Pushdown automata

Twan van Laarhoven

Institute for Computing and Information Sciences – Intelligent Systems Radboud University Nijmegen

Version: fall 2014

Pushdown automata CFLs and PDAs Closure properties and concluding remarks

Outline

Pushdown automata

CFLs and PDAs

Closure properties and concluding remarks

•

Automata for Context-Free Languages

Language class	Syntax/Grammar	Automata
Context-free	context-free grammar	?
Regular	regular expressions, regular grammar	DFA, NFA, NFA $_\lambda$

- DFA, NFA, NFA $_{\lambda}$: finite memory, for example
 - even or odd number of a's read: two states even, odd
 - the last 2 letters read: four states for aa, ab, ba, bb.
- For example: {aⁿbⁿ | n ≥ 0} not regular. We would need to remember how many a's we have seen. A DFA with k states can only "count to k".

We need some form of unbounded memory.

•

Automata for Context-Free Languages

The limitation of DFAs is that they dont have a memory.

Various (simple) memory models are possible:

- Queue: First in, first out (like a plastic cup dispenser in a coffee machine)
- Stack: Last in, first out (like plates in a student restaurant)

Pushdown automata extend automata with a stack

Note: only top of stack is visible.

T. van Laarhoven

Stack Memory

Pushdown automata extend automata with a stack.

Each item carries an element of stack alphabet Γ .

Stack can be described as a word over Γ , with top = left:

- Empty stack is λ .
- push(X, YZZY) = XYZZY, push a new element on top.
- pop(YZZY) = ZZY, remove the top element.
- top(YZZY) = Y, look at the top element.

Note: the empty stack has no top.

Pushdown Automaton

A pushdown automaton is an NFA_λ equipped with a stack.

Def. A pushdown automaton (PDA) $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ consists of

- a finite set of states Q
- an input alphabet Σ
- an initial state $q_0 \in Q$
- a set of final states $F \subseteq Q$
- a stack alphabet Γ
- a transition function δ: Q × Σ_λ × Γ_λ → P(Q × Γ_λ) where Σ_λ = Σ ∪ {λ} and Γ_λ = Γ ∪ {λ}. That is, for p ∈ Q, a ∈ Σ_λ, A ∈ Γ_λ, δ(p, a, A) is a set of pairs ⟨q, B⟩ where q ∈ Q, B ∈ Γ_λ (nondeterministic).

Pushdown Automaton Computation

A computation of a PDA M on input word w:

- Start configuration (q₀, w, λ) (start in initial state with empty stack)
- Transitions are taken (nondeterministically) depending on

 the next input symbol (as in DFA, NFA) and
 - the stack top symbol. (Details next slide.) Changes configuration $\langle p, u, \alpha \rangle \rightarrow \langle q, v, \beta \rangle$ according to transition function (where $p, q \in Q$; $u, v \in \Sigma^*$, $\alpha, \beta \in \Gamma^*$).
- Computation is successful if it ends in a configuration ⟨q, λ, λ⟩ where q ∈ F. (Acceptance by final state and empty stack)

Pushdown Automaton Transitions

$$\langle q, B \rangle \in \delta(p, \mathbf{a}, A)$$
 i.e. $p \xrightarrow{\mathbf{a}, A/B} q$

- can be taken if: next input symbol is a, stack top is A
- actions: read/consume a, pop A from stack, push B.

$$\langle q, B \rangle \in \delta(p, \lambda, A)$$
 i.e. $p \xrightarrow{\lambda, A/B} q$ (input λ -transition):

- can be taken if: stack top is A (regardless of next input)
- actions: pop A from stack, push B.

$$\langle q, B \rangle \in \delta(p, \mathbf{a}, B)$$
 i.e. $p \xrightarrow{\lambda, \lambda/B} q$

- can be taken if: next input is a (regardless of stack top)
- actions: read/consume a, push B.

\$

Pushdown Automaton Transitions (cont.)

Transitions of the form $\langle {m q},\lambda
angle\in\delta({m p},-,-)$

- can be taken if: as before.
- actions: as before, except nothing is pushed onto stack.

For example:

$$\langle q,\lambda\rangle \in \delta(p,\mathbf{a},\lambda)$$
 i.e. $p \xrightarrow{\mathbf{a},\lambda/\lambda} q$

- can be taken if: next input symbol is a
- actions: read/consume a.

$$\langle q,\lambda\rangle\in\delta(p,\lambda,\lambda)$$
 i.e. $p\xrightarrow{\lambda,\lambda/\lambda}q$

- Can be taken: always
- Actions: nothing.

Language Accepted by a PDA

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ be a PDA, and let $p, q \in Q$, $u, v \in \Sigma^*$, $\alpha, \beta \in \Gamma^*$.

Notation: $(p, u, \alpha) \Rightarrow (q, v, \beta)$ if there exists a sequence of transitions that change $\langle p, u, \alpha \rangle$ into $\langle q, v, \beta \rangle$.

Def. The language accepted by M is:

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \langle q_0, w, \lambda \rangle \Rightarrow \langle q, \lambda, \lambda \rangle, q \in F \}.$$

11 / 27

Remarks on PDA Transitions

- Note: p a, λ/B does *not* mean that the stack must be empty to take the transition.
- Note: p $\xrightarrow{a, A/\lambda} q$ does *not* mean that the stack is empty after the transition.
- Shorthand notation (multiple push):

$$(\mathbf{p}) \xrightarrow{\mathbf{a}, A/BC} (\mathbf{q}) = (\mathbf{p}) \xrightarrow{\mathbf{a}, A/C} (\mathbf{p}) \xrightarrow{\boldsymbol{\lambda}, \lambda/B} (\mathbf{q})$$

Pushdown automata CFLs and PDAs Closure properties and concluding remarks

PDA example 1

$$L = { a^n b^n \mid n \ge 0 } \ni \lambda, ab, aabb, \dots$$

Idea: count the a's.

start
$$\rightarrow q_0 \xrightarrow{\lambda, \lambda/\lambda} q_1$$

h A/λ

13 / 27

 $> \lambda / \Delta$

Take $\Sigma = \{ \underline{a}, \underline{b} \}, \Gamma = \{ \underline{A} \}$,

Example computations:

- $\langle q_0, \lambda, \lambda \rangle \rightarrow \langle q_1, \lambda, \lambda \rangle \checkmark$ (SUCCESS)
- $\langle q_0, \underline{a}abb, \lambda \rangle \rightarrow \langle q_0, \underline{a}bb, A \rangle \rightarrow \langle q_0, \underline{b}b, AA \rangle \rightarrow \langle q_1, \underline{b}b, AA \rangle \rightarrow \langle q_1, \underline{b}, A \rangle \rightarrow \langle q_1, \underline{b}, \lambda \rangle \rightarrow \langle q_1, \lambda, \lambda \rangle \checkmark$ (SUCCESS)
- $\langle q_0, \underline{a}ba, \lambda \rangle \rightarrow \langle q_0, \underline{b}a, A \rangle \rightarrow \langle q_1, \underline{b}a, A \rangle \rightarrow \langle q_1, \underline{a}, \lambda \rangle$ (STUCK) $\langle q_0, \underline{a}ba, \lambda \rangle \rightarrow \langle q_1, aba, \lambda \rangle$ (STUCK)

PDA example 2

$$L = \{w c w^R \in \{a, b, c\}^* \mid w \in \{a, b\}^*\} \ni c, abcba, bbcbb.$$

Can we find a PDA that accepts *L*? Idea: Memorise *w*-part using the stack, and use it to check for w^R . Take: $\Gamma = \{A, B\}$, and Q, δ, F as follows:

Variations on PDAs

- Acceptance criteria:
 - Acceptance by final state and empty stack (our def.)
 - Acceptance by final state (only)
 - Acceptance by empty stack (only)

All are equivalent (accept same class of languages).

• A PDA is deterministic if for any combination of state, input symbol and stack top, there is at most one transition possible.

Ø

16 / 27

Deterministic Context-Free Languages

Def. A language is called deterministic context-free if there exists a deterministic PDA M with $L = \mathcal{L}(M)$.

Examples of deterministic CFLs:

- $\{\mathbf{a}^n \mathbf{b}^n \mid n \ge 0\}$
- $\{wcw^R \mid w \in \{a, b\}^*\}$

Examples of CFLs that are not deterministic:

- $\{ww^R \mid w \in \{a, b\}^*\}$
- $\{w \in \{a, b\}^* \mid w = w^r\}$ (palindromes)

Note: *L* is deterministic CFL implies *L* is unambiguous, but there are unambiguous CFLs that are not deterministic (e.g., palindromes).

Context-Free Languages and PDAs

Last lecture: From regular grammar G to NFA_{λ} M_G . **Now:** From context-free grammar G to PDA M_G .

Ideas:

- Put non-terminals on the stack, $\Gamma = V$
- Ensure that rules are of the form X → aw or X → w, with w ∈ V*. This can always be done.
- Use one interesting, accepting, state q, plus more for pushing.
- $\langle q, w, v \rangle \Rightarrow \langle q, \lambda, \lambda \rangle$ in the PDA iff $v \Rightarrow w$ in the CFG

Context-Free Languages and PDAs (cont.)

For each production rule $X \rightarrow \mathbf{a}w$, add

$$q$$
 a, X/w

For each production rule $X \rightarrow w$, add

Initially push S onto the stack,

Pushdown automata CFLs and PDAs Closure properties and concluding remarks

From CFG to PDA, example

$$S
ightarrow { t aSb} \mid \lambda$$
 .

This is not of the right form (because of the b), change it to

$$egin{array}{ccc} S &
ightarrow & {f a}SB \mid \lambda \ B &
ightarrow & {f b} \end{array}$$

This gives the PDA

From a PDA to a CFG

Ideas:

- Each push of X must have a matching pop of X.
- Split pushes and pops:

• Just three types of transitions remain:

• $(p,q) \Rightarrow w$ iff $\langle p, w, \lambda \rangle \Rightarrow \langle q, \lambda, \lambda \rangle.$

From a PDA to a CFG (cont.)

Production rules:

$$\begin{array}{lll} (p,r) & \to & \mathbf{a}(q,r) & \text{ for every} \\ & & p \xrightarrow{\mathbf{a}, \lambda/\lambda} q \\ (p,t) & \to & \mathbf{a}(q,r)\mathbf{b}(s,t) & \text{ for every} \\ & & p \xrightarrow{\mathbf{a}, \lambda/X} q \text{ and} \\ & & r \xrightarrow{\mathbf{b}, X/\lambda} s \\ (q,q) & \to & \lambda & \text{ for every } q \in Q \\ S & \to & (q_0,q) & \text{ for every } q \in F \end{array}$$

Pushdown automata CFLs and PDAs Closure properties and concluding remarks

Beyond context-free languages

Examples of languages that are not context-free:

•
$$\{a^n b^n c^n \mid n \ge 0\}$$

•
$$\{a^n b^m a^n b^m \mid n, m \ge 0\}$$

• $\{w \in \{a, b\}^* \mid |w| \text{ is prime number}\}$

(Prove using pumping lemma for CFLs, Sudkamp 7.4)

24 / 27

ŧ

Closure properties of context-free languages

If L_1 and L_2 are context-free languages, then so are:

- $L_1 \cup L_2$ (union),
- L₁L₂ (concatenation),
- *L*₁^{*} (star),
- L_1^R (reversal)

but, in general, NOT

- $\overline{L_1}$ (complement),
- $L_1 \cap L_2$ (intersection).

Let S_1 and S_2 be start symbols in grammars G_1 and G_2 . Make new grammar with start symbol S:

Deterministic CFLs are closed under complement, but NOT under union.

•

26 / 27

Questions about context-free languages

Decidable (general algorithm exists)

- Given any CFG G and w ∈ Σ*, is w ∈ L(G)? (build PDA).
- Given PDA M, is $\mathcal{L}(M) = \emptyset$?
- Given PDA M, is $\mathcal{L}(M)$ finite?
- Given any CFG G, is $\mathcal{L}(G)$ regular?

Undecidable (no general algorithm exists)

- Given any CFG G, is $\mathcal{L}(G) = \Sigma^*$?
- Given any CFGs G_1 and G_2 , is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?
- Given any CFG G, is $\mathcal{L}(G)$ deterministic?
- Given any CFG G, is it ambiguous?

Summary

- Context-free grammars generate context-free languages.
- All regular languages are context-free, but not vice versa.
- Context-free languages are accepted by PDAs.
- PDAs cannot be determinised (no subset construction)