Talen en Automata Assignment 4, Tuesday 29th November, 2016

Exercise teachers. The student groups are supervised by the following teachers:

Teacher	E-Mail	Room	Time
Michiel de Bondt	M.deBondt@math.ru.nl	HG00.058	10:45 - 12:30
Bas Steeg	steegbas@gmail.com	HG02.032	10:45 - 12:30
Demian Janssen	wd.janssen@student.ru.nl	HG01.058	10:45 - 12:30
Jan Martens	jan-martens@hotmail.com	HG01.139	10:45 - 12:30
Ties Robroek	ties.robroek@student.ru.nl	HG02.028	10:45 - 12:30
Sjoerd Hemels	sjoerd0707@live.nl	HG03.632	10:45 - 12:30
Rick Erkens	rjarickerkens@gmail.com	HG02.028	13:45 - 15:30

Postboxes are located in the Mercator building on the ground floor. There are 7 boxes labelled with *Talen en Automaten* and the corresponding group teacher's name. There is 1 box, the *Uitleverbak*, for work that hasn't been picked up at the exercise hours.

Handing in your answers: There are two options:

- 1. E-mail: Send your solutions by e-mail to your exercise class teacher (see above) with subject "**T**&A: assignment 4". This e-mail should only contain a single PDF document as attachment (unless explicitly stated otherwise). Before sending an e-mail make sure:
 - the file is a PDF document
 - your name is part of the filename (for example MyName_assignment-4.pdf)
 - your name and student number are included in the document (they will be printed).
- 2. Post box: Put your solutions in the appropriate post box (see above). Before putting your solutions in the post box make sure:
 - your name, student number, and IC, KI or Wiskunde are written clearly on the document.

Deadline: Tuesday 6th December, 2016, 13:30 (in Nijmegen!)

Goals: After completing these exercises successfully you should be able to recognise a regular language and, if it is not, then show this by using non-regularity of other languages or by using the pumping lemma.

There are 2 mandatory exercises, worth **10 points** in total. There is 1 more, extra hard, exercise. Be aware that this exercise is just for fun, you cannot earn any points with it.

1 Non-regular Languages

Let A be the alphabet $\{a, b, c\}$, and let

 $L_{1} = \{a^{m}b^{n} \in A^{*} \mid m = n \pmod{2}\}$ $L_{2} = \{c^{n}a^{p}c^{m}b^{p} \mid n, m, p \in \mathbb{N}\}$ $L_{3} = \{ww^{R} \mid w \in A^{*}\}.$

Decide the following statements. Give in each case an appropriate explanation, in which you may use languages that have been shown to be non-regular in the lecture, and the techniques that have been presented there (see last slide). Tip: Try to use simpler techniques first.

a) Is
$$L_1$$
 regular? (1pt)

b) Is
$$L_2$$
 regular? (1pt)

c) Is
$$L_3$$
 regular? (2pt)

2 Pumping Lemma for Regular Languages

Show the following languages over $\{a,b,c\}$ to be non-regular by means of the pumping lemma.

a)
$$L = \{a^m b^n \mid m, n \in \mathbb{N}, n < m\}$$
 (3pt)

b)

 $L = \{vca^n \mid v \in \{a, b, c\}^* \text{ with } |v| < n, \text{ for some } n \in \mathbb{N}\}$ (3pt)

3 Fun Exercises – Pumping Lemma

1. Show, again by appealing to the pumping lemma, that the following language L over $A = \{a, b\}$ is not regular.

 $L = \{a^n b^m \mid n = km, \text{ for some } k \in \mathbb{N}\}$

2. Show, again by appealing to the pumping lemma, that the following language L over $A = \{a\}$ is not regular.

$$L = \{ a^{n^2} \mid n \in \mathbb{N} \}.$$