
Proof terms for generalized natural deduction1

Herman Geuvers2

Radboud University Nijmegen & Technical University Eindhoven, The Netherlands3

herman@cs.ru.nl4

Tonny Hurkens5

6

hurkens@science.ru.nl7

Abstract8

In previous work it has been shown how to generate natural deduction rules for propositional9

connectives from truth tables, both for classical and constructive logic. The present paper extends10

this for the constructive case with proof-terms, thereby extending the Curry-Howard isomorphism11

to these new connectives. A general notion of conversion of proofs is defined, both as a conversion12

of derivations and as a reduction of proof-terms. It is shown how the well-known rules for natural13

deduction (Gentzen, Prawitz) and general elimination rules (Schroeder-Heister, von Plato, and14

others), and their proof conversions can be found as instances. As an illustration of the power of15

the method, we give constructive rules for the nand logical operator (also called Sheffer stroke).16

As usual, conversions come in two flavours: either a detour conversion arising from a detour17

convertibility, where an introduction rule is immediately followed by an elimination rule, or a18

permutation conversion arising from an permutation convertibility, an elimination rule nested19

inside another elimination rule. In this paper, both are defined for the general setting, as con-20

versions of derivations and as reductions of proof-terms. The properties of these are studied as21

proof-term reductions. As one of the main contributions it is proved that detour conversion is22

strongly normalizing and permutation conversion is strongly normalizing: no matter how one23

reduces, the process eventually terminates. Furthermore, the combination of the two conversions24

is shown to be weakly normalizing: one can always reduce away all convertibilities.25

2012 ACM Subject Classification Theory of computation → Proof theory, Theory of compu-26

tation → Type theory, Theory of computation → Constructive mathematics, Theory of compu-27

tation → Functional constructs28

Keywords and phrases constructive logic, natural deduction, detour conversion, permutation29

conversion, normalization Curry-Howard isomorphism30

Digital Object Identifier 10.4230/LIPIcs.TYPES.2017.331

Acknowledgements We thank Iris van der Giessen and the anonymous referees for their valuable32

comments on the earlier version of this paper.33

1 Introduction34

Natural deduction rules come in various forms, where the tree format is the most well-known.35

One either puts formulas A as the nodes and leaves of the tree, or sequents Γ ` A, where Γ36

is a sequence or a finite set of formulas. Other formalisms use a linear format, using flags or37

boxes to explicitly manage the open and discharged assumptions.38

We [7] use a natural deduction in sequent calculus style, where in addition all rules have
a special form:

. . . Γ ` Ai Γ, Aj ` D . . .

Γ ` D
© Herman Geuvers and Tonny Hurkens;
licensed under Creative Commons License CC-BY

23rd International Conference on Types for Proofs and Programs (TYPES 2017).
Editors: Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi; Article No. 3; pp. 3:1–3:40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:herman@cs.ru.nl
mailto:hurkens@science.ru.nl
http://dx.doi.org/10.4230/LIPIcs.TYPES.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Proof terms for generalized natural deduction

So if the conclusion of a rule is Γ ` D, then the hypotheses of the rule can be of one of two39

forms:40

1. Γ, Aj ` D: we still need to prove D from Γ, but we are now also allowed to use Aj as41

additional assumption. We call Aj a case.42

2. Γ ` Ai: in stead of proving D from Γ, we now need to prove Ai from Γ. We call Ai a43

lemma.44

Given the restricted format of the rules, we don’t have to give Γ explicitly, as it can be
retrieved from the other information in a deduction. So, the deduction rules are presented
without Γ, in the following format

. . . ` Ai Aj ` D . . .

` D

In [7] we have shown how to derive natural deduction rules for a connective form its45

definition by a truth table, both for the classical and the intuitionistic case. In that paper,46

we have shown that the intuitionistic rules are indeed constructive by providing a Kripke47

semantics. In the present paper we provide a proof-theoretic study of the natural deduction48

rules for the intuitionistic case. We define a notion of convertibility and conversion for the49

general connectives, which we analyze by interpreting derivations as proof-terms. So we50

extend the Curry-Howard isomorphism, that interprets formulas as types and derivations as51

terms, to include all these new intuitionistic connectives.52

It turns out that the standard format for the deduction rules we have chosen (as described53

above) is very suitable for defining convertibilities and conversion in general, for giving a54

term interpretation to derivations and for defining reductions on these proof-terms that55

correspond with conversion (both detour conversion and permutation conversion). The format56

of our rules also allows the transformation of other formalisms, like the very well-known57

ones by Gentzen and Prawitz [6, 14] but also more recent ones by Von Plato [23], in terms58

of ours. This transformation we will define on the proof-term level and we will show how59

detour conversion (the elimination of a direct convertibility, an introduction rule immediately60

followed by an elimination rule) is preserved by the translation.61

Standard questions about logic are consistency and decidability. We prove that both62

hold (in general for our connectives) by proving weak normalization for the combined63

process of detour conversion and permutation conversion. A permutation conversion operates64

on a permutation convertibility, which arises when an elimination rule blocks a detour65

convertibility for another connective; in that case one has to permute one elimination66

rule over another. Weak normalization states that for any derivation (proof-term) we can67

eliminate convertibilities in such a way that eventually no convertibilities are left. Using this68

one can prove the sub-formula property and consistency and decidability. We prove weak69

normalization for the proof-terms by studying reduction of proof-terms.70

The interest of our work lies in the fact that the natural deduction rules can be defined71

and analyzed in such a generic way, capturing very many known instances of deduction72

rules for intuitionistic logic, but also new deduction rules for new connectives. The key73

concepts that make this work are our general rule format (described above) and the fact that74

our system provides natural deduction rules for each connective in isolation: rules for one75

connective do not use another connective. We will illustrate this by giving the nand operator76

as an extended example. We describe its constructive derivation rules, as they arise from the77

truth tables. These rules are self-contained, so they only refer to nand itself, and we show78

how to interpret intuitionistic proposition logic in the logic with only nand. We also give the79

proof-terms and reductions for nand.80

H. Geuvers and T. Hurkens 3:3

1.1 Related work and contribution of the paper81

Natural deduction has been studied extensively, since the original work by Gentzen [6], both82

for classical and intuitionistic logic. Overviews can be found in [22] and [12]. Also the83

generalization of natural deduction to include other connectives or allow different derivation84

rules has been studied by various researchers. Notably, there is the work of Schroeder-Heister85

[17], Read [16], Tennant [21], Von Plato [23, 12], Milne [11], Francez and Dyckhoff [4, 3] that86

is related to ours. Schroeder-Heister studies general formats of natural deduction where also87

rules may be discharged (as opposed to the normal situation where only formulas may be88

discharged). He also studies a general rule format for intuitionistic logic and shows that89

the connectives ∧,∨,→,⊥ are complete for it. Von Plato, Milne, Francez and Dyckhoff,90

Read and Tennant study “general elimination rules”, where the idea is that elimination91

rules arise naturally from the introduction rules, following Prawitz’s [15] inversion principle:92

“the conclusion obtained by an elimination does not state anything more than what must93

have already been obtained if the major premise of the elimination was inferred by an94

introduction”. The elimination rules obtained have the same flavor as the elimination rules95

we derive from truth tables: the conclusion of elimination Φ is not a sub-formula of Φ, but a96

general formula D, where there are additional hypothesis that connect Φ and D. For the97

standard intuitionistic connectives the general elimination rules are quite close to ours, but98

∧-elimination is slightly different. Von Plato [23], Lopez-Escobar [10] and Tennant [21] study99

the standard intuitionistic connectives with general rules.100

A difference is that we focus not so much on the rules but on the fact that we can define101

different and new connectives constructively. In our work, we do not take the introduction102

rules as primary, with the elimination rules defined from them, but we derive elimination103

and introduction rules directly from the truth table. Then we optimize them, which can be104

done in various ways, where we adhere to a fixed format for the rules. Many of the general105

elimination rules, for example for ∧, appear naturally as a consequence of our approach of106

deriving the rules from the truth table.107

The idea of deriving deduction rules from the truth table also occurs in the work of Milne108

[11], but in a slightly different way: from the introduction rules, a truth table is derived109

and then the classical elimination rules are derived from the truth table. For the if-then-else110

connective, this amounts to classical rules equivalent to ours in [7], but not optimized. We111

start from the truth table and derive rules for intuitionistic logic.112

As remarked, the main contribution of this paper is a proof-theoretic analysis of our113

system of generalized natural deduction via the Curry-Howard isomorphism that interprets114

derivations as proof terms and conversions as reductions. We show that many known115

conversions and reductions are captured by our approach and we prove general normalization116

results. These is a lot of related work on the Curry-Howard isomorphism that our work rests117

on, for which we refer to [18, 8].118

The present paper builds on research reported in [7]. To make this paper self-contained,119

we include the definitions and some basic results and examples from [7]: Section 2 repeats the120

main definitions of [7] in slightly expanded form, where Section 2.1 adds the new example of121

the nand-connective (Sheffer stroke), which is worked out in detail, especially the connection122

between nand-logic and intuitionistic proposition logic. Section 3 defines detour conversion123

and permutation conversion on derivations; the second is new. Section 4 defines the Curry-124

Howard isomorphism for our general natural deduction format and gives (general) proof125

terms for natural deductions and reduction rules on them. Section 5 shows how the general126

rules relate to so called “optimized” rules, which are the ones that are known from the127

literature for natural deduction and for proof-terms. Section 6 proves normalization results128

TYPES 2017

3:4 Proof terms for generalized natural deduction

for the calculi of proof-terms. Sections 4, 5, 6 are all new; Section 2.1 is largely new and129

Section 3 is partially new.130

2 Deriving constructive natural deduction rules from truth tables131

To make this paper self contained and to fix notions and notations, we recap the main132

definitions from [7] and explain in detail how the elimination and introduction rules for a133

connective are derived from its truth table. The elimination rules have the following form. Φ134

is the formula we eliminate. We have Φ = c(A1, . . . , An) where c is a connective of arity n135

and n = k + `. The formula D is arbitrary.136

` Φ ` Ai1 . . . ` Aik Aj1 ` D . . . Aj`
` D

el
` D

So, Ai1 , . . . , Aik , Aj1 , . . . , Aj`
are the direct subformulas of Φ = c(A1, . . . , An), where some

appear as “lemma” and others as “case” in the derivation rule. The (intuitionistic) introduc-
tion rules have the following form. Again, c is a connective of arity n, Φ = c(A1, . . . , An)
and n = k + `. (Of course, every rule has its own specific sequence i1, . . . , ik, j1, . . . j`.)

` Ai1 . . . ` Aik Aj1 ` Φ . . . Aj`
` Φ

in
` Φ

For a concrete connective c, we derive the elimination and introduction rules from the137

truth table, as described in the following Definition, taken from [7].138

I Definition 1. Given an n-ary connective c with a truth table tc (with 2n rows). We write139

ϕ = c(p1, . . . , pn), where p1, . . . , pn are proposition letters and we write Φ = c(A1, . . . , An),140

where A1, . . . , An are arbitrary propositions. Each row of tc gives rise to an elimination rule141

or an introduction rule for c in the following way.142

p1 . . . pn c(p1, . . . , pn)
a1 . . . an 0 7→

` Φ . . . ` Aj(if aj = 1) Ai ` D(if ai = 0) . . .
el

` D
143

144

p1 . . . pn c(p1, . . . , pn)
b1 . . . bn 1 7→

. . . ` Aj(if bj = 1) Ai ` Φ(if bi = 0) . . .
in

` Φ
145

If aj = 1 in tc, then Aj occurs as a lemma in the rule; if ai = 0 in tc, then Ai occurs as a case.
The rules are given in abbreviated form and it should be understood that all judgments can
be used with an extended hypotheses set Γ. So the elimination rule in full reads as follows
(where Γ is a set of propositions).

Γ ` Φ . . .Γ ` Aj (if aj = 1)Γ, Ai ` D (if ai = 0) . . .
el

Γ ` D

In an elimination rule, we call ` Φ the major premise and the other hypotheses of the rule146

we call the minor premises.147

I Definition 2. Given a set of connectives C := {c1, . . . , cn}, we define the intuitionistic148

natural deduction system for C, IPCC , by the following derivation rules.149

The axiom rule
axiom (if A ∈ Γ)

Γ ` A
The elimination rules for the connectives in C and the intuitionistic introduction rules for150

the connectives in C, as given in Definition 1.151

H. Geuvers and T. Hurkens 3:5

We write Γ `C A if Γ ` A is derivable using the derivation rules of IPCC .152

I Example 3.
A B A ∨B A ∧B A→ B ¬A
0 0 0 0 1 1
0 1 1 0 1 1
1 0 1 0 0 0
1 1 1 1 1 0

1. From the truth table for ∨ we derive the following intuitionistic rules for ∨. We label the153

rules by the relevant entries in the truth table.154

` A ∨B A ` D B ` D
∨-el

` D

A ` A ∨B ` B
∨-in01

` A ∨B

` A B ` A ∨B
∨-in10

` A ∨B

` A ` B
∨-in11

` A ∨B
These rules are all intuitionistically correct, as one can observe by inspection. We will155

show that these are equivalent to the well-known intuitionistic rules. We will also show156

how these rules can be optimized and be reduced to 1 elimination rule and 2 introduction157

rules, which are the well-known ones.158

2. From the truth table for ∧ we derive the following intuitionistic rules for ∧, 3 elimination
rules and one introduction rule.

` A ∧B A ` D B ` D
∧-el00

` D

` A ∧B A ` D ` B
∧-el01

` D

` A ∧B ` A B ` D
∧-el10

` D

` A ` B
∧-in

` A ∧B
These rules are all intuitionistically correct, as one can observe by inspection. We will
show that these are equivalent to the well-known intuitionistic rules. We will also show
how these rules can be optimized and be reduced to 2 elimination rules and 1 introduction
rule, which are the well-known ones. The elimination rules for ∧ have a bit the flavor of
the so called “general elimination rules” of Schroeder-Heister [17] and Von Plato [23], in
the sense that we don’t derive A, respectively B, from A∧B, but an auxiliary conclusion
D is derived. This rule, also called the parallel elimination rule by Tennant [21], is as
follows.

` A ∧B A,B ` D
∧-elpar

` D
We will show that this rule can be derived from ours. See Definition 45 and Lemma 46,159

where this is shown using proof-terms.160

3. From the truth table for ¬ we also derive the following rules for ¬, one elimination rule
and one introduction rule.

A ` ¬A
¬-in

` ¬A

` ¬A ` A
¬-el

` D
The elimination rule is familiar. For the introduction rule: to prove ¬A, one “only” has
to prove ¬A from A, which may seem limited. The traditional ¬-in rule is the following.

A ` ¬B A ` B
¬-int

` ¬A

TYPES 2017

3:6 Proof terms for generalized natural deduction

The two ¬-introduction rules are equivalent, which we will show in detail (using proof161

terms) in Lemma 53. To derive ¬-int from ¬-in one also needs ¬-el, so we view ¬-in as162

more primitive then the traditional rule ¬-int.163

As an example of the intuitionistic derivation rules for ¬ we show that A ` ¬¬A is
derivable:

A,¬A ` ¬A A,¬A ` A
¬-el

A,¬A ` ¬¬A
¬-in

A ` ¬¬A
4. From the truth table for → we derive the following intuitionistic rules for →.164

A ` A→ B B ` A→ B
→-in00

` A→ B

` A→ B ` A B ` D
→-el

` D

A ` A→ B ` B
→-in10

` A→ B

` A ` B
→-in11

` A→ B
These rules are all intuitionistically correct, as one can verify by inspection. For example,
for →-in01, observe that if A ` A → B, then ` A → B, so the second hypothesis is
superfluous. Similarly for →-in11, the first hypothesis is superfluous. We will show that
these rules are equivalent to the well-known intuitionistic rules. We will also show how
these rules can be optimized and be reduced to 1 elimination rule and 2 introduction
rules. These are not the well-known ones, because the well-known →-in-rule does not fit
into our scheme:

A ` B
→-in

` A→ B

In this rule, both the conclusion is changed and an assumption (case) is added. In our165

system, each rule has the property that a hypothesis either adds an assumption or changes166

the conclusion (while retaining the same set of assumptions), and this “or” is exclusive.167

We continue this section with some more basic properties and notions, most of which168

have been described briefly in [7]. We also introduce some further notation.169

In the logic IPCC (Definitions 1 and 2) we can freely reuse formulas and weaken the170

context, so the structural rules of contraction and weakening are wired into the system.171

Because weakening is used a lot, we formulate it as a Lemma. The proof is an immediate172

induction on the derivation.173

I Lemma 4 (Weakening). If Γ ` A with derivation Π and Γ ⊆ ∆, then ∆ ` A with derivation174

Π.175

In natural deduction in tree format, the elimination of a detour convertibility involves176

composition of derivations: the placing of one derivation on top of another, replacing a177

discharged leaf A on top of a derivation tree (an assumption) by a derivation of A. In178

natural deduction in sequent calculus style, this amounts to replacing an axiom Γ, A ` A,179

that appears as the leaf of a derivation tree, by a derivation of ∆ ` A, where ∆ ⊂ Γ. We180

first define more precisely how the composition of derivation works in natural deduction in181

sequent calculus style.182

I Lemma 5. If ∆, ϕ ` ψ, and Γ ` ϕ, then Γ,∆ ` ψ183

Proof. By induction on the derivation of ∆, ϕ ` ψ, using weakening (Lemma 4). J184

To be a bit more precise about what happens with the derivations in the proof of Lemma185

5, let Π be the derivation of ∆, ϕ ` ψ. Then, due to the format of our rules:186

H. Geuvers and T. Hurkens 3:7

The only place in Π where the hypothesis ϕ is actually used is at a leaf of Π, in an187

instance of the (axiom) rule.188

Contexts can only grow when we walk upwards in a derivation, so these leaves are of the189

form ∆′, ϕ ` ϕ for some ∆′ ⊇ ∆.190

We replace this leaf by Σ, the derivation of Γ ` ϕ. Due to weakening, this Σ is also a191

derivation of Γ,∆′ ` ϕ, so Π with the leaves of the form ∆′, ϕ ` ϕ replaced by Σ yields a192

correct derivation of Γ,∆ ` ψ.193

I Notation 6. If Π is a derivation of ∆, ϕ ` ψ and Σ is a derivation of Γ ` ϕ, then we have a
derivation of Γ,∆ ` ψ that looks like this:

····
Σ

Γ ` ϕ . . .

····
Σ

Γ ` ϕ
····

Π
Γ,∆ ` ψ

So in Π, every application of an (axiom) rule at a leaf, deriving ∆′ ` ϕ for some ∆′ ⊇ ∆ is194

replaced by a copy of a derivation Σ, which is also a derivation of ∆′,Γ ` ϕ.195

The fact that we have weakening supports the following convention.196

I Convention 7. In examples, to simplify derivations we will often use the following format
for an elimination rule (and similarly for an introduction rule).

Γ0 ` Φ . . .Γj ` Aj (if aj = 1)Γi, Ai ` D (if ai = 0) . . .
el

∪nk=0Γk ` D

This prevents us from having to copy the full Γ from the conclusion to the hypotheses in a197

rule; we can limit ourselves to the parts of Γ that we need for that particular branch in the198

derivation.199

We now recall from [7] two lemmas that allow to reduce the number of deduction rules:200

some rules can be taken together and one or more of the hypotheses can be dropped. For201

completeness, we give these lemmas again here (Lemma 9 and Lemma 12), with their proofs.202

First, we motivate Lemma 9 by looking at the example of the rules for ∧ (Example 3).203

I Example 8. From the truth table we have derived the following 3 intuitionistic elimination
rules for ∧.

` A ∧B A ` D B ` D
∧-el00

` D

` A ∧B A ` D ` B
∧-el01

` D

` A ∧B ` A B ` D
∧-el10

` D
These rules can be reduced to the following 2 equivalent elimination rules. The index in the
rule indicates where it originates from: ∧-el0_ is the combination of ∧-el00 and ∧-el01.

` A ∧B A ` D
∧-el0_

` D

` A ∧B B ` D
∧-el_0

` D
It can be shown that these sets of rules are equivalent. Here we only show the derivability204

of the ∧-el0_ rule from the rules ∧-el00 and ∧-el01. As usual, for notational simplicity we205

suppress the context Γ. Suppose we have derivations of ` A ∧ B and of A ` D. Then we206

have the following derivation.207

TYPES 2017

3:8 Proof terms for generalized natural deduction

` A ∧B A ` D

B ` A ∧B B,A ` D B ` B
∧-el01

B ` D
∧-el00

` D
Note that the third and fourth hypothesis come from the first and second through weakening,208

and the fifth hypothesis is the axiom rule209

The general method here is that we can replace two rules that only differ in one hypothesis,210

which in one rule occurs as a lemma and in the other as a case, by one rule where the hypothesis211

is removed. It will be clear that the Γ’s above are not relevant for the argument, so we will212

not write these.213

I Lemma 9. A system with two derivation rules of the form

` A1 . . . ` An B1 ` D . . . Bm ` D A ` D

` D

` A1 . . . ` An ` A B1 ` D . . . Bm ` D

` D

is equivalent to the system with these two rules replaced by

` A1 . . . ` An B1 ` D . . . Bm ` D

` D

Proof. The implication from bottom to top is immediate. From top to bottom, suppose we
have the two given rules. We now derive the bottom one. Assume we have derivations of
` A1, . . . ,` An, B1 ` D, . . . , Bm ` D. We now have the following derivation of ` D.

` A1 . . . ` An B1 ` D . . . Bm ` D

A ` A1 . . . A ` An A ` A A,B1 ` D . . . A,Bm ` D

A ` D

` D

J214

Lemma 9 can be applied to elimination and introduction rules. An application to215

elimination rules is given in Example 8. We now give two applications to introduction rules.216

I Example 10. From the truth table we have derived the following 3 intuitionistic introduc-217

tion rules for ∨.218

A ` A ∨B ` B
∨-in01

` A ∨B

` A B ` A ∨B
∨-in10

` A ∨B

` A ` B
∨-in11

` A ∨B

Using Lemma 9, these rules can be reduced to the following 2 equivalent introduction
rules. (We could call ∨-inl also ∨-in_1, but we use a more informative and standard name:
“in-left”.)

` A
∨-inl

` A ∨B

` B
∨-inr

` A ∨B
I Example 11. Similar to ∨, we can optimize the introduction rules for →. From the truth219

table we have derived the following 3 intuitionistic introduction rules for →.220

A ` A→ B B ` A→ B
→-in00

` A→ B

A ` A→ B ` B
→-in01

` A→ B

` A ` B
→-in11

` A→ B

H. Geuvers and T. Hurkens 3:9

Using Lemma 9, these rules can be reduced to the following 2 equivalent introduction rules.
A ` A→ B

→-ina
` A→ B

` B
→-inb

` A→ B

It can easily be shown that the rules →-ina and →-inb together are equivalent with the
well-known →-in:

A ` B
→-in

` A→ B
NB. To derive →-ina from →-in, one also needs →-el.221

As →-in does not conform with our format for rules, we will be using →-ina and →-inb222

as our basic rules and treat →-in as a defined rule, the composition of first →-inb and then223

→-ina.224

Another optimization we can perform is to replace a rule which has only one case by a
rule where the case is the conclusion. To illustrate this: the simplified elimination rules for
∧, ∧-el0_ and ∧-el_0 have only one case. The rule ∧-el0_ can thus be replaced by the rule
∧-ell, which is the usual left projection rule, ∧-elimination-left.

` A ∧B A ` D
∧-el0_

` D

` A ∧B
∧-ell

` A
There is a general Lemma stating this simplification is correct.225

I Lemma 12. A system with a derivation rule of the form to the left is equivalent to the
system with this rule replaced by the rule on the right.

` A1 . . . ` An B ` D

` D

` A1 . . . ` An
` B

Proof. The implication from left to right is immediate. From right to left, assume we have226

derivations of ` A1, . . . ,` An. Then, by the rule to the right, we have Γ ` B. Now assume227

we also have a derivation of B ` D. By Lemma 5, we also have a derivation of Γ ` D.228

J229

I Definition 13. The standard derivation rules for the intuitionistic propositional connectives230

∧,∨,→,¬,⊥ and > are given below. These rules are derived from the truth tables and231

optimized following Lemmas 9 and 12. We have seen most of the rules in previous Examples,232

except for the rules for > and ⊥, which are derived immediately from Definition 1. The233

system with these connectives and rules we will call intuitionistic proposition logic and if we234

want to explicit we write Γ `i A for derivability in this system.235

` A ` B
∧-in

` A ∧B

` A ∧B
∧-ell

` A

` A ∧B
∧-elr

` B

` A
∨-inl

` A ∨B

` B
∨-inr

` A ∨B

` A ∨B A ` D B ` D
∨-el

` D

A ` A→ B
→-ina

` A→ B

` B
→-inb

` A→ B

` A→ B ` A
→-el

` B

A ` ¬A
¬-in

` ¬A

` ¬A ` A
¬-el

` D
>-in

` >
` ⊥

⊥-el
` D

TYPES 2017

3:10 Proof terms for generalized natural deduction

2.1 Three larger examples236

As examples we look in more detail at two ternary connectives and one binary connective.237

The ternary connectives we treat are if-then-else, the “if-then-else” connective, and most,238

the ternary connective that is true if at least 2 of the arguments are true. These have been239

discussed in finer detail in [7], notably the connective if-then-else. The binary connective240

that we study at the end of this section is the nand, written A ↑ B for nand(A,B). It is241

also known as the Sheffer stroke, the well-known connective that is functionally complete242

classically, where A ↑ B expresses ¬(A ∧B).243

The truth tables of most and if-then-else are as follows, where we denote if A thenB elseC244

by A→B/C.245

A B C most(A,B,C) A→B/C
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

246

From the lines in the truth table of A→B/C with a 0 we get the following four elimination247

rules.248

` A→B/C A ` D B ` D C ` D

` D

` A→B/C A ` D ` B C ` D

` D
249

250

` A→B/C ` A B ` D C ` D

` D

` A→B/C ` A B ` D ` C

` D
251

Using Lemmas 9 and 12, these can be reduced to the following two. (The two rules on252

the first line reduce to else-el, the two rules on the second line reduce to then-el.)253

` A→B/C A ` D C ` D
else-el

` D

` A→B/C ` A
then-el

` B

These are not the only possible optimizations: the two rules on the left can also be combined
into an “if-el” rule:

` A→B/C B ` D C ` D
if-el

` D
From the lines in the truth table of A→B/C with a 1 we get the following four introduction254

rules:255

A ` A→B/C B ` A→B/C ` C

` A→B/C

A ` A→B/C ` B ` C

` A→B/C
256

257

` A ` B C ` A→B/C

` A→B/C

` A ` B ` C

` A→B/C
258

Using Lemmas 9 and 12 can be reduced to the following two. (The two rules on the first259

line reduce to else-in, the two rules on the second line reduce to then-in.)260

H. Geuvers and T. Hurkens 3:11

A ` A→B/C ` C
else-in

` A→B/C

` A ` B
then-in

` A→B/C

Again, these are not the only possible optimizations: the two rules on the right can also261

be combined into an “if-in” rule:262

` B ` C
if-in

` A→B/C
In [7], we have studied the if-then-else connective in more detail, and we have shown263

that if-then-else, together with > and ⊥ is functionally complete: all other constructive264

connectives can be defined in terms of it.265

From the lines in the truth table of most(A,B,C) with a 0 we get the following four266

elimination rules.267

` most(A,B,C) A ` D B ` D C ` D

` D

` most(A,B,C) A ` D B ` D ` C

` D
268

269

` most(A,B,C) A ` D ` B C ` D

` D

` most(A,B,C) ` A B ` D C ` D

` D
270

Using Lemmas 9 and 12, these can be reduced to the following three. If we would follow271

the naming conventions that we introduced earlier, we would have most-el1 = most-el00_,272

most-el2 = most-el0_0 and most-el3 = most-el_00, but we will not pursue that naming here.273

` most(A,B,C) A ` D B ` D
most-el1

` D

` most(A,B,C) A ` D C ` D
most-el2

` B

` most(A,B,C) B ` D C ` D
most-el3

` B

From the lines in the truth table of most(A,B,C) with a 1 we get the following four274

introduction rules:275

A ` most(A,B,C) ` B ` C

` most(A,B,C)
` A B ` most(A,B,C) ` C

` most(A,B,C)
276

277

` A ` B C ` most(A,B,C)
` most(A,B,C)

` A ` B ` C

` most(A,B,C)
278

Using Lemmas 9 and 12 can be reduced to the following three.279

` A ` B
most-in1

` most(A,B,C)
` A ` C

most-in2
` most(A,B,C)

` B ` C
most-in3

` most(A,B,C)

The truth table for nand(A,B), which we write as A ↑ B is as follows.

A B A ↑ B
0 0 1
0 1 1
1 0 1
1 1 0

TYPES 2017

3:12 Proof terms for generalized natural deduction

From this we derive the following 3 introduction and 1 elimination rule280

A ` A ↑ B B ` A ↑ B
↑-in00

` A ↑ B

A ` A ↑ B ` B
↑-in01

` A ↑ B

` A B ` A ↑ B
↑-in10

` A ↑ B
` A ↑ B ` A ` B

↑-el
` D

The three introduction rules can be combined to two rules, so our optimized set of281

deduction rules for nand consists of three rules. We call this nand-logic.282

I Definition 14. The logic with just the connective nand and the three derivation rules283

below we define as nand-logic. We denote derivability in this logic by Γ `↑ A.284

A ` A ↑ B
↑-inl

` A ↑ B

B ` A ↑ B
↑-inr

` A ↑ B
` A ↑ B ` A ` B

↑-el
` D

We can define the usual connectives of intuitionistic proposition logic (Definition 13) in285

terms of nand in the usual way. This gives rise to an embedding of intuitionistic proposition286

logic into the nand-logic.287

I Definition 15.

¬̇A := A ↑ A288

A ∨̇ B := (A ↑ A) ↑ (B ↑ B)289

A ∧̇ B := (A ↑ B) ↑ (A ↑ B)290

A →̇ B := A ↑ (B ↑ B)291

This gives rise to the following interpretation of intuitionistic proposition logic into nand-logic.292

p↑ := ¬̇¬̇p for p proposition letter293

(¬A)↑ := ¬̇A↑294

(A ∨B)↑ := A↑ ∨̇ B↑295

(A ∧B)↑ := A↑ ∧̇ B↑296

(A→ B)↑ := A↑ →̇ B↑297

This interpretation extends straightforwardly to sets of propositions.298

As a side remark, the translation of a proposition letter p could also be chosen to be p in299

stead of ¬̇¬̇p. Then the soundness statement below (Proposition 17) requires an additional300

double negation: If Γ `i A, then Γ↑ `↑ ¬̇¬̇A↑. The connective ↑ is very much a “negative301

connective” and the choice of ¬̇¬̇p as translation of p renders all formulas A↑ negative, so302

the double negation can be avoided.303

Before proving the soundness of the interpretation we give some auxiliary lemmas.304

I Lemma 16. In nand-logic, we have the following.305

1. For arbitrary propositions A and B,

¬̇¬̇(A ↑ B) ` A ↑ B,

2. For every A,
¬̇¬̇¬̇A ` ¬̇A.

H. Geuvers and T. Hurkens 3:13

3. For every proposition P from intuitionistic proposition logic,

¬̇¬̇P ↑ ` P ↑.

4. For arbitrary propositions A and B,

If Γ, A ` B then Γ, ¬̇B ` ¬̇A.

Proof. The following proves ¬̇¬̇(A ↑ B) ` A ↑ B. Here Γ = ¬̇¬̇(A ↑ B), A,B,A ↑ B and the
last ↑-in rule denotes a successive application of ↑-inl followed by ↑-inr. Finally, the lowest ↑-el
has one premise more, which is an exact copy of the derivation of ¬̇¬̇(A ↑ B), A,B ` ¬̇(A ↑ B)
that is given.

¬̇¬̇(A ↑ B), A,B ` ¬̇¬̇(A ↑ B)

Γ ` A ↑ B Γ ` A Γ ` B
↑-el

¬̇¬̇(A ↑ B), A,B,A ↑ B ` ¬̇(A ↑ B)
↑-in

¬̇¬̇(A ↑ B), A,B ` ¬̇(A ↑ B)
↑-el

¬̇¬̇(A ↑ B), A,B ` A ↑ B
== ↑-in

¬̇¬̇(A ↑ B) ` A ↑ B

So, ¬̇¬̇¬̇A ` ¬̇A follows immediately, and similarly ¬̇¬̇P ↑ ` P ↑ for every proposition P from306

intuitionistic proposition logic.307

Now, assuming that Γ, A ` B, we can make the following derivation of Γ, ¬̇B ` ¬̇A, using
the fact that Γ, B ↑ B,A ` B by weakening.

Γ, B ↑ B,A ` B ↑ B Γ, B ↑ B,A ` B Γ, B ↑ B,A ` B
↑-el

Γ, B ↑ B,A ` A ↑ A
↑-in

Γ, B ↑ B ` A ↑ A

J308

We can now prove the soundness of the interpretation of intuitionistic proposition logic309

into nand-logic.310

I Proposition 17. If Γ `i A, then Γ↑ `↑ A↑.311

Proof. The proof is by induction on the derivation of Γ `i A, so we have to show that the312

rules of intuitionistic proposition logic are sound inside nand-logic (after interpretation). We313

use Lemma 16, notably case (4), which we indicate explicitly in the derivations.314

¬-in: we show that ¬-in of Definition 13 is derivable.
A ` A ↑ A

↑-in
A ` A ↑ A

¬-el: we show that ¬-el of Definition 13 is derivable.
` A ↑ A ` A ` A

↑-el
` D

∨-in: we show that A `↑ A ∨̇ B is derivable.

A,A ↑ A ` A ↑ A A,A ↑ A ` A A,A ↑ A ` A
↑-el

A,A ↑ A ` (A ↑ A) ↑ (B ↑ B)
↑-inl

A ` (A ↑ A) ↑ (B ↑ B)

TYPES 2017

3:14 Proof terms for generalized natural deduction

∨-el: we show that the following rule is derivable (which suffices).

` A ∨̇ B A ` D B ` D

` ¬̇¬̇D

` (A ↑ A) ↑ (B ↑ B)
A ` D

============ 16(4)
D ↑ D ` A ↑ A

B ` D
============ 16(4)
D ↑ D ` B ↑ B

↑-el
D ↑ D ` (D ↑ D) ↑ (D ↑ D)

↑-inl
` (D ↑ D) ↑ (D ↑ D)

∧-el: we show that A ∧̇ B `↑ ¬̇¬̇A is derivable.315

A ∧̇ B ` (A ↑ B) ↑ (A ↑ B)

A ↑ A ` A ↑ A A ` A
↑-el

A ↑ A,A ` A ↑ B
↑-inl

A ↑ A ` A ↑ B
↑-el

A ∧̇ B,A ↑ A ` A
== 16(4)

A ∧̇ B,A ↑ A ` (A ↑ A) ↑ (A ↑ A)
↑-inl

A ∧̇ B ` (A ↑ A) ↑ (A ↑ A)

∧-in: we show that the following rule is derivable (which suffices).

` A ` B

` A ∧̇ B

A ↑ B ` A ↑ B ` A ` B
↑-el

A ↑ B ` (A ↑ B) ↑ (A ↑ B)
↑-inl

` (A ↑ B) ↑ (A ↑ B)
→-in: we show that the following rule is derivable (which suffices).

A ` B

` A →̇ B

B ↑ B ` B ↑ B A ` B A ` B
↑-el

A,B ↑ B ` A ↑ (B ↑ B)
↑-inr

A ` A ↑ (B ↑ B)
↑-inl

` A ↑ (B ↑ B)
→-el: we show that the following rule is derivable (which suffices).

` A →̇ B ` A

` ¬̇¬̇B

` A ↑ (B ↑ B) ` A B ↑ B ` B ↑ B
↑-el

B ↑ B ` B
===================================== 16(4)

B ↑ B ` (B ↑ B) ↑ (B ↑ B)
↑-inl

` (B ↑ B) ↑ (B ↑ B)

H. Geuvers and T. Hurkens 3:15

J316

The reverse of Proposition 17 does not hold. For example, 6` p ∨ ¬p, for p a proposition317

letter, while (p ∨ ¬p)↑ = (ṗ ↑ ṗ) ↑ (¬̇ṗ ↑ ¬̇ṗ), where ṗ := ¬̇¬̇p. The proposition (A ↑ A) ↑318

(¬̇A ↑ ¬̇A) is derivable in nand-logic for any A (note that ¬̇A = A ↑ A):319

¬̇A ↑ ¬̇A ` ¬̇A ↑ ¬̇A A ↑ A ` ¬̇A A ↑ A ` ¬̇A
↑-el

A ↑ A, ¬̇A ↑ ¬̇A ` (A ↑ A) ↑ (¬̇A ↑ ¬̇A)
=== ↑-in

` (A ↑ A) ↑ (¬̇A ↑ ¬̇A)
There is also an obvious mapping from nand-logic to intuitionistic proposition logic, by320

interpreting A ↑ B as ¬(A∧B). As a matter of fact, it can also be shown in the joint system321

(i.e. where we add nand to intuitionistic proposition logic) that A ↑ B and ¬(A ∧ B) are322

equivalent: A ↑ B ` ¬(A ∧ B) and ¬(A ∧ B) ` A ↑ B. In presence of the implication and323

conjunction connective, the latter can be reformulated as ` A ↑ B ←→ ¬(A ∧B) (where, as324

usual, we let C ←→ D abbreviate (C → D) ∧ (D → C)).325

I Definition 18. We define the mapping (−)↓ from nand-logic to intuitionistic proposition
logic by defining

(A ↑ B)↓ := ¬(A↓ ∧B↓)

and further by induction on propositions. This mapping extends to sets of hypotheses Γ in326

the obvious way.327

I Proposition 19. If Γ `↑ A, then Γ↓ `i A↓.328

Proof. By induction on the derivation. The only thing to show is that the rules ↑-el, ↑-inl
and ↑-inr are sound in intuitionistic proposition logic is we interpret A ↑ B as ¬(A ∧B). So
we have to verify the soundness of the following rules.

A ` ¬(A ∧B)
` ¬(A ∧B)

B ` ¬(A ∧B)
` ¬(A ∧B)

` ¬(A ∧B) ` A ` B

` D
A simple inspection shows that these rules are sound in intuitionistic proposition logic. J329

We can now formulate a Glivenko-like theorem that relates nand-logic and intuitionistic330

proposition logic. (Glivenko’s theorem, e.g. see [22], relates intuitionistic and classical331

proposition logic via the double negation.)332

I Proposition 20. For A a proposition of intuitionistic proposition logic,

`i A↑
↓ ←→ ¬¬A

.333

Proof. By induction on the structure of A.334

A = p, a proposition letter. Then p↑↓ = (¬̇¬̇p)↓ = ¬(¬(p ∧ p) ∧ ¬(p ∧ p))←→ ¬¬p.335

A = ¬B. Then (¬B)↑
↓

= (B ↑ B)↓ = ¬(B ∧B)←→ ¬¬¬B.336

A = B ∨ C. Then (B ∨ C)↑
↓

= ((B ↑ B) ↑ (C ↑ C))↓ = ¬(¬(B ∧ B) ∧ ¬(C ∧ C)) ←→337

¬¬(B ∨ C).338

For the equivalence ¬(¬B ∧ ¬C)←→ ¬¬(B ∨ C): from left to right, if ¬(B ∨ C), then339

¬B and ¬C, so we have a contradiction with ¬(¬B ∧¬C); from right to left, if ¬B ∧¬C,340

then ¬B and so from B ∨ C we derive C, contradiction, so we derive ¬(B ∨ C), but this341

contradicts ¬¬(B ∨ C), so we conclude that ¬(¬B ∧ ¬C)342

TYPES 2017

3:16 Proof terms for generalized natural deduction

A = B ∧ C. Then (B ∧ C)↑
↓

= ((B ↑ C) ↑ (B ↑ C))↓ = ¬(¬(B ∧ C) ∧ ¬(B ∧ C)) ←→343

¬¬(B ∧ C).344

A = B → C. Then (B → C)↑
↓

= (B ↑ (C ↑ C))↓ = ¬(B ∧ ¬(C ∧ C))←→ ¬¬(B → C).345

For the equivalence ¬(B ∧ ¬C)←→ ¬¬(B → C): From left to right, assume ¬(B → C);346

if C, then B → C, so from ¬(B → C) we get ¬C; then if B we also have B ∧ ¬C,347

contradicting ¬(B ∧ ¬C), so we have ¬B; but from ¬B we get B → C. Contradiction,348

so we conclude ¬¬(B → C). From right to left: Assume B ∧ ¬C. Then B → C implies349

C, contradiction, so ¬(B → C), contradicting ¬(B → C), so we conclude ¬(B ∧ ¬C).350

J351

I Corollary 21. For A a proposition in intuitionistic proposition logic,

`i ¬¬A ⇐⇒ `↑ A↑.

Proof. If `i ¬¬A, then `↑ ¬̇¬̇A↑ by Proposition 17, and so `↑ ¬̇¬̇A↑ by Lemma 16(1).352

If `↑ A↑, then `i A↑
↓ by Proposition 19, so `i ¬¬A by Proposition 20. J353

3 Convertibilities and conversion354

The notion of detour convertibility has already been described in [7]: an introduction of Φ355

immediately followed by an elimination of Φ. (In [7] it was called direct cut but – although356

the literature is not completely consistent on this point – the notion of cut is usually reserved357

for sequent calculus and for natural deduction one uses the terminology of convertibility.) In358

such case there is (referring back to the truth table, see Definition 1) at least one k for which359

ak 6= bk. In case ak = 0, bk = 1, we have a sub-derivation Σ of ` Ak and a sub-derivation Θ of360

Ak ` D and we can plug Σ on top of Θ to obtain a derivation of ` D. In case ak = 1, bk = 0,361

we have a sub-derivation Σ of Ak ` Φ and a sub-derivation Θ of ` Ak and we can plug Θ on362

top of Σ to obtain a derivation of ` Φ. This is then used as a hypothesis for the elimination363

rule (that remains in this case) instead of the original one that was a consequence of the364

introduction rule (that now disappears).365

In general there are more k for which ak 6= bk, so the general detour conversion procedure366

is non-deterministic. We view this non-determinism as a natural feature in natural deduction;367

the fact that for some connectives (or combination of connectives), detour conversion is368

deterministic is an “emerging” property. We will show examples of the non-determinism of369

detour conversion later.370

The introduction of a formula Φ immediately followed by an elimination of Φ we will call371

a detour convertibility. In general in between the introduction rule for Φ and the elimination372

rule for Φ, there may be other auxiliary rules, so occasionally we may have to first permute373

the elimination rule with these auxiliary rules to obtain a detour convertibility that can374

be reduced away. So, we will also define the notion of permutation convertibility and of375

permutation conversion.376

IDefinition 22. Let c be a connective of arity n, with an elimination rule and an intuitionistic
introduction rule derived from the truth table, as in Definition 1. So suppose we have the
following rules in the truth table tc.

p1 . . . pn c(p1, . . . , pn)
a1 . . . an 0
b1 . . . bn 1

A detour convertibility in a derivation is a pattern of the following form, where Φ =377

c(A1, . . . , An).378

H. Geuvers and T. Hurkens 3:17

. . .

Σj

Γ ` Aj
Σi

Γ, Ai ` Φ . . .
in

Γ ` Φ
. . .

Πk

Γ ` Ak
Π`

Γ, A` ` D . . .
el

Γ ` D

Here, in is an arbitrary introduction rule. In this rule, Aj ranges over all propositions379

where bj = 1; Ai ranges over all propositions where bi = 0,380

Here, el is an arbitrary elimination rule. In this rule, Ak ranges over all propositions381

where ak = 1; A` over all propositions where a` = 0,382

A detour conversion is defined by replacing the derivation pattern above by383

1. If ` = j for some `, j (that is: A` = Aj):

····
Σj

Γ ` Aj . . .

····
Σj

Γ ` Aj
····

Π`

Γ ` D

2. If k = i for some k, i (that is: Ak = Ai):

····
Πk

Γ ` Ai . . .

····
Πk

Γ ` Ai····
Σi

Γ ` Φ . . .

····
Πk

Γ ` Ak

····
Π`

Γ, A` ` D . . .
el

Γ ` D
384

There may be several choices for the i and j in the previous definition, so detour elimination385

is non-deterministic in general. We give an example of most to illustrate this. For simplicity,386

we use the optimized rules.387

I Example 23. Consider the following detour convertibility for most.

····
Σ1

Γ ` A

····
Σ2

Γ ` B
most-in1

Γ ` most(A,B,C)

····
Π1

Γ, A ` D

····
Π2

Γ, B ` D
most-el1

Γ ` D

Here we can reduce to either one of the following derivations of Γ ` D, which shows that388

the detour conversion process is not Church-Rosser. (Of course, one could fix a choice, e.g.389

always take the first possible detour convertibility from the left, but that would be completely390

arbitrary.)391

····
Σ1

Γ ` A . . .

····
Σ1

Γ ` A····
Π1

Γ ` D

····
Σ2

Γ ` B . . .

····
Σ2

Γ ` B····
Π2

Γ ` D

TYPES 2017

3:18 Proof terms for generalized natural deduction

A more concrete example is the following.

A ∧B ` A ∧B
∧-ell

A ∧B ` A

A ∧B ` A ∧B
∧-elr

A ∧B ` B
most-in1

A ∧B ` most(A,B,C)
A ` A

∨-inl
A ` A ∨B

B ` B
∨-inr

B ` A ∨B
most-el1

A ∧B ` A ∨B
This derivation can either be reduced to a derivation of A ∧B ` A ∨B via A ∧B ` A or via392

A ∧B ` B.393

It can happen that the introduction of a formula Φ = c(A1, . . . , An) is not followed394

directly by an elimination for c, but first by other elimination rules, where Φ acts as a minor395

premise. In that way, a detour convertibility can be “blocked” by other elimination rules. So,396

apart from the detour conversion elimination arising from an introduction rule immediately397

followed by an elimination, we have a notion of “hidden” or permutation convertibility, where398

we want to permute one elimination rule over another.399

I Example 24.

Γ ` A ∨B
Γ, A,C ` C → D

→-ina
Γ, A ` C → D Γ, B ` C → D

∨-el
Γ ` C → D Γ ` C

→-el
Γ ` D

In this derivation, the detour convertibility arising from →-ina followed by →-el is blocked400

by the ∨-el rule where the major premise of the →-el rule is a minor premise. This is a401

permutation convertibility, which can be contracted by permuting the →-el rule over the ∨-el402

rule.403

I Definition 25. Let c and c′ be connectives of arity n and n′, with elimination rules r
and r′ respectively, both derived from the truth table. A permutation convertibility in a
derivation is a pattern of the following form, where Φ = c(B1, . . . , Bn), Ψ = c′(A1, . . . , An′).

Γ ` Ψ . . .

····
Σj

Γ ` Aj

····
Σi

Γ, Ai ` Φ . . .
elr′

Γ ` Φ . . .

····
Πk

Γ ` Bk

····
Π`

Γ, B` ` D . . .
elr

Γ ` D
Aj ranges over all propositions that have a 1 in the truth table of c′; Ai ranges over all404

propositions that have a 0,405

Bk ranges over all propositions that have a 1 in the truth table of c; B` ranges over all406

propositions that have a 0.407

The permutation conversion is defined by replacing the derivation pattern above by408

Γ ` Ψ . . .

····
Σj

Γ ` Aj

····
Σi

Γ, Ai ` Φ . . .

····
Πk

Γ, Ai ` Bk

····
Π`

Γ, Ai, B` ` D . . .
elr

Γ, Ai ` D
elr′

Γ ` D
This gives rise to copying of sub-derivations: for every Ai we copy the sub-derivations409

Π1, . . . ,Πn.410

H. Geuvers and T. Hurkens 3:19

NB. Due to weakening, Πk is also a derivation of Γ, Ai ` Bk and Π` is also a derivation411

of Γ, Ai, B` ` D.412

I Example 26. If we reduce the permutation convertibility in Example 24, we obtain the
following derivation.

Γ ` A ∨B

Γ, A,C ` C → D
→-ina

Γ, A ` C → D Γ, A ` C
→-el

Γ, A ` D

Γ, B ` C → D Γ, B ` C
→-el

Γ, B ` D
∨-el

Γ ` D

4 The Curry-Howard isomorphism413

We now define typed proof-terms for derivations, which enables the study of “proofs as414

terms” and emphasis es the computational interpretation of proofs, as detour conversion415

and permutation conversion will correspond to reductions on these proof-terms. For each416

connective c we give a general definition of proof-terms for the full set of derivation rules for c,417

as they have been derived from the truth table. This amounts to a system λC , parametrized418

by a set of connectives C. Then, to clarify the approach, we show how this works out on a419

number of examples.420

Often, we don’t want to consider the full rules for a connective c, but only the optimized421

rules, following Lemmas 9 and 12. For these optimized rules, there is also a straightforward422

definition of proof-terms and of the reduction relation associated with (detour, permutation)423

conversion. In the next Section 5 we show in detail how Lemmas 9 and 12 can be extended424

to terms and reductions: the proof-terms for the optimized rules can be defined in terms425

of our original calculus λC, and the reduction rules for the optimized proof terms are an426

instance of reductions in the original calculus (often multi-step).427

I Definition 27. Given a logic with intuitionistic derivation rules, as derived from truth428

tables for a set of connectives C, as in Definition 1, we now define the typed λ-calculus λC .429

The system λC has judgments Γ ` t : A, where A is a formula, Γ is a set of declarations430

{x1 : A1, . . . , xm : Am}, where the Ai are formulas and the xi are term-variables such that431

every xi occurs at most once in Γ, and t is a proof-term.432

Let c ∈ C be a connective of arity n, which has 2n rules (introduction plus elimination433

rules). For each rule r we have a term: an introduction term, {p ; Q}r, if r is an introduction434

rule, or an elimination term, t ·r [p ; Q], if r is an elimination rule. Here, t is again a term, p435

is a finite sequence of terms and Q is a finite sequence of abstracted terms λx : A.q, where x436

is a term-variable, A is a proposition and q is a term. So the abstract syntax for proof-terms,437

Term, is as follows.438

t ::= x | {t ; λx : A.t}r | t ·r [t ; λx : A.t]

where x ranges over variables and r ranges over the rules of all the connectives.439

TYPES 2017

3:20 Proof terms for generalized natural deduction

The terms are typed using the following derivation rules.

if xi : Ai ∈ Γ
Γ ` xi : Ai

. . .Γ ` pj : AjΓ, yi : Ai ` qi : Φ . . .
in

Γ ` {p ; λy : A.q}r : Φ

Γ ` t : Φ . . .Γ ` pk : AkΓ, y` : A` ` q` : D
el

Γ ` t ·r [p ; λy : A.q] : D

Here, p is the sequence of terms p1, . . . , pm′ for all the 1-entries in the truth table, and440

λy : A.q is the sequence of terms λy1 : A1.q1, . . . , λym : Am.qm for all the 0-entries in the441

truth table.442

I Convention 28. We view the λ-abstracted variables as being typed so we write λy : A.q443

and λy1 : A1.q1, . . . , λym : Ar.qm. However, these types clutter up the syntax considerably,444

so in practice we will almost always leave the types implicit. In case we want to stress that a445

variable has a certain type, or in case type information enhances the understanding, we will446

write the type as a superscript, so λxA.p in stead of λx : A.p.447

We will sometimes leave the rule r that the elimination or introduction term corresponds448

to implicit, or we will just number the terms or introduce special names for them without449

explicit reference to the rule. It should be clear that every line in the truth table for the450

connective gives rise to one rule, which again gives rise to one term-constructor, which is451

either an elimination or an introduction term-constructor.452

There are term reduction rules that correspond to detour conversion.453

I Definition 29. Given a detour convertibility as defined in Definition 22, we add reduction454

rules for the associated terms as follows.455

For the ` = j case, that is, y` : A` and pj : Aj with A` = Aj :

{p, pj ; λx.q} · [s ; λy.r, λy`.r`] −→a r`[y` := pj]

For the k = i case, that is, sk : Ak and xi : Ai with Ak = Ai:

{p ; λx.q, λxi.qi} · [s, sk ; λy.r] −→a qi[xi := sk] · [s, sk ; λy.r]

For simplicity of presentation we write the “matching cases” in Definition 22 as last term456

of the sequence. So when writing p, pj , this should be understood as a sequence of terms457

p1, . . . , pj , . . . pm′ , where we have singled out the pj that matches the r` in λy.r, λy`.r`.458

Similarly for s, sk and λx.q, λxi.qi.459

It is important to note that there is always (at least one) “matching case”, because460

introduction rules and elimination rules comes from different lines in the truth table.461

The reduction is extended in the straightforward way to sub-terms, by defining it as a462

congruence with respect to the term constructions.463

This Definition gives a reduction rule, and possibly more than one, for every combination464

of an elimination and an introduction. For an n-ary connective, there are 2n rules in the465

truth table, and therefore 2n term-constructors (introduction plus elimination constructors).466

We now give the examples of the proof-terms for ∨ and ∧ in full. In the rules we will always467

omit the context Γ.468

H. Geuvers and T. Hurkens 3:21

I Example 30. The rules for disjunction are as follows.

` t : A ∨B x : A ` p : D y : B ` q : D
` t ·∨ [; λx.p, λy.q] : D

z : A ` r : A ∨B ` b : B
` {b ; λz.r}∨1 : A ∨B

` a : A z : B ` r : A ∨B
` {a ; λz.r}∨2 : A ∨B

` a : A ` b : B
` {a, b ; }∨3 : A ∨B

We could have followed our earlier introduced naming convention and index the operators469

with the line of the truth table they arise from. Then we would write {b ; λz.r}∨01 for470

{b ; λz.r}∨1 , {a ; λz.r}∨10 for {a ; λz.r}∨2 and {a, b ; }∨11 {a, b ; }∨3 . This easily clutters up471

notation, so we don’t pursue that.472

The reduction rules are473

{b ; λz.r}∨1 ·∨ [; λx.p, λy.q] −→a q[y := b]474

{a ; λz.r}∨2 ·∨ [; λx.p, λy.q] −→a p[x := a]475

{a, b ; }∨3 ·∨ [; λx.p, λy.q] −→a p[x := a]476

{a, b ; }∨3 ·∨ [; λx.p, λy.q] −→a q[y := b]477

From the last two cases, we see that the Church-Rosser property (confluence) is lost.478

The rules for conjunction are as follows.

` t : A ∧B x : A ` p : D y : B ` q : D
` t ·∧1 [; λx.p, λy.q] : D

` t : A ∧B ` a : A y : B ` q : D
` t ·∧2 [a ; λy.q] : D

` t : A ∧B x : A ` p : D ` b : B
` t ·∧3 [b ; λx.p] : D

` a : A ` b : B
` {a, b ; }∧ : A ∧B

The reduction rules are479

{a, b ; }∧ ·∧1 [; λx.p, λy.q] −→a p[x := a]480

{a, b ; }∧ ·∧1 [; λx.p, λy.q] −→a q[y := b]481

{a, b ; }∧ ·∧2 [a′ ; λy.q] −→a q[y := b]482

{a, b ; }∧ ·∧3 [b′ ; λx.p] −→a p[x := a]483

From the first two cases, we see that the Church-Rosser property (confluence) is lost.484

In Example 39 we will show how we can define proof-terms for the optimized rules for ∧485

in terms of the proof-terms for the full rules, while preserving reduction.486

In the reduction for the terms for ∨ and ∧, an elimination is always removed at each step.487

The situation gets more interesting with implication.488

I Example 31. The rules for implication are as follows.

x : A ` p : A→ B y : B ` q : A→ B

` { ; λx.p, λy.q}→1 : A→ B

x : A ` p : A→ B ` b : B
` {b ; λx.p}→2 : A→ B

` t : A→ B ` a : A z : B ` r : D
` t ·→ [a ; λz.r] : D

` a : A ` b : B
` {a, b ; }→3 : A→ B

TYPES 2017

3:22 Proof terms for generalized natural deduction

The reduction rules are489

{ ; λx.p, λy.q}→1 ·→ [a ; λz.r] −→a p[x := a] ·→ [a ; λz.r]490

{b ; λx.p}→2 ·→ [a ; λz.r] −→a r[z := b]491

{b ; λx.p}→2 ·→ [a ; λz.r] −→a p[x := a] ·→ [a ; λz.r]492

{a′, b ; }→3 ·→ [a ; λz.r] −→a r[z := b]493

From the second and third case, we can see that Church-Rosser is lost. In the first and the494

third case, we see that the elimination remains.495

In Example 41 we will show how we can define proof-terms for the optimized rules for →496

in terms of the proof-terms for the full rules, while preserving reduction. In Definition 48 we497

will define the standard rules for →.498

We now extend the reduction on proof-terms to also capture the permutation conversions499

of Definition 25. This gives rise to two elimination constructs permuting with each other.500

I Definition 32. Given a permutation convertibility as defined in Definition 25, we add501

reduction rules for the associated terms as follows.502

(t · [p ; λx.q]) · [s ; λy.r] −→b t · [p ; λx.(q · [s ; λy.r])]503

Here, the notation λx.(q · [s ; λy.r]) should be understood as a sequence λx1.q1, . . . , λxm.qm504

where each qj is replaced by qj · [s ; λy.r].505

The reduction is extended in the straightforward way to sub-terms, by defining it as a506

congruence with respect to the term constructions.507

I Notation 33. We omit brackets by letting the application operator − ·− associate to the508

left, so t · [p ; λx.q] · [s ; λy.r] denotes (t · [p ; λx.q]) · [s ; λy.r]. We will also omit the brackets509

in λx.(q · [s ; λy.r]), because no ambiguity can arise here.510

We treat the well-known example from intuitionistic logic of the ∨-elimination, where a511

permutation convertibility can occur. See also Example 24.512

I Example 34.

` t : A ∨B x : A ` p : C → D y : B ` q : C → D

` t ·∨ [; λx.p, λy.q] : C → D ` c : C z : D ` r : E
` t ·∨ [; λx.p, λy.q] ·→ [c ; λz.r] : E

We observe two consecutive elimination rules, where a potential detour convertibility, arising513

e.g. when q is an introduction term, is blocked by the ∨-elimination.514

The term reduces as follows

t ·∨ [; λx.p, λy.q] ·→ [c ; λz.r] −→b t ·∨ [; λx.p ·→ [c ; λz.r], λy.q ·→ [c ; λz.r]]

We can now easily define the terms in normal-form under the combined reduction −→ab.515

The proof is straightforward and comes from the fact that an introduction followed by an516

elimination is always a redex. (There is always a “matching case” in Definition 29.)517

I Lemma 35. The set of terms in normal form of IPCC, NFis characterized by the following518

inductive definition.519

x ∈ NF for every variable x,520

H. Geuvers and T. Hurkens 3:23

{p ; λy.q} ∈ NF if all pi and qj are in NF,521

x · [p ; λy.q] ∈ NF if all pi and qj are in NF and x is a variable.522

I Remark. In [23], yet another notion of convertibility is defined, called simplification523

convertibility. This is a situation where the assumption is unused in an introduction or524

elimination rule and the rule can be removed all together. Adding these rules is not necessary525

for the sub-formula property, so we don’t introduce it here. On the term level, an elimination526

of simplification convertibilities would amount to the following reduction rules.527

t · [p ; λx.q] −→ qi if xi /∈ FV(qi)528

{p ; λx.q} −→ qi if xi /∈ FV(qi)529

5 Extending the Curry-Howard isomorphism to definable rules530

The optimizations for the logical rules, as given in Lemmas 9 and 12 can be extended to531

the proof terms and also to convertibilities and conversions. This gives us the possibility532

to capture questions related to normalization by looking at normalization for terms in the533

original calculus λC . We will now describe the terms for the optimized rules in detail.534

I Definition 36. For each optimization step in Lemmas 9 and 12 we give the canonical term535

for the optimized rule and its translation in terms of λC of Definition 27.536

We first treat the two optimizations arising from Lemma 9, and then the optimization537

arising from Lemma 12.538

Given two rules
` p1 : A1 . . . ` pn : An x1 : B1 ` q1 : Φ . . . xm : Bm ` qm : Φ z : A ` s : Φ

inr

` {p ; λx.q, λz.s}r : Φ

` p1 : A1 . . . ` pn : An ` a : A x1 : B1 ` q1 : Φ . . . xm : Bm ` qm : Φ
inr′

` {p, a ; λx.q}r′ : Φ
we have the following term for the optimized introduction rule

` p1 : A1 . . . ` pn : An x1 : B1 ` q1 : Φ . . . xm : Bm ` qm : Φ
inopt
r,r′

` {p ; λx.q, λz.{p, z ; λx.q}r′}r : Φ

We define the term {p ; λx.q}◦r,r′ as {p ; λx.q, λz.{p, z ; λx.q}r′}r539

Given two rules
` t : Φ ` p1 : A1 . . . ` pn : An x1 : B1 ` q1 : D . . . xm : Bm ` qm : D z : A ` s : D

elr
` t ·r [p ; λx.q, λz.s] : D

` t : Φ ` p1 : A1 . . . ` pn : An ` a : A x1 : B1 ` q1 : D . . . xm : Bm ` qm : D
elr′

` t ·r′ [p, a ; λx.q] : D
we have the following term for the optimized elimination rule

` t : Φ ` p1 : A1 . . . ` pn : An x1 : B1 ` q1 : D . . . xm : Bm ` qm : D
elopt
r,r′

` t ·r [p ; λx.q, λz.t ·r′ [p, z ; λx.q]] : D

We define term t �r,r′ [p ; λx.q] as t ·r [p ; λx.q, λz.t ·r′ [p, z ; λx.q]]540

TYPES 2017

3:24 Proof terms for generalized natural deduction

Given the rule
` t : Φ ` p1 : A1 . . . ` pn : An z : A ` s : D

elr
` t ·r [p ; λz.s] : D

we have the following term for the optimized elimination rule

` t : Φ ` p1 : A1 . . . ` pn : An
elopt
r` t ·r [p ; λz.z] : A

We define the term t�r [p] as t ·r [p ; λz.z]541

There is a canonical way in which the notions of detour convertibility and detour conversion542

extend to the optimized rules: the same rules as in Definition 29 apply. In case of a term of543

the form {. . . ; . . .} · [. . . ; . . .], a reduction is always possible, also in the case of optimized544

rules. For the permutation convertibilities, the situation is similar: the same rules as in545

Definition 32 apply.546

I Definition 37. We define reduction on the optimized terms as follows. Let � be any ·r′′547

or �r′′,r′′′ for some r′′, r′′′. (For the notation, we refer to Definition 29.)548

For the ` = j case:549

{p, pj ; λx.q}◦r,r′ � [s ; λy.u, λy`.u`] −→a u`[y` := pj]550

For the k = i case:551

{p ; λx.q, λxi.qi}◦r,r′ � [s, sk ; λy.u] −→a qi[xi := sk]� [s, sk ; λy.u]552

For the k = i case:553

{s ; λx.q}◦r,r′ �r [p] −→a qi[xi := pk]�r [p]554

Special case:555

{s, sj ; λx.q}◦r,r′ �r [p] −→a sj556

The last special case is when {s, sj ; λx.q}◦r,r′ �r [p] : A and sj : A. See the definition of557

{s, sj ; λx.q}◦r,r′ �r [p] as {s, sj ; λx.q}◦r,r′ ·r [p ; λz.z] in Definition 36; this is the case where558

sj matches the “invisible” λz.z.559

We also extend the notions of permutation convertibility and permutation conversion560

from Definition 25 (see also Definition 32): we add reduction rules for the optimized terms561

as follows.562

(t	 [p ; λx.q])� [s ; λy.u] −→b t	 [p ; λx.(q � [s ; λy.u])]563

where 	 is any ·r′′ or �r′′,r′′′ and � is any ·r′′ or �r′′,r′′′ or �r′′ .564

I Remark. To clarify, we want to note explicitly that t�r [p] ·r′ [q ; λx.s] does not reduce to
t�r [p]. In case we only have the optimized rules, it does not reduce at all. If we consider
t�r [p] as a definition in the original calculus λC , we do have a reduction,

t�r [p] ·r′ [q ; λx.s] −→b t ·r [p ; λz.z ·r′ [q ; λx.s]]

but this uses a non-optimized elimination.565

I Remark. The process described in Definition 36, which is based on Lemmas 9 and 12566

can be iterated, as we have seen in earlier examples. A simple way to view the rules567

for an n-ary connective c as a pair (b, r) where b is 0 or 1 and r is a partial function568

r : {1, 2, . . . , n} → {0, 1}. For a standard rule, derived from a line in the the truth table of c,569

H. Geuvers and T. Hurkens 3:25

r is a total function. (If r(i) = 1, then Ai is a lemma in the rule and if r(j) = 0, then Aj is570

a case; if b = 0, we have an elimination rule, if b = 1 we have an introduction rule .) An571

optimized rule is a function r that is undefined for some elements of {1, . . . , n}.572

For the first case of Definition 36, where {. . . ; . . .}◦r,r′ is defined in terms of {. . . ; . . .}r573

and {. . . ; . . .}r′ , we have r′′ = r ∩ r′ for the optimized rule r′′. This is allowed in case b = 1574

for r and r′ and r and r′ differ for only one element.575

For the second case of Definition 36, where . . . �r,r′ [. . . ; . . .] is defined in terms of576

. . . ·r [. . . ; . . .] and . . . ·r′ [. . . ; . . .], we again have r′′ = r ∩ r′ for the optimized rule r′′. This577

is allowed in case b = 0 for r and r′ and r and r′ differ for only one element.578

Optimization according to Lemma 12, the third case of Definition 36, corresponds with a579

(possibly partial) function r where b = 0 and r(i) = 1 for exactly one i.580

With the definable optimized terms for elimination and introduction, we have a choice581

of taking these as defined terms, or taking them as primitives and removing the originals.582

Or even there is a third alternative of adding them as additional term constructions. After583

we have done some examples, we will, in Lemma 43, analyze the reduction behaviour of the584

newly defined terms in terms of the original ones.585

Before that we state what the normal forms are of the optimized terms and the optimized586

reduction, extending Lemma 35. So in the following Lemma, we consider the situation where587

we have added optimized terms and reductions, while removing the original ones. The proof588

is straightforward, keeping in mind Remark 5 and the fact that with optimized terms, if an589

introduction is followed immediately by an elimination, then there is a “matching case” that590

allows us to reduce the term.591

I Lemma 38. We simultaneously characterize NFopt, the set of terms in normal form of592

IPCC with optimized terms and reductions, and the set of neutral terms inductively as follows.593

x ∈ NFopt and x is neutral, for every variable x,594

{p ; λy.q} ∈ NFopt if all pi and qj are in NFopt,595

x� [p ; λy.q] ∈ NFopt if all pi and qj are in NFopt and x is a variable; this term is neutral596

if � = �r for some r.597

t�r [s]� [p ; λy.q] ∈ NFopt if all sk, pi and qj are in NFopt and t is neutral; this term is598

neutral if � = �r′ for some r′.599

What the Lemma says is that terms like

x�r [s1]�r′ [s2]�r′′� [p ; λy.q]

are also normal forms, if s1, s2, . . . , p and q are.600

I Example 39. We continue Example 30 and look into the optimized rules for ∧, as given
in Definition 13. The introduction rule of Example 30 is the same as in Definition 13; the
usual “pairing” construction is given by {a, b ; }∧. For elimination, we would like to have
the following “projection” rules.

` t : A ∧B
` π1 t : A

` t : A ∧B
` π2 t : B

That is, we would like to define π1 t and π2 t in terms of the constructions of Example 30,
with the expected reduction rules: π1 {a, b ; }∧ −→a a and π2 {a, b ; }∧ −→a b. Definition
36 gives the clue. Let’s consider the first projection, π1 t. We have the following optimization
of the ∧-rules of Example 30.

` t : A ∧B x : A ` p : D
t �∧a [; λxA.p] : D

TYPES 2017

3:26 Proof terms for generalized natural deduction

where t �∧a [; λxA.p] := t ·∧1 [; λxA.p, λzB .t ·∧3 [z ; λxA.p]]. It is easily verified that we have
the following reduction

{a, b ; }∧ �∧a [; λxA.p] −→a p[x := a].

We have another optimization:
` t : A ∧B
` t�∧1 [;] : A

where t�∧1 [;] := t �∧a [; λxA.x].601

All together we have

π1 t := t�∧1 [;] = t �∧a [; λxA.x] = t ·∧1 [; λxA.x, λzB .t ·∧3 [z ; λxA.x]]

which has the following reductions.602

π1 {a, b ; }∧ = {a, b ; }∧ ·∧1 [; λxA.x, λzB .{a, b ; }∧ ·∧3 [z ; λxA.x]]603

−→a a604

π1 {a, b ; }∧ = {a, b ; }∧ ·∧1 [; λxA.x, λzB .{a, b ; }∧ ·∧3 [z ; λxA.x]]605

−→a {a, b ; }∧ ·∧3 [b ; λxA.x]606

−→a a607

Similarly, we define π2 t := t ·∧1 [; λxB .x, λzA.t ·∧2 [z ; λxB .x]]. Then π2 {a, b ; }∧ −→+
a b.608

An interesting feature is that the reduction rules for our non-optimized calculus are not609

Church-Rosser, as we have already indicated in Example 30 and also in Example 23. On the610

other hand, the optimized rules for standard intuitionistic proposition logic are know to be611

Church-Rosser. We look into the case for ∧ in more detail.612

I Example 40. The set of full rules for ∧, see Example 30, is not Church-Rosser as the
following concrete example shows. Suppose we have ` p : D and ` q : D, where p and q are
different.

a : A ` a : A b : B ` b : B
a : A, b : B ` {a, b ; }∧ : A ∧B x : A ` p : D y : B ` q : D

{a, b ; }∧ ·∧1 [; λxA.p, λyB , q]
This term reduces to both p and q, which are distinct terms of type D. The crucial point is
in the rule for − ·∧1 [; −] that admits a choice:

` t : A ∧B x : A ` p : D y : B ` q : D
` t ·∧1 [; λx.p, λy.q] : D

For t = {a, b ; }∧ we can either select the “A-case” or the “B-case”.613

We have shown how the optimized rules can be explained in terms of the full rules, but614

we can also doe the opposite: interpret the full rules for ∧ of Example 30 in terms of π1 and615

π2. Then we get616

t ·∧1 [; λxA.p, λyB .q] := p[x := π1 t]617

t ·∧2 [a′ ; λyB .q] := q[y := π2 t]618

t ·∧3 [b′ ; λxA.p] := p[x := π1 t]619

where in the first case we could also have chosen q[y := π2 t]. We observe that the non-620

determinism in the full rules is resolved by a choice we make in the translation of the first621

∧-elimination.622

H. Geuvers and T. Hurkens 3:27

I Example 41. We now look into the optimized rules for implication of Definition 13. The623

full rules have been treated in Example 31. We want to define the following terms.624

x : A ` p : A→ B

` { ; λxA.p}→◦1 : A→ B

` b : B
` {b ; }→◦2 : A→ B

` t : A→ B ` a : A
` t�→ [a] : B

These can be defined from the terms in Example 31 via the optimizations of Definition625

36 as follows.626

{ ; λxA.p}→◦1 := { ; λxA.p, λz.{z ; λxA.p}→2 }→1627

{b ; }→◦2 := {b ; λzA.{z, b ; }→3 }→2628

t�→ [a] := t ·→ [a ; λz.z]629

These obey the following reductions.630

{ ; λxA.p}→◦1 �→ [a] = { ; λxA.p, λz.{z ; λxA.p}→2 }→1 ·→ [a ; λz.z]631

−→a p[x := a] ·→ [a ; λz.z]632

= p[x := a]�→ [a]633

{b ; }→◦2 �→ [a] := {b ; λzA.{z, b ; }→3 }→2 �→ [a]634

−→a b635

{b ; }→◦2 �→ [a] := {b ; λzA.{z, b ; }→3 }→2 �→ [a]636

−→a {a, b ; }→3 �→ [a]637

−→a b638

These are the exact reduction rules one would expect for these terms. We can again translate639

these to the well-known β-rules, that we will define in Definition 47.640

The definition of the standard rule for →-introduction essentially uses the � construction,641

which has a somewhat special behaviour under normalization, as we have seen in Remark 5642

and Lemma 38. Let’s look at an example to emphasis this.643

I Example 42. Consider the following proof.644

t : A→ B → C ` a : A
t�→ [a] : B → C ` b : B

t�→ [a]�→ [b] : C
If t is not an introduction term (t 6= {λx.q}→), then this is not a redex with the optimized645

rules. However, in case � is a defined term-construction, this term is reducible:646

t�→ [a]�→ [b] −→b t ·→ [a ; λzB→C .z �→ [b]].

To clarify, the derivation for this term is:

` t : A→ B → C ` a : A
z : B → C ` z : B → C ` b : B

z : B → C ` z �→ [b] : C
t ·→ [a ; λzB→C .z �→ [b]] : C

I Lemma 43. The translation of an −→a step in the optimized calculus translates to a647

(possibly multistep) −→a step in the original calculus λC.648

Proof. We show two cases:649

TYPES 2017

3:28 Proof terms for generalized natural deduction

1. If {t ; λy.v}◦r3,r4
�r1,r2 [p ; λx.q] −→a R (using the optimized rules) and650

{t ; λy.r}◦r3,r4
�r1,r2 [p ; λx.q] translates to T in the original calculus λC , then there is a651

term T ′ such that T −→+
a T

′ and R translates to T ′ in λC . Here −→+
a denotes a non-zero652

sequence of reductions.653

In this case the translation T is as follows. T = M · [p ; λx.q, λz.M · [p, z ; λx.q]], where654

we abbreviate M := {t ; λy.v, λz.{t, z ; λy.v}}. There are two possible cases for the655

reduction.656

Case {t ; λy.v}◦r3,r4
�r1,r2 [p ; λx.q] −→a q`[x` := tj]. Then T −→a q`[x` := tj] and657

we are done.658

Case {t ; λy.v}◦r3,r4
�r1,r2 [p ; λx.q] −→a vi[yi := pk] �r1,r2 [p ; λx.q]. Then659

T −→a vi[yi := pk] · [p ; λx.q, λz.M · [p, z ; λx.q]]660

−→a vi[yi := pk] · [p ; λx.q, λz.vi[yi := pk] · [p, z ; λx.q]]661

and we are done.662

2. If {t ; λy.v}◦r2,r3
�r1 [p] −→a R and {t ; λy.r}◦r2,r3

�r1 [p] translates to T in the original663

calculus λC , then there is a term T ′ such that T −→+
a T

′ and R translates to T ′ in λC .664

Now the translation T is as follows. T = {t ; λy.v, λz.{t, z ; λy.v}} · [p ; λz.z]. There is665

one possibility for the reduction.666

Case {t ; λy.v}◦r2,r3
�r1 [p] −→a vi[yi := pk] �r1 [p]. Then667

T −→a vi[yi := pk] · [p ; λz.z]668

and we are done.669

J670

As mentioned, Schroeder-Heister[17] has proposed another elimination rule for ∧ which is671

slightly different from ours. Von Plato [23] calls this general elimination while Tennant [21]672

calls it parallel elimination. We call it parallel ∧-elimination and give it in typed λ-calculus673

format.674

I Definition 44. We define the parallel ∧-elimination rule as follows

Γ ` t : A ∧B Γ, x : A, y : B ` q : D
∧-el

Γ ` t ·par [λx, y.q] : D

The reduction (detour conversion) rule associated with this rule is as follows.

{a, b ; } ·par [λx, y.q] −→par q[x := a, y := b].

We show that this elimination rule can be translated in terms of ours and that reduction675

is preserved.676

I Definition 45. We translate the parallel ∧-elimination rule of Definition 44 by defining it
in terms of the optimized terms for ∧ of Example 39. We consider the following optimized
rules, the first of which was given explicitly in Example 39.

Γ ` t : A ∧B Γ, x : A ` q : D
Γ ` t �∧a [; λx.q] : D

Γ ` t : A ∧B Γ, y : B ` q : D
Γ ` t �∧b [; λy.q] : D

Now define
t ·par [λx, y.q] := t �∧a [; λx. t �∧b [; λy.q]].

I Lemma 46. The defined term t ·par [λx, y.q] is of the right type and the translation of an677

−→par step in the calculus with the parallel ∧-elimination rule translates to multistep −→a678

in the original calculus λC.679

H. Geuvers and T. Hurkens 3:29

Proof. Given Γ ` t : A ∧B and Γ, x : A, y : B ` q : D, we have

Γ ` t : A ∧B
Γ, x : A ` t : A ∧B Γ, x : A, y : B ` q : D

Γ, x : A ` t �∧b [; λy.q] : D
Γ ` t �∧a [; λx. t �∧b [; λy.q]] : D

The reduction can easily be verified:680

{a, b ; }∧ ·par [λx, y.q] := {a, b ; }∧ �∧a [; λx. {a, b ; }∧ �∧b [; λy.q]]681

−→a {a, b ; }∧ �∧b [; λy.q[x := a]]682

−→a q[x := a, y := b].683

J684

We define the standard rule for →-introduction and show that this introduction rule can685

be translated in terms of ours and that the reduction is preserved.686

I Definition 47. We define the standard rule for →-introduction as follows, where we
describe it using terms.

Γ, x : A ` q : B
→-in

Γ ` {λx.q}→ : A→ B

The reduction rule associated with this term is as follows.

{λx.q}→ �→ [a] −→s q[x := a],

where t�→ [a] is the optimized elimination rule from Example 41.687

I Definition 48. We define the standard →-introduction rule in terms of optimized →-rules
(Example 41) as follows. Given Γ, x : A ` q : B we define

{λx.q}→ := { ; λx.{q ; }→◦2 }→◦1 .

I Lemma 49. The translation of {λx.q}→ is well-typed and the translation of an −→s step688

in the calculus with the standard rule for → translates to multistep −→a in the original689

calculus λC.690

Proof. The well-typedness is easily verified:691

x : A ` q : B
x : A ` {q ; }→◦2 : A→ B

` { ; λxA.{q ; }→◦2 }→◦1 : A→ B

For the reduction:

{ ; λxA.{q ; }→◦2 }→◦1 ·→ [a ;] −→a {q[x := a] ; }→◦2 ·→ [a ;] −→a q[x := a].

J692

We define the traditional rule for ¬-introduction and show that it can be translated in693

terms of ours and that detour conversion is preserved.694

TYPES 2017

3:30 Proof terms for generalized natural deduction

I Definition 50. We define the traditional rules for ¬, the introduction and the elimination
rule, as follows, where we describe them using terms.

Γ, x : A ` t : ¬B Γ, y : A ` q : B
Γ ` {λx.t, λy.q}t : ¬A

Γ ` t : ¬A Γ ` a : A
Γ ` t ·¬ [a ;] : D

The reduction rule associated with these terms is as follows.

{λxA.t, λyA.q}t ·¬ [a ;] −→¬ t[x := a] ·¬ [q[y := a] ;].

I Example 51. The rules for negation that we derive from our general Definition 27 are the
following.

Γ, x : A ` q : ¬A
Γ ` { ; λx.q}¬ : ¬A

Γ ` t : ¬A Γ ` a : A
Γ ` t ·¬ [a ;] : D

with reduction695

{ ; λxA.q}¬ ·¬ [a ;] −→a q[x := a] ·¬ [a ;].

We see that the elimination rule for ¬ in Example 51 is the same as the traditional one.696

The traditional introduction rule for ¬ is definable.697

I Definition 52. We define the traditional ¬-introduction rule in terms of the one of Example
51 as follows. Given Γ, x : A ` t : ¬B and Γ, y : A ` q : B we define

{λxA.t, λyA.q}t := { ; λxA.t ·¬ [q[y := x] ;]}¬

I Lemma 53. The definition of {λx.t, λy.q}t is well-typed and a −→¬ step in the calculus698

with the traditional rule for ¬ translates to multistep −→a in the original calculus λC.699

Proof. For the well-typedness:

Γ, x : A ` t : ¬B
Γ, y : A ` q : B

Γ, x : A ` q[y := x] : B
¬-el

Γ, x : A ` t ·¬ [q[y := x] ;] : ¬A
¬-in

Γ ` { ; λxA.t ·¬ [q[y := x] ;]}¬ : ¬A

For the reduction:

{ ; λxA.t ·¬ [q[y := x] ;]}¬ ·¬ [a ;] −→a t[x := a] ·¬ [q[x := a] ;].

J700

As a final example, we give the proof-terms for the optimized rules of nand-logic, as701

described in Definition 14.702

I Example 54. The proof-terms for nand-logic are

x : A ` p : A ↑ B
` { ; λxA.p}↑ : A ↑ B

y : B ` q : A ↑ B
` { ; λyB .q}↑ : A ↑ B

` t : A ↑ B ` a : A ` b : B
` t ·↑ [a, b ;] : D

with reduction rules703

{ ; λxA.p}↑ ·↑ [a, b ;] −→a p[x := a] ·↑ [a, b ;]704

{ ; λyB .q}↑ ·↑ [a, b ;] −→a q[y := b] ·↑ [a, b ;]705

H. Geuvers and T. Hurkens 3:31

This time we have a situation where a permutation conversion actually reduces the size of a706

term considerably. Suppose t : A ↑ B and a : A, b : B, c : C, d : D. Then we have707

` t : A ↑ B ` a : A ` b : B
` t ·↑ [a, b ;] : C ↑ D ` c : C ` d : D

t ·↑ [a, b ;] ·↑ [c, d ;] : E
We have

t ·↑ [a, b ;] ·↑ [c, d ;] −→b t ·↑ [a, b ;]

which is of type E, and we see that the superfluous second nand-elimination rule has been708

removed.709

As another example, we can give a proof-term of A ∨ ¬A↑, the proposition in nand-logic
that we have shown to be provable after the proof of Proposition 17. It’s proof-term is

{ ; λx.{ ; λy.y ·↑ [x, x ;]}↑}↑ : (A ↑ A) ↑ (¬̇A ↑ ¬̇A)

6 Normalization710

In this section we prove that −→a and −→b are both strongly normalizing (SN). We also711

give a proof of weak normalization (WN) of the combination of −→a and −→b. As usual,712

SN states that there are no terms that have an infinite reduction path, and WN states that713

for each term there is a reduction path that leads to a normal form. For the proof of WN we714

describe an actual procedure for finding a normal form of a term.715

I Theorem 55. The reduction −→b is strongly normalizing.716

Proof. We define a measure | − | from terms to natural numbers that decreases with every717

reduction step. For notational convenience we suppress the reference to the derivation rule r.718

|x| := 1719

|{p ; λy.q}| := Σ|pi|+ Σ|qj |720

|t · [s ; λy.u]| := |t|(2 + Σ|sk|+ Σ|u`|)721

It can easy be verified that, if t0 −→b t1, then |t0| > |t1|, so −→b is strongly normalizing. J722

I Corollary 56. The reduction −→b for the optimized rules of Definition 36, the standard723

rule for →-elimination of Definition 47, the parallel ∧-elimination rule of Definition 44 and724

the traditional rule for ¬-elimination of Definition 50 are strongly normalizing.725

Proof. The same metrics as in the proof of Theorem 55 applies. For the parallel reduction,726

define |t ·par [λx, y.q]| := |t|(2 + |q|).727

J728

6.1 Strong Normalization of the detour conversion729

We now prove strong normalization for −→a by adapting the well-known saturated sets730

method of Tait [20] and Girard [8] to our calculus. Recall that Term is the set of all untyped731

proof-terms. (Definition 27.) We write SN for the set of strongly normalizing (untyped)732

terms and we write Var for the set of variables.733

I Definition 57. 1. The set Neut of neutral terms is defined by734

a. Var ⊆ Neut,735

TYPES 2017

3:32 Proof terms for generalized natural deduction

b. t · [p ; λy.q] ∈ Neut for all t ∈ Neut and p, λy.q ∈ SN.736

2. The term t does a key reduction to t′, notation t −→k
a t
′, in case737

a. t is a redex itself (according to Definition 29) and t′ is its reduct,738

b. t = t0 · [p ; λy.q], t′ = t1 · [p ; λy.q] and t0 −→k
a t1.739

3. A set X ⊆ Term is saturated (X ∈ SAT) if it satisfies the following properties740

a. X ⊆ SN,741

b. Neut ⊆ X742

c. X is closed under key-redex expansion: if t ∈ SN and ∀q(t −→k
a q ⇒ q ∈ X), then743

t ∈ X.744

4. For a connective c of arity n and X1, . . . , Xn ∈ SAT we define the set c(X1, . . . , Xn) as
follows. Assume that r1, . . . , rm are the elimination rules for c.

c(X1, . . . , Xn) := {t | ∀ri ∈ {r1, . . . , rm}
∀D ∈ SAT,∀p, q ∈ Term

∀k(pk ∈ Xk) ∧ (∀` ∀u` ∈ X` (q`[y` := u`] ∈ D)) =⇒ t ·ri
[p ; λy.q] ∈ D }

In the definition of c(X1, . . . , Xn) it should be clear that we quantify over all elimination745

rules for the connective c. In the quantification ∀p, q ∈ Term we could also quantify over746

∀p, q ∈ SN: it amounts to the same because the additional conditions ∀k(pk ∈ Xk) and747

∀` ∀u` ∈ X` (q`[y` := u`] ∈ D imply that p, q ∈ SN.748

I Lemma 58. If X1, . . . , Xn ∈ SAT, then c(X1, . . . , Xn) ∈ SAT.749

Proof. We check the 3 conditions for c(X1, . . . , Xn). Suppose X1, . . . , Xn ∈ SAT.750

a. That c(X1, . . . , Xn) ⊆ SN follows directly from the fact that if t ∈ c(X1, . . . , Xn), then751

t · [p ; λx.q] ∈ D and D ⊆ SN, so t · [p ; λx.q] ∈ SN, so t ∈ SN.752

b. For t ∈ Neut and D ∈ SAT and p, q ∈ SN with ∀k(pk ∈ Xk) and ∀` ∀u` ∈ X` (q`[y` :=753

u`] ∈ D), we have t ·ri [p ; λy.q] ∈ Neut ⊆ D, so we can conclude that t ∈ c(X1, . . . , Xn).754

c. Suppose t ∈ SN and ∀t′(t −→k
a t
′ ⇒ t′ ∈ c(X1, . . . , Xn)) (*). Let ri be a rule for c and755

let D ∈ SAT, p, q ∈ Term with ∀k(pk ∈ Xk) and ∀` ∀u` ∈ X` (q`[y` := u`] ∈ D). For all t′756

with t −→k
a t
′ we have t ·ri [p ; λy.q] −→k

a t
′ ·ri [p ; λy.q] and t′ ·ri [p ; λy.q] ∈ D by (*).757

So, t ·ri
[p ; λy.q] ∈ D and so t ∈ c(X1, . . . , Xn).758

J759

We use the saturated sets as a semantics for types: if A is a type, 〈A〉 will be a saturated760

set. The simplest way to do this is to interpret all type variables (proposition letters) as the761

set SN, which is indeed a saturated set.762

I Definition 59. For A a type, we define 〈A〉 by induction on A as follows.763

〈A〉 := SN if A is a proposition letter.764

c(A1, . . . , An) := c(〈A1〉, . . . , 〈An〉), where the right hand side is the interpretation of the765

connective c on saturated sets, as given in Definition 57, case (4).766

We will often confuse A and 〈A〉, to avoid notational overhead, and just identify the767

proposition A with its interpretation as a saturated set 〈A〉.768

I Definition 60. Given a context Γ, a map (valuation) ρ : Var→ Term satisfies Γ, notation769

ρ |= Γ, in case ρ(x) ∈ 〈A〉 for all x : A ∈ Γ.770

If t ∈ Term and ρ : Var → Term, we write 〈t〉ρ for t where ρ has been carried out as a771

substitution on t.772

H. Geuvers and T. Hurkens 3:33

A valuation ρ : Var→ Term is only relevant for a finite number of variables: those that773

are declared in the context Γ under consideration. So we will always assume that ρ(x) 6= x774

only for a finite number of x ∈ Var. Those x we call the support of ρ. When applying ρ as a775

substitution to a term t we may need to “go under a λ”, e.g. when applying ρ to {p ; λx.q}776

In this case we always assume that the bound variable is not in the support of ρ. (We can777

always rename it.)778

I Lemma 61. If Γ ` t : A, and ρ |= Γ, then 〈t〉ρ ∈ 〈A〉.779

Proof. By induction on the derivation of Γ ` t : A. Suppose ρ |= Γ. For the (axiom) case, it780

is trivial. We ignore ρ for the rest of the proof, as it gives a lot of notational overhead, so we781

just write t for 〈t〉ρ.782

Suppose Φ = c(A1, . . . , An) and

. . .Γ ` sj : AjΓ, xi : Ai ` ti : Φ . . .
in

Γ ` {s ; λx.t}r : Φ

Let r′ be a rule for c, D ∈ SAT, p, q ∈ Term with ∀k(pk ∈ Ak) and ∀` ∀u` ∈ A` (q`[y` :=783

u`] ∈ D). For {s ; λx.t}r ·r′ [p ; λy.q] there are the following possible key-reductions:784

{s ; λx.t}r ·r′ [p ; λy.q] −→k
a ql[yl := sj] (1)785

{s ; λx.t}r ·r′ [p ; λy.q] −→k
a ti[xi := pk] ·r′ [p ; λy.q] (2)786

In case (1), ql[yl := sj] ∈ D by the assumption and the induction hypothesis. In case (2),787

ti[xi := pk] ∈ Φ by the induction hypothesis and so ti[xi := pk] ·r′ [p ; λy.q] ∈ D by the788

definition of Φ = c(A1, . . . , An) as a saturated set. So, {s ; λx.t}r ·r′ [p ; λy.q] ∈ SN and789

all its key reductions are in D, so the term is in D. Therefore, {s ; λx.t}r ∈ Φ.790

Suppose Φ = c(A1, . . . , An) and

Γ ` t : Φ . . .Γ ` pk : AkΓ, y` : A` ` q` : D
el

Γ ` t ·r [p ; λy.q] : D

Then t ·r [p ; λy.q] = t ·r [p ; λy.q] ∈ D by t ∈ Φ = c(A1, . . . , An) and the definition of791

c(A1, . . . , An) as a saturated set and the induction hypothesis.792

J793

The following is now an immediate corollary by taking ρ(x) := x for all x ∈ Var. Because794

Var ⊆ Neut ⊆ 〈A〉, we know that ρ |= Γ. So, if Γ ` t : A, then 〈t〉ρ = t ∈ 〈A〉 ⊆ SN.795

I Theorem 62. The reduction −→a is strongly normalizing: all −→a-reductions on proof796

terms are finite.797

I Corollary 63. The reduction −→a for the optimized rules of Definition 36, the parallel798

∧-elimination rule of Definition 44, the standard →-introduction of Definition 47 and the799

traditional rule for ¬-elimination of Definition 50 are strongly normalizing.800

Proof. By Theorem 62 and the fact that reduction is preserved by the translation: Lemmas801

43, 46 and 49. J802

6.2 Weak Normalization of conversion803

We now give a strategy for finding a normal form for the combined −→ab reduction, the union804

of −→a and −→b. This proves that −→ab is weakly normalizing and it also gives a concrete805

procedure for finding a normal form. Due to the fact that, in general, reduction is not806

TYPES 2017

3:34 Proof terms for generalized natural deduction

confluent, this normal form is not unique, but it does yield decidability via the sub-formula807

property. The weak normalization proof follows the well-known idea, originally due to Turing808

(see [5]) for simple type theory, to contract the innermost redex of highest rank.809

I Definition 64. We define the rank of a formula A, rk(A) as follows.810

rk(A) := 1 if A is a proposition letter.811

rk(c(A1, . . . , An) := 1 + max{rk(A1), . . . , rk(An)} if c is a connective of arity n.812

We define the rank of a redex as follows.813

The rank of {p ; λx.q}r′ ·r [s ; λy.r] is the rank of the type of {p ; λx.q}r′ .814

The rank of (t ·r′ [p ; λx.q]) ·r [s ; λy.r] is the rank of the type of t ·r′ [p ; λx.q].815

We will sometimes mark the redex with its type Φ such that rk(Φ) is the rank of the816

redex. We do this by writing Φ as a superscript to the elimination constructor. To clarify,817

we summarize again the possible reduction steps of the form −→a and −→b.818

I Notation 65. From Definition 29, we have the reduction −→a and form Definition 32 we819

have the reduction −→b. We introduce the following notation.820

{p, pj ; λx.q} ·Φ [s ; λy.r, λy`.r`] −→a1 r`[y` := pj]821

{p ; λx.q, λxi.qi} ·Φ [s, sk ; λy.r] −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r]822

(t · [p ; λx.q]) ·Φ [s ; λy.r] −→b t · [p ; λx.(q ·Φ [s ; λy.r])]823

Here, the proviso’s of Definition 29 apply, so the first is the “` = j case” which we will call824

−→a1, and the second is the “k = i case” which we will call −→a2.825

We give two Lemmas that show that the creation of new redexes is limited.826

I Lemma 66. 1. If t −→b t
′ by contracting a redex of rk(Φ) then the newly created redexes827

are also of rk(Φ).828

2. Suppose {p ; λx.q, λxi.qi} ·Φ [s, sk ; λy.r] −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r]. If qi[xi := sk]829

is an introduction term (that is: qi[xi := sk] is of the form {. . . ; . . .}), then qi is an830

introduction term. Similarly, if qi[xi := sk] is an elimination term (that is: qi[xi := sk] is831

of the form . . . · [. . . ; . . .]), then qi is an elimination term.832

Proof. 1. If t −→b t
′ by contracting a redex of rk(Φ), then t contains a sub-term833

s · [p ; λx.q] ·Φ [u ; λy.r] which is contracted to s · [p ; λx.q ·Φ [u ; λy.r]]. The newly created834

redexes (if any) are all of rk(Φ).835

2. Suppose {p ; λx.q, λxi.qi} ·Φ [s, sk ; λy.r] −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r]. Then qi : Φ836

and sk : Ak which is a sub-formula of Φ, as Φ = c(A1, . . . , An). If qi[xi := sk] is an837

introduction term, then either qi is an introduction term itself or qi = xi and sk is an838

introduction term. The latter case can only occur if sk : Φ, but it is not, because its type839

is a sub-formula of Φ. So qi is an introduction term. The case for qi[xi := sk] being an840

elimination term is similar.841

J842

The Lemma states that both the newly created redexes due to −→b and −→a2 are already843

“hidden” inside the term. We give a list of facts about redex creation and the ranks of redexes.844

I Fact 67. 1. A reduction step can produce more redexes either by (i) copying existing845

redexes or by (ii) creating new redexes. Copying occurs through substitution, in a reduction846

step −→a1 or −→a2.847

2. Creating new redexes happens in either one of the following ways.848

H. Geuvers and T. Hurkens 3:35

a. When doing an −→a step: in a sub-term x · [p ; λy.q], we substitute {s ; λz.r} for x.849

This creates an a-redex of lower rank.850

b. When doing an −→a step: in a sub-term x · [p ; λy.q], we substitute t · [s ; λz.r] for x851

This creates a b-redex of lower rank.852

c. When {p, pj ; λx.q} ·Φ [s ; λy.r, λy`.r`] −→a1 r`[y` := pj] where this term occurs as a853

sub-term: r`[y` := pj] ·Ψ [. . . ; . . .] and r`[y` := pj] = {. . . ; . . .}.854

This creates a new a-redex of unrelated rank.855

d. When {p, pj ; λx.q} ·Φ [s ; λy.r, λy`.r`] −→a1 r`[y` := pj] where this term occurs as a856

sub-term: r`[y` := pj] ·Ψ [. . . ; . . .] and r`[y` := pj] = . . . · [. . . ; . . .].857

This creates a new b-redex of unrelated rank.858

e. When {p ; λx.q, λxi.qi} ·Φ [s, sk ; λy.r] −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r], where859

qi = {. . . ; . . .}.860

This creates a new a-redex of the same rank.861

f. When {p ; λx.q, λxi.qi} ·Φ [s, sk ; λy.r] −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r], where862

qi = . . . · [. . . ; . . .].863

This creates a new b-redex of the same rank.864

g. If (t · [p ; λx.q]) ·Φ [s ; λy.r] −→b t · [p ; λx.(q ·Φ [s ; λy.r])], where qi = {. . . ; . . .}.865

This creates a new a-redex (possibly more) of the same rank.866

h. If (t · [p ; λx.q]) ·Φ [s ; λy.r] −→b t · [p ; λx.(q ·Φ [s ; λy.r])], where qi = . . . · [. . . ; . . .].867

This creates a new b-redex (possibly more) of the same rank.868

Note that in the cases e and f of Fact 67 we use the second part of Lemma 66.869

The idea is to contract an innermost redex of highest rank of a term in b-normal form870

(that is: a term that cannot do a −→b-step). The advantage of b-normal forms is that cases871

c and d of the Fact 67 do not occur. (Because in these cases, the term one starts with is not872

in b-normal form.)873

I Lemma 68. If f is a well-typed term in b-normal form that has one redex of maximum874

rank, say R, then f can be reduced to a term f ′ in b-normal form that has maximum rank875

below R.876

Proof. By induction on the size of f .877

1. If f = {p ; λx.q} or f = x · [p ; λx.q] or f = {p ; λx.q} · [s ; λy.r] and the redex of highest878

rank is inside p, q, s or r, then we are done by the induction hypothesis.879

2. Suppose f = {p ; λx.q} ·Φ [s ; λy.r] is itself a redex of highest rank, rk(Φ). We look at880

the possible ways in which a new redex may arise, following Fact 67. The cases c, d, g881

and h don’t apply.882

For case a: the newly created redexes are of lower rank and the resulting term is in883

b-nf.884

For case b: the newly created redexes are of lower rank. The resulting term may not885

be in b-nf, but we can contract all the newly created b-redexes to obtain a b-normal886

form. According to Lemma 66, case (1), this does not create new redexes of higher887

rank, so we are done.888

For case e: f = {p ; λx.q, λxi.qi} ·Φ [s, sk ; λy.r] −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r] with889

qi = {. . . ; . . .}. By induction hypothesis, qi ·Φ [s, sk ; λy.r]� g for some g in b-normal890

form with all redexes of lower rank. (Note that qi ·Φ [s, sk ; λy.r] is in b-normal form.)891

Then qi[xi := sk] ·Φ [s, sk ; λy.r]� g[xi := sk] and due to the fact that the type of sk892

is a sub-formula of Φ, this only contains new redexes of lower rank, so we are done.893

TYPES 2017

3:36 Proof terms for generalized natural deduction

For case f: f = {p ; λx.q, λxi.qi} ·Φ [s, sk ; λy.r] −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r]894

with qi = t · [u ; λz.v]. If we take g to be the b-normal form of qi ·Φ [s, sk ; λy.r],895

this term contains disjoint sub-terms of the shape λw.d ·Φ [s, sk ; λy.r] that all have896

one maximal redex of rank R and that have length smaller than the length of f . By897

induction hypothesis, these can all be reduced to terms with only redexes of lower898

rank. Having done this, we obtain g as a reduct of qi ·Φ [s, sk ; λy.r] that is in b-normal899

form and contains only redexes of rank lower than R. To obtain f ′, we notice that900

f −→a2 qi[xi := sk] ·Φ [s, sk ; λy.r] � g′[xi := sk], which only contains b-redexs of901

lower rank, so we can take f ′ to be the b-normal form of g′[xi := sk].902

J903

I Theorem 69. For any set of connectives C, the reduction −→ab of the calculus λC is weakly904

normalizing and we have a procedure to compute a normal form for a well-typed term.905

Proof. We consider the following measure m(−) terms: m(t) := (R,m), where R is the906

maximal rank of a redex in t and m is the number of redexes of rank R in t. We consider907

this measure under the lexicographic ordering.908

Given a term t, we first compute its b-normal form, t1 and consider m(t1) = (R,m). Then909

we pick p, an innermost redex of maximal rank inside t1. Following Lemma 68, we reduce p910

to p′, in which all redexes are of rank below R. We do this reduction on t1, obtaining t2. (So911

t1 � t2.) Notice that m(t1) > m(t2). We continue in this way, obtaining a normal form of t,912

because the lexicographic ordering is well-founded. J913

We recall Lemma 35 which describes NF inductively, the set of terms in normal form. If t914

is in normal form, then t is of either one of the following three forms915

1. t is a variable,916

2. t = {p ; λy.q}, with all pi and qj in normal form,917

3. t = x · [p ; λy.q], with x a variable and all pi and qj in normal form.918

6.3 Corollaries of normalization919

I Theorem 70. For any set of connectives C, the calculus λC is consistent, that is: there920

are types A for which there is no closed term t with ` t : A.921

Proof. Take A to be a propositional variable and suppose ` t : A with t in normal form.922

The three possible cases for t are given in Lemma 35, which we have recalled above. The923

first and third case are impossible, because t cannot contain any free variable. The second924

case is impossible, because an introduction term is always of a composite type. J925

The calculus (and logic) λC also satisfies the sub-formula property.926

I Theorem 71. Given a set of connectives C, the calculus λC satisfies the sub-formula927

property, that is: if Γ ` t : A, then there is a term t′ such that Γ ` t′ : A and all types of all928

sub-terms of t′ are either sub-types of A or of some Ai for a declaration xi : Ai in Γ.929

Proof. If Γ ` t : A, then (by Theorem 69) there is a term t′ in normal form with Γ ` t′ : A.930

We use Lemma 35 and prove by induction on t′ that “all types of all sub-terms of t′ are either931

sub-types of A or of some Ai for a declaration xi : Ai in Γ”. For simplicity we abbreviate932

this property to “t′ satisfies the sub-type property for Γ;A”.933

t′ = x, a variable. Then we are done.934

H. Geuvers and T. Hurkens 3:37

t′ = {p ; λx.q}, an introduction term. Then by induction hypothesis, all sub-terms of935

p satisfy the sub-type property for Γ;Ai for some Ai which is a sub-type of A. For936

the λxj .qj in λx.q, we have Γ, xj : Aj ` qj : A for some Aj which is a sub-type of A.937

By induction hypothesis, for all j, all sub-terms of qj satisfy the sub-type property for938

Γ, xj : Aj ;A. So all sub-terms of λx.q satisfy the sub-type property for Γ;A and we are939

done.940

t′ = x · [p ; λx.q], an elimination term. Suppose x : C. Each pi is of type Bi for some941

sub-type Bi of C, so the induction hypothesis yields that all sub-terms of p satisfy the942

sub-type property for Γ;A. For the λxj .qj in λx.q, we have Γ, xj : Bj ` qj : A for some943

Bj which is a sub-type of C. By induction hypothesis, for all j, all sub-terms of qj satisfy944

the sub-type property for Γ, xj : Bj ;A. So all sub-terms of λx.q satisfy the sub-type945

property for Γ;A and we are done.946

J947

I Theorem 72. In λC, given a context Γ and a type D, the problem Γ `? : D is decidable.948

That is, it is whether there is a term t for which Γ ` t : D.949

Proof. By Theorem 69 we can limit our search to a term in normal form. So we can restrict950

the elimination rules to the following restricted case, where Φ = c(A1, . . . , An). (Compare951

with the original rules in Definition 27.)952

x : Φ ∈ Γ . . .Γ ` pk : AkΓ, y` : A` ` q` : D
el

Γ ` x ·r [p ; λy.q] : D

Now, given Γ and D, the following algorithm searches a term t in normal form with953

Γ ` t : D. (1) Check if x : D ∈ Γ for some x and otherwise (2) try an introduction rule (in954

case D is composite) and (3) try an elimination rule for each x : Φ ∈ Γ with Φ a composite955

formula. In the recursive case, this gives finitely many possibilities to try and each try creates956

new goals of the form Γ, yj : Aj `? : D or of the form Γ `? : Ai with Aj and Ai sub-formulas957

of Γ, D. This search terminates because the number of sub-formulas in the context increases958

(which is bound by the number of all sub-formulas of Γ, D), and otherwise the size of the959

goal-formula decreases.960

J961

As a corollary, we find that all the variants of the logical rules we have considered are962

decidable and consistent, simply because they are (with respect to derivability) equivalent to963

the set of rules for ∧,∨,→,¬,⊥,> that we extract from the truth tables, for which Theorems964

70 and 72 apply. We can also say a bit more about the conversion of derivations in these965

systems themselves: detour conversion is strongly normalizing, permutation conversion is966

strongly normalizing and we can also conclude weak normalization of the combined conversion.967

I Theorem 73. The reductions for the optimized rules of Definition 36, the parallel ∧-968

elimination rule of Definition 44, the standard →-introduction of Definition 47 and the969

traditional rule for ¬-elimination of Definition 50 are weakly normalizing.970

Proof. The proof follows the same argument as the proof of Theorem 69. The crucial Lemmas971

are Lemmas 68 and 66, which can be proved again with the reduction rules mentioned in the972

statement of Theorem 73 added. Furthermore, the permutation conversion, −→b is strongly973

normalizing. (Corollary 56.) J974

TYPES 2017

3:38 Proof terms for generalized natural deduction

7 Conclusion and Further work975

We have studied the general procedure for deriving intuitionistic natural deduction rules from976

truth tables, that we have presented in [7]. We have defined detour conversion and permutation977

in general and we have proven that both are strongly normalizing and that the combination978

of the two is weakly normalizing. We have done so by defining a proof-term calculus for979

derivations on which we have defined the reduction rules that correspond to conversion of980

derivations. This follows the well-known Curry-Howard formulas-as-types isomorphism that981

establishes an isomorphism between proofs (derivations in natural deduction) and terms. We982

have shown that very many well-known formalisms for intuitionistic natural deduction can983

be defined in terms of our calculus, including the conversion rules for derivations. Our paper984

also provides a straightforward method for deriving a term calculus for any connective that985

is given via a truth table: the term constructions and reduction rules are self-contained and986

normalizing by construction. We have shown this on various examples, most notably the987

nand-connective.988

The work described here leaves various questions unanswered. For example, is proof989

normalization (the combination of detour conversion and permutation conversion) strongly990

normalizing in general for an arbitrary set of connectives? We would believe so, but have not991

yet proved it. Techniques as in [9], where this property is proved for intuitionistic logic, may992

be useful.993

It also raises various new research questions: The rules are not Church-Rosser (confluent)994

in general, but one may wonder whether there is a certain condition that guarantees confluence.995

We have seen in Examples 23, 30 and 40 that fixing a choice for the “matching case” in a996

detour convertibility may render the reduction confluent. It is not clear if this would work in997

general.998

Another topic to look into is detour conversion for the classical case, and what its999

connection is with known term calculi for classical logic, for example as studied in [13], [1]1000

and [2]. Also, it might be interesting to look at these general rules from a linear perspective:1001

what if we enforce the rules to be linear?1002

Finally, we may wonder whether our research could contribute to the study of “harmony1003

in logic”, as first introduced by Prawitz [15] and further studied by various authors like1004

[16, 12, 23, 4, 3]. The inversion principle explains the elimination rules as capturing the1005

“least information” that is conveyed by the introduction rules. This can also be dualized (as1006

is done in [12] in their “uniform calculus”) by explaining the introduction rules in terms of1007

the elimination rules. It would be interesting to study the relation with our rules, where1008

there is no a priori preference for the introduction or elimination rules.1009

From our research, we would propose the following as a proper system for intuitionistic1010

logic with “parallel elimination rules” that follow Prawitz’ [15] inversion principle. These rules1011

are derived from the truth tables and optimized following Lemma 9, but not using Lemma1012

12. Compare with Definition 13; the special rules are ∧-elimination and →-elimination.1013

I Definition 74. The parallel elimination rules for the intuitionistic propositional connectives

H. Geuvers and T. Hurkens 3:39

∧,∨,→,¬,⊥ and > are given below.

` A ` B
∧-in

` A ∧B

` A ∧B A ` D
∧-el0_

` D

` A ∧B B ` D
∧-el_0

` D

` A
∨-inl

` A ∨B

` B
∨-inr

` A ∨B

` A ∨B A ` D B ` D
∨-el

` D

A ` A→ B
→-ina

` A→ B

` B
→-inb

` A→ B

` A→ B ` A B ` D
→-el

` D

A ` ¬A
¬-in

` ¬A

` ¬A ` A
¬-el

` D
>-in

` >
` ⊥

⊥-el
` D

References1014

1 Z. Ariola and H. Herbelin. Minimal classical logic and control operators. In ICALP, volume1015

2719 of LNCS, pages 871–885. Springer, 2003.1016

2 P.-L. Curien and H. Herbelin. The duality of computation. In ICFP, pages 233–243, 2000.1017

3 R. Dyckhoff. Some remarks on proof-theoretic semantics. In Advances in Proof-Theoretic1018

Semantics, pages 79–93. Springer, 2016.1019

4 N. Francez and R. Dyckhoff. A note on harmony. Journal of Philosophical Logic,1020

41(3):613–628, 2012. URL: http://dx.doi.org/10.1007/s10992-011-9208-0, doi:10.1021

1007/s10992-011-9208-0.1022

5 R.O. Gandy. An early proof of normalization by A.M. Turing. In J.P. Seldin and J.R.1023

Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and1024

Formalism, page 453–455. Academic Press Limited, 1980.1025

6 G. Gentzen. Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, pages1026

176–210, 405–431, 1935. English translation in [19].1027

7 H. Geuvers and T. Hurkens. Deriving natural deduction rules from truth tables. In ICLA,1028

volume 10119 of Lecture Notes in Computer Science, pages 123–138. Springer, 2017.1029

8 J.-Y. Girard et al. Proofs and types, volume 7 of Cambridge tracts in theoretical computer1030

science. Cambridge University Press, Cambridge, 1989.1031

9 F. Joachimski and R. Matthes. Short proofs of normalization for the simply- typed lambda-1032

calculus, permutative conversions and Gödel’s T. Arch. Math. Log., 42(1):59–87, 2003.1033

10 E.G.K López-Escobar. Standardizing the N systems of Gentzen. In Models, Algebras1034

and Proofs, volume 203 of Lecture Notes in Pure and Applied Mathematics, page 411–434.1035

Marcel Dekker Inc., New York, 1999.1036

11 P. Milne. Inversion principles and introduction rules. In Dag Prawitz on Proofs and Mean-1037

ing, volume 7 of Outstanding Contributions to Logic, pages 189–224. Springer, 2015.1038

12 S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press, 2001.1039

13 M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In1040

LPAR, volume 624 of LNCS, pages 190–201. Springer, 1992.1041

14 D. Prawitz. Natural deduction: a proof-theoretical study. Almqvist & Wiksell, 1965.1042

15 D. Prawitz. Ideas and results in proof theory. In J. Fenstad, editor, 2nd Scandinavian Logic1043

Symposium, pages 237–309. North-Holland, 1971.1044

16 S. Read. Harmony and autonomy in classical logic. J. Philosophical Logic,1045

29(2):123–154, 2000. URL: https://doi.org/10.1023/A:1004787622057, doi:10.1023/1046

A:1004787622057.1047

TYPES 2017

http://dx.doi.org/10.1007/s10992-011-9208-0
http://dx.doi.org/10.1007/s10992-011-9208-0
http://dx.doi.org/10.1007/s10992-011-9208-0
http://dx.doi.org/10.1007/s10992-011-9208-0
https://doi.org/10.1023/A:1004787622057
http://dx.doi.org/10.1023/A:1004787622057
http://dx.doi.org/10.1023/A:1004787622057
http://dx.doi.org/10.1023/A:1004787622057

3:40 Proof terms for generalized natural deduction

17 P. Schroeder-Heister. A natural extension of natural deduction. J. Symb. Log., 49(4):1284–1048

1300, 1984.1049

18 Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism,1050

Volume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science Inc.,1051

New York, NY, USA, 2006.1052

19 M.E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam, 1969.1053

20 W.W. Tait. Intensional interpretations of functionals of finite type I. J. Symb.1054

Log., 32(2):198–212, 1967. URL: http://dx.doi.org/10.2307/2271658, doi:10.2307/1055

2271658.1056

21 N. Tennant. Ultimate normal forms for parallelized natural deductions. Logic Journal of1057

the IGPL, 10(3):299–337, 2002.1058

22 D. van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994.1059

23 J. von Plato. Natural deduction with general elimination rules. Arch. Math. Log., 40(7):541–1060

567, 2001.1061

http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.2307/2271658

	Introduction
	Related work and contribution of the paper

	Deriving constructive natural deduction rules from truth tables
	Three larger examples

	Convertibilities and conversion
	The Curry-Howard isomorphism
	Extending the Curry-Howard isomorphism to definable rules
	Normalization
	Strong Normalization of the detour conversion
	Weak Normalization of conversion
	Corollaries of normalization

	Conclusion and Further work

