Non-regular languages

H. Geuvers and A. Kissinger

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: fall 2015
Outline

The Class of Regular Languages

The Pumping Lemma for Regular Languages
Organisational

Next week is different:

- Test-exam on part I (lectures 1-3)
- Make sure you are registered for the course in Blackboard by Friday Dec. 4!
- Time: 15:45 – 17:30, make sure you are there at 15:35.
- Locations: LIN3 and LIN6
Theorem. Let $L \subseteq \Sigma^*$. Then the following are equivalent

1. L is “machine-regular”, i.e. $L = \mathcal{L}(M)$ for some DFA (or NFA, NFA$_\lambda$)
2. L is regular, i.e. $L = \mathcal{L}(e)$ for some regular expression e.

(Proof. See previous lectures.)

So:

- To show that a language is regular we can give a regular expression or a (non-)deterministic automaton (with λ-steps).
- To show closure properties of the class of regular languages, we can use regular expressions, deterministic automata, non-deterministic automata, ...
Closure properties of the Class of regular languages

If L, L_1 and L_2 over Σ are regular then so are

- \overline{L}
 (NB. $\overline{L} = \{w \in \Sigma^* \mid w \not\in L\}$)
- L^*
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- L_1L_2
- L^R
 (NB. $L^R = \{w \in \Sigma^* \mid w^R \in L\}$)
- Prefix(L)
 NB. Prefix$(L) := \{w \in \Sigma^* \mid \exists v \in L (\text{w is a prefix of v})\}$

w is a prefix of v if $v = wu$ for some $u \in \Sigma^*$.
Example of a language that is not regular

Lemma The language

\[L := \{ a^n b^n \in \Sigma^* \mid n \geq 0 \} \]

is not regular

How to prove this? Showing that there is no regular expression that describes \(L \)? Showing that there is no DFA (NFA, NFA_\lambda) that accepts \(L \)?

Proof Suppose the DFA \(M \) accepts \(L \).

Then for all \(n, p \in \mathbb{N} \), if \(n \neq p \), then \(\delta^*(q_0, a^n) \neq \delta^*(q_0, a^p) \).

Why?

Because, if \(\delta^*(q_0, a^n) = \delta^*(q_0, a^p) = q \), then \(\delta^*(q, b^p) \in F \) (final state), but then \(a^n b^p \) is also accepted, while it shouldn’t be.

So \(M \) must have infinitely many states, which is not the case. So there is no DFA \(M \) accepting \(L \).
Non regular languages

Let $\Sigma = \{a, b\}$. We will develop a general technique that can be used to show that languages are not regular. This technique will be applied to show that

$$\{a^n b^n \in \Sigma^* \mid n \geq 0\}$$

is not regular.

and to show that

$$\{w \in \Sigma^* \mid w \text{ is a palindrome}\}$$

is not regular.

A palindrome is a word w such that $w^R = w$.

Remember that w^R is the reverse of w, defined by

$$\lambda^R := \lambda$$

$$(s \, w)^R := w^R \, s$$
A general method to show that a language is not regular

Regular languages can be pumped!

Example: Consider $\Sigma = \{a, b\}$ and the automaton

accepting

$$\{w \in \Sigma^* \mid |w|_b \geq 1 \land |w|_a \text{ is even}\}$$

What happens if a word of length 4, 5, 6, 7, ... is accepted? It has made a cycle which can be repeated arbitrarily often! For example, $baaaa$ is accepted, and also all $baa(aa)^n$ are accepted. We say that aa is a substring that can be pumped.
Pumping Lemma. Let \(L \subseteq \Sigma^* \) be a regular language. Then there exists a number \(k \geq 1 \) (pumping number) such that for every \(w \in L \) with \(|w| \geq k \) one has the following:

1. \(w \) can be split in three parts, \(w = uvz \),
2. with \(|uv| \leq k \) and \(|v| \geq 1 \),
3. such that for all \(n \geq 0 \) one has \(uv^nz \in L \).

Corollary \(L = \{ a^n b^n | n \geq 0 \} \) is not regular

Proof. Suppose \(L \) is regular. (Towards a contradiction.) Let \(k \geq 1 \) be as in the Pumping Lemma. Take \(w = a^k b^k \). Then \(w \in L \) and \(|w| \geq k \). Therefore there are \(u, v, z \) such that we can write \(a^k b^k = uvz \), with \(|uv| \leq k \), \(|v| \geq 1 \) and \(uv^nz \in L \) for all \(n \geq 0 \). Then \(v = a^q \), for some \(q \geq 1 \). But then \(uv^2z = a^{k+q}b^k \notin L \). Contradiction.
Proof of the Pumping Lemma

Let L be regular. Let M be a DFA that accepts L.
Take k to be the number of states of M.
Let $w \in L$ with $|w| \geq k$. Then, reading word w, we must pass some state more than once.
Say that q is the first state that we pass twice (reading w).
Then $w = uvz$, where we read u to go to q, read v to loop at q, read z to go to a final node.
But then $uv^n z$ is accepted for all n.

Example $abcd \in \mathcal{L}(M)$ because of the following path in M:

Since q_1 is visited twice we can pump:
$a(bc)^n d \in \mathcal{L}(M)$ for all $n \geq 0$.
Negating formulas

\[\neg \exists x. P(x) \iff \forall x. \neg P(x) \]
\[\neg \forall x. P(x) \iff \exists x. \neg P(x) \]
\[\neg \exists x. [Q(x) \land P(x)] \iff \forall x. [Q(x) \Rightarrow \neg P(x)] \]
\[\neg \forall x. [Q(x) \Rightarrow P(x)] \iff \exists x. [Q(x) \land \neg P(x)] \]
Using the Pumping Lemma to prove non-regularity

Pumping lemma. L is regular \Rightarrow L can be pumped

We use this as follows:

L cannot be pumped \Rightarrow L is not regular

L can be pumped means:
\[\exists k \geq 1 \forall w \in L. (|w| \geq k \Rightarrow \exists u, v, z [w = uvz \land |uv| \leq k \land |v| \geq 1 \land \forall n \in \mathbb{N} (uv^n z \in L)]) \]

L cannot be pumped means:
\[\forall k \geq 1 \exists w \in L. (|w| \geq k \land \forall u, v, z [w = uvz \land |uv| \leq k \land |v| \geq 1 \Rightarrow \exists n \in \mathbb{N} (uv^n z \notin L)]) \]

To show that L is **not regular** it suffices to show it cannot be pumped.
To show that L is not regular we do the following:

For each $k \geq 1$, find some $w \in L$ of length $\geq k$ so that

- for every way of splitting up w as $w = uvz$,
- with $|uv| \leq k$ and $|v| \geq 1$,
- you can find an $n \geq 0$ for which $uv^n z$ is not in L.

Application: $L = \{ w \in \Sigma^* \mid w$ is a palindrome$\}$ is not regular.

Proof. We follow the procedure above.

Let $k \geq 1$ (arbitrary)

Take $w = a^k b a^k$. Then $w \in L$ (check) and $|w| \geq k$ (check)

Let u, v, z (arbitrary) be so that $a^k b a^k = uvz$, with $|uv| \leq k$ and $|v| \geq 1$. (Say $|v| = p \geq 1$.)

Take $n = 0$. Then $uv^n z = uv^0 z = a^{k-p} b a^k \notin L$ (check).

So, L is not regular.
Let $\Sigma := \{a, b\}$. We know that $L = \{a^n b^n \mid n \geq 0\}$ is not regular. Is $L' := \{w \in \Sigma^* \mid \forall n \in \mathbb{N} \ (w \neq a^n b^n)\}$ regular?

Answer: No it is not. If L' is regular, then $\overline{L'}$ would also be regular, but this is just L and L is not regular! So L' is not regular.

Lemma If L is not regular, then also \overline{L} and L^R are not regular.

Let $\Sigma := \{a, b, c\}$.
Is $L'' := \{a^n c^p b^n \in \Sigma^* \mid n \geq 0, p \geq 0\}$ regular?

Answer: No it is not. $L = L'' \cap \mathcal{L}(a^* b^*)$. If L'' is regular, then L would be regular as well, but it is not!

Lemma If L is not regular and $L = L_1 \cap L_2$, with L_1 regular, then L_2 is not regular.
In proving non-regularity:

You may use

- The Pumping Lemma
- The fact that \(\{ a^n b^n \in \Sigma^* \mid n \geq 0 \} \) is not regular.
- The fact that \(\{ w \in \Sigma^* \mid w \text{ is a palindrome} \} \) is not regular.
- Closure properties of the class of regular languages.