Formal languages, grammars, and automata Assignment 5, Wednesday, Dec. 17 2014

Exercise teachers. Recall the following split-up of students:

teacher	lecture room	email	students
Bastiaan Cijsouw	HG 00.310	bastiaancijsouw@gmail.com	A—K
Maaike Zwart	HG 00.065	maaike.annebeth@gmail.com	L—Z

The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers. The exercises marked with points should be handed in:

- 1. Delivery box (default): Put your solutions in the appropriate delivery box (see above). Before putting your solutions in the box make sure:
 - your name and student number are written clearly on the document.
- 2. E-mail (in case your exercise class teacher approves): Send your solutions by e-mail to your exercise class teacher (see above) with subject 'assignment 5'. This e-mail should only contain a single PDF document as attachment. Make sure:
 - the file is a PDF document that is well readable
 - your name is part of the filename (for example MyName_assignment-5.pdf)
 - your name and student number are in the document (since they will be printed).

Deadline: Monday, January 5, 16:00 sharp!

Goals: After completing these exercises successfully you should be able to read context-free grammars, as well as write down grammars for context-free languages and regular languages. The total number of points is 20.

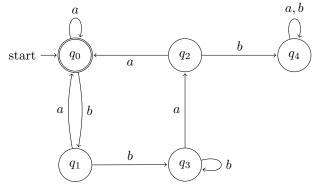
1. Let $\Sigma = \{a, b\}$. Consider the context-free grammars

$G_1 =$	\mathbf{S}	\rightarrow	aABb	and	$G_2 =$	\mathbf{S}	\rightarrow	AABB
	Α	\rightarrow	$aA \mid a$			Α	\rightarrow	AA a
	В	\rightarrow	$\mathbf{b}\mathbf{B}\mid\mathbf{b}$			В	\rightarrow	$BB \mid b$

- (a) Describe $L_1 = \mathcal{L}(G_1)$ and $L_2 = \mathcal{L}(G_2)$.
- (b) Show that $L_1 = L_2$. Hint: first show that A in G_1 generates the same language as A in G_2 , etc.
- (c) Is G_1 ambiguous? Is G_2 ambiguous? If so, give a word and two different leftmost derivations.
- (d) Give a derivation of *aaaabbb* in G_1 and in G_2 , and draw the corresponding derivation trees.
- 2. For each of the following languages construct a context-free grammar that generates the language, and explain why your answer is correct.
 - (5 points) $L_3 = \{a^n b^{n+m} a^m \mid n, m \ge 0\}$ (5 points) $L_4 = \{w \in \{a, b\}^* \mid |w|_a \text{ is even}\}$ (5 points) $L_5 = \mathcal{L}((ab)^*(a+bb)^*)$ $L_6 = \{w \in \{a, b\}^* \mid |w| = 2k + 1 \text{ and } w_1 = w_{k+1}\}$

where w_i denotes the *i*-th symbol in a word w. That is, L_6 consists of all words of odd length that have the same symbol in the first and middle positions.

3. (5 points) Consider the following DFA M,



Construct a context-free grammar that generates $\mathcal{L}(M)$.

4. $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \times, +, (,)\}$. Construct a context-free grammar that generates the language

 $L_7 = \{ w \in \Sigma^* \mid w \text{ is a well-formed arithmetical expressions} \}$

NB. $2+3+4\times 5$ and $((2+3)+4)\times 5$ and $(((2+3)))+4\times 5$ are well-formed. $2+(3+4\times 5$ and $(2+3)+4)\times 5$ and)(are not.

5. Let $G_8 = \langle V_8, S_8, P_8 \rangle$ be a context-free grammar with start symbol S_8 . Construct a context-free grammar for the language $\mathcal{L}(G_8)^*$.