Outline

Applications of CFGs

Beyond CFGs

Recap
Most programming languages are (deterministic) context-free.

There are tools to automatically build:

- a lexical analyzer (‘lexer’) from regular expressions.

\[
\text{“if } x = 2 \text{ then } P \text{ else } Q”
\]

\[
\leadsto \quad \text{if} \quad x \quad \Leftarrow \quad 2 \quad \text{then} \quad P \quad \text{else} \quad Q
\]

- a parser from a CFG.

\[
\leadsto
\begin{array}{c}
\text{ifthenelse} \\
\Downarrow \\
\text{then} & \text{else} \\
\Downarrow \\
\text{x} & 2
\end{array}
\]
Lindenmayer systems

“The development of an organism...may be considered as the execution of a ‘developmental program’ present in the fertilized egg... A central task of developmental biology is to discover the underlying algorithm from the course of development.”

– Lindenmayer & Rozenberg (1976)

Example:

\[
\begin{align*}
A & \rightarrow AB \\
B & \rightarrow A
\end{align*}
\]

Start with \(A\), expand once per iteration:

\[
\begin{align*}
0 & \quad A \\
1 & \quad AB \\
2 & \quad ABA \\
3 & \quad ABAAAB \\
4 & \quad ABAABABA \\
\ldots & \\
\end{align*}
\]
Lindenmayer systems

Drawing a Lindenmayer system:

- **F**: move forward
- **+**: rotate clockwise
- **−**: rotate counter clockwise
- **[**: push location/angle
- **]**: pop location/angle

Example:
\[
F \rightarrow F + F -- F + F
\]

<table>
<thead>
<tr>
<th>0</th>
<th>____________________</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>____________________</td>
<td>F+F--F+F</td>
</tr>
<tr>
<td>2</td>
<td>____________________</td>
<td>F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F+</td>
</tr>
<tr>
<td>3</td>
<td>____________________</td>
<td>...</td>
</tr>
</tbody>
</table>
Lindenmayer systems

\[S \rightarrow F[+S][−S] \]

\[F \rightarrow FF \]

\[S \rightarrow F − [S + S] + F[+FS] − S \]
Example: Penrose Tiling (P3)

\[
\begin{align*}
S & \rightarrow [N] + +[N] + +[N] + +[N] + +[N] \\
M & \rightarrow OF + +PF - - - -NF[-OF - - - -MF] + + \\
N & \rightarrow +OF - -PF[- - - MF - -NF] + \\
O & \rightarrow -MF + +NF[+ + +OF + +PF] - \\
P & \rightarrow - - OF + + + +MF[+PF + + + +NF] - -NF
\end{align*}
\]
Jill frequently eats a juicy yellow mango. belongs to this language
• Many sentences can be modelled using CFGs, e.g.:

...because I saw Cecilia feed the hippopotamuses.

• But some (particularly crazy 😊) natural languages have non-context-free features like *cross-serial dependencies*:

...omdat ik Cecilia de nijlpaarden zag voeren.

• To capture these, one needs more power than CFGs.
Context-sensitive languages

- Whereas context-free grammars have rules like this:

\[X \rightarrow w \quad X \in V, \ w \in (\Sigma \cup V)^* \]

- ...context-sensitive grammar has rules like this:

\[\alpha X \beta \rightarrow \alpha w \beta \]

with \(X \in V, \ \alpha, \beta, w \in (\Sigma \cup V)^*, w \neq \lambda \).

- Context-sensitive grammars generate context-sensitive languages.
Example: \(\{ a^n b^n c^n \mid n > 0 \} \)

\[
S \rightarrow aBC \mid aSBC \\
CB \rightarrow XB \\
XB \rightarrow XC \\
XC \rightarrow BC \\
aB \rightarrow ab \\
bB \rightarrow bb \\
bC \rightarrow bc \\
cC \rightarrow cc
\]
• An *unrestricted grammar* has rules like:

\[u \rightarrow v \quad u, v \in (\Sigma \cup V)^* \]

• Recognisable by **Turing machines**

• The stack is replaced by an infinite *tape*:

\[
\cdots \quad \square \quad \square \quad \square \quad \square \quad \square \quad \cdots
\]

• Transitions look like this:

\[
\begin{array}{c}
p \quad \xrightarrow{\text{a/b, } \leftarrow} \quad q \\
p \quad \xrightarrow{\text{a/b, } \rightarrow} \quad q
\end{array}
\]

which *read* a, *write* b, and move left or right on the tape

• We no longer need a separate input. Just use the tape:

\[
\cdots \quad \square \quad \square \quad \square \quad \square \quad \square \quad \cdots
\]
Enumerable and computable languages

- Languages recognisable by Turing machine are called enumerable languages.

- A language is computable if both L and $\overline{L} = \Sigma^* - L$ are enumerable.

- In other words, there is a Turing machine with terminates telling us $w \in L$ and a (possibly different) one that terminates telling us $w \notin L$.

- Example: $\{a^n \mid n \text{ is not prime}\}$.

- Church-Turing thesis:

 “computable” \iff “computable by Turing machine”

- (To be continued: Berekenbaarheid, 2nd year)
Chomsky hierarchy

\{ w \mid w \text{ describes a terminating Turing machine} \}, \ldots

\{ a^n \mid n \text{ is prime} \}, \ldots

\{ a^n b^n c^n \mid n > 0 \}, \ldots

\{ a^n b^n \mid n > 0 \}, \ldots

\{ a^n \mid n > 0 \}, \ldots

Regular

Context-free

Context-sensitive

Computable

Enumerable
Trade-offs

Bigger classes of languages:

- More languages can be described.
- But, you can say less about them.

<table>
<thead>
<tr>
<th></th>
<th>(w \in L?)</th>
<th>time</th>
<th>memory</th>
<th>(L_1 = L_2?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>yes</td>
<td>(</td>
<td>w</td>
<td>)</td>
</tr>
<tr>
<td>Deterministic context-free</td>
<td>yes</td>
<td>(</td>
<td>w</td>
<td>)</td>
</tr>
<tr>
<td>Context-free</td>
<td>yes</td>
<td>(</td>
<td>w</td>
<td>^3)</td>
</tr>
<tr>
<td>Context-sensitive</td>
<td>yes</td>
<td>(2</td>
<td>w</td>
<td>)</td>
</tr>
<tr>
<td>Computable</td>
<td>yes</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>no</td>
</tr>
<tr>
<td>Enumerable</td>
<td>if (w \in L)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>no</td>
</tr>
</tbody>
</table>
Exam topic: regular expressions

You should know:

• the definition of regular expression
• how to compute a regular expression from an NFA$_\lambda$ using the elimination-of-states method
• how to build an NFA$_\lambda$ from a regular expression using the ‘toolkit’
Exam topic: finite automata

You should know:

• the definition of DFA, NFA, NFA_{\lambda}
• how to construct a DFA, NFA or NFA_{\lambda} for a given language
• how to construct a DFA from an NFA (the subset construction)
• the constructions on DFAs for complement and intersection (product construction) of languages
Exam Topic: regular languages

You should know:

- the closure properties of regular languages (union, intersection, complement), and how to use them to prove that a language is regular (or is not regular)
- typical non-regular languages ($\{a^n b^n \mid n \in \mathbb{N}\}$ and palindromes)
- Kleene’s theorem
- how to apply the pumping lemma to show that a language is not regular

(bold: almost certainly on the exam)
You should know:

- the definition of context-free grammar (CFG)
- **how to generate strings in a CFG (with leftmost derivations)**
- how to find the language generated by a (simple) CFG
- **how to construct a CFG that generates a given (context-free) language**
- the definition of regular grammar
- how to construct a regular grammar from a NFA
- how to construct an NFA_λ from a regular grammar
Exam topic: pushdown automata and CFLs

You should know:

- the definition of pushdown automata (PDAs)
- how to give a PDA for a given (simple context-free) language
- how find the language accepted by a given PDA
- how to construct a PDA from a CFG
- the closure properties of context-free languages
Remarks on sets

Beware that $\emptyset \neq \{\emptyset\}$, $\emptyset \neq \lambda$, $\emptyset \neq \{\lambda\}$.

and $\emptyset \cdot L = L \cdot \emptyset = \emptyset$

and $\{\lambda\} \cdot L = L \cdot \{\lambda\} = L$.

Symbols:

- $w \in L$: “is in”.
- $L_1 \subseteq L_2$: is a subset of, i.e. everything in L_1 is also in L_2.
- $L_1 \cup L_2$: union, the things in either of the two sets.
- $L_1 \cap L_2$: intersection, only the things in both sets.
- \overline{L}: complement, the words not in L, $\overline{L} = \Sigma^* - L$.

Terminology: Language described using set-notation, examples:

$$\{w \in \{a, b\}^* \mid |w|_a \text{ is even}\}, \quad \{a^n b^m \mid n < m\}, \quad \emptyset$$
Remarks on words and languages

Languages
• contain words.
• can be infinite, but words are finite.

The language L^*
• always contains λ.
• is not the same as $\{w^n \mid w \in L, n \geq 0\}$.
• is $L^0 \cup L^1 \cup L^2 \cup \ldots$.
Remarks on proofs

To prove that $L_1 = L_2$, show that

- $L_1 \subseteq L_2$ (for all w, $w \in L_1$ implies $w \in L_2$), and
- $L_1 \supseteq L_2$ (for all w, $w \in L_2$ implies $w \in L_1$).

Proof by contradiction

- If regular languages have property X, and L_1 does not have property X, then L_1 is not regular.
- If from L_1 being context-free you can deduce that $\{a^n b^n c^n \mid n \geq 0\}$ is context-free, then L_1 is not context-free.

Proof by induction: to prove $P(w)$ for all w,

- Show that $P(\lambda)$
- And that $P(w)$ implies $P(aw)$.
Exam tips

- **You may use results and examples we treated during the lectures and exercises.** For example, you may use that the language \(\{ a^n b^n \mid n \geq 0 \} \) is not regular without re-proving it.

- **Always give an explanation.** For example, when asked to give a CFG for a language, explain why your CFG is correct.

- **Check your results.** For example,
 - check that a DFA that you give indeed is a DFA.
 - given NFA-\(\lambda \) that accepts \(w \), after \(\lambda \)-elimination and subset construction, check that resulting DFA accepts \(w \).

- **Connect your knowledge, think further.** An exam question may not directly tell you what you need to do. For example,
 - Q: Is \(L \) regular? (Which techniques can you apply?)
 - Q: Give a DFA for \(L \) (Is \(L \) of the form \(\overline{L_1} \) or \(L_1 \cap L_2 \)?)
Finally

- Vragenuurtje: Wednesday 20 Jan, 10:30 – 12:30 (time and place to be confirmed)
- Exam: Thursday 21 Jan, 12:30-14:30, LIN5, LIN2
- Veel success!