Regular Languages

H. Geuvers and A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: fall 2015
Outline

Organisation

Regular Languages
About this course I

Lectures

- Teachers: Herman Geuvers and Aleks Kissinger
- Weekly, 2 hours, on Mondays 15:45 – 17:30
- Presence not compulsory . . .
 - but active, polite attitude expected, when present
- The lectures follow:
 - these slides, available via the web
 - *Languages and Automata* by Alexandra Silva (LnA)
- Course URL:
 - Check there first, before you dare to ask/mail a question!
Exercises

- There are weekly exercises; the ones marked with **points** are to be handed in.
- Handing in is compulsory: To receive a grade for the course, you have to hand in every week.
- Exercises must be done individually
- Weekly exercise classes, on Thursdays, 10:45 – 12:30 (and one class on Thursday 13:45 – 15:30)
 - Presence not compulsory
 - Answers (for old exercises) & Questions (for new ones)
- **Schedule:**
 - New exercises on the web: Monday afternoon
 - Next exercise meeting (Thursday) you can ask questions
 - Hand-in: **Monday before 15:30** in the delivery boxes.
Exercise Classes

- 6 Assistants:
 - Nico Broeder HG00.633 10:45 – 12:30
 - Jasper Derikx HG00.058 10:45 – 12:30
 - Aleks Kissinger HG02.032 10:45 – 12:30
 - Démian Janssen HG01.058 10:45 – 12:30
 - Bas Westerbaan HG01.139 10:45 – 12:30
 - Ties Robroek HG02.028 13:45 – 15:30

- You will be assigned to an exercise class by me. Please fill in the google form at http://goo.gl/forms/QRmnhqWTW6; see the webpage.
- Each assistant has a blue delivery box on the ground floor of the Mercator 1 building.
About this course IV

Examination

- There is a half-way test and a final test.
- The final grade is composed of
 - the grade of your half-way test, \(h \),
 - the grade of your final test, \(f \),
 - the average grade of your exercises, \(a \),
- Your final grade is \(\min(10, \frac{f+h}{2} + \frac{a}{10}) \)
 - The re-exam is a full 3hrs exam about the whole course. You keep the (average) grade of the exercises.
- If you fail again, you must start all over next year (including re-doing new exercises, and additional requirements)
If you fail more than twice . . .

- Additional requirements are imposed
- you will have to talk to the study advisor
 - if you have not done so yet, make an appointment
 - compulsory: presence at lectures and exercise classes (and of course handing in of exercises)
- go see Herman Geuvers (M1 01.07A) to sign the form
Topics

<table>
<thead>
<tr>
<th>Languages:</th>
<th>Automata:</th>
<th>Grammars:</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>finite</td>
<td>regular</td>
</tr>
<tr>
<td>context-free</td>
<td>push-down</td>
<td>context-free</td>
</tr>
<tr>
<td>[natural languages]</td>
<td>[bounded Turing machine]</td>
<td>[context-sensitive]</td>
</tr>
<tr>
<td>[enumerable]</td>
<td>[Turing machine]</td>
<td>[unrestricted]</td>
</tr>
</tbody>
</table>

Automata: accept words of a language
given a word, compute if it is in the language

Grammars: generate words of a language
produce all correct words in the language
Languages

An alphabet A is a (finite) set of symbols

Examples

$A_1 = \{a\}$
$A_2 = \{0, 1\}$
$A_3 = \{A, C, G, T\}$
$A_4 = \{a, b, c, d, \ldots, x, y, z\}$
$A_5 = \{s \mid s \text{ is an ascii symbol}\}$
$A_6 = \{\text{あ、い、う、え、お、か、き、く、け、こ、…}\}$

Japanese alphabet: 2×52 signs

$A_7 = \{\text{山 川 日 雨 水 火 田, …}\}$

Chinese alphabet: $40,000$ signs

$A_8 = \{0, 1, +, \times, x_0, x_1, x_2, \ldots\}$

Mathematical alphabet, countably infinite

$A_9 = \{0, 1, +, \times, x_0, x_1, x_2, \ldots\} \cup \{c_r \mid r \in \mathbb{R}\}$

Mathematical alphabet, uncountably infinite
A word (string) over A is a finite sequence of elements from A. The set A^* consists of all words over A.

Inductive definition of the set of words, A^*

1. $\lambda \in A^*$ (λ denotes the empty word).
2. If $a \in A$ and $v \in A^*$, then $av \in A^*$.

Note that $a\lambda$ is just a.

Note the difference between $a \in A$ and $a \in A^*$.

Think of a word as a chain of letters on a necklace:

$$\lambda = \quad \quad$$

$$Eva = -E-v-a$$

The difference between a and $-a-$ is clear.
Operation on words

Inductive definition of the set of words, A^*

1. $\lambda \in A^*$ (λ denotes the empty word).
2. If $a \in A$ and $v \in A^*$, then $av \in A^*$.

Operations on words

$v \in A^*$, $u \in A^*$ \implies v \cdot u \in A^*$, concatenation
$v \in A^*$, $n \in \mathbb{N}$ \implies v^n \in A^*$, repetition
$v \in A^*$ \implies v^R \in A^*$, reverse

Inductive definitions of concatenation, repetition and reverse

\[
\begin{align*}
\lambda \cdot u &= u \\
(a v) \cdot u &= a(v \cdot u) \\

v^0 &= \lambda \\
v^{k+1} &= v \cdot v^k \\

\lambda^R &= \lambda \\
(a v)^R &= (v^R) \cdot a
\end{align*}
\]

We write concatenation $v \cdot u$ as $v u$
A language over A is a subset of A^*, notation $L \subseteq A^*$

Examples (with $A = \{a, b\}$)

$L_1 = \{w \in \{a, b\}^* \mid abba \text{ is a substring of } w\}$
$L_2 = \{w \in \{a, b\}^* \mid w = w^R\}$
Examples of languages

Let $A = \{a, b, c\}$.

1. $L_1 = \{a^n \mid n \in \mathbb{N} \text{ is even}\}$
2. $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$
3. $L_3 = \{a^n b^n c^n \mid n \geq 2\}$
4. $L_4 = \{a^n \mid n \in \mathbb{N} \text{ is prime}\}$

Over other alphabets:

1. $L_5 = \{n \mid n \text{ denotes an integer number}\}$
2. $L_6 = \{e \mid e \text{ is a well-formed arithmetical expression}\}$
3. $L_7 = \{P \mid P \text{ is a syntactically correct Java program}\}$
4. $L_8 = \{S \mid S \text{ is a grammatically correct English sentence}\}$
Operations on languages

Given languages $L_1, L_2, L \subseteq A^*$ we can define new languages:

$$
L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}
$$

$$
L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}
$$

$$
\overline{L} = \{ w \in A^* \mid w \notin L \}
$$

$$
L_1 L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2 \}
$$

$$
L^0 = \{ \lambda \}
$$

$$
L^{n+1} = LL^n
$$

$$
L^* = \bigcup_{n \in \mathbb{N}} L^n = L^0 \cup L^1 \cup L^2 \cup \ldots
$$

$$
\neq \{ w^n \mid w \in L, \ n \in \mathbb{N} \}
$$
Regular expressions and languages over A

Let $A = \{a, b\}$. Then $a(ba)^* bb$ is a regular expression denoting

$$L = \{a(ba)^n bb \mid n \in \mathbb{N}\}$$

$$= \{abb, ababb, abababb, ababababb, \ldots, a(ba)^n bb, \ldots\}$$

For general A the regular expressions over A are generated by

$$\text{rexp}_A ::= 0 \mid 1 \mid s \mid (\text{rexp}_A \text{rexp}_A) \mid (\text{rexp}_A + \text{rexp}_A) \mid (\text{rexp}_A)^*$$

with $s \in A$

This means $0 \in \text{rexp}_A$, $1 \in \text{rexp}_A$, and $s \in \text{rexp}_A$ for $s \in A$ and

$$e_1, e_2 \in \text{rexp}_A \implies (e_1 + e_2) \in \text{rexp}_A$$

$$e_1, e_2 \in \text{rexp}_A \implies (e_1 e_2) \in \text{rexp}_A$$

$$e \in \text{rexp}_A \implies (e)^* \in \text{rexp}_A$$

For example $(abb)^*(a + 1)$ is a regular expression
We economize on brackets

\[
\text{rexp}_A ::= 0 \mid 1 \mid s \mid (\text{rexp}_A \text{rexp}_A) \mid (\text{rexp}_A + \text{rexp}_A) \mid (\text{rexp}_A)^*
\]

- We omit the outermost brackets,
- \(\ast\) binds strongest,
- \(+\) binds weakest.

So \(a + ba^*\) denotes \(((a + (b(a)^*)))\).
This denotes the language of either just \(a\) or \(b\) followed by a finite (possibly 0) number of \(a\)'s.
For a regular expression e over A we define the language $\mathcal{L}(e)$:

\[
\begin{align*}
\mathcal{L}(0) &= \emptyset \\
\mathcal{L}(1) &= \{\lambda\} \\
\mathcal{L}(s) &= \{s\} \\
\mathcal{L}(e_1 e_2) &= \mathcal{L}(e_1) \mathcal{L}(e_2) \\
\mathcal{L}(e_1 + e_2) &= \mathcal{L}(e_1) \cup \mathcal{L}(e_2) \\
\mathcal{L}(e^*) &= (\mathcal{L}(e))^*
\end{align*}
\]

A language L is called regular if $L = \mathcal{L}(e)$ for some $e \in \text{rexp}$
Let $A = \{a, b\}$.

- Also $L = \{w \mid w \text{ begins with } bb\}$ is regular
 \[L = \mathcal{L}(bb(a + b)^*) \]

- $L = \{w \mid bb \text{ occurs in } w\}$ is regular
 \[L = \mathcal{L}((a + b)^*bb(a + b)^*) \]

- $L = \{w \mid |w|_b \leq 2\}$ is regular
 \[L = \mathcal{L}(a^*(ba^*b + b + 1)a^*) \]

NB. $|w|$ denotes the length of w, $|w|_b$ denotes the number of b's in w