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Previous Weeks

Regular Expressions and Regular Languages

rexpy ::=0| 1| s | rexpy rexpy | rexpy+rexpy | rexpy

with s € &
L C ¥* is regular if L = L(e) for some regular expression e.

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection
If L1, Ly are accepted by some DFA, then so are

e Li=Y"—1
e [1UlL>
e [1N L.
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Kleene's Theorem (announced last lecture)

Theorem
The languages accepted by DFAs are exactly the regular languages
We prove this by
® If L = L(M) for some DFA M, then there is a regular
expression e such that L = £(e) (Previous lecture)
@® If L = L(e), for some regular expression e, then there is a
non-deterministic finite automaton with A-steps (NFA-)\) M
such that L = £(M). (This lecture)

© For every NFA-)\, M, there is a DFA M’ such that
L(M) = L(M") (This lecture)
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Non-deterministic finite automaton (NFA)

a, b

start —{ 9o b @ b @

d(q, a) is not one state, but a set of states.

|

(6] a [ & | (6]al b

qo || {ao} [{90: a1} | i1 shorthand | 90 || 90 | 905 G
qaf 0 | {a} q a2
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Non-deterministic Finite Automata: NFA (definition)

M is a NFA over X if M = (Q, qo, J, F) with

Q is a finite set of states
qo € @ is the initial state
FCQ is a finite set of final states

0:Q xX—PQ isthe transition function
[PQ denotes the collection of subsets of Q]

Reading function §* : Q@ X ¥* — P Q (multi-step transition)

6(q,2) = {q}
0*(q,aw) = {q'|q € d"(p,w) for some p € d(q, a)}
= | &w)
p€d(q,a)

The language accepted by M, notation £L(M), is:
L(M) ={w € X* | Jgr € 0"(qo, w) such that gr € F}
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For the union of languages we can put NFAs in parallel

Example Suppose we want to have an NFA for L; U L, =
{w | |wl|, is even or |w|p > 1}
First idea: put the two machines “non-deterministically in parallel”

b b
a a a,b
RO EBON
start —
a

But this is wrong: The NFA accepts aaa.
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NFAs with silent steps: NFA-\

We add A-transitions or ‘silent steps’ to NFAs
The correct union of M; and M is:

b b
OEBO

start —|

In an NFA-X we allow
3(q, ) =4
for g # q'. That means

5:Qx (ZU{A}) = PQ
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NFA-X (definition)
M is an NFA-X over X if M = (Q, qo, 0, F) with

Q is a finite set of states
qo € @ is the initial state
FCQ is a finite set of final states

d:Q x (XU{\}) = PQ is the transition function
The A-closure of a state g, A-closure(q), is the set of states
reachable with only A-steps.
Reading function 6* : @ X ¥* — PQ (multi-step transition)
0*(g,\) = A-closure(q)
5*(g,aw) = {q' | Ip € A-closure(q)Ir € 6(p,a) (¢’ € 6*(r,w))}
= U U 5 (r,w)
peA-closure(q)  red(p,a)
The language accepted by M, notation L£L(M), is:
L(M) ={w € X* | 3gr € 0"(qo, w) such that gr € F}
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Toolkit for building an NFA-)\ from a regular expression

For each regular expression, we construct an NFA-).
e M such that L(M) = L(e)

start —

0

start *,
1

start ﬂ‘—av
a(forack)

M
e=¢e +e& \ @\
with
L(My) = L(er) | son— O
L(My) = L(e) 2w @/
(=) ]
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Toolkit (continued)

e M such that L(M) = L(e)
€= €6
it 3 e
R RS OISO S O O

sart (a0 }——((a)
e = (el)* TR

with
E(Ml) = E(el)

Jurriaan Rot Version: fall 2016 Talen en Automaten



From Regular Expressions to NFA-X Radboud University Nijmege

Regular languages accepted by a NFA-\

Proposition. For every regular expression e there is an NFA-\ M,
such that
L(M.) = L(e).

Proof. Apply the toolkit. M, can be found by induction on the
structure of e: First do this for the simplest regular expressions.
For a composed regular expression compose the automata. ®

Corollary. For every regular language L there is an NFA-A M that
accepts L (so L(M) = L).
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Eliminating non-determinism

Avoiding non-determinism
We can transform any NFA (and NFA-)) into a DFA that accepts

the same language.

Idea:
o Keep track of the set of all states you can go to!

e States of the DFA are sets-of-states from the original NFA-\.

e A set of states is final if one of the members is final.
Example L = {w | |W]a is even or |w|p > 1}

Jos= (
b8 @<

start —
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Eliminating non-determinism and \-steps

Let M be a NFA given by (Q, qo, 9, F)
Define the DFA M as (Q, o, 9, F) where

Q = PR

G = {qo}
§(H,a) = |Jd(qa), for HC Q,

qeH

F = {HCQIHNF#0}

If M is an NFA-)\, we define
Go = A-closure(qo)

(H,a) = U U A-closure(d(p, a))

qeH pel-closure(q)
F = {HC Q| \closure(H) N F # 0}

Jurriaan Rot Version: fall 2016 Talen en Automaten 17 /19



Radboud University Nijmegen i

Eliminating non-determinism

Correctness

Given M, an NFA-)\, we have defined the DFA M by

q@ = {qo}
0(H,a) = U U A-closure(d(p, a))

qEH pel-closure(q)
{H C Q| A-closure(H) N F # 0}

il
Il

Theorem M and M accept the same languages.

Proof: This follows from
Lemma

(gw)NF#£0 < 5 ({g},w)eF
(Take g := qo)

Proof of the Lemma: induction on w, considering the cases w = A
and w = au.
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Eliminating non-determinism

Equivalence of DFA, NFA and NFA-\

Conclusion. Every NFA-A (or NFA) M can be turned into a DFA
M accepting the same language.

Corollary. For every regular language L there is a DFA M that
accepts L (so L(M) = L).

Proof. Given a regular expression e, first construct an NFA-\ M
such that £(M) = L(e). Then change it into a DFA preserving the
language that is accepted. (]

Rephrasing of Kleene's Theorem:
The class of regular languages is (equivalently) characterized as

@ The languages described by a regular expression
® The languages accepted by a DFA

© The languages accepted by an NFA

O The languages accepted by a NFA-)
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