
Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Non-deterministic Finite Automata

H. Geuvers and T. van Laarhoven

Institute for Computing and Information Sciences – Intelligent Systems
Radboud University Nijmegen

Version: fall 2014

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 1 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Outline

Non-deterministic Finite Automata

Eliminating non-determinism

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 2 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Previous Weeks

Regular Expressions and Regular Languages

rexpΣ ::= ∅ | λ | s | rexpΣ rexpΣ | rexpΣ+rexpΣ | rexp∗Σ

with s ∈ Σ
L ⊆ Σ∗ is regular if L = L(e) for some regular expression e.

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection
If L1, L2 are accepted by some DFA, then so are

• L1 = Σ∗ − L1

• L1 ∪ L2

• L1 ∩ L2.

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 3 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Kleene’s Theorem (announced last lecture)

Theorem
The languages accepted by DFAs are exactly the regular languages
We prove this by

1 If L = L(M) for some DFA M, then there is a regular
expression e such that L = L(e) (Previous lecture)

2 If L = L(e), for some regular expression e, then there is a
non-deterministic finite automaton with λ-steps (NFAλ) M
such that L = L(M). (This lecture)

3 For every NFAλ, M, there is a DFA M ′ such that
L(M) = L(M ′) (This lecture)

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 4 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Non-deterministic finite automaton (NFA)

q0start q1 q2
b

a, b

b

δ(q, a) is not one state, but a set of states.

δ a b

q0 {q0} {q0, q1}
q1 ∅ {q2}
q2 ∅ ∅

in shorthand

δ a b

q0 q0 q0, q1

q1 q2

q2

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 6 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Non-deterministic Finite Automata: NFA (formally)

M is a NFA over Σ if M = (Q, q0, δ,F) with
Q is a finite set of states
q0 ∈ Q is the initial state
F ⊆ Q is a finite set of final states
δ : Q × Σ→ PQ is the transition function

[PQ denotes the collection of subsets of Q]

Reading function δ∗ : Q × Σ∗ → PQ (multi-step transition)

δ∗(q, λ) = {q}
δ∗(q, aw) = {q′ | q′ ∈ δ∗(p,w) for some p ∈ δ(q, a)}

=
⋃

p∈δ(q,a)

δ∗(p,w)

[
⋃
Xi denotes the union of all the Xi]

The language accepted by M, notation L(M), is:

L(M) = {w ∈ Σ∗ | ∃qf ∈ F (qf ∈ δ∗(q0,w))}
H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 7 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

For the union of languages we can put NFAs in parallel

Example. Suppose we want to have an NFA for L1 ∪ L2 =
{w | |w |a is even or |w |b ≥ 1}
First idea: put the two machines “non-deterministically” in parallel

evstart od

a

b

a

b

0start 1
b

a a, b

ev0start od

1

a

a, b

b

b

a

a

But this is wrong: The NFA accepts aaa.

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 8 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Non-deterministic Finite Automata with silent steps: NFAλ

We add λ-transitions or ‘silent steps’ to NFAs
The correct union of M1 and M2 is:

Ustart

ev od

0 1

λ

λ

a

b

a

b

b

a a, b

In an NFAλ we allow
δ(q, λ) = q′

for q 6= q′. That means

δ : Q × (Σ ∪ {λ})→ PQ

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 9 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

NFAλ formally

M is an NFAλ over Σ if M = (Q, q0, δ,F) with
Q is a finite set of states
q0 ∈ Q is the initial state
F ⊆ Q is a finite set of final states
δ : Q × (Σ ∪ {λ})→ PQ is the transition function

The λ-closure of a state q, λ-closure(q), is the set of states
reachable with only λ-steps.
Reading function δ∗ : Q × Σ∗ → PQ (multi-step transition)

δ∗(q, λ) = λ-closure(q)

δ∗(q, aw) = {q′ | ∃p ∈ λ-closure(q)∃r ∈ δ(p, a) (q′ ∈ δ∗(r ,w))}
=

⋃
p∈λ-closure(q)

⋃
r∈δ(p,a)

δ∗(r ,w)

The language accepted by M, notation L(M), is:

L(M) = {w ∈ Σ∗ | ∃qf ∈ F (qf ∈ δ∗(q0,w))}
H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 10 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Insulated machines

A finite automaton M is called insulated if
• q0 has no in-going arrows
• there is only one final state which has no out-going arrows

Proposition. For any machine M one can find an insulated NFAλ
M ′ such that M ′ accepts the same language
Proof. By adding states and silent steps, for example

0start 1
b

a b

gives

q0start 0 1 qf
λ b

a

λ

b

λ

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 11 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Toolkit for building an NFAλ from a regular expression

For each regular expression, we construct an insulated NFAλ.
e M such that L(M) = L(e)

∅
q0start

λ
q0start

a (for a ∈ Σ)
Sstart F

a

e = e1 + e2

with
L(M1) = L(e1)
L(M2) = L(e2)

Sstart

S1 F1

S2 F2

F

M1

M2

λ

λ

λ

λ

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 12 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Toolkit (continued)

e M such that L(M) = L(e)

e = e1e2

with
L(M1) = L(e1)
L(M2) = L(e2)

S1start F1 S2 F2

M1 M2

λ

e = (e1)∗

with
L(M1) = L(e1)

Sstart S1 F1 F

M1

λ

λ

λ

λ

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 13 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Regular languages accepted by a NFAλ

Proposition. For every regular expression e there is an NFAλ Me

such that
L(Me) = L(e).

Proof. Apply the toolkit. Me can be found by induction on the
structure of e: First do this for the simplest regular expressions.
For a composed regular expression compose the automata. -

Corollary. For every regular language L there is an NFAλ M that
accepts L (so L(M) = L).

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 14 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Avoiding non-determinism

We can transform any NFA (and NFAλ) into a DFA that accepts
the same language.
Idea:

• Keep track of all the states you can go to!

• A combination of states is final if one of the members is final.

Example:L = {w | |w |a is even or |w |b ≥ 1}

Ustart

ev od

0 1

λ

λ

a

b

a

b

b

a a, b
Ustart

od,0 ev,0

ev,1

od,1

a

b

a

b

a
b

a

b

b

a

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 16 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Eliminating non-determinism and λ-steps

Let M be a NFA given by (Q, q0, δ,F)
Define the DFA M+ as (Q+, q+

0 , δ
+,F+) where

Q+ = PQ
q0 = {q0}

δ+(H, a) =
⋃
q∈H

δ(q, a), for H ⊆ Q,

F+ = {H ⊆ Q | H ∩ F 6= ∅}

Then M+ is a DFA accepting the same language as M

If M is an NFAλ, we take

δ+(H, a) =
⋃
q∈H

⋃
p∈λ-closure(q)

λ-closure(δ(p, a))

F+ = {H ⊆ Q | λ-closure(H) ∩ F 6= ∅}

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 17 / 18

Non-deterministic Finite Automata
Eliminating non-determinism Radboud University Nijmegen

Equivalence of DFA, NFA and NFAλ

Conclusion. Every NFAλ (or NFA) M can be turned into a DFA M ′

accepting the same language.
Corollary. For every regular language L there is a DFA M that
accepts L (so L(M) = L).
Proof. Given a regular expression e, first construct an NFAλ M
such that L(M) = L(e). Then change it into a DFA preserving the
language that is accepted. -

Rephrasing of Kleene’s Theorem:
The class of regular languages is (equivalently) characterized as

1 The languages described by a regular expression

2 The languages accepted by a DFA

3 The languages accepted by an NFA

4 The languages accepted by a NFAλ

H. Geuvers & T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata 18 / 18

	Non-deterministic Finite Automata
	Eliminating non-determinism

