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Previous Weeks

Regular Expressions and Regular Languages

rexps =0 | A\ | s | rexps rex rexps-trex rexps
Px | Py TeXpy Py Py Px

with s € &
L C X* is regular if L = L(e) for some regular expression e.

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection
If L1, Ly are accepted by some DFA, then so are

° E:Z*—Ll
e [1UL>
e [1NLs.
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Kleene's Theorem (announced last lecture)

Theorem
The languages accepted by DFAs are exactly the regular languages
We prove this by

® If L = L(M) for some DFA M, then there is a regular
expression e such that L = £(e) (Previous lecture)

@® If L= L(e), for some regular expression e, then there is a
non-deterministic finite automaton with A-steps (NFAy) M
such that L = £(M). (This lecture)

© For every NFA,, M, there is a DFA M’ such that
L(M) = L(M") (This lecture)
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Non-deterministic finite automaton (NFA)
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d(q, a) is not one state, but a set of states.
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Non-deterministic Finite Automata: NFA (formally)

M is a NFA over ¥ if M = (Q, qo, J, F) with

Q is a finite set of states
qo € Q is the initial state
FCQ is a finite set of final states

0:Q xX—PQ isthe transition function
[PQ denotes the collection of subsets of Q]

Reading function §* : Q x ¥* — PQ (multi-step transition)

(q,2) = {q}
8 (g,aw) = {q'|q € " (p, w) for some p € §(q,a)}
= U Few
p€d(q,a)

[U X; denotes the union of all the X;]
The language accepted by M, notation £(M), is:
LM)={w e X*|3gr € F(gr € " (qo,w))}
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For the union of languages we can put NFAs in parallel

Example. Suppose we want to have an NFA for L; U L, =
{w | |wl|, is even or |w|p > 1}
First idea: put the two machines “non-deterministically” in parallel

b b
a B a, b
SR OMBONNI
start —
a

But this is wrong: The NFA accepts aaa.
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Non-deterministic Finite Automata with silent steps

We add A-transitions or ‘silent steps’ to NFAs
The correct union of M; and M, is:

b b
OEBO

start —|

In an NFA, we allow
g, \)=4¢
for g # q'. That means

J:Qx(ZU{A})—=PQ
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NFA, formally
M is an NFA) over ¥ if M = (Q, qo, 9, F) with

Q is a finite set of states
qo € Q is the initial state
FCQ is a finite set of final states

d:Q x (XU{\}) = PQ is the transition function

The A-closure of a state g, A-closure(q), is the set of states
reachable with only A-steps.
Reading function 6* : @ X ¥* — PQ (multi-step transition)

0*(g,\) = A-closure(q)
5 (q,aw) = {q' | Ip € A-closure(q) Ir € 6(p,a) (¢’ € 6*(r,w))}
= U U 5 (r,w)
pe-closure(q)  red(p,a)

The language accepted by M, notation £L(M), is:
L(M)={w € I* | 3qr € F(qr € 0"(q0. w))}
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Insulated machines

A finite automaton M is called insulated if

® qo has no in-going arrows

e there is only one final state which has no out-going arrows
Proposition. For any machine M one can find an insulated NFA )
M’ such that M’ accepts the same language
Proof. By adding states and silent steps, for example

gives

b b
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Toolkit for building an NFA) from a regular expression

For each regular expression, we construct an insulated NFA).

e M such that L(M) = L(e)
@ start —
)\ start —»
a(foraeX) StartﬂC }
.Ml
e=e¢e + e \ @ . %
with
L(My) = Ler) | = ®
L(My) =

L(e) > “ @/
O
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Toolkit (continued)

e M such that £(M) = L(e)
ith " ",
R Epol IS OGS O NN ©)
e = (a) :

Zl(tl\hﬂl)zﬁ(el) RO A PO
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Regular languages accepted by a NFA,

Proposition. For every regular expression e there is an NFA, M,
such that
L(M.) = L(e).

Proof. Apply the toolkit. M, can be found by induction on the
structure of e: First do this for the simplest regular expressions.
For a composed regular expression compose the automata. ()

Corollary. For every regular language L there is an NFA, M that
accepts L (so L(M) = L).
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Avoiding non-determinism

We can transform any NFA (and NFA}) into a DFA that accepts
the same language.
Idea:

e Keep track of all the states you can go to!

e A combination of states is final if one of the members is final.

Example:L = {w | \W|a is even or |w|, > 1}

r © N @<( ()

b8y

start —
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Eliminating non-determinism and \-steps

Let M be a NFA given by (Q, qo, 9, F)
Define the DFA M™ as (Q™, qq,d", F) where

QY = PQ
g = {9}

0% (H,a) = |Jd(a,a) for H C Q,
qeH

Ft = (HCQ|HNF#0)
Then M™ is a DFA accepting the same language as M
If M is an NFA,, we take

0T (H,a) = U U A-closure(d(p, a))

q€H pel-closure(q)
Ft = {HC Q| Aclosure(H)N F # 0}
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Equivalence of DFA, NFA and NFA,

Conclusion. Every NFA, (or NFA) M can be turned into a DFA M’
accepting the same language.

Corollary. For every regular language L there is a DFA M that
accepts L (so L(M) = L).

Proof. Given a regular expression e, first construct an NFA, M
such that £(M) = L(e). Then change it into a DFA preserving the
language that is accepted. (]

Rephrasing of Kleene's Theorem:
The class of regular languages is (equivalently) characterized as

@ The languages described by a regular expression
® The languages accepted by a DFA

© The languages accepted by an NFA

O The languages accepted by a NFA)
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