Non-deterministic Finite Automata

H. Geuvers and T. van Laarhoven

Institute for Computing and Information Sciences – Intelligent Systems
Radboud University Nijmegen

Version: fall 2014
Outline

Non-deterministic Finite Automata

Eliminating non-determinism
Regular Expressions and Regular Languages

\[\text{rexp}_\Sigma ::= \emptyset \mid \lambda \mid s \mid \text{rexp}_\Sigma \text{rexp}_\Sigma \mid \text{rexp}_\Sigma + \text{rexp}_\Sigma \mid \text{rexp}_\Sigma^* \]

with \(s \in \Sigma \)

\(L \subseteq \Sigma^* \) is regular if \(L = \mathcal{L}(e) \) for some regular expression \(e \).

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection

If \(L_1, L_2 \) are accepted by some DFA, then so are

- \(\overline{L_1} = \Sigma^* - L_1 \)
- \(L_1 \cup L_2 \)
- \(L_1 \cap L_2 \).
Theorem
The languages accepted by DFAs are exactly the regular languages
We prove this by
1. If \(L = \mathcal{L}(M) \) for some DFA \(M \), then there is a regular expression \(e \) such that \(L = \mathcal{L}(e) \) (Previous lecture)
2. If \(L = \mathcal{L}(e) \), for some regular expression \(e \), then there is a non-deterministic finite automaton with \(\lambda \)-steps (NFA\(_\lambda\)) \(M \) such that \(L = \mathcal{L}(M) \). (This lecture)
3. For every NFA\(_\lambda\), \(M \), there is a DFA \(M' \) such that \(\mathcal{L}(M) = \mathcal{L}(M') \) (This lecture)
Non-deterministic finite automaton (NFA)

$\delta(q, a)$ is not one state, but a set of states.

\[
\begin{array}{c|cc}
\delta & a & b \\
\hline
q_0 & \{q_0\} & \{q_0, q_1\} \\
q_1 & \emptyset & \{q_2\} \\
q_2 & \emptyset & \emptyset
\end{array}
\]

in shorthand

\[
\begin{array}{c|cc}
\delta & a & b \\
\hline
q_0 & q_0 & q_0, q_1 \\
q_1 & q_0 & q_2 \\
q_2 & & q_2
\end{array}
\]
Non-deterministic Finite Automata: NFA (formally)

M is a NFA over Σ if $M = (Q, q_0, \delta, F)$ with

- Q is a finite set of states
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a finite set of final states
- $\delta : Q \times \Sigma \rightarrow \mathcal{P}Q$ is the transition function

$\mathcal{P}Q$ denotes the collection of subsets of Q.

Reading function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}Q$ (multi-step transition)

- $\delta^*(q, \lambda) = \{q\}$
- $\delta^*(q, aw) = \{q' \mid q' \in \delta^*(p, w) \text{ for some } p \in \delta(q, a)\}$
- $= \bigcup_{p \in \delta(q, a)} \delta^*(p, w)$

$[\bigcup X_i \text{ denotes the union of all the } X_i]$.

The language accepted by M, notation $\mathcal{L}(M)$, is:

$\mathcal{L}(M) = \{w \in \Sigma^* \mid \exists q_f \in F(q_f \in \delta^*(q_0, w))\}$
For the union of languages we can put NFAs in parallel

Example. Suppose we want to have an NFA for \(L_1 \cup L_2 = \{ w \mid |w|_a \text{ is even or } |w|_b \geq 1 \} \)

First idea: put the two machines “non-deterministically” in parallel

But this is **wrong**: The NFA accepts \(aaa \).
We add λ-transitions or ‘silent steps’ to NFAs.

The correct union of M_1 and M_2 is:

In an NFA$_\lambda$ we allow

$$\delta(q, \lambda) = q'$$

for $q \neq q'$. That means

$$\delta : Q \times (\Sigma \cup \{\lambda\}) \rightarrow \mathcal{P}Q$$
NFAλ formally

M is an NFAλ over Σ if $M = (Q, q_0, \delta, F)$ with

- Q is a finite set of states
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a finite set of final states
- $\delta : Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P} Q$ is the transition function

The λ-closure of a state q, λ-closure(q), is the set of states reachable with only λ-steps.

Reading function $\delta^* : Q \times \Sigma^* \to \mathcal{P} Q$ (multi-step transition)

\[
\delta^*(q, \lambda) = \lambda\text{-closure}(q)
\]

\[
\delta^*(q, aw) = \{ q' \mid \exists p \in \lambda\text{-closure}(q) \exists r \in \delta(p, a) (q' \in \delta^*(r, w)) \}
\]

\[
= \bigcup_{p \in \lambda\text{-closure}(q)} \bigcup_{r \in \delta(p, a)} \delta^*(r, w)
\]

The language accepted by M, notation $\mathcal{L}(M)$, is:

\[
\mathcal{L}(M) = \{ w \in \Sigma^* \mid \exists q_f \in F (q_f \in \delta^*(q_0, w)) \}
\]
Insulated machines

A finite automaton M is called **insulated** if

- q_0 has no in-going arrows
- there is only one final state which has no out-going arrows

Proposition. For any machine M one can find an insulated NFA M' such that M' accepts the same language

Proof. By adding states and silent steps, for example

![Diagram showing an insulated automaton](image)

gives

![Diagram showing a transformed automaton](image)
For each regular expression, we construct an insulated NFA_{\lambda}.

<table>
<thead>
<tr>
<th>e</th>
<th>M such that (\mathcal{L}(M) = \mathcal{L}(e))</th>
</tr>
</thead>
</table>
| \(\emptyset \) | \begin{align*} &\text{start} \\
 &\overset{}{\longrightarrow} q_0 \end{align*} |
| \(\lambda \) | \begin{align*} &\text{start} \\
 &\overset{}{\longrightarrow} S \end{align*} |
| \(a \) (for \(a \in \Sigma \)) | \begin{align*} &\text{start} \\
 &\overset{}{\longrightarrow} S \end{align*} \begin{align*} &\overset{a}{\longrightarrow} F \end{align*} |

\[e = e_1 + e_2 \]
with
\[\mathcal{L}(M_1) = \mathcal{L}(e_1) \]
\[\mathcal{L}(M_2) = \mathcal{L}(e_2) \]
<table>
<thead>
<tr>
<th>e</th>
<th>M such that $\mathcal{L}(M) = \mathcal{L}(e)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e = e_1 e_2$ with $\mathcal{L}(M_1) = \mathcal{L}(e_1)$ and $\mathcal{L}(M_2) = \mathcal{L}(e_2)$</td>
<td>![Diagram 1]</td>
</tr>
<tr>
<td>$e = (e_1)^*$ with $\mathcal{L}(M_1) = \mathcal{L}(e_1)$</td>
<td>![Diagram 2]</td>
</tr>
</tbody>
</table>
Proposition. For every regular expression e there is an NFA$_\lambda$ M_e such that

$$L(M_e) = L(e).$$

Proof. Apply the toolkit. M_e can be found by induction on the structure of e: First do this for the simplest regular expressions. For a composed regular expression compose the automata.

Corollary. For every regular language L there is an NFA$_\lambda$ M that accepts L (so $L(M) = L$).
Avoiding non-determinism

We can transform any NFA (and NFA_λ) into a DFA that accepts the same language.

Idea:

- Keep track of all the states you can go to!
- A combination of states is final if one of the members is final.

Example: \(L = \{ w \mid |w|_a \text{ is even or } |w|_b \geq 1 \} \)
Eliminating non-determinism and λ-steps

Let M be a NFA given by (Q, q_0, δ, F).
Define the DFA M^+ as $(Q^+, q_0^+, \delta^+, F^+)$ where

\[
Q^+ = \mathcal{P}Q
\]
\[
q_0 = \{q_0\}
\]
\[
\delta^+(H, a) = \bigcup_{q \in H} \delta(q, a), \quad \text{for } H \subseteq Q,
\]
\[
F^+ = \{ H \subseteq Q \mid H \cap F \neq \emptyset \}
\]

Then M^+ is a DFA accepting the same language as M.

If M is an NFA$_\lambda$, we take

\[
\delta^+(H, a) = \bigcup_{q \in H} \bigcup_{p \in \lambda\text{-closure}(q)} \lambda\text{-closure}(\delta(p, a))
\]
\[
F^+ = \{ H \subseteq Q \mid \lambda\text{-closure}(H) \cap F \neq \emptyset \}
\]
Equivalence of DFA, NFA and NFA_λ

Conclusion. Every NFA_λ (or NFA) M can be turned into a DFA M' accepting the same language.

Corollary. For every regular language L there is a DFA M that accepts L (so $\mathcal{L}(M) = L$).

Proof. Given a regular expression e, first construct an NFA_λ M such that $\mathcal{L}(M) = \mathcal{L}(e)$. Then change it into a DFA preserving the language that is accepted.

Rephrasing of Kleene’s Theorem:
The class of regular languages is (equivalently) characterized as

1. The languages described by a regular expression
2. The languages accepted by a DFA
3. The languages accepted by an NFA
4. The languages accepted by a NFA_λ