

Non-deterministic Finite Automata

H. Geuvers and J. Rot

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: fall 2016

Jurriaan Rot Version: fall 2016 Talen en Automaten 1 / 19

Outline

Non-deterministic Finite Automata

From Regular Expressions to NFA- λ

Eliminating non-determinism

Previous Weeks

Regular Expressions and Regular Languages

$$|\mathtt{rexp}_\Sigma ::= 0 \mid 1 \mid s \mid \mathtt{rexp}_\Sigma \ \mathtt{rexp}_\Sigma \mid \mathtt{rexp}_\Sigma + \mathtt{rexp}_\Sigma \mid \mathtt{rexp}_\Sigma^*$$

with $s \in \Sigma$

 $L \subseteq \Sigma^*$ is regular if $L = \mathcal{L}(e)$ for some regular expression e.

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection If L_1 , L_2 are accepted by some DFA, then so are

- $\overline{L_1} = \Sigma^* L_1$
- $L_1 \cup L_2$
- $L_1 \cap L_2$.

Jurriaan Rot Version: fall 2016 Talen en Automaten 3 / 19

Kleene's Theorem (announced last lecture)

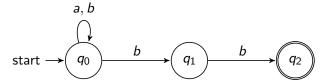
Theorem

The languages accepted by DFAs are exactly the regular languages We prove this by

- If $L = \mathcal{L}(M)$ for some DFA M, then there is a regular expression e such that $L = \mathcal{L}(e)$ (Previous lecture)
- **2** If $L = \mathcal{L}(e)$, for some regular expression e, then there is a non-deterministic finite automaton with λ -steps (NFA- λ) M such that $L = \mathcal{L}(M)$. (This lecture)
- § For every NFA- λ , M, there is a DFA M' such that $\mathcal{L}(M) = \mathcal{L}(M')$ (This lecture)

Jurriaan Rot Version: fall 2016 Talen en Automaten 4 / 19

Non-deterministic finite automaton (NFA)



 $\delta(q, a)$ is not one state, but a set of states.

δ	а	Ь	
q_0	{ <i>q</i> ₀ }	$\{q_0,q_1\}$	
$ q_1 $	Ø	$\{q_2\}$	
$ q_2 $	Ø	Ø	

in shorthand

δ	а	Ь
q_0	q 0	q_0, q_1
q_1		q ₂
q_2		

Jurriaan Rot Version: fall 2016 Talen en Automaten 6 / 19

Non-deterministic Finite Automata: NFA (definition)

```
M is a NFA over \Sigma if M = (Q, q_0, \delta, F) with
                             is a finite set of states
                            is the initial state
 q_0 \in Q
 F \subset Q
                         is a finite set of final states
 \delta: Q \times \Sigma \to \mathcal{P}Q is the transition function
                             [\mathcal{P}Q] denotes the collection of subsets of [Q]
Reading function \delta^*: Q \times \Sigma^* \to \mathcal{P}Q (multi-step transition)
         \delta^*(q,\lambda) = \{q\}
       \delta^*(q, aw) = \{q' \mid q' \in \delta^*(p, w) \text{ for some } p \in \delta(q, a)\}
                       = \int \delta^*(p, w)
                            p \in \delta(q,a)
```

The language accepted by M, notation $\mathcal{L}(M)$, is:

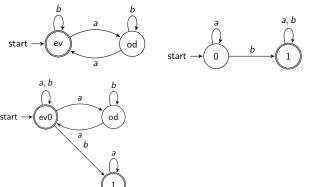
$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \exists q_f \in \delta^*(q_0, w) \text{ such that } q_f \in F \}$$

Jurriaan Rot Version: fall 2016 Talen en Automaten 7 / 19

For the union of languages we can put NFAs in parallel

Example Suppose we want to have an NFA for $L_1 \cup L_2 = \{w \mid |w|_a \text{ is even or } |w|_b \ge 1\}$

First idea: put the two machines "non-deterministically in parallel"

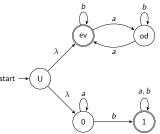


But this is wrong: The NFA accepts aaa.

Jurriaan Rot Version: fall 2016 Talen en Automaten 8 / 19

NFAs with silent steps: NFA- λ

We add λ -transitions or 'silent steps' to NFAs The correct union of M_1 and M_2 is:



In an NFA- λ we allow

$$\delta(q,\lambda)=q'$$

for $q \neq q'$. That means

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}Q$$

Jurriaan Rot Version: fall 2016 Talen en Automaten 9 / 19

NFA- λ (definition)

```
M is an NFA-\lambda over \Sigma if M=(Q,q_0,\delta,F) with Q is a finite set of states q_0\in Q is the initial state F\subseteq Q is a finite set of final states \delta:Q\times(\Sigma\cup\{\lambda\})\to\mathcal{P}Q is the transition function
```

The λ -closure of a state q, λ -closure(q), is the set of states reachable with only λ -steps.

Reading function $\delta^*: Q \times \Sigma^* o \mathcal{P}Q$ (multi-step transition)

$$\begin{array}{lcl} \delta^*(q,\lambda) & = & \lambda\text{-closure}(q) \\ \delta^*(q,aw) & = & \{q' \mid \exists p \in \lambda\text{-closure}(q) \, \exists r \in \delta(p,a) \, (q' \in \delta^*(r,w))\} \\ & = & \bigcup_{p \in \lambda\text{-closure}(q)} & \bigcup_{r \in \delta(p,a)} \delta^*(r,w) \end{array}$$

The language accepted by M, notation $\mathcal{L}(M)$, is:

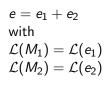
$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid \exists q_f \in \delta^*(q_0, w) \text{ such that } q_f \in F \}$$

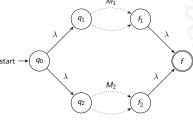
Jurriaan Rot Version: fall 2016 Talen en Automaten 10 / 19

Toolkit for building an NFA- λ from a regular expression

For each regular expression, we construct an NFA- λ .

To cach regular expression, we construct an ite //				
е	$\mid M$ such that $\mathcal{L}(M) = \mathcal{L}(e)$			
0	$start \rightarrow q_0$			
1	$start \rightarrow q_0$			
$a ext{ (for } a \in \Sigma)$	$start \rightarrow q_0 \xrightarrow{a} f$			
	M.			





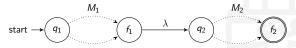
Jurriaan Rot Version: fall 2016 Talen en Automaten 12 / 19

Toolkit (continued)

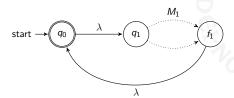
M such that $\mathcal{L}(M) = \mathcal{L}(e)$

with
$$\mathcal{L}(M_1) = \mathcal{L}(e_1)$$
 $\mathcal{L}(M_2) = \mathcal{L}(e_2)$

 $e = e_1 e_2$



$$e=(e_1)^*$$
 with $\mathcal{L}(M_1)=\mathcal{L}(e_1)$

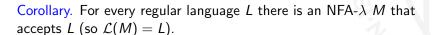


Regular languages accepted by a NFA- λ

Proposition. For every regular expression e there is an NFA- λ M_e such that

$$\mathcal{L}(M_e) = \mathcal{L}(e)$$
.

Proof. Apply the toolkit. M_e can be found by induction on the structure of e: First do this for the simplest regular expressions. For a composed regular expression compose the automata.



Jurriaan Rot Version: fall 2016 Talen en Automaten 14 / 19

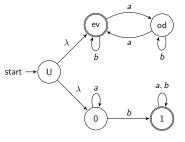
Avoiding non-determinism

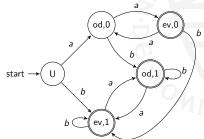
We can transform any NFA (and NFA- λ) into a DFA that accepts the same language.

Idea:

- Keep track of the set of all states you can go to!
- States of the DFA are sets-of-states from the original NFA- λ .
- A set of states is final if one of the members is final.

Example $L = \{ w \mid |w|_a \text{ is even or } |w|_b \ge 1 \}$





Jurriaan Rot Version: fall 2016 Talen en Automaten 16 / 19

Eliminating non-determinism and λ -steps

Let M be a NFA given by (Q, q_0, δ, F) Define the DFA \overline{M} as $(\overline{Q}, \overline{q_0}, \overline{\delta}, \overline{F})$ where

$$egin{array}{lcl} \overline{Q} &=& \mathcal{P}Q \\ \overline{q_0} &=& \{q_0\} \\ \overline{\delta}(H,a) &=& \displaystyle \bigcup_{q\in H} \delta(q,a), & \text{for } H\subseteq Q, \\ \overline{F} &=& \{H\subseteq Q\mid H\cap F\neq\emptyset\} \end{array}$$

If M is an NFA- λ , we define

$$\overline{q_0} = \lambda\text{-closure}(q_0)$$
 $\overline{\delta}(H, a) = \bigcup_{q \in H} \bigcup_{p \in \lambda\text{-closure}(q)} \lambda\text{-closure}(\delta(p, a))$
 $\overline{F} = \{H \subseteq Q \mid \lambda\text{-closure}(H) \cap F \neq \emptyset\}$

Jurriaan Rot Version: fall 2016 Talen en Automaten 17 / 19

Correctness

Given M, an NFA- λ , we have defined the DFA \overline{M} by

$$\overline{q_0} = \{q_0\}$$

$$\overline{\delta}(H, a) = \bigcup_{q \in H} \bigcup_{p \in \lambda \text{-closure}(q)} \lambda \text{-closure}(\delta(p, a))$$

$$\overline{F} = \{H \subseteq Q \mid \lambda \text{-closure}(H) \cap F \neq \emptyset\}$$

Theorem M and \overline{M} accept the same languages.

Proof: This follows from

Lemma

$$\delta^*(q, w) \cap F \neq \emptyset \iff \overline{\delta}^*(\{q\}, w) \in \overline{F}$$

(Take $q := q_0$)

Proof of the Lemma: induction on w, considering the cases $w = \lambda$ and w = au.

Jurriaan Rot Version: fall 2016 Talen en Automaten 18 / 19

Equivalence of DFA, NFA and NFA- λ

Conclusion. Every NFA- λ (or NFA) M can be turned into a DFA \overline{M} accepting the same language.

Corollary. For every regular language L there is a DFA M that accepts L (so $\mathcal{L}(M) = L$).

Proof. Given a regular expression e, first construct an NFA- λ M such that $\mathcal{L}(M) = \mathcal{L}(e)$. Then change it into a *DFA* preserving the language that is accepted.

Rephrasing of Kleene's Theorem:

The class of regular languages is (equivalently) characterized as

- 1 The languages described by a regular expression
- The languages accepted by a DFA
- 3 The languages accepted by an NFA
- 4 The languages accepted by a NFA- λ

Jurriaan Rot Version: fall 2016 Talen en Automaten 19 / 19