Formal languages, grammars, and automata Assignment 3, Wednesday, Nov. 26, 2014

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email	students
Bastiaan Cijsouw	HG 00.310	bastiaancijsouw@gmail.com	A—K
Maaike Zwart	HG 00.065	maaike.annebeth@gmail.com	L—Z

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers. The exercises marked with points should be handed in:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (in case your exercise class teacher approves): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 3'. This e-mail should only contain a single PDF document as attachment. Make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-3.pdf)
 - your name and student number are in the document (since they will be printed).

Deadline: Monday, December 1, 16:00 sharp!

Goals: After completing these exercises successfully you should be able to "read" a state diagram for an NFA (and NFA_{λ}) and check whether words are accepted by the NFA (resp. NFA_{λ}); you should be able to construct an NFA (NFA_{λ}) for a given language and you should be able to eliminate λ -steps and non-determinism from an NFA (or NFA_{λ}) to compute an equivalent DFA; you should be able to construct an NFA_{λ} for a regular expression. The total number of points is 20.

1. Consider the following NFA_{λ}, M.

(a) Compute $\delta^*(q_0, aabaa)$ and $\delta^*(q_0, aabba)$. Are these words accepted?

- (b) Which of the following words are accepted by M: *aabbaa*, *bbb*? Explain.
- (c) Compute λ -closure (q_0) , λ -closure (q_1) , λ -closure (q_2) and λ -closure (q_3) .
- (d) Eliminate non-determinism and λ -steps (using the subset construction) and compute the associated DFA M'.
- 2. In a number of steps, we construct a regular expression e such that

 $\mathcal{L}(e) = L = \{ w \in \Sigma^* \mid abba \text{ is not a substring of } w \}.$

- (a) (5 points) Give an NFA M such that its language is \overline{L} . (NB: This is the *complement* of L.) Explain your answer.
- (b) (5 points) Construct from M, using the subset construction, a DFA M' accepting the same language. Reduce the number of states in M' by joining states that have the same effect. This yields a DFA M''.
- (c) Modify M'' to obtain M''' that accepts L.
- (d) Compute a regular expression e such that $\mathcal{L}(e) = \mathcal{L}(M'')$.
- 3. Consider the regular expression $e = ((aa + b)^*ba)^*$.
 - (a) (5 points) Construct an NFA_{λ} M that accepts the language $\mathcal{L}(e)$, following the steps shown in the lecture (or the steps of the course notes LnA). Explain what you are doing.
 - (b) (5 points) Construct a DFA M' out of M that accepts the same language $\mathcal{L}(e)$. Explain what you are doing.
- 4. (More challenging) Let L over $\Sigma = \{a, b\}$ be regular. Show that the following language L' is also regular.

 $L' := \{ w \in \Sigma^* \mid \exists v \in L(w \text{ is contained in } v) \}$

NB. w is contained in v if all the symbols of w occur in v in the same order, to be precise: $v = s_1 \dots s_n$ and $w = s_{i_1} \dots s_{i_m}$ for some sequence $1 \le i_1 < \dots < i_m \le n$. $(s_j \in \Sigma)$.