Deterministic Finite Automata

H. Geuvers and A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: fall 2015
Outline

Finite Automata

Manipulating finite automata

Finite automata and regular languages
Regular languages

Definition

$L \subseteq A^*$ is regular if $L = \mathcal{L}(e)$ for some regular expression e.

Decidability Problems

Q1 Can we decide (algorithmically) if $w \in \mathcal{L}(e)$?
Q2 If yes, what is the complexity of this decision procedure?
Q3 Can we decide if $\mathcal{L}(e_1) = \mathcal{L}(e_2)$?

Some answers

A1 Yes, we can give a deterministic finite automaton for e to decide $w \in \mathcal{L}(e)$. (This lecture)
A2 time is linear in $|w|$; memory is constant (independent of w).
A3 Yes: $\mathcal{L}(e_1) = \mathcal{L}(e_2)$ can be axiomatised, see Exercise 2.3.6 of the course notes. It is decidable whether $e_1 = e_2$ according to these axioms.
Intuition. Let $A = \{a, b\}$. Consider the DFA M:

Letters a, b are the moves in the graph

$A w \in A^*$ is a sequence of moves

Start state is indicated by ‘start→’,
Accepting states by double circle
(there can be several accepting states)

The word $abba$ is accepted, but $baab$ is not accepted (rejected)

$M = (Q, q_0, \delta, F)$ with $Q = \{q_0, q_1, q_2\}$, $F = \{q_2\}$ and δ given by

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>q_0</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2</td>
<td>q_2</td>
</tr>
</tbody>
</table>
Deterministic Finite Automata formally

\(M \) is a DFA over \(A \) if \(M = (Q, q_0, \delta, F) \) with
- \(A \) is a finite alphabet
- \(Q \) is a finite set of states
- \(q_0 \in Q \) is the initial state
- \(F \subseteq Q \) is a finite set of final states
- \(\delta : Q \times A \to Q \) is the transition function

The multi-step transition \(\delta^* : Q \times A^* \to Q \) is defined inductively by

\[
\begin{align*}
\delta^*(q, \lambda) & = q \\
\delta^*(q, aw) & = \delta^*(\delta(q, a), w)
\end{align*}
\]

The language accepted at state \(q \), notation \(L(q) \), is:

\[
L(q) = \{ w \in A^* \mid \delta^*(q, w) \in F \}
\]

The language accepted by \(M \), notation \(L(M) \), is \(L(q_0) \).
Reading words $w \in A^*$

Computation for $\delta^*(q_0, w)$ in the example DFA. Take $w = abba$:

$\begin{align*}
[q_0, abba] & \vdash [\delta(q_0, a), bba] = [q_0, bba] \\
& \vdash [\delta(q_0, b), ba] = [q_1, ba] \\
& \vdash [\delta(q_1, b), a] = [q_2, a] \\
& \vdash [\delta(q_2, a), \lambda] = [q_2, \lambda]
\end{align*}$

$\begin{align*}
[q_0, aba] & \vdash [\delta(q_0, a), ba] = [q_0, ba] \\
& \vdash [\delta(q_0, b), a] = [q_1, a] \\
& \vdash [\delta(q_1, a), \lambda] = [q_0, \lambda]
\end{align*}$

So $abba$ is accepted and aba is not accepted.

The language accepted by M (of the first slide) is regular. It is the language

$$\mathcal{L}((a + b)^* bb(a + b)^*).$$
Consider the automaton M over $A = \{a, b\}$ with

- $Q = \{0, 1, 2, 3, 4\}$,
- $q_0 = 0$,
- $F = \{4\}$

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

1. Which of the following words is accepted? $abba$, $baba$, bba
2. Is it the case that $\{w \mid |w|_b \text{ is even} \} \subseteq \mathcal{L}(M)$?
3. Is it the case that $\{w \mid w \text{ contains } aabbaa \} \subseteq \mathcal{L}(M)$?
Manipulating Finite Automata: products for intersection

\[M \]

\[L(M) \]

\[L_1 = \{ w \mid |w|_a \text{ is even} \} \]

\[L_2 = \{ w \mid |w|_b \geq 1 \} \]

\[L_1 \cap L_2 = \{ w \mid |w|_a \text{ is even and } |w|_b \geq 1 \} \]
Product of two DFAs

Given two DFAs over the same A

\[M_1 = (Q_1, q_{01}, \delta_1, F_1) \]
\[M_2 = (Q_2, q_{02}, \delta_2, F_2) \]

Define

\[M_1 \times M_2 = (Q_1 \times Q_2, q_0, \delta, F) \]

with

\[q_0 := (q_{01}, q_{02}) \]
\[\delta(((q_1, q_2), a)) := (\delta_1(q_1, a), \delta_2(q_2, a)) \]

Then with

\[F := F_1 \times F_2 := \{(q_1, q_2) \mid q_1 \in F_1 \text{ and } q_2 \in F_2\} \]

we have

\[\mathcal{L}(M_1 \times M_2) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2) \]
Closure Properties

Proposition Closure under complement
If L is accepted by some DFA, then so is

$$\overline{L} = A^* - L.$$

Proof. Suppose that L is accepted by $M = (Q, q_0, \delta, F)$. Then \overline{L} is accepted by $M = (Q, q_0, \delta, F')$.

Proposition Closure under intersection and union
If L_1 and L_2 are accepted by some DFA, then so are $L_1 \cap L_2$ and $L_1 \cup L_2$.

Proof. For the intersection, this follows from the product construction on the previous slide.
For the union, this can be seen by the product construction, taking a different F (which one?) or by noticing that $L_1 \cup L_2 = \overline{\overline{L_1} \cap \overline{L_2}}$.
Kleene’s Theorem

Theorem The languages accepted by DFAs are exactly the **regular languages**

We will prove this in this and the next lecture by

1. If \(L = \mathcal{L}(M) \), for some DFA \(M \), then there is a regular expression \(e \) such that \(L = \mathcal{L}(e) \) (this lecture).
2. If \(L = \mathcal{L}(e) \), for some regular expression \(e \), then there is a non-deterministic finite automaton (NFA) \(M \) such that \(L = \mathcal{L}(M) \). (next lecture).
3. For every NFA \(M \), there is a DFA \(M' \) such that \(\mathcal{L}(M) = \mathcal{L}(M') \) (next lecture).
From DFAs to regular expressions

Given the DFA $M = (Q, q_0, \delta, F)$, we construct a regular expression e such that

$$\mathcal{L}(e) = \mathcal{L}(M).$$

Procedure:

- We remove states, replacing symbols from A by regular expressions over A,
- until we end up with a “simple automaton” from which we can read off e.
Simple automata

<table>
<thead>
<tr>
<th>M</th>
<th>e such that $\mathcal{L}(e) = \mathcal{L}(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w^*</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$(u + xv^y)^$</td>
</tr>
<tr>
<td></td>
<td>$u^*x(v + yu^x)^$</td>
</tr>
</tbody>
</table>
Eliminating states

- Remove a state p,
- while adding arrows $q \xrightarrow{w} q'$ between other pairs of states.

Before:

\[q \xrightarrow{x} p \xrightarrow{v} \rightarrow y \rightarrow q' \]

After:

\[q \xrightarrow{xv^*y} q' \]
Special cases

Join arrows using $+$

\[
\begin{array}{c}
q \xrightarrow{x} y \xrightarrow{} q' \\
q' \xrightarrow{} x + y \\
q \xrightarrow{x + y} q' \\
q \xrightarrow{} q'
\end{array}
\]

First create a new single final state

\[
\begin{array}{c}
q \xrightarrow{} q' \\
p \xrightarrow{} q, q' \\
q \xrightarrow{} q'
\end{array}
\]

Beware of loops!

\[
\begin{array}{c}
q \xrightarrow{x} p \xrightarrow{} q \\
q \xrightarrow{} p \xrightarrow{} q' \\
q \xrightarrow{} xv^*y \\
q \xrightarrow{} p
\end{array}
\]
The algorithm outlined in the previous slides produces for every deterministic finite automaton M, a regular expression e_M.

Theorem For M a DFA we have

$$L(e_M) = L(M).$$