Talen en Automaten

Test 2, Wed $28^{\rm th}$ Jan, 201513h45 - 15h45

This test consists of **four** exercises over **2 pages**. It is advised to explain your approach and to check your answers carefully. You can score a maximum of 100 points. Each question indicates how many points it is worth. The test is closed book. You are NOT allowed to use a calculator, a computer or a mobile phone. You may answer in Dutch or in English. Please write clearly, and do not forget to put on each page: your name, your student number, and your werkcollege group. Put your student-card clearly visible at the corner of your table for inspection.

Notation Throughout the test, we denote for any alphabet A and $a \in A$ by $|w|_a$ the number of a's in the word $w \in A^*$, as it was introduced in the exercises.

1 Non-deterministic Finite Automata

a) Let \mathcal{N} be the NFA given by the following diagram

- i) Give a λ -NFA \mathcal{N}' with one final state that accepts the same language as \mathcal{N} . (5pt)
- ii) Construct from \mathcal{N}' a regular expression that generates the language accepted by \mathcal{N}' , using the procedure from the lecture. All intermediate steps belong to your answer.
- b) Let \mathcal{N} be the NFA over the alphabet $\{a,b\}$ be given by the following diagram.

Use the subset construction to obtain a DFA that accepts the same language as \mathcal{N} . Leave out unreachable states and clearly mark the states by the set of states they are generated from.

2 Pumping Lemma for Regular Languages

Let A be the alphabet $\{a, b\}$ and L the language

$$L = \{vv^R \mid v \in A^*, |v|_a + |v|_b = 2k + 1, k \in \mathbb{N}\}.$$

Use the pumping lemma to show that L is not regular. (15pt) Take care that the word, you choose in the contradiction, is indeed in L.

3 Context Free Grammars

Let A be the alphabet $\{a, b\}$ and L again be the language

$$L = \{vv^R \mid v \in A^*, |v|_a + |v|_b = 2k + 1, k \in \mathbb{N}\}.$$

- a) Give a grammar G that generates the language L. (15pt)
- b) Show that the word abbbba is generated by G. (5pt)
- c) Show that the words aba and abba are not generated. (15pt)

4 Push Down Automata

a) Let $\Sigma = \{a, b, c\}$ and the language L be given by

$$L = \{ w \in \Sigma^* \mid |w|_a = |w|_b + |w|_c \}.$$

Give a PDA with one state that accepts exactly the language L. Clearly indicate the stack alphabet you are using. Moreover, give the accepting computation for the word abca.

b) Let G be the grammar on the alphabet $\{a, b\}$ given by

$$S \rightarrow \lambda \mid aS \mid bSB$$

$$B \rightarrow b \mid aS$$

Construct a two state PDA that accepts the language generated by G. (12pt)