Non-deterministic Finite Automata

H. Geuvers and T. van Laarhoven

Institute for Computing and Information Sciences – Intelligent Systems Radboud University Nijmegen

Version: fall 2014

Outline

Non-deterministic Finite Automata

Eliminating non-determinism

Previous Weeks

Regular Expressions and Regular Languages

$$\texttt{rexp}_{\Sigma} ::= \emptyset \mid \lambda \mid s \mid \texttt{rexp}_{\Sigma} \; \texttt{rexp}_{\Sigma} \mid \texttt{rexp}_{\Sigma} + \texttt{rexp}_{\Sigma} \mid \texttt{rexp}_{\Sigma}^{*}$$

with $s \in \Sigma$ $L \subseteq \Sigma^*$ is regular if $L = \mathcal{L}(e)$ for some regular expression e.

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection If L_1, L_2 are accepted by some DFA, then so are

•
$$\overline{L_1} = \Sigma^* - L_1$$

- $L_1 \cup L_2$
- $L_1 \cap L_2$.

Kleene's Theorem (announced last lecture)

Theorem

The languages accepted by DFAs are exactly the regular languages We prove this by

- If $L = \mathcal{L}(M)$ for some DFA M, then there is a regular expression e such that $L = \mathcal{L}(e)$ (Previous lecture)
- If L = L(e), for some regular expression e, then there is a non-deterministic finite automaton with λ-steps (NFA_λ) M such that L = L(M). (This lecture)
- **3** For every NFA $_{\lambda}$, M, there is a DFA M' such that $\mathcal{L}(M) = \mathcal{L}(M')$ (This lecture)

Radboud University Nijmegen 🖑

Non-deterministic finite automaton (NFA)

 $\delta(q, a)$ is not one state, but a set of states.

δ	а	b
q_0	$\{q_0\}$	$\{q_0, q_1\}$
$ q_1 $	Ø	$\{q_2\}$
<i>q</i> ₂	Ø	Ø

in shorthand

δ	а	b
q_0	q_0	q_0, q_1
q_1		<i>q</i> ₂
q ₂		

6 / 18

Non-deterministic Finite Automata: NFA (formally)

 $\begin{array}{ll} M \text{ is a NFA over } \Sigma \text{ if } M = (Q, q_0, \delta, F) \text{ with} \\ Q & \text{ is a finite set of states} \\ q_0 \in Q & \text{ is the initial state} \\ F \subseteq Q & \text{ is a finite set of final states} \\ \delta : Q \times \Sigma \to \mathcal{P}Q & \text{ is the transition function} \\ [\mathcal{P}Q \text{ denotes the collection of subsets of } Q] \end{array}$

Reading function $\delta^*: Q imes \Sigma^* o \mathcal{P}Q$ (multi-step transition)

$$\delta^*(q, \lambda) = \{q\}$$

$$\delta^*(q, aw) = \{q' \mid q' \in \delta^*(p, w) \text{ for some } p \in \delta(q, a)\}$$

$$= \bigcup_{p \in \delta(q, a)} \delta^*(p, w)$$

 $[\bigcup X_i \text{ denotes the union of all the } X_i]$

The language accepted by M, notation $\mathcal{L}(M)$, is:

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \exists q_f \in F(q_f \in \delta^*(q_0, w)) \}$$

H. Geuvers & T. van Laarhoven

For the union of languages we can put NFAs in parallel

Example. Suppose we want to have an NFA for $L_1 \cup L_2 = \{w \mid |w|_a \text{ is even or } |w|_b \ge 1\}$ First idea: put the two machines "non-deterministically" in parallel

But this is wrong: The NFA accepts aaa.

Radboud University Nijmegen 🖑

Non-deterministic Finite Automata with silent steps: NFA $_{\lambda}$

We add λ -transitions or 'silent steps' to NFAs The correct union of M_1 and M_2 is:

In an NFA $_{\lambda}$ we allow

$$\delta(q,\lambda)=q'$$

for $q \neq q'$. That means

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}Q$$

NFA_{λ} formally

 $\begin{array}{ll} M \text{ is an NFA}_{\lambda} \text{ over } \Sigma \text{ if } M = (Q, q_0, \delta, F) \text{ with} \\ Q & \text{ is a finite set of states} \\ q_0 \in Q & \text{ is the initial state} \end{array}$

- $F \subseteq Q$ is a finite set of final states
- $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}Q$ is the transition function

The λ -closure of a state q, λ -closure(q), is the set of states reachable with only λ -steps. Reading function $\delta^* : Q \times \Sigma^* \to \mathcal{P}Q$ (multi-step transition)

$$\delta^{*}(q, \lambda) = \lambda - \operatorname{closure}(q)$$

$$\delta^{*}(q, aw) = \{q' \mid \exists p \in \lambda - \operatorname{closure}(q) \exists r \in \delta(p, a) (q' \in \delta^{*}(r, w))\}$$

$$= \bigcup_{p \in \lambda - \operatorname{closure}(q)} \bigcup_{r \in \delta(p, a)} \delta^{*}(r, w)$$

The language accepted by M, notation $\mathcal{L}(M)$, is:

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \exists q_f \in F(q_f \in \delta^*(q_0, w)) \}$$

Insulated machines

A finite automaton M is called insulated if

- q₀ has no in-going arrows
- there is only one final state which has no out-going arrows

Proposition. For any machine M one can find an insulated NFA_{λ} M' such that M' accepts the same language Proof. By adding states and silent steps, for example

Radboud University Nijmegen 🖑

Toolkit for building an NFA $_{\lambda}$ from a regular expression

For each regular expression, we construct an insulated NFA $_{\lambda}$.

Radboud University Nijmegen 🖑

Toolkit (continued)

13 / 18

Regular languages accepted by a NFA $_{\lambda}$

Proposition. For every regular expression e there is an NFA $_{\lambda}$ M_{e} such that

$$\mathcal{L}(M_e) = \mathcal{L}(e).$$

Proof. Apply the toolkit. M_e can be found by induction on the structure of e: First do this for the simplest regular expressions. For a composed regular expression compose the automata.

Corollary. For every regular language L there is an NFA_{λ} M that accepts L (so $\mathcal{L}(M) = L$).

14 / 18

Avoiding non-determinism

We can transform any NFA (and NFA $_{\lambda}$) into a DFA that accepts the same language.

Idea:

- Keep track of all the states you can go to!
- A combination of states is final if one of the members is final.

Example: $L = \{w \mid |w|_a \text{ is even or } |w|_b \ge 1\}$

Eliminating non-determinism and λ -steps

Let *M* be a NFA given by (Q, q_0, δ, F) Define the DFA M^+ as $(Q^+, q_0^+, \delta^+, F^+)$ where

$$Q^{+} = \mathcal{P}Q$$

$$q_{0} = \{q_{0}\}$$

$$\delta^{+}(H, a) = \bigcup_{q \in H} \delta(q, a), \quad \text{for } H \subseteq Q,$$

$$F^{+} = \{H \subseteq Q \mid H \cap F \neq \emptyset\}$$

Then M^+ is a DFA accepting the same language as MIf M is an NFA_{λ}, we take

$$\begin{split} \delta^{+}(H,a) &= \bigcup_{q \in H} \bigcup_{p \in \lambda \text{-closure}(q)} \lambda \text{-closure}(\delta(p,a)) \\ F^{+} &= \{H \subseteq Q \mid \lambda \text{-closure}(H) \cap F \neq \emptyset\} \end{split}$$

č

Equivalence of DFA, NFA and NFA $_{\lambda}$

Conclusion. Every NFA_{λ} (or NFA) *M* can be turned into a DFA *M'* accepting the same language. Corollary. For every regular language *L* there is a DFA *M* that accepts *L* (so $\mathcal{L}(M) = L$). Proof. Given a regular expression *e*, first construct an NFA_{λ} *M* such that $\mathcal{L}(M) = \mathcal{L}(e)$. Then change it into a *DFA* preserving the language that is accepted.

Rephrasing of Kleene's Theorem:

The class of regular languages is (equivalently) characterized as

- 1 The languages described by a regular expression
- 2 The languages accepted by a DFA
- **③** The languages accepted by an NFA
- **4** The languages accepted by a NFA_λ