Formal languages, grammars, and automata Assignment 1, Wednesday, Nov. 12, 2014

Exercises with answers

1. (5 points) Consider the following languages over $\Sigma = \{a, b\}$: $L_1 = \mathcal{L}((a + b)^*)$, $L_2 = \mathcal{L}((a^*b^*)^*)$, and $L_3 = \mathcal{L}(((ab^*)^*))$. Prove that precisely two of these languages are equal.

Answer Info: L_1 consists of the words $x_1 \ldots x_n$ with each $x_i \in \{a, b\}$ and $n \ge 0$. (NB. n = 0 gives the empty word, λ .) This means that L_1 consists of all words over $\{a, b\}$.

 L_2 consists of the words $v_1 \ldots v_n$ with $n \ge 0$ and each v_i being of the form $a \ldots ab \ldots b$: a (possibly empty) sequence of a's followed by a (possibly empty) sequence of b's.

 $L_1 \subseteq L_2$, because, given $x_1 \dots x_n \in L_1$, we can choose $v_1 := x_1, \dots, v_n := x_n$ in the description of L_2 , so $x_1 \dots x_n \in L_2$.

 $L_2 \subseteq L_1$, because, L_1 consists of all words over $\{a, b\}$.

Conclusion: $L_1 = L_2$.

 L_3 consists of the words $v_1 \ldots v_n$ with $n \ge 0$ and each v_i being of the form $ab \ldots b$: one a followed by a (possibly empty) sequence of b's.

Now $L_1 \not\subseteq L_3$, because $b \in L_1$, but $b \notin L_3$. For $b \notin L_3$: note that every $w \in L_3$ that is not λ contains an a.

End Answer Info

2. Consider the languages $L_1 = \mathcal{L}((abba)^*), L_2 = \mathcal{L}(a(bba)^*), L_3 = \mathcal{L}((a(bba)^*)^*).$

- (a) Show that each of these languages is different.
- (b) For which pairs L_i, L_j (with $i \neq j$) doe we have $L_i \subseteq L_j$? Prove your answer.
- (c) For which of these languages do we have $L_k L_k \neq L_k$? Prove your answer.

Answer Info:

- (a) i. λ and abbaabba are in L_1 and L_3 , but not in L_2 . So $L_2 \neq L_1$, $L_2 \neq L_3$. (That they are in L_1 and L_3 is straightforward. That $\lambda \notin L_2$ as well. That abbaabba $\notin L_2$ follows from the fact that the words of L_2 in length order are a, abba, abbabba, abbabbabba, ..., so abbaabba $\notin L_2$.)
 - ii. a is in L_2 and L_3 but not in L_1 . So $L_1 \neq L_3$.
- (b) $L_2 \subseteq L_3$, because L_3 is the Kleene-* of L_2 , and therefore contains it by definition. $L_1 \subseteq L_3$. Proof: The words in L_1 are exactly the words $(abba)^n$ for $n \ge 0$. The words in L_3 are exactly the words

$$a(bba)^{m_1}a(bba)^{m_1}\ldots a(bba)^{m_n}$$

for $n \ge 0$ and $m_i \ge 0$ for all $i \ (1 \ge i \ge n)$. So, a word in L_1 is also in L_2 , because we can take $m_1 = m_2 = \ldots = m_n = 1$ in the pattern for the words of L_3 .

(c) $L_2 L_2 \neq L_2$, because $aa \in L_2 L_2$, but $aa \notin L_2$. For the others, $L_1 L_1 = L_1$ and $L_3 L_3 = L_3$, because their regular expressions are both of the shape $(-)^*$.

End Answer Info

3. Give a regular expression for the following languages and explain your answer.

(a) **(5 points)**

$$\{w \in \{a, b, c\}^* \mid |w| \ge 3\}.$$

Answer Info: $(a+b+c)(a+b+c)(a+b+c)(a+b+c)^*$. Explanation: A word in the language is of the shape $x_1x_2x_3w$ with x_1, x_2 and x_3 in $\{a, b, c\}$ and w and arbitrary word over $\{a, b, c\}$. That is x_1, x_2 and x_3 are in $\mathcal{L}(a+b+c)$ and $w \in \mathcal{L}((a+b+c)^*)$. Obvious alternatives $(a+b+c)^*(a+b+c)(a+b+c)(a+b+c)$, (a+b+c)(a

(b) (5 points)

 $\{w \in \{a, b\}^* \mid w \text{ begins with } b \text{ and } |w|_b \text{ is even}\}.$

Answer Info: $ba^*ba^*(a^*ba^*ba^*)^*$. Explanation: A word in the language should start with a b and contain at least 2 b's, so it is of the shape $ba^{n_1}ba^{n_2}w$ with $n_1, n_2 \ge 0$ and w having an even number of b's. A word with an even number of b's is of the shape $a^{m_1}ba^{m_2}ba^{m_3}b...a^{m_{2p}}ba^{m_{2p+1}}$ for $p \ge 0$, $M_i \ge 0$. This is captured by the regular expression $(a^*ba^*ba^*)^*$. Obvious alternatives: $ba^*ba^*(ba^*ba^*)^*$, $(ba^*ba^*)^*ba^*ba^*$, $b(a^*ba^*b)^*a^*ba^*$. End Answer Info

(c) **(5 points)**

 $\{w \in \{a, b\}^* \mid bb \text{ doesn't occur in } w\}.$

Answer Info: $a^*(baa^*)^*(b+\lambda)$. Explanation: If w is a word in the language, then every b in w should be directly followed by an a except for a possible last b!. So w starts with an arbitrary number of a's, and then, possibly a sub-word ba, followed again by an arbitrary number of a's, and so forth, ending with a possible single b In conclusion, w is of the shape $a^p baa^{m_1} \dots baa^{m_n} x$ with $x \in \{b, \lambda\}, p \ge 0, n \ge 0$ and each $m_i \ge 0$. End Answer Info.....

- 4. [These exercise are hard now. They show that the subject is non-trivial. Later we will learn methods to solve this more easily]
 - (a) Show that the language

 $\{w \in \{a, b\}^* \mid aa \text{ occurs exactly twice in } w\}.$

is regular. [Hint. Beware of the string *aaa*!]

 $(b^{*}(abb^{*})^{*}aaab^{*}(abb^{*})^{*}(a+\lambda)) + (b^{*}(abb^{*})^{*}aabb^{*}(abb^{*})^{*}aab^{*}(abb^{*})^{*}(a+\lambda)).$

This solution borrows from 3(c) the regular expression that does not contain aa, either at the end (expression $b^*(abb^*)^*(a + \lambda)$) or at the beginning (expression $b^*(abb^*)^*$). The expression $(b^*(abb^*)^*aaab^*(abb^*)^*(a + \lambda))$ covers the words that contain aaa, the expression $(b^*(abb^*)^*aabb^*(abb^*)^*(a + \lambda))$ covers the words that contain two separate sub-words aa.

Another possible solution (from Twan): $b^*(abb^*)^*aa(a + bb^*(abb^*)aa)(bb^*a)^*b^*$ End Answer Info..... (b) Show that the language

$$\{w \in \{a, b\}^* \mid |w|_a \text{ and } |w|_b \text{ are even}\}$$

is regular.

Answer Info:		 	
A possible answer	is:		

 $(b(aa)^*b + (a + b(aa)^*ab)(bb + ba(aa)^*ab)^*(a + ba(aa)^*b))^*.$

How to find this answer will be explained in Lecture 3. End Answer Info.....