Deterministic Finite Automata

H. Geuvers and T. van Laarhoven

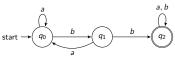
Institute for Computing and Information Sciences – Intelligent Systems
Radboud University Nijmegen

Version: fall 2014

Outline

Finite Automata

Manipulating finite automata


Finite automata and regular languages

Deterministic Finite State Automaton (DFA)

Intuition. Let $\Sigma = \{a, b\}$. Consider the DFA M:

Letters a,b are the moves in the graph A $w \in \Sigma^*$ is a sequence of moves Start state is indicated by 'start \rightarrow ', Accepting states by double circle (there can be several accepting states)

The word *abba* is accepted, but *baab* is not accepted (rejected) $M = (Q, q_0, \delta, F)$ with $Q = \{q_0, q_1, q_2\}, F = \{q_2\}$ and δ given by

δ	а	b
q 0	q_0	q_1
$ q_1 $	q_0	q_2
$ q_2 $	q_2	q_2

Deterministic Finite Automata formally

M is a DFA over Σ if $M = (Q, q_0, \delta, F)$ with

 Σ is a finite alphabet

Q is a finite set of states

 $q_0 \in Q$ is the initial state

 $F \subseteq Q$ is a finite set of final states

 $\delta: Q \times \Sigma \to Q$ is the transition function

(often given by a table or a transition diagram)

Reading function $\delta^*: Q \times \Sigma^* \to Q$ (multi-step transition)

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q, a) = \delta(q, a)$$

$$\delta^*(q, aw) = \delta^*(\delta(q, a), w)$$

The language accepted by M, notation $\mathcal{L}(M)$, is:

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$$

Reading words $w \in \Sigma^*$

Computation for $\delta^*(q_0, w)$ in the example DFA. Take w = abba:

$$[q_0, abba] \vdash [\delta(q_0, a), bba] = [q_0, bba] \vdash [\delta(q_0, b), ba] = [q_1, ba] \vdash [\delta(q_1, b), a] = [q_2, a] \vdash [\delta(q_2, a), \lambda] = [q_2, \lambda]$$

$$egin{array}{lll} [q_0,aba] & dash & [\delta(q_0,a),ba] & = [q_0,ba] \ & dash & [\delta(q_0,b),a] & = [q_1,a] \ & dash & [\delta(q_1,a),\lambda] & = [q_0,\lambda] \end{array}$$

So abba is acepted and aba is not accepted.

The language accepted by M (of the first slide) is regular. It is the language

$$\mathcal{L}((a+b)^*bb(a+b)^*).$$

From transition table to state diagram

Consider the automaton M over $\Sigma = \{a, b\}$ with

- $Q = \{0, 1, 2, 3, 4\}$,
- $q_0 = 0$,
- $F = \{4\}$

δ	а	Ь
0	1	0
1	1	2
2	1	3
3	4	0
4	4	4

- ① Which of the following words is accepted? abba, baba, bba
- 2 Is it the case that $\{w \mid |w|_b \text{ is even }\} \subseteq \mathcal{L}(M)$?
- **3** Is it the case that $\{w \mid w \text{ contains } aabbaa\} \subseteq \mathcal{L}(M)$?

Manipulating Finite Automata: products for intersection

М	$\mathcal{L}(M)$
$start \to 0$	$L_1 = \{w \mid w _a \text{ is even}\}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$L_2 = \{ w \mid w _b \ge 1 \}$
start $\rightarrow 0, p$ a 1, p b a 0, q 1, q	$\mathcal{L}_1 \cap \mathcal{L}_2 = \{w \mid w _{m{ extit{a}}} ext{ is even and } w _{m{ extit{b}}} \geq 1\}$

Product of two DFAs

Given two DFAs over the same Σ

$$M_1 = (Q_1, q_{01}, \delta_1, F_1)$$

 $M_2 = (Q_2, q_{02}, \delta_2, F_2)$

Define

$$M_1 \times M_2 = (Q_1 \times Q_2, q_0, \delta, F)$$

with

$$q_0 := (q_{01}, q_{02})$$

 $\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_2, a))$

Then with

$$F := F_1 \times F_2 := \{ (q_1, q_2) \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$$

we have

$$\mathcal{L}(M_1 \times M_2) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$$

Closure Properties

Proposition Closure under complement

If L is accepted by some DFA, then so is

$$\overline{L} = \Sigma^* - L.$$

Proof. Suppose that L is accepted by $M = (Q, q_0, \delta, F)$. Then \overline{L} is accepted by $M = (Q, q_0, \delta, \overline{F})$.

If L_1 , and L_2 are accepted by some DFA, then so are $L_1 \cap L_2$ and $L_1 \cup L_2$.

Proof. For the intersection, this follows from the product construction on the previous slide.

For the union, this can be seen by the product construction, taking a different F (which one?) or by noticing that $L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2}$.

Kleene's Theorem

Theorem The languages accepted by DFAs are exactly the regular languages

We will prove this in this and the next lecture by

- If $L = \mathcal{L}(M)$, for some DFA M, then there is a regular expression e such that $L = \mathcal{L}(e)$ (this lecture).
- ② If $L = \mathcal{L}(e)$, for some regular expression e, then there is a non-deterministic finite automaton (NFA) M such that $L = \mathcal{L}(M)$. (next lecture).
- § For every NFA M, there is a DFA M' such that $\mathcal{L}(M) = \mathcal{L}(M')$ (next lecture)

From DFAs to regular expressions

Given the DFA $M = (Q, q_0, \delta, F)$, we construct a regular expression e such that

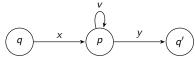
$$\mathcal{L}(e) = \mathcal{L}(M)$$
.

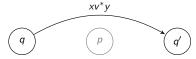
Procedure:

- We remove states, replacing symbols from Σ by words from Σ*,
- until we end up with a "simple automaton" from which we can read off e.

Simple automata

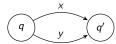
M	\mid e such that $\mathcal{L}(e)=\mathcal{L}(M)$
$start \to \overbrace{q_0}^W$	W*
$start \longrightarrow \stackrel{W}{ q_0}$	0
$\begin{array}{c c} u & x \\ \hline \\ start & q_0 \\ \hline \\ y & q_1 \\ \hline \end{array}$	$(u+xv^*y)^*$
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	$u^*x(v+yu^*x)^*$




Eliminating states

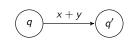
- Remove a state p,
- while adding arrows $q \stackrel{w}{\rightarrow} q'$ between other pairs of states.

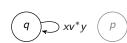
Before:


After:

Special cases

Join arrows using +


First create a single final state



Beware of loops

