Regular Languages

H. Geuvers and A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen
Version: fall 2015

Outline

Organisation

Regular Languages

About this course I

Lectures

- Teachers: Herman Geuvers and Aleks Kissinger
- Weekly, 2 hours, on Mondays 15:45-17:30
- Presence not compulsory ...
- but active, polite attitude expected, when present
- The lectures follow:
- these slides, available via the web
- Languages and Automata by Alexandra Silva (LnA)
- Course URL:
http://www.cs.ru.nl/~herman/onderwijs/2015TnA/
Check there first, before you dare to ask/mail a question!

About this course II

Exercises

- There are weekly exercises; the ones marked with points are to be handed in.
- Handing in is compulsory: To receive a grade for the course, you have to hand in every week.
- Exercises must be done individually
- Weekly exercise classes, on Thursdays, 10:45-12:30 (and one class on Thursday 13:45-15:30)
- Presence not compulsory
- Answers (for old exercises) \& Questions (for new ones)
- Schedule:
- New exercises on the web: Monday afternoon
- Next exercise meeting (Thursday) you can ask questions
- Hand-in: Monday before 15:30 in the delivery boxes.

About this course III

Exercise Classes

- 6 Assistants:

Nico Broeder HG00.633 10:45-12:30
Jasper Derikx HG00.058 10:45-12:30
Aleks Kissinger HG02.032 10:45-12:30
Démian Janssen
Bas Westerbaan
Ties Robroek
HG01.058 10:45-12:30
HG01.139 10:45-12:30
HG02.028 13:45-15:30

- You will be assigned to an exercise class by me Please fill in the google form at http://goo.gl/forms/QRmnhqWTW6; see the webpage.
- Each assistant has a blue delivery box on the ground floor of the Mercator 1 building

About this course IV

Examination

- There is a half-way test and a final test.
- The final grade is composed of
- the grade of your half-way test, \mathbf{h},
- the grade of your final test, f,
- the average grade of your exercises, a,
- Your final grade is $\min \left(10, \frac{\mathrm{f}+\mathrm{h}}{2}+\frac{\mathrm{a}}{10}\right)$
- The re-exam is a full 3hrs exam about the whole course. You keep the (average) grade of the exercises.
- If you fail again, you must start all over next year (including re-doing new exercises, and additional requirements)

About this course V

If you fail more than twice ...

- Additional requirements are imposed
- you will have to talk to the study advisor
- if you have not done so yet, make an appointment
- compulsory: presence at lectures and exercise classes (and of course handing in of exercises)
- go see Herman Geuvers (M1 01.07A) to sign the form

Overview

Topics

Languages:	Automata:	Grammars:
regular	finite	regular
context-free	push-down	context-free
[natural languages]	[bounded Turing machine]	[context-sensitive]
[enumerable]	[Turing machine]	[unrestricted]

Automata: accept words of a language given a word, compute if it is in the language

Grammars: generate words of a language produce all correct words in the language

Languages

An alphabet A is a（finite）set of symbols

Examples

$$
\begin{aligned}
& A_{1}=\{a\} \\
& A_{2}=\{0,1\} \\
& A_{3}=\{A, C, G, T\} \\
& A_{4}=\{a, b, c, d, \ldots, x, y, z\} \\
& A_{5}=\{s \mid s \text { is an ascii symbol }\} \\
& A_{6}=\{\text { あ, い, う, え, お, か, きく, け, こ, ... }\} \\
& \text { Japanese alphabet: } 2 \times 52 \text { signs } \\
& A_{7}=\{\text { 山 川 昌雨水炎思, ...\} } \\
& \text { Chinese alphabet: } 40.000 \text { signs } \\
& A_{8}=\left\{0,1,+, \times, x_{0}, x_{1}, x_{2}, \ldots\right\} \\
& \text { mathematical alphabet, countably infinite } \\
& A_{9}=\left\{0,1,+, \times, x_{0}, x_{1}, x_{2}, \ldots\right\} \cup\left\{c_{r} \mid r \in \mathbb{R}\right\} \\
& \text { mathematical alphabet, uncountably infinite }
\end{aligned}
$$

Words

A word (string) over A is a finite sequence of elements from A The set A^{*} consists of all words over A

Inductive definition of the set of words, A^{*}
(1) $\lambda \in A^{*}$ (λ denotes the empty word).
(2) If $a \in A$ and $v \in A^{*}$, then $a v \in A^{*}$.

Note that $a \lambda$ is just a
Note the difference between $a \in A$ and $a \in A^{*}$
Think of a word as a chain of letters on a necklace:

$$
\begin{aligned}
\lambda & =- \\
E v a & =-E-v-a
\end{aligned}
$$

The difference between a and $-a$ - is clear

Operation on words

Inductive definition of the set of words, A^{*}

(1) $\lambda \in A^{*}$ (λ denotes the empty word).
(2) If $a \in A$ and $v \in A^{*}$, then $a v \in A^{*}$.

Operations on words

$v \in A^{*}, u \in A^{*} \Rightarrow v \cdot u \in A^{*}$, concatenation
$v \in A^{*}, n \in \mathbb{N} \Rightarrow v^{n} \in A^{*}$, repetition
$v \in A^{*}$
$\Rightarrow \quad v^{R} \in A^{*}$, reverse
Inductive definitions of concatenation, repetition and reverse

$$
\begin{aligned}
\lambda \cdot u & =u \\
(a v) \cdot u & =a(v \cdot u)
\end{aligned} \quad \begin{aligned}
v^{0} & =\lambda \\
v^{k+1} & =v \cdot v^{k}
\end{aligned} \quad \begin{aligned}
\lambda^{R} & =\lambda \\
(a v)^{R} & =\left(v^{R}\right) \cdot a
\end{aligned}
$$

We write concatenation $v \cdot u$ as $v u$

Operation on words; Language

A language over A is a subset of A^{*}, notation $L \subseteq A^{*}$

$$
\begin{aligned}
& \text { Examples (with } A=\{a, b\}) \\
& L_{1}=\left\{w \in\{a, b\}^{*} \mid a b b a \text { is a substring of } w\right\} \\
& L_{2}=\left\{w \in\{a, b\}^{*} \mid w=w^{R}\right\}
\end{aligned}
$$

Examples of languages

Let $A=\{a, b, c\}$.
(1) $L_{1}=\left\{a^{n} \mid n \in \mathbb{N}\right.$ is even $\}$
(2) $L_{2}=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$
(3) $L_{3}=\left\{a^{n} b^{n} c^{n} \mid n \geq 2\right\}$
(4) $L_{4}=\left\{a^{n} \mid n \in \mathbb{N}\right.$ is prime $\}$

Over other alfabets:
(1) $L_{5}=\{n \mid n$ denotes an integer number $\}$
(2) $L_{6}=\{e \mid e$ is a well-formed arithmetical expression $\}$
(3) $L_{7}=\{P \mid P$ is a syntactically correct Java program $\}$
(4) $L_{8}=\{S \mid S$ is a grammatically correct English sentence $\}$

Operations on languages

Given languages $L_{1}, L_{2}, L \subseteq A^{*}$ we can define new languages:

$$
\begin{aligned}
L_{1} & \cup L_{2} \quad L_{1} \cap L_{2} \quad \bar{L} \quad L_{1} L_{2} \quad L^{*} \\
L_{1} \cup L_{2} & =\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\} \\
L_{1} \cap L_{2} & =\left\{w \mid w \in L_{1} \text { and } w \in L_{2}\right\} \\
\bar{L} & =\left\{w \in A^{*} \mid w \notin L\right\} \\
L_{1} L_{2} & =\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \text { and } w_{2} \in L_{2}\right\} \\
L^{0} & =\{\lambda\} \\
L^{n+1} & =L L^{n} \\
L^{*} & =\bigcup_{n \in \mathbb{N}} L^{n}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots \\
& \neq\left\{w^{n} \mid w \in L, n \in \mathbb{N}\right\}
\end{aligned}
$$

Regular expressions and languages over A

Let $A=\{a, b\}$. Then $a(b a)^{*} b b$ is a regular expression denoting

$$
\begin{aligned}
L & =\left\{a(b a)^{n} b b \mid n \in \mathbb{N}\right\} \\
& =\left\{a b b, a b a b b, a b a b a b b, a b a b a b a b b, \ldots, a(b a)^{n} b b, \ldots\right\}
\end{aligned}
$$

For general A the regular expressions over A are generated by

$$
\operatorname{rexp}_{\mathrm{A}}::=0|1| \mathrm{s}\left|\left(\operatorname{rexp}_{\mathrm{A}} \operatorname{rexp}_{\mathrm{A}}\right)\right|\left(\operatorname{rexp}_{\mathrm{A}}+\operatorname{rexp}_{\mathrm{A}}\right) \mid\left(\operatorname{rexp}_{\mathrm{A}}\right)^{*}
$$

with $s \in A$
This means $0 \in \operatorname{rexp}_{A}, 1 \in \operatorname{rexp}_{A}$, and $s \in \operatorname{rexp}_{A}$ for $s \in A$ and

$$
\begin{aligned}
e_{1}, e_{2} \in \operatorname{rexp}_{A} & \Rightarrow\left(e_{1}+e_{2}\right) \in \operatorname{rexp}_{A} \\
e_{1}, e_{2} \in \operatorname{rexp}_{A} & \Rightarrow\left(e_{1} e_{2}\right) \in \operatorname{rexp}_{A} \\
e \in \operatorname{rexp}_{A} & \Rightarrow(e)^{*} \in \operatorname{rexp}_{A}
\end{aligned}
$$

For example $(a b b)^{*}(a+1)$ is a regular expression

We economize on brackets

$$
\operatorname{rexp}_{\mathrm{A}}::=0|1| \mathrm{s}\left|\left(\operatorname{rexp}_{\mathrm{A}} \operatorname{rexp}_{\mathrm{A}}\right)\right|\left(\operatorname{rexp}_{\mathrm{A}}+\operatorname{rexp}_{\mathrm{A}}\right) \mid\left(\operatorname{rexp}_{\mathrm{A}}\right)^{*}
$$

- We omit the outermost brackets,
- * binds strongest,
- + binds weakest.

So $a+b a^{*}$ denotes $\left(\left(a+\left(b(a)^{*}\right)\right)\right)$.
This denotes the language of either just a or b followed by a finite (possibly 0) number of a's.

Regular languages

For a regular expression e over A we define the language $\mathcal{L}(e)$:

$$
\begin{aligned}
\mathcal{L}(0) & =\emptyset \\
\mathcal{L}(1) & =\{\lambda\} \\
\mathcal{L}(s) & =\{s\} \\
\mathcal{L}\left(e_{1} e_{2}\right) & =\mathcal{L}\left(e_{1}\right) \mathcal{L}\left(e_{2}\right) \\
\mathcal{L}\left(e_{1}+e_{2}\right) & =\mathcal{L}\left(e_{1}\right) \cup \mathcal{L}\left(e_{2}\right) \\
\mathcal{L}\left(e^{*}\right) & =(\mathcal{L}(e))^{*}
\end{aligned}
$$

A language L is called regular if $L=\mathcal{L}(e)$ for some $e \in \operatorname{rexp}$

Examples
Let $A=\{a, b\}$.

- Also $L=\{w \mid w$ begins with $b b\}$ is regular

$$
L=\mathcal{L}\left(b b(a+b)^{*}\right)
$$

- $L=\{w \mid b b$ occurs in $w\}$ is regular

$$
L=\mathcal{L}\left((a+b)^{*} b b(a+b)^{*}\right)
$$

- $L=\left\{\left.w| | w\right|_{b} \leq 2\right\}$ is regular NB. $|w|$ denotes the length of w, $|w|_{b}$ denotes the number of b 's in w

$$
L=\mathcal{L}\left(a^{*}\left(b a^{*} b+b+1\right) a^{*}\right)
$$

