Non-deterministic Finite Automata

H. Geuvers and A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: fall 2015
Outline

Non-deterministic Finite Automata

From Regular Expressions to NFA-λ

Eliminating non-determinism
Regular Expressions and Regular Languages

$$\text{rexp}_\Sigma ::= 0 \mid 1 \mid s \mid \text{rexp}_\Sigma \text{rexp}_\Sigma \mid \text{rexp}_\Sigma + \text{rexp}_\Sigma \mid \text{rexp}_\Sigma^*$$

with $s \in \Sigma$

$L \subseteq \Sigma^*$ is regular if $L = \mathcal{L}(e)$ for some regular expression e.

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection

If L_1, L_2 are accepted by some DFA, then so are

- $\overline{L_1} = \Sigma^* - L_1$
- $L_1 \cup L_2$
- $L_1 \cap L_2$.
Kleene’s Theorem (announced last lecture)

Theorem
The languages accepted by DFAs are exactly the regular languages
We prove this by

1. If $L = \mathcal{L}(M)$ for some DFA M, then there is a regular expression e such that $L = \mathcal{L}(e)$ (Previous lecture)

2. If $L = \mathcal{L}(e)$, for some regular expression e, then there is a non-deterministic finite automaton with λ-steps (NFA-λ) M such that $L = \mathcal{L}(M)$. (This lecture)

3. For every NFA-λ, M, there is a DFA M' such that $\mathcal{L}(M) = \mathcal{L}(M')$ (This lecture)
Non-deterministic finite automaton (NFA)

\[\delta(q, a) \text{ is not one state, but a set of states.} \]

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>({ q_0 })</td>
<td>({ q_0, q_1 })</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(\emptyset)</td>
<td>({ q_2 })</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

in shorthand

\[\delta \begin{array}{c|c|c}
q_0 & q_0, q_1 \\
q_1 & q_2 \\
q_2 & \\
\end{array} \]

H. Geuvers & A. Kissinger
Version: fall 2015
Non-deterministic Finite Automata: NFA (definition)

\(M\) is a NFA over \(\Sigma\) if \(M = (Q, q_0, \delta, F)\) with

- \(Q\) is a finite set of \textbf{states}
- \(q_0 \in Q\) is the \textbf{initial} state
- \(F \subseteq Q\) is a finite set of \textbf{final} states
- \(\delta : Q \times \Sigma \rightarrow P Q\) is the \textbf{transition} function

\([P Q\) denotes the \textbf{collection of subsets of} \(Q\)]

Reading function \(\delta^* : Q \times \Sigma^* \rightarrow P Q\) (multi-step transition)

\[
\delta^*(q, \lambda) = \{q\}
\]
\[
\delta^*(q, aw) = \{q' \mid q' \in \delta^*(p, w)\ \text{for some} \ p \in \delta(q, a)\}
\]
\[
= \bigcup_{p \in \delta(q, a)} \delta^*(p, w)
\]

The \textbf{language accepted by} \(M\), notation \(\mathcal{L}(M)\), is:

\[
\mathcal{L}(M) = \{w \in \Sigma^* \mid \exists q_f \in F (q_f \in \delta^*(q_0, w))\}
\]
For the union of languages we can put NFAs in parallel

Example Suppose we want to have an NFA for $L_1 \cup L_2 = \{ w \mid |w|_a \text{ is even or } |w|_b \geq 1 \}$
First idea: put the two machines “non-deterministically in parallel”

But this is **wrong**: The NFA accepts aaa.
We add \(\lambda \)-transitions or ‘silent steps’ to NFAs.

The correct union of \(M_1 \) and \(M_2 \) is:

In an NFA-\(\lambda \) we allow

\[
d(q, \lambda) = q'
\]

for \(q \neq q' \). That means

\[
d : Q \times (\Sigma \cup \{\lambda\}) \rightarrow \mathcal{P}Q
\]
NFA-\(\lambda\) (definition)

\(M\) is an NFA-\(\lambda\) over \(\Sigma\) if \(M = (Q, q_0, \delta, F)\) with
- \(Q\) is a finite set of states
- \(q_0 \in Q\) is the initial state
- \(F \subseteq Q\) is a finite set of final states
- \(\delta : Q \times (\Sigma \cup \{\lambda\}) \rightarrow \mathcal{P}Q\) is the transition function

The \(\lambda\)-closure of a state \(q\), \(\lambda\)-closure\((q)\), is the set of states reachable with only \(\lambda\)-steps.

Reading function \(\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}Q\) (multi-step transition)

\[
\begin{align*}
\delta^*(q, \lambda) &= \lambda\text{-closure}(q) \\
\delta^*(q, aw) &= \{q' \mid \exists p \in \lambda\text{-closure}(q) \exists r \in \delta(p, a) (q' \in \delta^*(r, w))\} \\
&= \bigcup_{p \in \lambda\text{-closure}(q)} \bigcup_{r \in \delta(p, a)} \delta^*(r, w)
\end{align*}
\]

The language accepted by \(M\), notation \(\mathcal{L}(M)\), is:

\[
\mathcal{L}(M) = \{w \in \Sigma^* \mid \exists q_f \in F (q_f \in \delta^*(q_0, w))\}
\]
For each regular expression, we construct an NFA-λ.

<table>
<thead>
<tr>
<th>e</th>
<th>M such that $\mathcal{L}(M) = \mathcal{L}(e)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\begin{array}{c} \text{start} \longrightarrow q_0 \end{array}$</td>
</tr>
<tr>
<td>1</td>
<td>$\begin{array}{c} \text{start} \longrightarrow q_0 \end{array}$</td>
</tr>
<tr>
<td>a (for $a \in \Sigma$)</td>
<td>$\begin{array}{c} \text{start} \longrightarrow q_0 \quad \text{a} \quad \longrightarrow f \end{array}$</td>
</tr>
</tbody>
</table>

$e = e_1 + e_2$

with

$\mathcal{L}(M_1) = \mathcal{L}(e_1)$

$\mathcal{L}(M_2) = \mathcal{L}(e_2)$
<table>
<thead>
<tr>
<th>e</th>
<th>M such that $\mathcal{L}(M) = \mathcal{L}(e)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e = e_1 e_2$ with $\mathcal{L}(M_1) = \mathcal{L}(e_1)$, $\mathcal{L}(M_2) = \mathcal{L}(e_2)$</td>
<td></td>
</tr>
<tr>
<td>$e = (e_1)^*$ with $\mathcal{L}(M_1) = \mathcal{L}(e_1)$</td>
<td></td>
</tr>
</tbody>
</table>
Proposition. For every regular expression e there is an NFA-λ M_e such that

$$\mathcal{L}(M_e) = \mathcal{L}(e).$$

Proof. Apply the toolkit. M_e can be found by induction on the structure of e: First do this for the simplest regular expressions. For a composed regular expression compose the automata.

Corollary. For every regular language L there is an NFA-λ M that accepts L (so $\mathcal{L}(M) = L$).
Avoiding non-determinism

We can transform any NFA (and NFA-λ) into a DFA that accepts the same language.

Idea:

- Keep track of the set of all states you can go to!
- States of the DFA are sets-of-states from the original NFA-λ.
- A set of states is final if one of the members is final.

Example $L = \{w \mid |w|_a \text{ is even or } |w|_b \geq 1\}$
Eliminating non-determinism and λ-steps

Let M be a NFA given by (Q, q_0, δ, F)

Define the DFA \overline{M} as $(\overline{Q}, \overline{q_0}, \overline{\delta}, F)$ where

\[
\begin{align*}
\overline{Q} & = \mathcal{P} Q \\
\overline{q_0} & = \{ q_0 \} \\
\overline{\delta}(H, a) & = \bigcup_{q \in H} \delta(q, a), \quad \text{for } H \subseteq Q, \\
\overline{F} & = \{ H \subseteq Q \mid H \cap F \neq \emptyset \}
\end{align*}
\]

If M is an NFA-λ, we define

\[
\begin{align*}
\overline{\delta}(H, a) & = \bigcup_{q \in H} \bigcup_{p \in \lambda\text{-closure}(q)} \lambda\text{-closure}(\delta(p, a)) \\
\overline{F} & = \{ H \subseteq Q \mid \lambda\text{-closure}(H) \cap F \neq \emptyset \}
\end{align*}
\]
Correctness

Given \(M \), an NFA-\(\lambda \), we have defined the DFA \(\overline{M} \) by

\[
\overline{q}_0 = \{q_0\} \\
\overline{\delta}(H, a) = \bigcup_{q \in H} \bigcup_{p \in \lambda\text{-closure}(q)} \lambda\text{-closure}(\delta(p, a)) \\
\overline{F} = \{H \subseteq Q \mid \lambda\text{-closure}(H) \cap F \neq \emptyset\}
\]

Theorem \(M \) and \(\overline{M} \) accept the same languages.

Proof: This follows from

Lemma

\[\delta^*(q, w) \cap F \neq \emptyset \iff \overline{\delta}^*(\{q\}, w) \in \overline{F}\]

(Take \(q := q_0 \))

Proof of the Lemma: induction on \(w \), considering the cases \(w = \lambda \) and \(w = au \).
Conclusion. Every NFA-λ (or NFA) M can be turned into a DFA \overline{M} accepting the same language.

Corollary. For every regular language L there is a DFA M that accepts L (so $\mathcal{L}(M) = L$).

Proof. Given a regular expression e, first construct an NFA-λ M such that $\mathcal{L}(M) = \mathcal{L}(e)$. Then change it into a DFA preserving the language that is accepted.

Rephrasing of Kleene’s Theorem:
The class of regular languages is (equivalently) characterized as

1. The languages described by a regular expression
2. The languages accepted by a DFA
3. The languages accepted by an NFA
4. The languages accepted by a NFA-λ