Pushdown automata

H. Geuvers and A. Kissinger

Institute for Computing and Information Sciences – Intelligent Systems Radboud University Nijmegen

Version: 2015-16

Pushdown automata

CFLs and PDAs

Closure properties and concluding remarks

Radboud University Nijmegen

Automata for Context-Free Languages

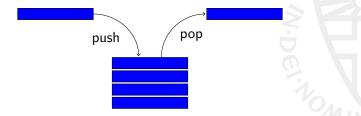
Language class	Syntax/Grammar	Automata
Context-free	context-free grammar	?
Regular	regular expressions, regular grammar	DFA, NFA, NFA $_{\lambda}$

- DFA, NFA, NFA_{λ}: finite states = finite memory, e.g.
 - even or odd number of a's read: two states even, odd
 - the last 2 letters read: four states for *aa*, *ab*, *ba*, *bb*.
- Problem: languages like {aⁿbⁿ | n ≥ 0} need unbounded memory. A DFA with k states can only "count to k".
- Solution: extend NFA_{λ} by adding memory

Automata for Context-Free Languages

Various simple memory models are possible:

- Queue: First in, first out (like waiting in line, see: the English)
- Stack: Last in, first out (like a laundry basket)



Stack Memory

A pushdown automaton is an NFA $_{\lambda}$ with a stack.

A stack can be described as a word over the stack alphabet Γ :

- Empty stack is λ.
- push(X, YZZY) = XYZZY, push a new element on top (note top=left).
- pop(YZZY) = ZZY, remove the top element.
- top(YZZY) = Y, look at the top element.

Note: the empty stack has no top.

Pushdown Automaton

Def. A pushdown automaton (PDA) $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ consists of

- a finite set of states Q
- an input alphabet Σ
- an initial state $q_0 \in Q$
- a set of final states $F \subseteq Q$
- a stack alphabet
- a transition function $\delta : Q \times \Sigma_{\lambda} \times \Gamma_{\lambda} \to \mathcal{P}(Q \times \Gamma_{\lambda})$ where $\Sigma_{\lambda} = \Sigma \cup \{\lambda\}$ and $\Gamma_{\lambda} = \Gamma \cup \{\lambda\}$.

Pushdown Automaton

• An NFA $_{\lambda}$ transition looks like this:

$$q \in \delta(p, \mathbf{a}) \quad \leftrightarrow \quad (p) \xrightarrow{\mathbf{a}} (q)$$

A PDA adds (optional) stack elements to pop and push:

$$\langle q, B \rangle \in \delta(p, \mathbf{a}, A) \quad \leftrightarrow \quad (p) \xrightarrow{\mathbf{a}, A/B} (q) \qquad (p) \xrightarrow{\mathbf{a}, A/B} (q)$$

Pushdown Automaton Computation

A computation of a PDA M on input word w:

- Start configuration (q₀, w, λ) (start in initial state with empty stack)
- Transitions are taken (nondeterministically) depending on
 - the next input symbol (as in DFA, NFA) and
 - the stack top symbol.

Changes configuration $\langle q,w,\alpha\rangle\to\langle q',w',\alpha'\rangle$ according to transition function

 Computation is successful if it ends in a configuration ⟨q, λ, λ⟩ where q ∈ F. (Acceptance by final state and empty stack)

Language Accepted by a PDA

Def. The language accepted by a PDA M is:

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \langle q_0, w, \lambda \rangle \Rightarrow \langle q, \lambda, \lambda \rangle, q \in F \}.$$

....where $\langle q_0, w, \lambda \rangle \Rightarrow \langle q, \lambda, \lambda \rangle$ means:

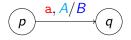
$$\langle q_0, w, \lambda \rangle \rightarrow \langle q, w', \alpha \rangle \rightarrow \cdots \rightarrow \langle q, \lambda, \lambda \rangle$$

The stack starts empty and must finish empty.

Radboud University Nijmegen (

Pushdown Automaton Transitions

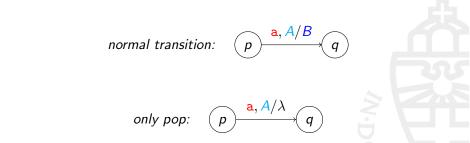
normal transition:



- can be taken if: next input symbol is a, stack top is A
- actions: read a from word, pop A, push B

Radboud University Nijmegen (

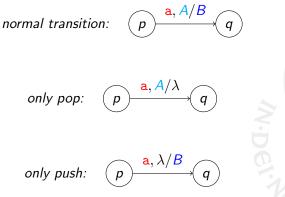
Pushdown Automaton Transitions



- can be taken if: next input symbol is a, stack top is A
- actions: read a from word, pop A, push B

Radboud University Nijmegen (

Pushdown Automaton Transitions



- can be taken if: next input symbol is a, stack top is A
- actions: read a from word, pop A, push B

A. Kissinger

Radboud University Nijmegen 🐺

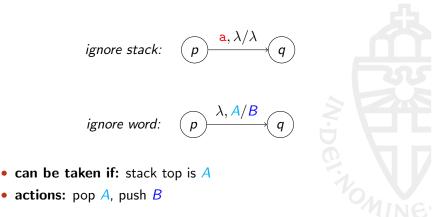
Pushdown Automaton Transitions (cont'd)

ignore stack:
$$p \xrightarrow{a, \lambda/\lambda} q$$

- can be taken if: next input symbol is a
- actions: read a from word

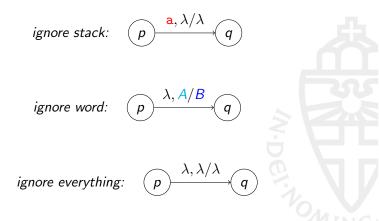
Radboud University Nijmegen 🐺

Pushdown Automaton Transitions (cont'd)



Radboud University Nijmegen (

Pushdown Automaton Transitions (cont'd)

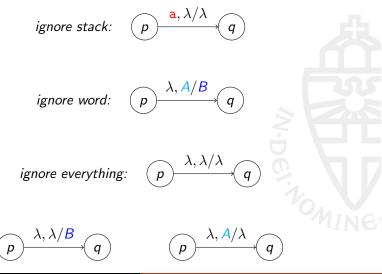


- can be taken: any time
- actions: do nothing

Pushdown automata CFLs and PDAs

Radboud University Nijmegen

Pushdown Automaton Transitions (cont'd)

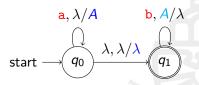


PDA example 1

$$L = {a^n b^n \mid n \ge 0} \ni \lambda, ab, aabb, \dots$$

Idea: count the a's.

Take $\Sigma = \{ \mathbf{a}, \mathbf{b} \}, \Gamma = \{ \mathbf{A} \},\$



Example computations...

•
$$\langle q_0, \lambda, \lambda \rangle \rightarrow \langle q_1, \lambda, \lambda \rangle \checkmark$$
 (SUCCESS)

• $\langle q_0, \underline{a}abb, \lambda \rangle \rightarrow \langle q_0, \underline{a}bb, A \rangle \rightarrow \langle q_0, \underline{b}b, AA \rangle \rightarrow \langle q_1, \underline{b}b, AA \rangle \rightarrow \langle q_1, \underline{b}, A \rangle \rightarrow \langle q_1, \underline{b}, A \rangle \rightarrow \langle q_1, \lambda, \lambda \rangle \checkmark \text{ (SUCCESS)}$

$$\begin{array}{l} \langle q_0, \underline{\mathtt{a}}\mathtt{b}\mathtt{a}, \lambda \rangle \to \langle q_0, \underline{\mathtt{b}}\mathtt{a}, A \rangle \to \langle q_1, \underline{\mathtt{b}}\mathtt{a}, A \rangle \to \langle q_1, \underline{\mathtt{a}}, \lambda \rangle \circledast \ \, (\mathsf{STUCK}) \\ \langle q_0, \underline{\mathtt{a}}\mathtt{b}\mathtt{a}, \lambda \rangle \to \langle q_1, \underline{\mathtt{a}}\mathtt{b}\mathtt{a}, \lambda \rangle \circledast \ \, (\mathsf{STUCK}) \end{array}$$

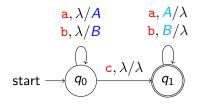
Remarks on PDA Transitions

- Note: $p \xrightarrow{a, \lambda/B} q$ does <u>not</u> mean that the stack must be empty to take the transition.
- Note: p $\xrightarrow{a, A/\lambda} q$ does <u>not</u> mean that the stack is empty after the transition.

PDA example 2

$$L = \{w c w^R \in \{a, b, c\}^* \mid w \in \{a, b\}^*\} \ni c, abcba, bbcbb.$$

Can we find a PDA that accepts *L*? Idea: Memorise *w*-part using the stack, and use it to check for w^R . Take: $\Gamma = \{A, B\}$, and Q, δ, F as follows:

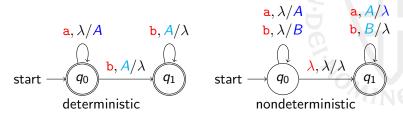


Variations on PDAs

- Acceptance criteria:
 - Acceptance by final state and empty stack (our def.)
 - Acceptance by final state (only)
 - Acceptance by empty stack (only)

All are equivalent (accept same class of languages).

• A PDA is deterministic if for any combination of state, input symbol and stack top, there is at most one transition possible.



Deterministic Context-Free Languages

Def. A language is called deterministic context-free if there exists a deterministic PDA M with $L = \mathcal{L}(M)$.

Examples of deterministic CFLs:

- $\{\mathbf{a}^n \mathbf{b}^n \mid n \ge 0\}$
- $\{wcw^R \mid w \in \{a, b\}^*\}$

Examples of CFLs that are not deterministic:

- $\{ww^R \mid w \in \{a, b\}^*\}$
- $\{w \in \{a, b\}^* \mid w = w^r\}$ (palindromes)

Note: *L* is deterministic CFL implies *L* is unambiguous, but there are unambiguous CFLs that are not deterministic (e.g., palindromes).



Context-Free Languages and PDAs

Last lecture: From regular grammar G to NFA_{λ} M_G . **Now:** From context-free grammar G to PDA M_G .

Pushing words

• First, some notation (multiple push):

$$(p) \xrightarrow{a, A/BC} (q) := (p) \xrightarrow{a, A/C} (p') \xrightarrow{\lambda, \lambda/B} (q)$$

$$(av, p, Aw) \rightarrow (v, p, BCw)$$

• ...which generalises to words:

$$(p) \xrightarrow{a, A/w} (q) := (push w in reverse order)$$

$$\langle \mathbf{a}\mathbf{v}, \mathbf{p}, \mathbf{A}\mathbf{w}' \rangle \rightarrow \langle \mathbf{v}, \mathbf{p}, \mathbf{w}\mathbf{w}' \rangle$$

From CFG to PDA

Ideas:

- Put non-terminals on the stack, $\Gamma = V$
- Ensure that rules are of the form X → aw or X → w, with w ∈ V*. This can always be done.
- Use one interesting, accepting, state q, plus more for pushing.
- $\langle q, w, v \rangle \Rightarrow \langle q, \lambda, \lambda \rangle$ in the PDA iff $v \Rightarrow w$ in the CFG

From CFG to PDA (cont.)

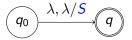
For each production rule $X \rightarrow \mathbf{a}w$, add

$$q$$
 a, X/w

For each production rule $X \rightarrow w$, add

$$q \supset \lambda, X/w$$

Initially push S onto the stack,



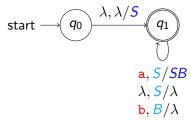
From CFG to PDA, example

$$S \rightarrow aSb \mid \lambda$$

This is not of the right form (because of the b), change it to

S	\rightarrow	$aSB \mid \lambda$
В	\rightarrow	b

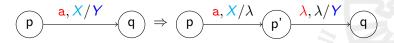
This gives the PDA



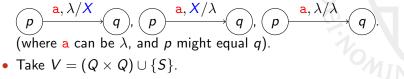
From a PDA to a CFG

Ideas:

- Each push of X must have a matching pop of X.
- Split pushes and pops:



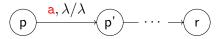
• Just three types of transitions remain:



• $(p,r) \Rightarrow w \text{ iff } \langle p,w,\lambda \rangle \Rightarrow \langle r,\lambda,\lambda \rangle.$

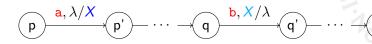
From a PDA to a CFG (cont.)

How can $\langle p, w, \lambda \rangle \Rightarrow \langle r, \lambda, \lambda \rangle$? Either:



new production: $(p, r) \rightarrow \mathbf{a}(p', r)$

or:



new production: $(p,r) \rightarrow \mathbf{a}(p',q)\mathbf{b}(q',r)$

From a PDA to a CFG (cont.)

Production rules, for pairs of states (p, r):

 $(p,r) \rightarrow \mathbf{a}(p',r)$ for every $\underline{\mathbf{a}}, \lambda/\lambda$ **p**) $(p,r) \rightarrow \mathbf{a}(p',q)\mathbf{b}(q',r)$ for every X, $\mathbf{a}, \lambda / \mathbf{X}$ and р $\mathbf{b}, \mathbf{X}/\lambda$ q $egin{array}{rcl} (q,q) &
ightarrow & \lambda \ S &
ightarrow & (q_0,q) \end{array}$ for every $q \in Q$ for every $q \in F$

Beyond context-free languages

One stack \approx "PDAs can only remember one thing at a time"

Examples of languages that are not context-free:

- $\{a^nb^ma^nb^m \mid n, m \ge 0\}$
- $\{a^n b^n c^n \mid n \ge 0\}$
- $\{w \in \{a, b\}^* \mid |w| \text{ is prime number}\}$

(Prove using pumping lemma for CFLs, Sudkamp 7.4)

Closure properties of context-free languages

If L_1 and L_2 are context-free languages,

then so are:

- $L_1 \cup L_2$ (union),
- L₁L₂ (concatenation),
- *L*₁^{*} (star),
- L_1^R (reversal)

- but, in general, NOT
 - $\overline{L_1}$ (complement),
 - $L_1 \cap L_2$ (intersection).

Deterministic CFLs are closed under complement, but NOT under union.

Questions about context-free languages

Decidable (general algorithm exists)

- Given any CFG G and w ∈ Σ*, is w ∈ L(G)? (build PDA).
- Given PDA M, is $\mathcal{L}(M) = \emptyset$?
- Given PDA M, is $\mathcal{L}(M)$ finite?
- Given any CFG G, is $\mathcal{L}(G)$ regular?

Undecidable (no general algorithm exists)

- Given any CFG G, is $\mathcal{L}(G) = \Sigma^*$?
- Given any CFGs G_1 and G_2 , is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?
- Given any CFG G, is $\mathcal{L}(G)$ deterministic?
- Given any CFG G, is it ambiguous?

Summary

- Context-free grammars generate context-free languages.
- All regular languages are context-free, but not vice versa.
- Context-free languages are accepted by PDAs.
- PDAs cannot be determinised (no subset construction)