Talen en Automaten
Test 2, Wed $28^{\text {th }}$ Jan, 2015
13h45-15h45

This test consists of four exercises over 2 pages. It is advised to explain your approach and to check your answers carefully. You can score a maximum of 100 points. Each question indicates how many points it is worth. The test is closed book. You are NOT allowed to use a calculator, a computer or a mobile phone. You may answer in Dutch or in English. Please write clearly, and do not forget to put on each page: your name, your student number, and your werkcollege group. Put your student-card clearly visible at the corner of your table for inspection.

Notation Throughout the test, we denote for any alphabet A and $a \in A$ by $|w|_{a}$ the number of a 's in the word $w \in A^{*}$, as it was introduced in the exercises.

1 Non-deterministic Finite Automata

a) Let \mathcal{N} be the NFA given by the following diagram

i) Give a λ-NFA \mathcal{N}^{\prime} with one final state that accepts the same language as \mathcal{N}.
ii) Construct from \mathcal{N}^{\prime} a regular expression that generates the language accepted by \mathcal{N}^{\prime}, using the procedure from the lecture. All intermediate steps belong to your answer.
b) Let \mathcal{N} be the NFA over the alphabet $\{a, b\}$ be given by the following diagram.

Use the subset construction to obtain a DFA that accepts the same language as they are generated from.

2 Pumping Lemma for Regular Languages

Let A be the alphabet $\{a, b\}$ and L the language

$$
L=\left\{v v^{R}\left|v \in A^{*},|v|_{a}+|v|_{b}=2 k+1, k \in \mathbb{N}\right\} .\right.
$$

Use the pumping lemma to show that L is not regular.
Take care that the word, you choose in the contradiction, is indeed in L.

3 Context Free Grammars

Let A be the alphabet $\{a, b\}$ and L again be the language

$$
L=\left\{v v^{R}\left|v \in A^{*},|v|_{a}+|v|_{b}=2 k+1, k \in \mathbb{N}\right\} .\right.
$$

a) Give a grammar G that generates the language L.
b) Show that the word $a b b b b a$ is generated by G.
c) Show that the words $a b a$ and $a b b a$ are not generated.

4 Push Down Automata

a) Let $\Sigma=\{a, b, c\}$ and the language L be given by

$$
L=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}=|w|_{b}+|w|_{c}\right\} .
$$

Give a PDA with one state that accepts exactly the language L. Clearly indicate the stack alphabet you are using. Moreover, give the accepting computation for the word $a b c a$.
b) Let G be the grammar on the alphabet $\{a, b\}$ given by

$$
\begin{aligned}
& S \rightarrow \lambda|a S| b S B \\
& B \rightarrow b \mid a S
\end{aligned}
$$

