeal to the new generation.
Arguably, today’s students who do not yet carry any such bias of traditional mathe-
matical practice may be even better users of proof-assistants if we manage to instill
the idea into their minds early enough. When Lamport proposed his structured
proof method presented in [3], he envisaged a growing interest in proving not only
pure mathematics, but also various computer science applications. In particular he
intended to use his system for proving the correctness of algorithms. Today this is
done in practice, and it shows that apart from mathematicians an important and
prospective group of users of various proof tools are also computer scientists.

3 How difficult is it to learn writing proofs with Mizar?

As Wiedijk aptly pointed out 6 , proof assistants tend to resemble their implemen-
tation language, and so Mizar is about as complex as the Pascal programming
language. If this is really the case, then the answer to the above question should
definitely be “Not at all”.

Let us remind that Pascal is an imperative computer programming language,
developed around 1970 by Niklaus Wirth as a language particularly suitable for
structured programming. A derivative known as Object Pascal was later designed
for object oriented programming – this is the language that the current Mizar

system is implemented in.
Initially, Pascal was a language intended to teach students structured program-

ming, and generations of students have ”cut their teeth” on Pascal as an intro-
ductory language in undergraduate courses. Owing to that, Pascal is far too often
considered by many as suitable only for educational purposes. Once popular criti-
cism in the spirit of Brian Kernighan’s famous paper in defense of the C language
“Why Pascal is Not My Favorite Programming Language” – although almost com-
pletely irrelevant to modern Pascal variants – is still a source of unjust prejudice in
many computer science communities.

Nevertheless, variants of Pascal are still widely used today and all types of Pas-
cal programs can be used for both education and “serious” software development.
To name just a few notable examples, the original operating system of Apple Lisa
computers was once coded in Pascal, and the primary high-level language used for
development in the first couple of years of the Macintosh was also Pascal. Addition-
ally, the popular typesetting system TEXwas written by Donald E. Knuth in WEB
– the original literate programming system using Pascal.

Indeed, in many respects Mizar is similar to its implementation language. Even
on the syntactic level there are certain similarities which allow to claim that learning
Mizar should not in general be more complicated than learning programming in
Pascal.

The lexis of Object Pascal consists of 29 special symbols, e.g. #, [, @, <=,
etc. and 65 reserved words, e.g. if, then, procedure, etc. together with 39 so-

6 See Wiedijk’s slides to the “Formalization of Mathematics” course at the TYPES Summer School in
Göteborg – August 2005 (http://www.cs.chalmers.se/Cs/Research/Logic/TypesSS05/Extra/wiedijk_sl.
pdf)

67

Naumowicz

called “directives” – words with a reserved meaning only in certain contexts, e.g.
abstract. In Mizar we have 27 special symbols and 110 reserved words (6 of them
are not actually implemented yet), so the numbers are almost identical! What is
more, there are 10 symbols shared by both languages and also 15 identical reserved
words – it is quite surprising for two so much different projects – a proof language
and a programming language. The most significant difference on the syntactic level,
however, is that current Mizar, unlike Pascal, is case-sensitive.

But even more importantly, Mizar has semantic features which make it very
suitable for teaching purposes, just like Pascal. An important similarity is surely
due to the high level of both languages, as they tend to use as many as possible
words from the natural English. On the one hand this is why there is this number
of shared reserved words. On the other hand, this allows to create constructs and
expressions close to natural language, and then relatively easy to acquiesce by new
users. The same concerns several features we can describe as “syntactic sugar” –
their sole purpose is to make the source text more readable for humans. However,
these features are devised with the intention to preserve the source text’s conciseness
rather than make it much more verbose. This way the problems we may find learning
the syntax of other languages which use elements of natural language excessively
(like COBOL or SQL) are avoided.

Moreover, both the Pascal and Mizar languages are notably highly structured
and also strongly typed. The latter is especially responsible for supporting the
production of rigorous and semantically unambiguous expositions.

Pascal being an imperative programming language allows to manipulate the
state (memory) of the machine by means of variables and other more complex
expressions. Mizar’s imperative part consists of steps of natural deduction, e.g.
assume, take, consider, etc. – they allow to manipulate the current proof-goal,
the so-called thesis. These imperative constructs, however, are used in a declarative
way – stating what is to be proved rather than how to prove it.

Another feature of Mizar inherited directly from its implementation language
is the way one works with the system. This is often called “lazy interaction” –
not a full interaction, but rather running the system on a source text in order to
reveal errors and then correct them using the step-wise refinement method. Mizar

reports its errors in much the same way a Pascal compiler reports warnings and
errors. As Mizar does not stop processing on encountering the first error, its error
recovery mechanism allows to check correctness of incomplete texts similarly to
compiling modularized programs. This is particularly useful when users want to
develop various parts of a proof e.g. postponing a proof or its more complicated
parts. Especially in the educational context this can be useful to first sketch a
proof’s structure, revise it when needed, and also develop parts independently by
several people.

It should be noted that although Mizar possesses certain didactic qualities, its
developers hope this will never make it subjected to so much undeserved prejudice
as Pascal.

68

Naumowicz

4 Basic framework of Mizar-aided courses at the Uni-
versity of Bia lystok

The Mizar system has been developed at the University of Bia lystok (formerly
the Bia lystok branch of Warsaw University) since 1970s. The research involved
the members of the mathematics department, so naturally all teaching experiments
concerned local mathematics students. The teaching has never had a permanent po-
sition in the mathematics curriculum – Mizar-aided classes were organized mainly as
voluntary monographic courses, e.g. “Lattice theory”, “Category Theory”, “Topol-
ogy”, etc. The situation changed when there emerged a new university unit – the
department of Computer Science and then the core Mizar developers formally be-
came its stuff and were assigned teaching duties concerning CS students. This gave
the opportunity to instill more Mizar-based instruction into the curriculum.

At the same time, basic issues related to the use of computer tools that some
mathematics students used to have – with CS students became far less problematic.
The distribution of the system and teaching materials, as well as assessment can
now be done easily via the Internet. And although the teaching is currently being
done with the students gathered in class at a certain time, it would be possible to
use the Internet medium to even more extent reducing the involvement on the side
of the instructors.

Additionally, as the Mizar-oriented teaching is done by instructors who are also
involved in teaching programming, some elements of the methodology of teaching
programming languages can also be used. Currently the CS curriculum contains
two one-semester Mizar-based courses for undergraduate and graduate students:

• Undergraduate level:
(i) “Introduction to logic and set theory”
(ii) “Applied logic”
• Graduate level:
(i) “Software verification”
(ii) “Proof verification”

4.1 Undergraduate level

The “Introduction to logic and set theory” course is devised to introduce the fun-
damental formal mathematical apparatus and form a basis for other strictly math-
ematical subjects like “Discrete mathematics” or “Mathematical analysis”. The
course is taken during the first semester of study, so there is virtually no knowledge
that can be assumed, since the mathematics education in secondary schools often
varies. Therefore the accompanying lecture must run in a way in parallel – intro-
ducing the standard mathematical symbolism and its Mizar counterparts together
with hints to “the art of proving”. In brief, the syllabus comprises:

• logical formulae and basic structures of conditional proofs,
• Boolean properties of sets (also Venn diagrams),
• families of sets and their properties,
• binary relations (composition, the converse relation, selected properties - e.g.

69

Naumowicz

reflexivity, transitivity, etc.),
• functions (domain and codomain, image, etc.).
• equivalence relations, partitions and ordering relations.

The other undergraduate course, “Applied logic”, heavily depends on the knowl-
edge covered by the previous one. The students are supposed to know how to use all
basic proof techniques. The Mizar symbolism is dominating as there is not much
purely mathematical contents in the syllabus:

• Peano arithmetic,
• various forms of the induction principle,
• higher-order reasoning with Mizar schemes (statements with second order free

variables),
• the axiomatics of set theory.

4.2 Graduate level

On the graduate level the main focus is on one of the most important applications
of automated theorem proving – software verification. At the same time, students
are supposed to become competent Mizar users and be able to individually produce
formalizations in various domains.

The “Software verification” course covers the following theoretical and practical
aspects:

• various semantics of software description (operational, denotational, axiomatic),
• program correctness criteria,
• mathematical models of computers,
• practical verification of exemplary algorithms (sequential instructions, loops,

jumps, recurrence),
• using the “describer” technique to generate proof conditions.

The objective of the second Mizar-based course on the graduate level is to enable
students to choose a domain in which they could carry out formalization. The
formalization may form a basis of one’s MSc thesis. On this level the students are
supposed to be proficient Mizar users and be trained enough to develop themselves
new contributions to the Mizar Mathematical Library. The syllabus topics of the
classes comprise:

• the formal theory of mathematical proofs in connection with computer proof-
checking systems,

• structuring and managing databases of formalized proofs,
• practical usage of discussed mechanisms based on selected fields of mathematics.

5 Getting to know how to write Mizar proofs

The methodology adopted for the realization of the above mentioned courses must
reflect the gradual way of getting to know the system from its very basics till be-

70

Naumowicz

coming an independent competent user. Therefore the methodology changes slightly
with the advance of formalized material. There are, however, certain assumptions
we consider crucial from the didactic point of view.

First of all, the amount of Mizar notions introduced at each stage should be
reduced to minimum, i.e. the smallest possibly subset of Mizar which allows com-
pleting a certain task. For instance, the first session of the introductory course in
logic is devoted solely to propositional and predicate calculus – we have to bear in
mind that our students at the same time must also learn the standard mathematics
notation of these notions and the way of installing, running, and interacting with
the Mizar system. Therefore it is extremely convenient to prepare ready-made ded-
icated local environments which spare the students the intricacies of coping with
much technical detail completely unnecessary at that stage. The first environment
should therefore include only predicates with various arity and no particular deno-
tation, as it is all one needs to practice the use of logical connectives, quantifiers
and the rules of first-order logic. Similarly, before writing complete proofs of e.g.
Boolean properties of sets, students should start with the so-called formal proof
sketches (compare [9]), to have the syntax and proof structure correct first.

In general, we believe the whole instruction on the undergraduate level should
be based on “incremented” local environments instead of using the full system
with the standard mathematical library (which would require certain extra effort of
searching the whole library). Teaching the interaction with the full system should
be an integral part of the graduate-level courses.

The high-level features of the Mizar language and system should not be intro-
duced too early – it seems much more proper to first show students how to prove
things in an elementary way, and only when they master it, allow for a reflection
when they are presented a more “elegant” high-level way to do the same. On the
one hand, this can be done on the level of the language’s “syntactic sugar” expres-
sions like then, hence, thesis which should be introduced when students already
know how to write proofs using “strict” Mizar. On the other hand, there are many
system’s capabilities normally available to users which allow to write shorter proofs,
like the automatic definition expansion, the use of implicit general quantifiers, the
use of semantic correlates rules for thesis elimination, the forward/backward proof
distinction and so on – their introduction should be postponed too.

The acquisition of the formal Mizar language should also be split into two lay-
ers – passive and active. Only passive knowledge (the ability to read with general
understanding) of certain constructs is enough at first. Taking as an example the
whole part of Mizar’s grammar which concerns definitions, we note that although
the students should be able to read and refer to the definitions presented in Mizar

abstracts (interface information only with all justifications removed), writing the
student’s own definitions (active knowledge required) is only the part of the sec-
ond graduate-level course. In practice, this process resembles the way in which
students master the use of programming languages – the major part of writing a
Mizar article consists of using pre-existing theorems and definitions, just like the
major part of writing a computer program consists of referencing available library
procedures/functions.

71

Naumowicz

6 Conclusions

Implementing the usage of the Mizar proof-assistant in the obligatory curriculum for
CS students at the University of Bia lystok proved feasible. The simple methodology
adopted with a combination of interdependent undergraduate- and graduate-level
courses make the teaching process not harder than that of a popular programming
language. In the perspective of few years we will be able to fully assess the results of
this project by the number of MSc theses based on new contributions to the Mizar
Mathematical Library. The choice to focus on the instruction of new CS adepts
rather than mathematicians seems reasonable and prospective in order to facilitate
the important use of formal methods is software verification and specification.

References

[1] Bancerek, G., Development of the Theory of Continuous Lattices in Mizar, In M. Kerber
and M. Kohlhase (Eds.), “Symbolic Computation and Automated Reasoning”, proceedings of the
CALCULEMUS 2000 Symposium, 65–80.

[2] Geuvers, H. et al., The Algebraic Hierarchy of the FTA Project, In S. Linton and R. Sebastiani (Eds.)
“Proceedings of the CALCULEMUS 2001 Symposium”, Siena, 2001, 13–27.

[3] Lamport, L., How to Write a Proof, American Mathematical Monthly 102(7) (1993), 600–608, URL:
http://research.microsoft.com/users/lamport/pubs/lamport-how-to-write.pdf.

[4] Matuszewski, R. and P. Rudnicki, MIZAR: the First 30 Years, Mechanized Mathematics and Its
Applications, 4(1) (2005), 3–24.

[5] Naumowicz, A., An Example of Formalizing Recent Mathematical Results in MIZAR, In C. Benzmüller
(Ed.) “Towards Computer Aided Mathematics”, Journal of Applied Logic 4(4) (2006), 396–413.

[6] Retel, K. and A. Zalewska, MIZAR as a Tool for Teaching Mathematics, Mechanized Mathematics and
Its Applications 4(1) (2005), 35–42.

[7] Rudnicki, P. and A. Trybulec, Mathematical Knowledge Management in MIZAR, In B. Buchberger
and O. Caprotti (Eds.) “Proceedings of the First International Workshop on Mathematical Knowledge
Management: MKM 2001”, URL: http://www.emis.de/proceedings/MKM2001/rudnicki.ps.

[8] Trybulec, A. and P. Rudnicki, Using Mizar in Computer Aided Instruction of Mathematics, Norwegian-
French Conference of CAI in Mathematics, Oslo, 1993, URL: http://mizar.org/project/oslo.ps.

[9] Wiedijk, F., Formal Proof Sketches, In W. Fokkink and J. van de Pol (Eds.) “7th Dutch Proof Tools
Day, Program + Proceedings”, CWI, Amsterdam, 2003, URL: http://www.cs.ru.nl/~freek/notes/
sketches.pdf.

[10] Wiedijk, F., Mizar: An Impression, URL: http://www.cs.ru.nl/~freek/mizar/mizarintro.pdf.

[11] Wiedijk, F. (ed.), “The Seventeen Provers of the World” (foreword by Dana S. Scott), LNAI 3600,
2006.

72

Naumowicz

73

Naumowicz

74

Papuq: a Coq assistant ?

Jakub Sakowicz1 and Jacek Chrząszcz2

Institute of Informatics
Warsaw University

Poland

Abstract

We describe an extension to CoqIDE called Papuq, targeted at students learning the basics of mathematical
reasoning. The extension tries to bridge the gap between natural language used to teach proofs during the
university course and the artificial language of Coq proofs. We believe it will give the students the possibility
to practice writing proofs by themselves and at the same time to learn writing precise proofs in natural
language.

Keywords: Coq, set theory, computer-aided proofs

1 Introduction

First year computer science students at Warsaw University have to complete a
course named “Introduction to Set Theory”. During this course, students learn the
basic mathematical vocabulary and, what is more important, learn what a correct
mathematical reasoning is. This latter part is notoriously difficult as the students
are not used to apply rigor to the natural language they have to use in pen and
paper proofs. Besides, it is very difficult for them to practice writing proofs as they
are never sure whether a proof is correct or not and their tutor can assess about
one proof per week, so this is not much.

Therefore we would like to propose to teach the very beginning of the set theory
course using Coq. Unfortunately the existing Coq interface, CoqIDE, requires the
knowledge of Coq commands and proof tactics. Of course learning those without
the knowledge what a proof is, is simply impossible. For these reason the first
author made an extension to CoqIDE, called Papuq, which in a separate window
gives the user several hints how to continue the proof. The hints are written in
natural language and accepting a given hint produces a real Coq tactic. At the

? Partly supported by Polish Government Grant 3 T11C 002 27, and by the EU Coordination Action
510996 “Types for Proofs and Programs”.
1 Email: j.sakowicz@students.mimuw.edu.pl
2 Email: chrzaszcz@mimuw.edu.pl

Sakowicz and ChrzĄszcz

same time, another part of the window presents the last step of a proof, also in the
natural language. This way the student sees a correct wording of every proof step
and learns to write correct proofs himself.

2 Practical issues of set theory

In set theory we define everything from scratch (i.e. empty set and braces), but
then the notions are used by mathematicians without thinking about the actual
set theoretic definition. Moreover perfect equations from set theory point of view
seem stupid. For example, since the standard encoding of a tuple 〈a, b〉 is the set
{{a}, {a, b}}, we get:

〈a, a〉 = {{a}}
which “does not type check”.

2.1 Implementation and abstraction

For a mathematician, a pair is something that can be constructed from two arbi-
trary mathematical objects, and once the pair is constructed, these things can be
extracted from the pair in the correct order. Moreover, the construction is deter-
ministic, i.e. two pairs are equal if and only if they are constructed from equal
elements.

What mathematicians are interested in, are rather extensional properties of
defined notions or their specification rather than the set theoretic encoding, which
is merely an implementation.

2.2 Does everything need to be a set?

As the first-year course we started the paper with had once been called “Introduction
to Mathematics”, we think that resigning from teaching students how to encode a
pair as a set is not a big problem for their mathematical education.

In this light, teaching students with Coq, where you cannot compare a pair with,
say, a set (type) of natural numbers, is quite a viable choice.

2.3 Students’ problems

Below we mention a couple of typical problems we encounter while correcting stu-
dent’s homework and exams.

• Confusing assumptions and conclusions.
Since mathematical proofs can employ either a forward reasoning or a back-

ward reasoning, it is “natural” to mix the two techniques leading to “interesting
results”. For example: Now we prove that f is injective. A function f is injective
if for all x, y we have f(x) = f(y) implies x = y. Let us consider arbitrary x, y

such that f(x) = f(y). Since this implies x = y, the function f is injective.
• Quantifier problems.

Many students find it difficult to correctly handle quantifiers, especially the
existential one. This comes from the confusion between the natural language

76

Sakowicz and ChrzĄszcz

where the existence can be a predicate of its own and logic, where it only is a
quantifier. When a students wants to create a formula saying that the set A has
at most two elements, the first “logical” formula that comes to his mind is “if
there exist three elements in the set A, two of them must be equal”. It is really
hard to translate this to a universally quantified formula.

It would be very good to insist on teaching the pattern of using and proving
both the existentially and universally quantified formulae. Using an automated
tool like Coq can be very useful.

• Unfolding problems.
Sometimes students “forget” to unfold definitions, even if they have access to

course-notes. For example given “x ∈ r ⊆ A×B” they may not come to the next
step of the reasoning which is “so x is of the form 〈a, b〉”.

• Bad understanding of definitions.
It is often the case, that students asked to prove injectivity of a function like

φ : P (N) → (P (N) → P (N)) defined by φ(a)(b) = a ∩ b give a solution like this:
“Let a and a′ be subsets of N. Let us consider φ(a) and show that it is an injective
function.”

• Negating logical sentences.
Although de Morgan laws are theoretically known to students, if the logical

sentence is too complex, students easily get lost. For example, asked about a
complement of a set of equivalence relations with finitely many equivalence classes
in the set of all binary relations over natural numbers, students often answer that
this is a set of equivalence relations with infinitely many classes.

3 Naive type theory

In order to teach mathematical reasoning to students using the Coq proof assistant,
one must provide them with some working environment. In this section we describe
the theoretical part of this environment. Of course set theory can be encoded in
Coq (see [17] and [18]), but the encoding is far from being convenient for teaching.
Instead, in accordance with [10], we propose a simple type theory that we find to
be close to what mathematicians use in their everyday work. Precise description of
this type theory and its (partial) realization as a pure type system can be found
in [10]. Here, we give only an informal description and a straightforward encoding
in Coq (see Section 4). Following [10] and [4], we use the term “Naive type theory”.

Primitive notions of this theory are types and objects. All object have a type
(exactly one). Types are not objects. The fact that the object a has type T will be
written as usual as a : T . Equality is also a primitive notion. Two object are equal
if they are indistinguishable, i.e. one can replace another in any context.

The basis of NTT is classical logic. In this paper first order logic is enough.

3.1 Types

There is a number of predefined types which are given together with certain axioms:

• Prop — the type of all formulae with constants True, I:True and False which

77

Sakowicz and ChrzĄszcz

satisfies:
forall P : Prop, False -> P

• empty — empty type, satisfies:
forall x:empty, False

• unit — singleton type, with element tt:unit, satisfies:
forall x:unit, x=tt

• bool — two element type, with elements true and false, satisfies:
~ true = false
forall x : bool, x=true \/ x=false

• nat — the type of natural numbers, with constant 0 and suc-
cessor function S:nat->nat, satisfying the following properties:
forall n:nat, n = 0 \/ exists m:nat, n = S(m)
forall n m:nat, S n = S m -> n = m
forall P:nat->Prop, P 0 -> (forall n:nat, P n->P (S n)) ->

forall n:nat, P n
forall n:nat, ~ S n = 0

Complex types can be built using type constructors: -> (function type), + (disjoint
sum of two types), * (Cartesian product of two types). Objects of these types can
be made by lambda terms or constructors:

in_left : forall A B:Type, A -> A+B
in_right : forall A B:Type, B -> A+B
pair : forall A B:Type, A -> B -> A*B

We assume that equality of functions is extensional, i.e:
forall f g :A->B, (forall a:A, f a = g a) -> f=g
and that there are projections fst:A*B->A and snd:A*B->B, satisfying

forall a:A, forall b:B, fst (pair a b) = a
forall a:A, forall b:B, snd (pair a b) = b

3.2 Predicates

For all types T, predicates on T are all expressions of type T -> Prop, i.e.
Predicate T := T -> Prop. They correspond to set theoretic subsets of T. In
our theory we do not have the notion of subtype. In order to simulate reasoning
about inclusion of sets, we define the notion of belonging as in “t belongs to a
predicate A” (or “t is an element of A”), written x IN A, as follows:

forall T:Type, forall A:Predicate T, forall t:T, t IN A <-> A t

We define the notions of a sum, difference, intersection and inclusion of predicates
in the standard way as well as the empty and the full predicate. Like for functions,
equality for predicates is extensional, i.e.

forall T:Type, forall A B:Predicate T,
(forall t:T, t IN A <-> t IN B) -> A = B

78

Sakowicz and ChrzĄszcz

3.3 Functions

For functions (i.e. objects of type X -> Y) we define a number of standard notions:

• image
• injectivity
• surjectivity

In type theory, functions work for all elements of the type, and not for those
belonging to a predicate. We are free, however, to consider properties of functions
limited to a certain subset (predicate) of the domain:

MonomorphismPred (U V : Type) (f : U -> V) (A : Predicate U) :=
forall x y : U, x IN A /\ y IN A -> f x = f y -> x = y
EpimorphismPred (U V : Type) (f : U -> V) (A : Predicate U) :=
forall y : V, exists x : U, x in A /\ f x = y

Another property is the equality of functions on a given predicate. Note that a
suitable replacement property is not expressible: indeed, we would have to quantify
over formulas applying the function only to arguments from the given predicate.
Of course for many particular predicates, the replacement property is provable, but
in spite of that equality of functions over a given predicate is much less convenient
than regular equality of functions.

3.4 Binary relations

For simplicity we limit ourselves to binary relations. Similarly to predicates, they
are defined as:

Relation (A : Type) := A -> A -> Prop

Simple properties of binary relations, like reflexivity, transitivity, symmetry, anti-
symmetry can be defined in the standard way.

Note that in standard set theory, functions are just a special kind of relations.
Here, they are a primitive notion. Still, we want to use the fact that if a relation is
functional over the whole domain, there is also a corresponding function. In other
words, we admit the principle of description:

(forall x, exists y, R x y) /\
(forall x y z, R x y -> R x z -> y = z) ->
exists f : A->A, forall x, R x (f x)

3.5 Others

Apart from the basic notions of set theory, we consider also more advanced top-
ics, such as cardinality theory. We define the notions of cardinality equality and
inequality for predicates. Even though these notions become a bit complex in this
setting, basic theorems from the cardinality theory can be proved easily.

79

Sakowicz and ChrzĄszcz

4 Naive type theory in Coq

Almost all of the theory presented in the previous section can be encoded in Coq
using standard inductive definitions and their properties and the Type hierarchy
to encode predicate types (i.e. powersets). Only four axioms have to be added:
excluded middle, extensionality of predicate equality, extensionality of functional
equality and the principle of description.

By [9], when Set is predicative, these axioms are considered to be consistent.
Further discussion of NTT and its consistency without the Type hierarchy can be
found in [10].

Let us see a couple of example proofs in NTT in Coq and in the natural language.
The natural language proofs are hand-written precise proofs that one would like to
hear from first-year students proving the given propositions.

The first task is to show that (A∪B) \C = (A \C)∪ (B \C). Note that tactics
split, left, right, destruct can be used to set operations without unfolding
them. For example split applied to a goal x IN A ∩ B gives us two simple goals
x IN A and x IN B.

Variable U : Type.
Variable A B C : Predicate U.

Goal (A u B)\C = (A\C) u (B\C).

apply ax_pred_ext.
intro.

In order to prove equality of two predi-
cates, one must show for all x that be-
longing to one of them is equivalent to the
other (the axiom ax_pred_ext).

split. Equivalence can be showed by proving two
implications.

intro.
destruct H.
destruct H.

Let us assume that x IN (A ∪B) \C. By
definition of subtraction we get x IN A∪B
and the negation of x IN C. By definition
of sum, we have two cases.

left.
split; trivial.

In the first case we have x IN A. The
conclusion holds, because x IN (A \ C)
(the left part of the sum).

right.
split; trivial.

In the second case we have x IN B. The
conclusion holds, because x IN (B \ C)
(the right part of the sum).

intro.
split.
destruct H.

In the opposite direction, let us assume
that x IN (A\C)∪(B\C). By definition of
subtraction, we must show x IN A∪B and
the negation of x IN C. By assumption,
we have two cases.

80

Sakowicz and ChrzĄszcz

left.
destruct H.
trivial.

In the first case x IN A so x IN A ∪B.

right.
destruct H.
trivial.

In the second case x IN B so x IN A∪B.

destruct H;
destruct H;
trivial.
Qed.

In both cases the negation of x IN C holds.

Now, let us show an example theorem about functions: a function f is an invo-
lution (i.e. f ◦ f = f) if and only if f is an identity on its image. In this proof we
used tactics change i rewrite.

Variable U : Type.
Variable f : U -> U.

Goal f o f = f
<-> forall x : U, x IN (Image f (Whole U)) -> f x = x.

split.
intro.
intro x.
intro.

One has to prove two implications. Let
us assume that f is an involution, i.e.
f ◦ f = f . Let us take x belonging to the
image of f .

unfold Image in H0.
destruct H0.
destruct H0.

By definition there is y IN A such that
f(y) = x.

rewrite H1.
change (f(f x)) with ((f o f) x).
rewrite H.
trivial.

Since f(x) = f(f(y)) we have f(x) =
f(f(y)) = f(y) = x.

intro.
apply ax_fun_ext.

To prove the implication in the other di-
rection, let us assume that f limited to its
image is an identity. To prove equality of
functions, we prove their equality for all
arguments.

intro x.
unfold Comp.
apply H.

Let x IN A. The conclusion f(f(x)) =
f(x) comes from the assumption that f is
an identity on its image.

81

Sakowicz and ChrzĄszcz

unfold Image.
unfold Whole.
exists x.
split.
compute.
trivial.
trivial.
Qed.

Now we have to prove that f(x) belongs
to the image of f . It is the case, because
there exists an element of type A, belong-
ing to Whole A, such that its value is f(x).
Of course it is x.

The last proof that is worth showing here is a proof by induction.

Goal forall m k : nat, m + k = m -> k = 0.

induction m. Proof by induction on m.

intros.
compute in H.
exact H.

Base case for m = 0. By definition of ad-
dition, 0 + k = k, so k = 0.

intros.
simpl in H.

Now let us assume that m+k = m implies
k = 0 and show the same for S(m). We
have S(m) + k = S(m). By definition of
addition S(m) + k = S(m+ k) and hence
our assumption is equivalent to S(m+k) =
S(m).

injection H.
apply IHm.
Qed.

Since constructors are injective, we get
m + k = m and k = 0 by induction hy-
pothesis, which finishes the proof.

Of course just looking at the scripts does not tell us what the proofs are like.
Especially for students, a more verbose way of using Coq is necessary.

5 Helping the student

The existing Coq interface, CoqIDE, provides much help in writing and correcting
proof scripts, but still relies on the knowledge of tactics by the user. This section
describes the facilities that we implemented in order to help users write simple proofs
(almost) without knowing tactics. It is targeted at first-year students learning the
basics of mathematics.

The implemented extension, called Papuq, presents the user with a choice of
proof steps, described in natural language (i.e. in a language which is natural to
mathematicians).

5.1 Hints: tactics for 1st order logic

One of the students’ problems described in section 2.3 was the use of first-order logic.
Since proof steps made while proving first-order statements are largely routine, it

82

Sakowicz and ChrzĄszcz

is natural to suggest the next step based on the syntactical structure of the goal.
Papuq offers this functionality in an additional window, divided into two parts.

The lower part presents possible next steps in natural language and the upper part
presents the step made recently. For example, when proving the distributivity of
sum over a difference of predicates in the following state:

1 subgoal
U : Type
A : Predicate U
B : Predicate U
C : Predicate U
-----------------------------------(1/1)
forall x:U, x IN ((A u B)\C) <-> x IN ((A\C) u (B\C))

we will get the following suggestion

The first suggestion is generated by the first-order logic hint module. Pressing
the “Next” button pastes the “intro.” string at the cursor position of the script
window and executes the tactic. After this, the state is extended by an additional
assumption:

x : U
----------------------------------(1/1)
x IN ((A u B)\C) <-> x IN ((A\C) u (B\C))

and the proof wizard window contains a natural language description of the last
step and the next hint:

Papuq handles all first-order operators. Here are the generated suggestions for
other operators:

A : Prop
B : Prop
-------------------------(1/1)
A -> B

83

Sakowicz and ChrzĄszcz

A : Prop
B : Prop
-------------------------(1/1)
A /\ B

A : Prop
B : Prop
-------------------------(1/1)
A \/ B

T : Type
P : T -> Prop
-------------------------(1/1)
exists x:T, P x

It is important to note the possibilities for disjunction. Apart from the intu-
itionistic proof by selecting and proving either the right or the left disjunct, there is
also a possibility to use a classical way of reasoning by assuming the negation of one
disjunct and proving the other one (because classically (~A -> B) -> A \/ B).

The hint for the existential quantifier needs a comment too. We use the tactic
eapply ex intro, which leaves the goal with a “hole”. In fact, the user should
rather use the exists tactic and give the right element explicitly.

5.2 Hints: axioms for equality of predicates and functions

Another way Papuq can help students is to advise them to use an axiom at the
right moment. For example, in order to prove the equality of predicates or func-
tions the canonical way to go (in our naive type theory) is to use the appropriate
extensionality axiom.

Let us show a small fragment of a proof that the uncurrying operation
uncurry:(A->B->C)->(A*B->C) is a bijection.

f : A -> B -> C
g : A -> B -> C
H : uncurry f = uncurry g
-------------------------(1/2)
f = g

After using extensionality, we are informed of the next step:

f : A -> B -> C
g : A -> B -> C
H : uncurry f = uncurry g
------------------------(1/2)
forall x : A, f x = g x

84

Sakowicz and ChrzĄszcz

And when we agree to the introduction, we are advised to use extensionality again.
Showing this hint to students is important for at least two reasons. First of

all, students are used to prove an equality by simplifying both sides of it until
they reach identical expressions. Here they have to learn a completely different
strategy. Second, as shown by our practice, students, even those who know that
extensionality has to be used, sometimes confuse the conclusion of the problem with
parts of extensionality axiom.

5.3 Hints from the auto database

Since Coq already has a similar mechanism to help the user in remembering useful
lemmas through their automatic application with the auto tactic, we included the
list of applicable lemmas from the auto database in the list of suggestions presented
in the Wizard Window. However, since we check that all listed lemmas are indeed
applicable (by testing whether progress tactic would succeed) we list less lemmas
than the command Print Hint would. Moreover, the interface gives the user the
possibility to immediately see the lemma by clicking the “Show” button.

U : Type
A : Predicate U
B : Predicate U
C : Predicate U
------------------------------(1/1)
(A u B)\C = (A\C) u (B\C)

In the list below, the second element corresponds to the hint found in the auto
database:

After clicking the “Show” button, we get the details of the lemma:

5.4 Simplified use of assumption

A common element of mathematical proofs are sentences “from the assumption we
get . . . ”. Usually one does not care how precisely the assumption is used. In Coq,
however, there are many ways to do that. An equality can for example be used
either to replace the left hand side by the right hand side (or vice versa — tactics
rewrite and rewrite <-) or, if it is an equality of terms made from inductive
constructors, to extract a simpler equality from the existing one (injection). A
conjunction or other logical formula starting with an inductively defined connective

85

Sakowicz and ChrzĄszcz

can be used through the appropriate elimination rule (destruct). An implication
can be used only if its conclusion matches the goal and one can prove the premises
(apply).

For a beginner, having to remember the names or at least meaning of all these
tactics is quite problematic. Therefore we extended the context menu of the CoqIDE
goal panel with the generic “Use” command, which selects the appropriate tactic.
For equalities one can also choose “Rewrite” and “Rewrite backwards” commands
and for elements of inductive types “Induction on H” to start an inductive proof.
Also, the “Simplify” command, standing for “simpl in H” can appear in the context
menu.

Since the appearance of a given command in the context menu is determined
by the applicability of suitable tactics, one can have “Induction on H” entry in the
context menu of an equality. Although this may seem rather counter-intuitive, in
fact the induction H tactic can be successfully applied to an equality.

Let us see the example of a simple arithmetic formula, where the proof by
induction is suggested by Papuq context menu:

5.5 Other hints

Besides the hints mentioned above, Papuq offers:

• unfolding of definitions — if the auto database suggests the unfold tactic, e.g:

Triangle : Type
Number : Type
R : relation Triangle
Area : Triangle -> Number
---------------------------(1/1)
reflexive R

• marking the “Obvious” goals (i.e. solvable by trivial)

86

Sakowicz and ChrzĄszcz

Triangle : Type
Number : Type
R : relation Triangle
Area : Triangle -> Number
x : Triangle
---------------------------(1/1)
Area x = Area x

• proposing a proof by contradiction — this hint is alway available unless the goal
is False; it uses the classical double negation proof: assumes the negation of the
goal and the new goal becomes False.

It is important to note here that all examples given in Section 4 can be proved
by clicking the hints from Papuq, apart from the second one where one tactic,
change (f (f x0)) with ((f o f) x0), has to be given by hand. Other slight
disadvantage is the use of the tactic eapply ex intro generated by Papuq in two of
the examples, where the appearing existential variables are automatically inferred
and the student can get a bit confused.

6 Papuq documentation

Papuq can be downloaded from http://www.mimuw.edu.pl/~chrzaszcz/Papuq. It
is available as a patch to Coq sources, version 8.0pl4. After patching, compiling and
installing, one has to run coqide and select Windows→ Show Wizard Window. The
window will react to the state of CoqIDE.

Apart from the patch, several Coq theory files are available: CoqTypesTheory.v,
containing the encoding of NTT and a couple of files with exercises and their solu-
tions.

The patch to CoqIDE contains slight modifications of existing code and the
building procedure, and the implementation of the Papuq functionality. The exten-
sion is done in such a way that writing the set of hints in a new language is very
simple. The whole patch has a little over 2000 lines.

The most important problem with writing the extension was of course very
sparse documentation both of Coq and especially CoqIDE.

The modifications of CoqIDE itself were kept to the minimum. The only new
implemented features are calls to event handlers, inserted in various places of the
CoqIDE code.

6.1 CoqIDE modifications

We added references to side-effect functions in a few places in CoqIDE, together
with registration functions. The references are empty in the beginning, but as the
Papuq modules are implemented, they register proper handlers that get called every
time a given event occurs.

The handlers we added are the following:

• external_goal_handler : unit->unit — called after the script fragment is

87

Sakowicz and ChrzĄszcz

processed, before the result is displayed to the user,
• external_undo_handler : unit->unit — called when one or several steps of

the script are undone, a scripting is moved to a new window or the processing is
abandoned,

• external_redo_handler : unit->unit— called when one or many steps of the
script are done without using Papuq

• external_wizard_start : unit->unit — action connected to the new menu
command Windows → Show Wizard Window,

• external_hyp_menu_handler : string->string->(string*string) list —
called when a context menu for a given hypothesis is generated; the result of
this function is added to the context menu

Apart from introducing the above event handlers, we also exported several CoqIDE
functions (by extending the .mli files).

Another change in CoqIDE, somewhat orthogonal to the implementation of
Papuq functionalities, was creating a separate thread for CoqIDE. Because of that
CoqIDE can be run on top of the Coq toplevel which, as it may embed OCaml
toplevel as well, is especially useful for debugging purposes and probably was crucial
to the success of Papuq.

To summarize, not more than 40 lines of CoqIDE code were changed.

6.2 Papuq functionality

The extension is implemented in six modules. These are:

• Localization — contains the Resource class used by the user interface. All strings
are in this class or are constructed by its methods. No other modules contain
or construct strings. Therefore a translator of Papuq to a new language has
to provide only the implementation of the Localization module. Currently, the
English and the Polish versions are available.

• Teachcfg — contains global configuration of Papuq. Currently this is a flag de-
ciding whether hints should be tested for applicability, and constants setting the
default window sizes.

• Teachdebug — this module contains functions to debug Papuq and test CoqIDE.
They are not used during normal operation.

• Teachutils — implements data structures, manipulating functions and tools to
support dialog with the Coq API such as printing functions, access to the current
goal, number of subgoals, operations on the auto database, etc. The idea was
to separate the algorithm to generate hints from the details of the access to the
information kept by Coq.

• Teachhint — the heart of Papuq. Implements the algorithms generating hints. In
case Papuq is further extended, new kinds of hints should be implemented here.

• Teaching — user interface of Papuq. It contains the class Wizard representing
the Wizard Window. This module also registers event handlers from the class
Wizard in CoqIDE.

88

Sakowicz and ChrzĄszcz

7 Summary and Related Work

The implemented extension is a useful addition to CoqIDE, relieving the beginner
of the difficult task of remembering Coq tactic names. It was made with the needs
of first year students in mind, so the other principal task of the extension is to teach
users the basics of mathematical reasoning, i.e. systematic use of definitions, logical
rules and axioms. Of course the current version of the extension is by no means
a finished general purpose tool. It is made for the naive Coq type theory that we
prepared based on [10], but it can be extended to other theory files if needed.

The tool itself can be much improved, for example, the problematic introduction
rule for existential quantifier. The natural language explanations of the “Previous
step” could be given not only for steps made by clicking the Papuq window, but
also for those made by clicking a hypothesis option or best for all ways of entering
a tactic. Once this is accomplished, it would also be useful to present not only the
latest step, but all steps done from the beginning of the proof with some indentations
to show the proof structure. For now, we present the preliminary version of the tool
and we hope to develop it in the future.

In general, even though the tactic language is very convenient for quick writing
of proofs by an experienced user, it constitutes a big problem for beginners and
the proofs written using the tactic language are completely unreadable. There
is an ongoing work to come up with a novel, more declarative proof mode for
Coq [8,5], where the user tells the machine the intermediate proof steps rather than
the instruction what it should do. The experimental declarative proof language
DPL by Pierre Corbineau has been included in the most recent version 8.1 of Coq.

There is also a number of works aiming at printing Coq proofs in natural
language. They started from [7,6] and continued in the HELM and MoWGLI
projects [1] as one of the results of the complex infrastructure to store, search and
render large bodies of formalized mathematics. Other tools, like those based on the
TeXmacs [15] editor, provide the possibility to nicely render mathematical formu-
lae and interleave Coq proof script with human written proof [2,11]. But all these
projects are targeted at experienced Coq users or experienced mathematicians.

More student oriented approach was taken by developers of other formal math-
ematics tools. For a few years now the Mizar system [13], which also has a proof
rendering mechanism [12], is used to teach the foundations of mathematics to stu-
dents at the University of Białystok. Similarly, PhoX [14], which also has its natu-
ral language presentation mechanism [16] is used for teaching at the University of
Savoie. It also includes an easy user interface allowing a point-and-click proving.

The idea we implemented of a relatively independent “agent” suggesting next
proof step to the user, have been thoroughly studied by the authors of the Ω-Ants
system [3]. Unlike Papuq where the “agent” proposes almost only basic proof steps,
the agents of the Ω-Ants system can be arbitrary complex proving tools. Indeed,
the principal goal of Ω-Ants is not to teach students, but to integrate and parallelize
various proof tools in order to build an efficient hybrid system.

Acknowledgements. We would like to thank Paweł Urzyczyn for encouraging
us to do this work. We would also like to thank the anonymous referees for their
helpful comments and suggestions.

89

Sakowicz and ChrzĄszcz

References

[1] Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen, and Irene Schena. HELM and the semantic
Math-Web. Lecture Notes in Computer Science, 2152:59–74, 2001.

[2] Philippe Audebaud and Laurence Rideau. TeXmacs as authoring tool for formal developments. Electr.
Notes Theor. Comput. Sci., 103:27–48, 2004.

[3] Christoph Benzmüller and Volker Sorge. OANTS – an open approach at combining interactive and
automated theorem proving. In Manfred Kerber and Michael Kohlhase, editors, Symbolic Computation
and Automated Reasoning, pages 81–97. A.K.Peters, 2000.

[4] R.L Constable. Naive computational type theory. In H. Schwichtenberg and R. Steinbruggen, editors,
Proof and System-Reliability, pages 213–259. Kluwer Academic Press, 2002.

[5] P. Corbineau. A declarative proof language for Coq, 2006. http://www.cs.ru.nl/~corbineau/dpl/
index.html.

[6] Y. Coscoy. Explication textuelles de preuves pour le calcul des constructions inductives. Thèse
d’université, Université de Nice-Sophia-Antipolis, September 2000.

[7] Y. Coscoy, G. Kahn, and L. Thery. Extracting text from proofs. In M. Dezani-Ciancaglini and
G. Plotkin, editors, Proc. Second International Conference on Typed Lambda Calculi and Applications,
Edinburgh, UK, volume 902, pages 109–123, 1995.

[8] Mariusz Giero and Freek Wiedijk. MMode, a Mizar mode for the proof assistant Coq. Technical Report
NIII-R0333, University of Nijmegen, 2003.

[9] Hugo Herbelin, Florent Kirchner, Benjamin Monate, and Julien Narboux. Coq version 8.0 for the
clueless, sect. 5.2. http://coq.inria.fr/doc/faq.html#htoc37.

[10] Agnieszka Kozubek and Paweł Urzyczyn. In the search of a naive type theory. These proceedings,
2007.

[11] H. Geuvers L. Mamane. A document-oriented Coq plugin for TeXmacs. In Mathematical User-
Interfaces Workshop, St Anne’s Manor, Workingham, United Kingdom, Aug 2006.

[12] R. Matuszewski. On natural language presentation of formal mathematical texts. Studies in Logic,
Grammar and Rhetoric, 3(16), 1999.

[13] The Mizar system. http://mizar.uwb.edu.pl/.

[14] Christophe Raffalli and Paul Rozière. Phox. In Freek Wiedijk, editor, The Seventeen Provers of the
World, volume 3600 of Lecture Notes in Computer Science, pages 67–71. Springer, 2006.

[15] The GNU TeXmacs system. http://www.texmacs.org/.

[16] Patrick Thevenon. Validation of proofs using PhoX. Electr. Notes Theor. Comput. Sci., 140:55–66,
2005.

[17] Benjamin Werner. An encoding of ZFC set theory in Coq, 1997. http://coq.inria.fr/contribs/
zermelo-fraenkel.html.

[18] Benjamin Werner. Sets in types, types in sets. In Mart́ın Abadi and Takayasu Ito, editors, TACS,
volume 1281 of Lecture Notes in Computer Science, pages 530–346. Springer, 1997.

90

Sakowicz and ChrzĄszcz

91

Sakowicz and ChrzĄszcz

92

Proofs for freshmen with Coqweb

Jérémy Blanc

Laboratoire Jean-Alexandre Dieudonné, Université de Nice-Sophia Antipolis, CNRS

J.P. Giacometti

INRIA Sophia Antipolis

André Hirschowitz

Laboratoire Jean-Alexandre Dieudonné, Université de Nice-Sophia Antipolis, CNRS

Löıc Pottier

INRIA Sophia Antipolis

Abstract

Coqweb is a web interface for Coq, primarily designed for teaching. It allows teachers to propose statements
in sufficiently familiar form. Students are invited to prove these statements essentially by clicking. Hints
can be given in natural language, in which case the interface checks that the student somehow understands
the hints. We present here the main features of Coqweb, and show through examples how it has been used
since 2004.

Keywords: Proof Assistant, Interactive Theorem Prover, Education

1 Introduction

Proof assistants are now mature in some sense: they can be used to build for-
mal proofs of highly respectable mathematical results (the fundamental theorem of
algebra [FTA], or the four-color theorem [Gonthier Werner 04] for example). Un-
fortunately, only experts can use them, and learning to use a powerful assistant like
Coq needs days of training. How could these proof assistants help teachers to teach
what a proof is and how to search for a proof? The Coqweb environment [Coqweb]
(a free software developed in ocaml and php by J.P. Giacometti, A. Hirschowitz and
L. Pottier) is designed for teaching freshmen. Accordingly its main features are:

• The language of statements is fairly close to the standard mathematical language
(thus full of ambiguities).

Blanc, Giacometti, Hirschowitz, Pottier

• The language of proof (tactics) is also fairly close to the standard mathematical
practice.

• Proofs are essentially performed by clicking.
• It can be coupled with Wims, so that teachers can include Coqweb exercises into

their Wims class sheets.

During the past three years, the regular freshmen (in mathematics and com-
puter sciences) at the University of Nice-Sophia-Antipolis have been proposed a
small amount of proving activity with Coqweb, essentially through the WIMS server
[Xiao 98]. After several experiments, Coqweb is now a wiki where one can develop
mathematics as we do in a course or a book : informal text using Latex, formal
definitions of mathematical objects in a language close to the usual mathematical
language, statements and proofs of theorems, exercises. As its name suggests, Co-
qweb heavily relies on the Coq assistant proof, which is used to performing the
proofs and verifying them, even if this is quite transparent for the student.

The originality of Coqweb could be that the major concern of its design is to be
accepted by typical students and teachers. Accordingly, the traditional approach
initiated by the CtCoq pioneering system [Bertot 99] is slightly revised. In Coqweb,
we have two separate modes: in the teacher mode, the expert teacher declares
definitions and other resources, while in the student mode, the student solves an
exercise, or ”reads” the proof of a theorem by following the hints of an informal
proof. We have focussed our attention onto the student mode, since, just as in the
Wims server, non-expert teachers may use resources developed by expert teachers,
and do not need to use the teacher mode. On the other hand, the student mode
relies on the teacher mode where are generated the statements to be proven as well
as the resources to be invoked.

This paper is organized as follows. In section 2, we briefly relate and discuss our
experience in teaching proofs with Coqweb. In sections 3 and 4, we describe the
student mode and its tactics. In section 5, we describe the teacher mode. In section
6, we show a complete example of a mathematical development in Coqweb for the
freshmen at the University of Nice-Sophia-Antipolis. Finally in section 7, we discuss
related and future work. The description and the discussion of the implementation
of Coqweb will be done elsewhere.

Acknowledgments

We thank Valérie Moreau-Villeger, Joachim Yaméogo and Xiao Gang who took
care in various ways of the connection between Coqweb and Wims. We thank Marco
Maggesi and Carlos Simpson for stimulating conversations. We thank the organizers
of the second Wims conference [WIMS07] who invited us to present our views on
proof-teaching with Coqweb. We thank the referees whose criticism led to significant
improvements in our presentation. Finally, the third-named author wishes to thank
his chairman Michel Merle, his dean Raymond Negrel and his colleague Paul Silici
who made possible the experience reported here, at least until fall 06. For what
happened then, see [BlogDuB].

94

Blanc, Giacometti, Hirschowitz, Pottier

2 Teaching proofs

2.1 An impossible task?

Proofs are not really taught at our universities. Teachers just show and explain
real proofs and then invite students to understand and reproduce them. From this
experience, students are expected to be able to produce new proofs without hav-
ing ever been explained what a proof is, and while their basic logic needs serious
consolidation. Some teachers are satisfied with the way they teach proofs, consid-
ering that students who work enough should understand (and the accompanying
conclusion is too often that most students do not work enough. For more on this
controversial line, see [BlogDuB]). But many others consider teaching proofs as an
almost impossible task. Some researchers in Education confirm the latter position.
We quote from [Epp 03] (p.8): ”A likely consequence for mathematics instruction is
that in order to learn a complex process such as proof and disproof, effective inte-
gration of new modes of thought with pre-existing contradictory modes is a major
undertaking. It is not surprising that easy solutions have not yet been discovered”.

2.2 Proof plans versus complete proofs

One of the reasons why proofs are not understood by students is that the traditional
informal style for proofs gives just a plan from which the reader is supposed to
reconstruct a complete picture. Think of a game of chess as reported in a newspaper:
they just give the sequence of moves, in some minimal notation. Grandmasters will
understand the game from this minimal information without using a chessboard.
But the typical reader of the newspaper will need a chessboard in order to see
the corresponding sequence of positions and understand what is going on, if not
necessarily why. The sequence of positions enlightens the corresponding sequence
of moves.

Just the same happens for informal proofs as well as for proof scripts: they
consist basically in an enumeration of actions (often called tactics) developing the
proof, and this enumeration will be enlightened if we simultaneously show the cor-
responding enumeration of states of the proof.

Four or five years ago, one of us tried to teach proofs by showing and maintaining
the state of the proof on a blackboard. This ended with the conclusion that he
was not able to do it efficiently, even for freshmen proofs. On the contrary, to
show the complete proof (including actions and states) on the screen through the
Coqweb interface is pretty satisfactory. Indeed, we did experiment with this at the
University of Nice during the first course in calculus (fall 06). Of course for this to be
possible, it was necessary that the pretty-print of statements proposed by Coqweb
be sufficiently close to what the typical freshman could accept and understand. In
particular Coqweb had to manage ambiguous formulas.

2.3 Procedural versus declarative proofs

One of the reasons why proofs are not taught is that most teachers have not been
taught themselves what a proof is. Some of them have been given a course in logic,
but the notion of proof given there has essentially nothing to do with a real proof. As

95

Blanc, Giacometti, Hirschowitz, Pottier

a matter of fact, when you ask a logician, like J.Y. Girard for instance [Girard 07],
what logic is doing in order to fill the gap between the current notion of logical proof
and the current practice of mathematicians, he confirms that this task is taken into
account mainly (only?) by the theorem provers community. Indeed each theorem
prover, in particular our favorite one, Coq, has its operational notion of proof, which
is sufficiently precise, at least for freshmen, and reflects a corresponding practice.
We believe that a precise notion of proof is a crucial ingredient when trying to teach
proofs for freshmen.

The Curry-Howard paradigm teaches us that a proof is a λ-term, but
this point of view, while totally formalized and extremely appealing for re-
searchers, is definitely too abstract for our students. Researchers of the the-
orem provers community have considered procedural (as in Coq [Coq 06]) as
well as declarative (as in Mizar [MIZAR]) notions of proof scripts (see e.
g. [Autexier Sacerdoti Coen 06,Corbineau,Sacerdoti 06]), and more recently have
started mixing the two styles [Wiedijk 04]. Procedural as well as declarative scripts
are again some form of incomplete proofs in the sense that either the successive
states or the successive proof steps have to be inferred. The choice between the
procedural and declarative styles is not too meaningful for Coqweb because stu-
dents are not supposed to write proofs but only to generate them by clicking. Thus
an informal notion of proof mentioning altogether states (lists of goals) and tran-
sitions (performed by tactics) is suitable. We have observed that such a notion of
proof is well accepted by students.

2.4 Formal versus informal proofs

Teachers not acquainted with proof assistants insist that teaching formal proofs is
relevant only if it is a way to teach informal proofs. For the moment, the only echo
in Coqweb to this legitimate requirement is the guided mode. In this mode, the
student is offered a hint which suggests more or less explicitly which tactic should
be performed. In particular, the hint may take the form of the relevant sentence
in a corresponding informal proof. In this case, the student has to translate the
informal proof into a formal one. Of course, it is possible to propose exercises
where the student has to perform the translation in the other way, but we did not
try this yet.

2.5 Concepts versus images

One of the reasons why the proving activity is assimilated by so few students is that
is is perceived as a kind of artistic activity, where very few helpful concepts and
images are proposed to the beginner. Our attempt proposes several key concepts
which are sufficiently simple and concrete, and to which Coqweb associates persis-
tent images. The first main attribute of a proof is the corresponding sequence of
states and the image for a state is the corresponding full student window. A state
is itself a sequence of purposes, and the current purpose has its reserved place on
the student window. A purpose is a pair of a context and a goal and both have
their specific place in the student window. Similarly variables and hypotheses are
the constituents of the context. Finally tactics have their own place in the student

96

Blanc, Giacometti, Hirschowitz, Pottier

window.

3 The student window

The student window is the window where the student is supposed to perform a
proof. It can be activated either from the starting page of a Wims exercise (module
coqweb new), or through a button attached to an exercise in the teacher window.
Note that students have access to the teacher window as everybody do.

The student window displays the original statement (overall goal), the current
purpose, consisting of the current context and the current goal, the list of pending
goals, the list of available tactics, and, optionally, the current hint. In order to
perform a tactic, the student clicks on the corresponding button. In case the current
tactic needs arguments, the student window opens a dialog area.

In the first version, Coqweb implemented ”proof by pointing”, as in CtCoq: to
some extent, Coqweb was able to infer the tactic from the pointed area for instance
in the goal; but we have discovered that it was too much an invitation to click
without relating it to any concept.

3.1 Statements

Mathematical statements appear in the student window as goals or hypotheses. Our
main concern has been that they appear in a form as close as possible to the one
used by typical teachers. We give below a representative list of exercises which were
solved by students during the past academic years, in the form where they appeared

97

Blanc, Giacometti, Hirschowitz, Pottier

in the student window (up to word by word translation from French to English).
The reader will observe that it contains ”immediate” consequences of definitions,
as well as main results of the course. Note also that the disjunction and existential
quantifier allow to ask for justified questions and calculations.

(i) Prove: [2; 3] ⊂ [1; 4].

(ii) Prove: (2, 7, 6) is a linear combination of (1, 2, 0)and(0, 1, 2).

(iii) Prove: ∃a : R,∃b : R, (40, 62) = a ∗ (1, 14) + b ∗ (6, 1).

(iv) Prove:∀f : R→ R, (∀x : R, f(x) = x+ 1)→ f is injective.

(v) Prove: x : R 7→ 2 ∗ x+ 3 is injective.

(vi) Prove: ∀f g : R→ R, f is increasing and g is increasing

→ f ◦ g is increasing.
(vii) Prove: ∀f g : R→ R, f ◦ g is injective→ f is injective or g is injective.

(viii) Prove: ∀f : R→ R,∀u : sequence(R), (∀n : N, un+1 = f(un)) and
(u0 < u1and f is increasing)→ u is increasing.

(ix) Prove: ∀a b : R,∀f g : [a, b] → R, f is increasing and g is increasing →
f + g is bounded above by f(b) + g(a).

(x) Prove: ∀u v w : sequence(R), ∀a : R, limit(u) = a and (limit(v) = a

and (u ≤ w and w ≤ v))→ limit(w) = a.

(xi) Prove: ∀EF : R vector space, ∀f : E → F, f is linear

→ Im(f) is a linear subspace.

3.2 Guided mode

The student window has a guided mode, where the next tactic is suggested by an
informal hint. This hint is entered by the teacher directly through the student
window (accessed with teacher’s rights). In the guided mode, the student has to
follow the suggested proof, otherwise an error message is emitted. One of the
advantages of this mode is that only the necessary tactics are listed, and often they
are very few, typically three or four.

3.3 Pending goals

As in other theorem provers, some tactics generate several goals. This is for instance
the case of “apply” when the selected resource has several hypotheses. In this case,
the pending goals are simply listed in a specific area on the student window, on the
lifo mode. The corresponding contexts are not mentioned.

When using a proof assistant in order to prove a “serious” statement, the number
of pending goals may easily grow up to ten or so. If in the same time these goals turn
out te be difficult to read, when meeting a goal generated long ago, the user may
wish to know “where this damned goal comes from”. This problem is note handled
at all in Coqweb. Indeed, for the statements proposed to students, pending goals
are always simple and their origin is always clear.

98

Blanc, Giacometti, Hirschowitz, Pottier

3.4 Dialogs

Some tactics need arguments. This is the case for instance of the tactic “exists”
which we call “exhibit”. When this tactic is invoked, Coqweb opens a (one-line)
area where the student is expected to enter the witness. The more important case is
the case of the tactic “apply a resource” where Coqweb lists all relevant resources.
The order in which they appear is programmed in such a way that, for our range of
goals, the desired resource appears almost always among the very first ones. There
is no alternative mechanism for browsing resources.

4 Tactics

In Coq as in many other theorem provers, the tactics, are the ac-
tions/transitions/moves which are available for jumping from one state of a proof
to a new one, presumably easier. The list of Coq tactics contains around a hundred
entries (see [Coq 06]). We cannot teach a hundred tactics at once, so we have to
identify basic ones, and present them in such a way that the typical freshman will
recognize an activity of proof which he already met earlier. We review below some
of the most useful tactics and their relationship with freshmen.

4.1 The introduction tactic

The first Coq tactic, in the sense that almost every proof starts with it, is introduc-
tion. This is bad luck because, while introducing is certainly the right word (you
definitely introduce a variable by telling its name), this cannot be understood by
the typical freshman as a serious mathematical activity. If you try to teach intro-
duction, students consider you just as mathematicians consider logicians: people
concerned with meaningless mathematics. Thus introduction cannot be one of the
basic freshman tactics. We will merge it with the ”unfold” tactic, see below.

4.2 The apply tactics

While the typical freshman is not interested in introducing, he is perfectly interested
in applying. Even too much. Indeed, teachers do not distinguish between three kinds
of application.

The first one is what we call “apply a resource” or “apply a hypothesis”. It is
the major tool for a backward proof. The resource is a statement and the current
goal should be the conclusion of an instance of this statement. Then the current
goal is replaced by as many new goals as the instance has hypotheses. Of course,
the resource should be available in the library.

The second one is what we call “deduce”: again we apply a resource or a hy-
pothesis, this time in order to prove not the current goal, but some other statement
which we want to add to the current context. This tactic is what allows to proceed
forwards (from the assumptions to the goal) while in a theorem prover like Coq, the
default direction is backwards (from the goal to the assumptions). Note that teach-
ers often prefer to think forwards and may reject the whole approach described here
as “too backwards”. While if you observe proofs from this point of view, you will

99

Blanc, Giacometti, Hirschowitz, Pottier

remark that the forward approach opens new room for the opacity of proofs since
you may gather intermediate statements without saying why. Of course something
similar happens in the backward approach. The difference is that in general the
assumptions of a resource are considered easier to prove than the conclusion.

The third one is of a very different nature: we apply a resource which claims an
equality in order to rewrite something in the current goal or in the current context.
This is the “rewrite” tactic, which the typical freshman does not accept so easily,
because he is so much used to apply and not at all to rewrite. More generally, the
distinction between these three “apply” tactics is difficult to teach. At least we can
stress their differences.

4.3 The unfold and simplify tactics

Just as “introduce”, “unfold” is a word that mathematicians do not use. Indeed,
since unfolding a definition is totally transparent for “Grandmasters”, it is also
completely neglected by teachers. Nevertheless, what emerges from our experience
is that “unfolding” is a crucial proof activity for freshmen. This tactic shares with
“introduction” the property that it has stricty no mathematical content. Thus we
have merged these two tactics in a single one. For its name we have chosen the
French verb “expliciter” (in the present paper, we will use ”translate”) which we
can indeed use in the right places in our informal proofs. Also we have extended
this tactic as much as possible in order to include all kinds of similar replacements.
For instance, when applied to the goal x ∈ A ∩ B, this tactic generates the two
goals x ∈ A and x ∈ B, although this is certainly not obtained by unfolding the
definition neither of ∈ nor of ∩. Similarly, from the goal AandB, it generates the
two goals A and B.

In the same vein, we have a “simplify” tactic which we extend as far as possible
(see 6.2 for an explicit use of this tactic).

4.4 Other tactics

First of all, we certainly need a tactic “easy”, which handles “too” easy goals.
Indeed, the typical freshman hates being asked to prove something too easy. But
what looks easy for a freshman, is not necessarily so easy to prove in Coq, so that
the ”easy” tactic is not so easy to implement.

Next, the freshman uses the “exists” tactic, which we call “exhibit” since we
consider as mandatory to find for each tactic a name which is a verb and reflects
the activity. Of course this tactic is very important for understanding existence,
which is a very delicate notion (not only) for freshmen. See 6.6 for an explicit use
of this tactic.

Finally we have a tactic for contraposition and a tactic for induction.

5 The teacher mode

The teacher mode allows the expert teacher to declare definitions, axioms and ex-
ercises. The exercises may be activated, yielding a student window, from where

100

Blanc, Giacometti, Hirschowitz, Pottier

resources (definitions and axioms) will be invoked. The teacher mode runs on Wiki-
Coqweb [WCW], a wiki based on Spikini, which is a variant of Wikini for Spip. For
the moment, it is designed for expert teachers, more precisely for highly motivated
teachers. Let us say briefly that the main task of Coqweb is to convert adequately
the teacher’s input into the corresponding Coq declarations, and to acknowledge it
on a course page available on the wiki. More precisely, this task splits in two steps.
First Coqweb checks syntactically the input before eventually writing a course page.
While when a button is activated on a course page, Coqweb performs a semantic
check before definitely acknowledging the definition, or before opening a student
window. . We briefly describe the contents of course pages and the way they are
edited.

5.1 Course pages

A course page is a page where the teacher can write a text including latex formulas,
and insert Coqweb definitions and exercises. Here is for instance how appears the
definition for vector space

Definition cons_ev : qs E :Ens, (E->E->E) -> E->(R->E-> E)-> PREV
(en coq: cons_ev)

Properties:

* qs E :Ens, qs a : E->E->E, qs z :E, qs m : R->E ->E,
E=(cons_ev a z m)

* qs E :Ens, qs a : E->E->E, qs z :E, qs m : R->E ->E,
((plus_ev (E := (cons_ev a z m))) = a)
* qs E :Ens, qs a : E->E->E, qs z :E, qs m : R->E ->E,
((zero_ev (cons_ev

a z m)) = z)
* qs E :Ens, qs a : E->E->E, qs z :E, qs m : R->E ->E,
((mult_ev (E := (cons_ev a z m))) = m)

Note that this is for the teacher, not for the student, even if it is freely available.
For each definition, there is a button for converting altogether the definition into

a Coq declaration and the properties into axioms. For this conversion to work, the
relevant other pages should have been loaded, and the previous definitions in the
current page should have been already converted. If Coqweb does not succeed in
this conversion, a (rough) error message appears. For each exercise, there is a button
which is supposed (if the formulation is correct with respect to previously loaded
material) to open a student window.If Coqweb does not succeed in converting the
statement into a Coq statement, a (rough) error message appears.

Course pages are linked to one another in the standard hypertext way.

5.2 Editing course pages

Course pages may be edited within the wiki. The conception and edition of course
pages is the main teacher’s task, along with the optional task of writing hints.
When trying to validate a definition together with its accompanying properties, the

101

Blanc, Giacometti, Hirschowitz, Pottier

teacher often requests the disambiguation ability of Coqweb. However we do not
expect Coqweb to choose among various possible interpretations according to the
context. Our idea is rather that teachers (and students) should write statements in
a way offering only one reasonable interpretation. As an illustration of this position,
our quantifiers are always explicitly typed.

Coqweb offers the possibility to declare two names for each definition: one name
is for Coq and supports no overloading, while the second one is for Coqweb only
and supports overloading. Of course the two names may coincide, which is the case
in the above exemple..

6 Algebraic numbers in Coqweb

We present here some pages of Coqweb which have been used at the University of
Nice-Sophia-Antipolis in 2007 along within a mini-course for motivated students on
polynomial equations and their solutions. to present Coqweb to teachers.

6.1 Fields

Firstly, we will work with fields. It is convenient to code this in one page, called
”fields”, and then to specialize to some special fields like Q, R, or C. Here is what
the page on the web looks like (we show only the compiled page, instead of the code
page, as it is more readable, but the syntax is quite the same):

Definition field: Set

Definition coercion:field→Set

Definition +: ∀K: field, K→K→K

Properties:

• ∀K:field, ∀x y z:K, (x+y)+z=x+(y+z)

• ∀K:field, ∀a b:K, a+b=b+a

Definition *: ∀K: field, K→K→K

Properties:

• ∀K:field, ∀x y z:K, (x*y)*z=x*(y*z)

• ∀K:field, ∀a b:K, a*b=b*a

• ∀K:field, ∀x y z t:K, (x+y)*(z+t)=x*z+x*t+y*z+y*t

Definition 1: ∀K: field, K

Properties:

• ∀K:field, ∀x:K, x*1=x

Definition 0: ∀K: field, K

Properties:

• ∀K:field, ∀x:K, x*0=0

• ∀K:field, ∀x:K, x+0=x

•not(0=1)

Definition /: ∀K: field, K→K→K

Properties:

• ∀K:field, ∀x y z:K, (not (y=0)→(x/y)*y=x

Definition -: ∀K: field, K→K

Simplifications:

• ∀K:field, ∀x:K, x+(-x)=0

• ∀K:field, ∀x:K, (-x)+(x)=0

Exercise: ∀K: field, ∀x y: K, x+y=0→y=-x

Definition -: ∀K: field, K→K→K

Properties:

• ∀K:field, ∀x y:K, (x-y)=x+(-y)

Exercise: ∀K: field, ∀x: K, (-(-x)=x

Exercise: ∀K: field, ∀x y: K, -(x+y)=(-x)+(-y)

Definition power: ∀K: field, K→N→K

Properties:

• ∀K:field, ∀x:K, xˆ0=1

• ∀K:field, ∀x:K, ∀a:N, xˆ(a+1)=xˆa*x

Each element of the set field corresponds to a field, and may be also viewed –
using the coercion above – as a set. The symbols 0 and 1 represent the traditional
constants. Observe the standard overloading for ”-” .

Note that the function power may be used writing the symbol ˆ, and that the
set N = N was introduced earlier, in a similar way.

The three exercises above are simple examples suited for the student who begins
to use Coqweb. The student will see that although the assertions seem very simple,
they are not so trivial to prove. He will need less than ten tactics in general , and

102

Blanc, Giacometti, Hirschowitz, Pottier

will see the so many steps that we usually skip in a classical proof.

6.2 A first proof in detail

We illustrate now in detail a proof of the first exercise of Section 6.1, describing
what the student sees after each of his uses of tactics:

Goal: ∀K: field, ∀x y: K, x+y=0→y=-x

The student clicks on the tactic ”Translate the goal”. This corresponds to the usual
mathematical sentence ”Let K be some field, and let x, y be two elements in K”.

Context: K:field, x:K, y:K, H:x+y=0, Goal:y=-x

The student clicks on the tactic ”Prove an intermediate result”. The computer asks
him what the result is, and he chooses ”-x+(x+y)=-x”.

Context: K:field, x:K, y:K, H:x+y=0, Goal:-x+(x+y)=-x, Next purpose:y=-x

The student clicks on the tactic ”Rewrite the goal using an equality”; the computer
offers a list of available equalities, among which the student selects the hypothesis
H. The computer replaces the expression x+ y by 0 in the goal.

Context: K:field, x:K, y:K, H:x+y=0, Goal:-x+0=-x, Next purpose:y=-x

The student chooses the tactic ”Simplify the goal”. (Recall that the property
”∀K:field, ∀x:K, x+0=x” was declared as a simplification).

Context: K:field, x:K, y:K, H:x+y=0, Goal:-x=-x, Next purpose:y=-x

The student may now click on the tactic ”easy” to achieve the proof of the inter-
mediate goal, which becomes an additional assumption in the next context.

Context: K:field, x:K, y:K, H:x+y=0, H0:-x+(x+y)=-x, Goal:y=-x

The student clicks on ”Rewrite the goal using an equality” and selects the hypothesis
H0. The computer replaces the expression −x by −x+ (x+ y) in the goal.

Context: K:field, x:K, y:K, H:x+y=0, H0:-x+(x+y)=-x, Goal:y=-x+(x+y)

Three tactics are then needed to conclude. The first one rewrites −x+ (x+ y) into
−x + x + y, using the commutativity defined as a property of the addition. The
second one simplifies the goal (the computer will replace −x+x by 0 and then 0+y

by y), to obtain y = y instead of y = −x+ x+ y. The last one is ”easy”.

6.3 The field Q, R and C

We define some special elements of the set field, which correspond to the standard
fields Q, R and C, and add some specific properties to these. For R we add some
order, and the n-th roots:

Definition nroot: R→N→R (in coq: nroot)

Properties:

• ∀x:R, ∀n:N, x>=0→n>0→(nroot x n)ˆn=x

In a Coqweb’s proof, the expression (nroot x n) is displayed as n
√
x.

For C, we add the functions Im and Re which give the real and imaginary parts.
We do not present these explicitly here.

103

Blanc, Giacometti, Hirschowitz, Pottier

6.4 Operations on functions over a field

Since our polynomials will be coded as functions, we need some operations on
functions over a field. We define the addition, multiplication and subtraction of
two functions and the opposite function of a function. The addition is for example
coded like this:

Definition +: ∀E:Set,∀K: field, (E→K)→(E→K)→E→K

Properties:

• ∀E:Set, ∀K:field, ∀f g:E→K, ((f+g) x)=(f x)+(g x)

The other operations are similarly defined.

6.5 Polynomials

In our implementation, a polynomial is a special function. We define the standard
polynomial X (which is in fact the identity map), the constant polynomials, and
continue to define other polynomials inductively. We work over the complex field
C.

Definition X: C→C

Properties:

• ∀a: C, (X a)=a

Definition coercion: C→(C→C) (coq name: cfcst)

Properties:

• ∀a x: C, (cfcst a x)=a

Definition is a polynomial: (C→C)→Prop

Properties:

• ∀a: C, (is a polynomial (a)

• is a polynomial (X)

• ∀P Q :C→C, (is a polynomial P)→(is a polynomial Q)→is a polynomial(P+Q)

• ∀P Q :C→C, (is a polynomial P)→(is a polynomial Q)→is a polynomial(P*Q)

• ∀P :C→C, ∀a :C, (is a polynomial P)→is a polynomial(a*P)

• ∀P :C→C, ∀n :N, (is a polynomial P)→is a polynomial(Pˆn)

Exercise: is a polynomial (nroot 2 3)*Xˆ3+1)

Exercise: ∀a b c:C, is a polynomial (a*Xˆ2+b*X+c)

The proofs of the two exercises above are similar. Only two tactics are needed,
i.e. ”apply a resource” and ”easy”. For example, in the first exercise, the stu-
dent will apply the resource ”∀P Q :C→C, is a polynomial P→is a polynomial
Q→is a polynomial (P+Q)” and then will have to prove that 3

√
2 · X3 and 1

are polynomials. Applying the other resource ”∀P Q :C→C, is a polynomial
P→is a polynomial Q→is a polynomial (P*Q)”, he will have to prove that 3

√
2, X3

and 1 are polynomials. And so on, he will achieve the proof applying several times
the properties of the definition ”is a polynomial”.

To define the algebraic numbers, we have to highlight polynomials which have
integer coefficients:

104

Blanc, Giacometti, Hirschowitz, Pottier

Definition has int coeffs : (C→C)→Prop

Properties:

• ∀a :Z, has int coeffs a

• has int coeffs X

• ∀P Q : C→C, (has int coeffs P)→(has int coeffs Q)→has int coeffs(P+Q)

• ∀P Q : C→C, (has int coeffs P)→(has int coeffs Q)→has int coeffs(P-Q)

• ∀P Q : C→C, (has int coeffs P)→(has int coeffs Q)→has int coeffs(P*Q)

• ∀P : C→C, ∀a :Z, (has int coeffs P)→has int coeffs (a*P)

• ∀P : C→C, ∀n :N, (has int coeffs P)→has int coeffs (Pˆn)

• ∀P : C→C, (has int coeffs P)→(is a polynomial P)

Exercise: has int coeffs (5*X+1)

Exercise: has int coeffs (3*Xˆ3+1)

Exercise: ∀n :N, (has int coeffs (Xˆn))

Exercise: ∀n :N, ∀a b :N, has int coeffs (a*Xˆn+b)

The exercises above are similar to those concerning ”is a polynomial”.

6.6 Algebraic numbers

We may now define what an algebraic number is:
Definition is algebraic : C→Prop

Properties:

• ∀a :C, (is algebraic a)= (ex P : C→C, (has int coeffs P) and

(ex b :C, not (P(b) =0)) and (P(a)=0))

Exercise: ∀a : Z, (is algebraic a)

Exercise: is algebraic (nroot 2 2)

Exercise: is algebraic (i)

We describe a proof of the first exercise. The student applies the tactic ”Translate
the goal” and obtains the following:

Context: a:Z, Goal:∃P:C⇒C, (has int coeffs P) and (∃b:C, P(b)6=0, and

P(a)=0)

Clicking on the ”Exhibit” tactic, the student may choose the value of P to be X−a.

Context: a:Z, Goal:(has int coeffs X-a) and (∃b:C, X-a(b) 6=0, and X-a(a)=0)

The tactic ”Translate the goal” may be used again, and the student has to prove
the three subexpressions of the previous goal. The first one, has int coeffs X-a, is
proved as above, using the properties of ”has int coeffs”. The second one, ∃b:C, X-
a(b)), is proved choosing b = 1 + a and simplifying the expression obtained, thanks
to the properties of the functions over a field and the operations on a field. The
third one, X-a(a)=0, is proved similarly.

For first-year students, proving the following theorems
Theorem: ∀a b : C, (is algebraic a)→(is algebraic b)→(is algebraic (a+b)

Theorem: ∀a b : C, (is algebraic a)→(is algebraic b)→(is algebraic (a*b)

would be far too hard. However, the exercises below treat examples which may be
handled directly, and could give a feeling on the theorem.

Exercise: is algebraic (i+1)

Exercise: ∀a b : C, (aˆ2+a+1)=0→(bˆ2-b-1)=0→(is algebraic (a+b))

Exercise: ∀a : C, aˆ5-a-1=0→(is algebraic (a+1))

105

Blanc, Giacometti, Hirschowitz, Pottier

Exercise: ∀a : C, aˆ5-a-1=0→(is algebraic (aˆ2+ (nroot 2 2)*a-2))

Exercise: is algebraic (2/(1+ (nroot 2 2)

Exercise: is algebraic (2 + 3*(nroot 3 2)

The student has to find the good polynomials, and replace these in the proofs.
These are examples of proof exercises that test in fact calculation.

We now define which elements and subsets of C are ”solvable”.
Definition is solvable : (partie C)→Prop

Properties:

• ∀X : (partie C), (is solvable X)= ((is subfield X) and

(∀a : C, ∀b : X, ∀n : N, (n>0)→(b=aˆn)→(a appartient a X)))

Exercise: ∀X Y : partie(C), (is solvable X)→(is solvable Y)→(is solvable (inter X Y))

Definition is solvable : C→Prop

Properties:

• ∀a :C , (is solvable a)= (∀X : partie(C),(is solvable X)→(a appartient a X))

The above exercise is quite long, but not difficult and may be interesting to do for
the student. He has to use every particularity of the two definitions of ”is subfield”
and ”is solvable”, and see that these are propagated to the intersection.

The set of all solvable elements was called ”RESOL”, and the last exercise of
the file was to prove that this set is solvable:

Definition RESOL : partie(C)

Properties:

• ∀a :C , (a appartient a RESOL)=(is solvable a)

Exercise: is solvable (RESOL)

This exercise is also quite long but not too difficult; the student has to show that
RESOL satisfies each of the condition of is solvable.

7 Related and future works

The pionneering interface for Coq has been CtCoq [Bertot 99], based on LeLisp,
which is no more maintained. Later on, the main features of CtCoq, including
”proof by pointing” have been recollected and extended in PCoq [PCOQ], which
is implemented in Java. While CtCoq and PCoq were designed specifically for
Coq, ProofGeneral [Proofgeneral] is designed for a generic theorem prover, but
does not support proof by pointing. CoqIde is a variant of ProofGeneral ded-
icated and integrated to Coq. PhoX [PHoX] is a theorem prover aiming at a
”minimal learning time”. It has been used by third-year students in Chambery
for several years. Matita [Asperti and al.07] seems to be the latest theorem prover:
it is ”document-centric” and its two main concerns are efficient interaction with
a (presumably large) library and disambiguation of user input (see in particular
[Sacerdoti Zacchiroli 04,Sacerdoti Zacchiroli 07]). Coqweb seems to be the first in-
terface designed for teaching, with separate modes for students and teachers. It
needs all kinds of improvements:

(i) the student window is far from perfect. In particular, the display of statements
could still be much better.

(ii) at the end of a proof, it should offer a trace, which could be accepted by typical
teachers as a correct informal proof.

106

Blanc, Giacometti, Hirschowitz, Pottier

(iii) there is no mechanism for searching resources, which is a problem when, form
some unexpedted reason, Coqwed does not find the desired one.

(iv) the teacher window is far from user-friendly. In particular, the way overload-
ing and coercions may be used is not sufficiently clearly specified and error
messages are often frustrating.

(v) the library should be completed and the wiki should be better organized.

On the longer range, we also hope that Coqweb could be upgraded and become
useful for more and more advanced mathematicians.

References

[Asperti and al.07] A.Asperti, C.Sacerdoti Coen, E.Tassi, S.Zacchiroli. “User Interaction with the Matita
Proof Assistant.” To appear in the Journal of Automated Reasoning, Special Issue on User Interfaces
for Theorem Proving.

[Autexier Sacerdoti Coen 06] S. Autexier, C.Sacerdoti Coen: A Formal Correspondence between OMDoc
with Alternative Proofs and the lambda-bar-mu-mu-tilde-Calculus MKM2006, LNAI, 4108, 67–81, 2006.

[Bertot 99] Yves Bertot, “The CtCoq System: Design and Architecture”, Formal aspects of Computing,
Vol. 11, pp. 225-243, 1999.

[BlogDuB] http://pcmath165.unice.fr/annamath/spikini/?wiki=LeBlogDuB

[Coq 06] The Coq proof assistant http://coq.inria.fr/coq-eng.html

[Coqweb] http://pcmath165.unice.fr/wcw/spikini

[Corbineau] Pierre Corbineau, Declarative Proof Language for Coq
http://www.cs.ru.nl/ corbinea/mmode.html

[Epp 03] Suzanna S. Epp, The Role of Logic in Teaching Proof, American Mathematical Monthly (110)10,
Dec. 2003, 886-899.

[FTA] Herman Geuvers, Freek Wiedijk, Jan Zwanenburg, Randy Pollack, Henk Barendregt, Fundamental
Theorem of Algebra http://www.cs.ru.nl/ freek/fta/

[Girard 07] J.Y.Girard, Informal conversation, March 14, 2007

[Gonthier Werner 04] Georges Gonthier and Benjamin Werner, Coq Proof of the Four Color Theorem,
http://research.microsoft.com/ gonthier/

[Luo 99] Z.Luo “Coercive Subtyping” Journal of Logic and Computation.

[MIZAR] The Mizar Home Page http://mizar.uwb.edu.pl/

[PCOQ] http://www-sop.inria.fr/lemme/pcoq/pcoq-fra.html

[PHoX] http://www.lama.univ-savoie.fr/ RAFFALLI/phox.html

[Proofgeneral] http://proofgeneral.inf.ed.ac.uk/

[Sacerdoti 06] C. Sacerdoti Coen: Explanation in Natural language of lambda-bar-mu-mu-tilde-terms In
Fourth International Conference on Mathematical Knowledge Management (MKM2005), LNAI, Vol.
3863, 234–249, 2006.

[Sacerdoti Zacchiroli 04] Claudio Sacerdoti Coen, Stephano Zacchiroli: Efficient Ambiguous Parsing of
Mathematical Formulae MKM04 , LNCS 3119, 347-362, 2004.

[Sacerdoti Zacchiroli 07] Claudio Sacerdoti Coen and Stefano Zacchiroli: Spurious Disambiguation Error
Detection, in Proceedings of MKM 2007: . LNAI, to appear.

[WCW] http://pcmath165.unice.fr/wcw/spikini/?wiki=AccueilWikiCoqWeb

[Wiedijk 04] Freek Wiedijk, ”Integrating procedural and declarative proof”, small TYPES workshop,
University of Nijmegen, 2004-11-01,

[WIMS07] Deuxime colloque international WIMS Enseigner, créer des ressources avec WIMS 9 - 10 - 11
Mai 2007 Nice Sophia Antipolis.

[Xiao 98] Gang Xiao, WWW Interactive Multipurpose Server, http://wims.unice.fr/wims/

107

Some considerations about proof assistants for
education

René David and Christophe Raffalli

Université de Savoie

Abstract

PhoX is used for teaching mathematics, logic and computer sciences since almost ten years at the université
de Savoie and Paris VII. Many design decisions and improvements to the proof assistant where decided for
this specific application. In this talk, we will expose the ideas that helped the students, those that did not
bring much and the new improvement that are planned for future versions.

Talk

