

Deterministic Finite Automata

H. Geuvers and A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: fall 2015

H. Geuvers Version: fall 2015 Talen en Automaten 1 / 19

Outline

Finite Automata

Manipulating finite automata

Finite automata and regular languages

Regular languages Definition

 $L \subseteq A^*$ is regular if $L = \mathcal{L}(e)$ for some regular expression e.

Decidability Problems

- Q1 Can we decide (algorithmically) if $w \in \mathcal{L}(e)$?
- Q2 If yes, what is the complexity of this decision procedure?
- Q3 Can we decide if $\mathcal{L}(e_1) = \mathcal{L}(e_2)$?

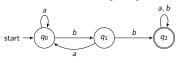
Some answers

- A1 Yes, we can give a deterministic finite automaton for e to decide $w \in \mathcal{L}(e)$. (This lecture)
- A2 time is linear in |w|; memory is constant (independent of w).
- A3 Yes: $\mathcal{L}(e_1) = \mathcal{L}(e_2)$ can be axiomatised, see Exercise 2.3.6 of the course notes. It is decidable whether $e_1 = e_2$ according to these axioms.

H. Geuvers Version: fall 2015 Talen en Automaten 4 / 19

Deterministic Finite State Automaton (DFA)

Intuition. Let $A = \{a, b\}$. Consider the DFA M:



Letters a, b are the moves in the graph A $w \in A^*$ is a sequence of moves Start state is indicated by 'start \rightarrow ', Accepting states by double circle (there can be several accepting states)

The word *abba* is accepted, but *baab* is not accepted (rejected) $M = (Q, q_0, \delta, F)$ with $Q = \{q_0, q_1, q_2\}, F = \{q_2\}$ and δ given by

δ	а	b
q_0	q_0	q_1
$ q_1 $	q_0	q_2
q ₂	q_2	q_2

H. Geuvers Version: fall 2015 Talen en Automaten 5 / 19

Deterministic Finite Automata formally

M is a DFA over A if $M = (Q, q_0, \delta, F)$ with

A is a finite alphabet

Q is a finite set of states

 $q_0 \in Q$ is the initial state

 $F \subseteq Q$ is a finite set of final states

 $\delta: Q \times A \rightarrow Q$ is the transition function

The multi-step transition $\delta^*: Q \times A^* \to Q$ is defined inductively by

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q,aw) = \delta^*(\delta(q,a),w)$$

The language accepted at state q, notation $\mathcal{L}(q)$, is:

$$\mathcal{L}(q) = \{ w \in A^* \mid \delta^*(q, w) \in F \}$$

The language accepted by M, notation $\mathcal{L}(M)$, is $\mathcal{L}(q_0)$.

H. Geuvers Version: fall 2015 Talen en Automaten 6 / 19

Reading words $w \in A^*$

Computation for $\delta^*(q_0, w)$ in the example DFA. Take w = abba:

$$[q_0, abba] \vdash [\delta(q_0, a), bba] = [q_0, bba]$$

$$\vdash [\delta(q_0, b), ba] = [q_1, ba]$$

$$\vdash [\delta(q_1, b), a] = [q_2, a]$$

$$\vdash [\delta(q_2, a), \lambda] = [q_2, \lambda]$$

$$egin{array}{lll} [q_0,aba] & dash & [\delta(q_0,a),ba] & = [q_0,ba] \ & dash & [\delta(q_0,b),a] & = [q_1,a] \ & dash & [\delta(q_1,a),\lambda] & = [q_0,\lambda] \end{array}$$

So abba is acepted and aba is not accepted.

The language accepted by M (of the first slide) is regular. It is the language

$$\mathcal{L}((a+b)^*bb(a+b)^*).$$

H. Geuvers Version: fall 2015 Talen en Automaten 7 / 19

From transition table to state diagram

Consider the automaton M over $A = \{a, b\}$ with

- $Q = \{0, 1, 2, 3, 4\},\$
- $q_0 = 0$,
- $F = \{4\}$

δ	а	Ь
0	1	0
1	1	2
2	1	3
3	4	0
4	4	4

- ① Which of the following words is accepted? abba, baba, bba
- 2 Is it the case that $\{w \mid |w|_b \text{ is even }\} \subseteq \mathcal{L}(M)$?
- 3 Is it the case that $\{w \mid w \text{ contains } aabbaa\} \subseteq \mathcal{L}(M)$?

Manipulating Finite Automata: products for intersection

М	$\mathcal{L}(M)$
$start \to 0$	$L_1 = \{w \mid w _a \text{ is even}\}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$L_2 = \{w \mid w _b \ge 1\}$
start $\rightarrow 0, p$ a 1, p b b c 1, q 1, q	$\mathcal{L}_1\cap\mathcal{L}_2=\ \{w\mid w _a ext{ is even and } w _b\geq 1\}$

H. Geuvers Version: fall 2015 Talen en Automaten 10 / 19

n 🏶

Product of two DFAs

Given two DFAs over the same A

$$M_1 = (Q_1, q_{01}, \delta_1, F_1)$$

 $M_2 = (Q_2, q_{02}, \delta_2, F_2)$

Define

$$M_1 \times M_2 = (Q_1 \times Q_2, q_0, \delta, F)$$

with

$$q_0 := (q_{01}, q_{02})$$

 $\delta((q_1, q_2), a) := (\delta_1(q_1, a), \delta_2(q_2, a))$

Then with

$$F := F_1 \times F_2 := \{ (q_1, q_2) \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$$

we have

$$\mathcal{L}(M_1 \times M_2) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$$

H. Geuvers Version: fall 2015 Talen en Automaten 11 / 19

Closure Properties

Proposition Closure under complement

If L is accepted by some DFA, then so is

$$\overline{L} = A^* - L$$
.

Proof. Suppose that L is accepted by $M = (Q, q_0, \delta, F)$. Then \overline{L} is accepted by $M = (Q, q_0, \delta, \overline{F})$.

If L_1 , and L_2 are accepted by some DFA, then so are $L_1 \cap L_2$ and $L_1 \cup L_2$.

Proof. For the intersection, this follows from the product construction on the previous slide.

For the union, this can be seen by the product construction, taking a different F (which one?) or by noticing that $L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2}$.

Kleene's Theorem

Theorem The languages accepted by DFAs are exactly the regular languages

We will prove this in this and the next lecture by

- If $L = \mathcal{L}(M)$, for some DFA M, then there is a regular expression e such that $L = \mathcal{L}(e)$ (this lecture).
- ② If $L = \mathcal{L}(e)$, for some regular expression e, then there is a non-deterministic finite automaton (NFA) M such that $L = \mathcal{L}(M)$. (next lecture).
- **3** For every NFA M, there is a DFA M' such that $\mathcal{L}(M) = \mathcal{L}(M')$ (next lecture)

H. Geuvers Version: fall 2015 Talen en Automaten 13 / 19

From DFAs to regular expressions

Given the DFA $M = (Q, q_0, \delta, F)$, we construct a regular expression e such that

$$\mathcal{L}(e) = \mathcal{L}(M)$$
.

Procedure:

- We remove states, replacing symbols from A by regular expressions over A,
- until we end up with a "simple automaton" from which we can read off e.

H. Geuvers Version: fall 2015 Talen en Automaten 15 / 19

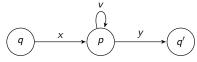
Simple automata

<i>M</i>	$\mid e$ such that $\mathcal{L}(e) = \mathcal{L}(M)$
$start \to \overbrace{q_0}^W$	w*
$start \longrightarrow \stackrel{w}{q_0}$	0
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	$(u + xv^*y)^*$
$start \to \overbrace{q_0}^U \qquad \qquad \bigvee_y \qquad \qquad \bigvee_q_1$	$u^*x(v+yu^*x)^*$

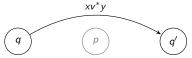
Eliminating states

- Remove a state p,
- while adding arrows $q \stackrel{w}{\rightarrow} q'$ between other pairs of states.

Before:



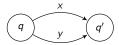
After:



H. Geuvers Version: fall 2015 Talen en Automaten 17 / 19

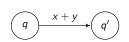
Special cases

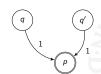
Join arrows using +

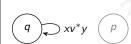


First create a new single final state

Beware of loops!







From DFA to RegExp

The algorithm outlined in the previous slides produces for every deterministic finite automaton M, a regular expression e_M .

Theorem For M a DFA we have

$$\mathcal{L}(e_M) = \mathcal{L}(M)$$
.