Talen en Automaten
Test 2, Wed $28^{\text {th }}$ Jan, 2015
13 h 45 - 15 h 45

This test consists of four exercises over 2 pages. It is advised to explain your approach and to check your answers carefully. You can score a maximum of 100 points. Each question indicates how many points it is worth. The test is closed book. You are NOT allowed to use a calculator, a computer or a mobile phone. You may answer in Dutch or in English. Please write clearly, and do not forget to put on each page: your name, your student number, and your werkcollege group. Put your student-card clearly visible at the corner of your table for inspection.

Notation Throughout the test, we denote for any alphabet A and $a \in A$ by $|w|_{a}$ the number of a 's in the word $w \in A^{*}$, as it was introduced in the exercises.

1 Non-deterministic Finite Automata

a) Let \mathcal{N} be the NFA given by the following diagram

i) Give a λ-NFA \mathcal{N}^{\prime} with one final state that accepts the same language as \mathcal{N}.

Solution:

\qquad

ii) Construct from \mathcal{N}^{\prime} a regular expression that generates the language accepted by \mathcal{N}^{\prime}, using the procedure from the lecture. All intermediate steps belong to your answer.

Solution:

There are two possible ways of collapsing states.

1. First collapse to

and then to

This results into the regular expression

$$
\left(b+a b a+a(b a a+b b)^{*}(a+b a)\right)^{*}\left(\lambda+a(b a a+b b)^{*} b\right) .
$$

2. The alternative is to first collapse q_{1}. This gives

and then

$$
b+a a+a b(b b)^{*}(a+b a)
$$

and this results into

$$
\left(b+a a+a b(b b)^{*}(a+b a)\right)^{*}\left(\lambda+a b(b b)^{*}\right) .
$$

b) Let \mathcal{N} be the NFA over the alphabet $\{a, b\}$ be given by the following diagram.

Use the subset construction to obtain a DFA that accepts the same language as \mathcal{N}. Leave out unreachable states and clearly mark the states by the set of states they are generated from.
Solution:

2 Pumping Lemma for Regular Languages

Let A be the alphabet $\{a, b\}$ and L the language

$$
L=\left\{v v^{R}\left|v \in A^{*},|v|_{a}+|v|_{b}=2 k+1, k \in \mathbb{N}\right\} .\right.
$$

Use the pumping lemma to show that L is not regular.
Take care that the word, you choose in the contradiction, is indeed in L.
Solution:

We assume that L is regular and has the pumping length $p>0$. The word we use in the contradiction is $w=v v^{R}=a^{n} b b a^{n}$ with

$$
n= \begin{cases}p, & p \text { even } \\ p+1, & p \text { odd }\end{cases}
$$

Clearly, $w \in L$, as $|v|_{a}+|v|_{b}$ is odd. By the pumping lemma, there are x, u, y with $w=x u y$, $|x u| \leq p$ and $|x|=s>0$, such that $x u^{i} y \in L$ for all $i \in \mathbb{N}$. Observe that we have $x u=a^{k}$ for some $k>0$, as $|x u| \leq p$. Thus $x u^{2} y \neq v^{\prime} v^{\prime R}$ for any $v^{\prime} \in A^{*}$, since $x u^{2} y=a^{k-s} a^{2 s} a^{n-k} b b a^{n}=a^{n+s} b b a^{n}$ and $s>0$, and $x u^{2} y$ cannot be in L, which is a contradiction. Hence L is not regular.

3 Context Free Grammars

Let A be the alphabet $\{a, b\}$ and L again be the language

$$
L=\left\{v v^{R}\left|v \in A^{*},|v|_{a}+|v|_{b}=2 k+1, k \in \mathbb{N}\right\} .\right.
$$

a) Give a grammar G that generates the language L.

Solution:

A possible grammar G is given by

$$
\begin{aligned}
& S \rightarrow a X a \mid b X b \\
& X \rightarrow a S a|b S b| \lambda
\end{aligned}
$$

b) Show that the word $a b b b b a$ is generated by G.

Solution:

$$
S \rightarrow a X a \rightarrow a b S b a \rightarrow a b b X b b a \rightarrow a b b b b a
$$

c) Show that the words $a b a$ and $a b b a$ are not generated.

Solution:

- To generate $a b a$, we need to use $S \rightarrow a X a$ to generate the a at the beginning. But then cannot use any other production, since all productions of X generate either zero or two b, contradicting the shape of $a b a$. Hence $a b a$ is not generated by G.
- Here, we need to use again $S \rightarrow a X a$ to generate the a at the beginning. Next, we need to use $X \rightarrow b S b$, to generate the b after the first a. But now we are stuck with $a b S b a$, since there is no production $S \rightarrow \lambda$. Thus $a b b a$ is not generated.

4 Push Down Automata

a) Let $\Sigma=\{a, b, c\}$ and the language L be given by

$$
L=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}=|w|_{b}+|w|_{c}\right\} .
$$

Give a PDA with one state that accepts exactly the language L. Clearly indicate the stack alphabet you are using. Moreover, give the accepting computation for the word $a b c a$.

Solution: \qquad

Since each a can be accounted for by b or c in words of L, we use the stack alphabet $\Gamma=\{a, b \vee c\}$ (or any other two-symbol alphabet). A possible PDA accepting L is then given by

$$
\begin{aligned}
& b, \lambda / a \\
& c, \lambda / a
\end{aligned}
$$

The word $a b c a$ is accepted by

$$
(q, a b c a, \lambda) \rightarrow(q, b c a, c \vee b) \rightarrow(q, c a, \lambda) \rightarrow(q, a, a) \rightarrow(q, \lambda, \lambda) .
$$

b) Let G be the grammar on the alphabet $\{a, b\}$ given by

$$
\begin{aligned}
& S \rightarrow \lambda|a S| b S B \\
& B \rightarrow b \mid a S
\end{aligned}
$$

Construct a two state PDA that accepts the language generated by G.
Solution:

