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Foreword

These lecture notes were translated from the Finnish lecture notes for the TUT course
”Formaalit kielet”. The notes form the base text for the course ”MAT-41186 Formal
Languages”. They contain an introduction to the basic concepts and constructs, as seen
from the point of view of languages and grammars. In a sister course ”MAT-41176 Theory
of Automata” much similar material is dealt with from the point of view of automata,
computational complexity and computability.

Formal languages have their origin in the symbolical notation formalisms of mathe-
matics, and especially in combinatorics and symbolic logic. These were later joined by
various codes needed in data encryption, transmission, and error-correction—all these
have significantly influenced also the theoretical side of things—and in particular various
mathematical models of automation and computation.

It was however only after Noam Chomsky’s ground-breaking ideas in the investigation
of natural languages, and the algebro-combinatorial approach of Marcel-Paul Schützen-
berger’s in the 1950’s that formal language theory really got a push forward. The strong
influence of programming languages should be noted, too. During the ”heydays” of formal
languages, in the 1960’s and 1970’s, much of the foundation was created for the theory as
it is now.1 Nowadays it could be said that the basis of formal language theory has settled
into a fairly standard form, which is seen when old and more recent text-books in the area
are compared. The theory is by no means stagnated, however, and research in the field
continues to be quite lively and popular.

In these lecture notes the classical Chomskian formal language theory is fairly fully
dealt with, omitting however much of automata constructs and computability issues. In

1Among the top investogators in the area especially the Finnish academician Arto Salomaa might be

mentioned.
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addition, surveys of Lindenmayer system theory and the mathematical theory of codes are
given. As a somewhat uncommon topic, an overview of formal power series is included.
Apart from being a nice algebraic alternative formalism, they give a mechanism for gen-
eralizing the concept of language in numerous ways, by changing the underlying concept
of set but not the concept of word.2

Keijo Ruohonen

2There are various ways of generalizing languages by changing the concept of word, say, to a graph,

or a picture, or a multidimensional word, or an infinite word, but these are not dealt with here.



Chapter 1

WORDS AND LANGUAGES

1.1 Words and Alphabets

A word (or string) is a finite sequence of items, so-called symbols or letters chosen from a
specified finite set called the alphabet. Examples of common alphabets are e.g. letters in
the Finnish alphabet (+ interword space, punctuation marks, etc.), and the bits 0 and 1.
A word of length one is identified with its only symbol. A special word is the empty word
(or null word) having no symbols, denoted by Λ (or λ or ε or 1).

The length of the word w is the number of symbols in it, denoted by |w|. The length
of the empty word is 0. If there are k symbols in the alphabet, then there are kn words
of length n. Thus there are

n∑

i=0

ki =
kn+1 − 1

k − 1

words of length at most n, if k > 1, and n + 1 words, if k = 1. The set of all words is
denumerably infinite, that is, they can be given as an infinite list, say, by ordering the
words first according to their length.

The basic operation of words is concatenation, that is, writing words as a compound.
The concatenation of the words w1 and w2 is denoted simply by w1w2. Examples of
concatenations in the alphabet {a, b, c}:

w1 = aacbba , w2 = caac , w1w2 = aacbbacaac

w1 = aacbba , w2 = Λ , w1w2 = w1 = aacbba

w1 = Λ , w2 = caac , w1w2 = w2 = caac

Concatenation is associative, i.e.,

w1(w2w3) = (w1w2)w3.

As a consequence of this, repeated concatenations can be written without parentheses.
On the other hand, concatenation is usually not commutative, As a rule then

w1w2 6= w2w1,

but not always, and in the case of a unary alphabet concatenation is obviously commu-
tative.

The nth (concatenation) power of the word w is

wn = ww · · ·w︸ ︷︷ ︸
n copies

.

1



CHAPTER 1. WORDS AND LANGUAGES 2

Especially w1 = w and w0 = Λ, and always Λn = Λ.
The mirror image (or reversal) of the word w = a1a2 · · · an is the word

ŵ = an · · · a2a1,

especially Λ̂ = Λ. Clearly we have ŵ1w2 = ŵ2ŵ1. A word u is a prefix (resp. suffix) of the
word w, if w = uv (resp. w = vu) for some word v. A word u is a subword (or segment)
of the word w, if w = v1uv2 for some words v1 and v2. A word u is a scattered subword of
the word w, if

w = w1u1w2u2 · · ·wnunwn+1

where u = u1u2 · · ·un, for some n and some words w1, w2, . . . , wn+1 and u1, u2, . . . , un.

1.2 Languages

A language is a set words over some alphabet. Special examples of languages are finite
languages having only a finite number of words, cofinite languages missing only a finite
number of words, and the empty language ∅ having no words. Often a singleton language
{w} is identified with its only word w, and the language is denoted simply by w.

The customary set-theoretic notation is used for languages: ⊆ (inclusion), ⊂ (proper
inclusion), ∪ (union), ∩ (intersection), − (difference) and (complement against the set
of all words over the alphabet). Belonging of a word w in the language L is denoted by
w ∈ L, as usual. Note also the ”negated” relations 6⊆, 6⊂ and /∈.

The language of all words over the alphabet Σ, in particular Λ, is denoted by Σ∗. The
language of all nonempty words over the alphabet Σ is denoted by Σ+. Thus L = Σ∗−L
and Σ+ = Σ∗ − {Λ}.

Theorem 1. There is a nondenumerably infinite amount of languages over any alphabet,
thus the languages cannot be given in an infinite list.

Proof. Let us assume the contrary: All languages (over some alphabet Σ) appear in the
list L1, L2, . . . We then define the language L as follows: Let w1, w2, . . . be a list containg
all words over the alphabet Σ. The word wi is in the language L if and only if it is not
in the language Li. Clearly the language L is not then any of the languages in the list
L1, L2, . . . The counter hypothesis is thus false, and the theorem holds true.

The above method of proof is an instance of the so-called diagonal method. There can
be only a denumerably infinite amount of ways of defining languages, since all such def-
initions must be expressible in some natural language, and thus listable in lexicographic
order. In formal language theory defining languages and investigating languages via their
definitions is paramount. Thus only a (minuscule) portion of all possible languages enters
the investigation!

There are many other operations of languages in addition to the set-theoretic ones
above. The concatenation of the languages L1 and L2 is

L1L2 = {w1w2 | w1 ∈ L1 and w2 ∈ L2}.

The nth (concatenation) power of the language L is

Ln = {w1w2 · · ·wn | w1, w2, . . . , wn ∈ L},
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and especially L1 = L and L0 = {Λ}. In particular ∅0 = {Λ}! The concatenation closure
or Kleenean star of the language L is

L∗ =

∞⋃

n=0

Ln,

i.e., the set obtained by concatenating words of L in all possible ways, including the
”empty” concatenation giving Λ. Similarly

L+ =

∞⋃

n=1

Ln,

which contains the empty word Λ only if it is already in L. (Cf. Σ∗ and Σ+ above.) Thus
∅∗ = {Λ}, but ∅+ = ∅. Note that in fact L+ = L∗L = LL∗.

The left and right quotients of the languages L1 and L2 are defined as

L1\L2 = {w2 | w1w2 ∈ L2 for some word w1 ∈ L1}

(remove from words of L2 prefixes belonging in L1 in all possible ways) and

L1/L2 = {w1 | w1w2 ∈ L1 for some word w2 ∈ L2}

(remove from words of L1 suffixes belonging in L2 in all possible ways). Note that the
prefix or the suffix can be empty. The mirror image (or reversal) of the language L is the
language L̂ = {ŵ | w ∈ L}.

There are two fundamental machineries of defining languages: grammars, which gen-
erate words of the language, and automata, which recognize words of the language. There
are many other ways of defining languages, e.g. defining regular languages using regular
expressions.



Chapter 2

REGULAR LANGUAGES

”Some people, when confronted with
a problem, think ”I know, I’ll use

regular expressions.” Now they
have two problems.”

(Jamie Zawinski)

2.1 Regular Expressions and Languages

A regular expression is a formula which defines a language using set-theoretical union,
denoted here by +, concatenation and concatenation closure. These operations are com-
bined according to a set of rules, adding parentheses ( and ) when necessary. The atoms
of the formula are symbols of the alphabet, the empty language ∅, and the empty word
Λ, the braces { and } indicating sets are omitted.

Languages defined by regular expressions are the so-called regular languages. Let us
denote the family of regular languages over the alphabet Σ by RΣ, or simply by R if the
alphabet is clear by the context.

Definition. R is the family of languages satisfying the following conditions:

1. The language ∅ is in R and the corresponding regular expression is ∅.

2. The language {Λ} is in R and the corresponding regular expression is Λ.

3. For each symbol a, the language {a} is in R and the corresponding regular expression
is a.

4. If L1 and L2 are languages in R, and r1 and r2 are the corresponding regular ex-
pressions, then

(a) the language L1∪L2 is in R and the corresponding regular expression is (r1+r2).

(b) the language L1L2 is in R and the corresponding regular expression is (r1r2).

5. If L is a language in R and r is the corresponding regular expression, then L∗ is in
R and the corresponding regular expression is (r∗).

6. Only languages obtainable by using the above rules 1.–5. are in R.

In order to avoid overly long expressions, certain customary abbreviations are used, e.g.

(rr) =denote (r
2) , (r(rr)) =denote= (r3) and

(r(r∗)) =denote (r
+).

On the other hand, the rules produce fully parenthesized regular expressions. If the order
of precedence

∗ , concatenation , +

4



CHAPTER 2. REGULAR LANGUAGES 5

is agreed on, then a lot of parentheses can be omitted, and for example a+b∗c can be used
instead of the ”full”expression (a+((b∗)c)). It is also often customary to identify a regular
expression with the language it defines, e.g. r1 = r2 then means that the corresponding
regular languages are the same, even though the expressions themselves can be quite
different. Thus for instance

(a∗b∗)∗ = (a+ b)∗.

It follows immediately from the definition that the union and concatenation of two
regular languages are regular, and also that the concatenation closure of a regular language
is also regular.

2.2 Finite Automata

Automata are used to recognize words of a language. An automaton then ”processes” a
word and, after finishing the processing, ”decides”whether or not the word is the language.
An automaton is finite if it has a finite memory, i.e., the automaton may be thought to be
in one of its (finitely many) (memory)states. A finite deterministic automaton is defined
formally by giving its states, input symbols (the alphabet), the initial state, rules for the
state transition, and the criteria for accepting the input word.

Definition. A finite (deterministic) automaton (DFA) is a quintuple M = (Q,Σ, q0, δ, A)
where

• Q = {q0, q1, . . . , qm} is a finite set of states, the elements of which are called states;

• Σ is the set input symbols (the alphabet of the language);

• q0 is the initial state (q0 ∈ Q);

• δ is the (state) transition function which maps each pair (qi, a), where qi is a state
and a is an input symbol, to exactly one next state qj: δ(qi, a) = qj ;

• A is the so-called set of terminal states (A ⊆ Q).

As its input the automaton M receives a word

w = a1 · · · an

which it starts to read from the left. In the beginning M is in its initial state q0 reading
the first symbol a1 of w. The next state qj is then determined by the transition function:

qj = δ(q0, a1).

In general, if M is in state qj reading the symbol ai, its next state is δ(qj , ai) and it moves
on to read the next input symbol ai+1, if any. If the final state of M after the last input
symbol an is read is one of the terminal states (a state in A), then M accepts w, otherwise
it rejects w. In particular, M accepts the empty input Λ if the initial state q0 is also a
terminal state.

The language recognized by an automaton M is the set of the words accepted by the
automaton, denoted by L(M).

Any word w = a1 · · · an, be it an input or not, determines a so-called state transition
chain of the automaton M from a state qj0 to a state qjn:

qj0 , qj1, . . . , qjn,
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where always qji+1
= δ(qji, ai+1). In a similar fashion the transition function can be

extended to a function δ∗ for words recursively as follows:

1. δ∗(qi,Λ) = qi

2. For the word w = ua, where a is a symbol, δ∗(qi, w) = δ
(
δ∗(qi, u), a

)
.

This means that a word w is accepted if and only if δ∗(q0, w) is a terminal state, and the
language L(M) consists of exactly those words w for which δ∗(q0, w) is a terminal state.

Theorem 2. (i) If the languages L1 and L2 are recognized by (their corresponding) finite
automata M1 and M2, then also the languages L1 ∪ L2, L1 ∩ L2 and L1 − L2 are
recognized by finite automata.

(ii) If the language L is recognized by a finite automaton M , then also L is recognized
by a finite automaton.

Proof. (i) We may assume that L1 and L2 share the same alphabet. If this is not the
case originally, we use the union of the original alphabets as our alphabet. We may then
further assume that the alphabet of the automata M1 and M2 is this shared alphabet Σ,
as is easily seen by a simple device. Let us then construct a ”product automaton” starting
from M1 and M2 as follows: If

M1 = (Q,Σ, q0, δ, A)

and
M2 = (S,Σ, s0, γ, B),

then the product automaton is

M1 ×M2 =
(
Q× S,Σ, (q0, s0), σ, C

)

where the set C of terminal states is chosen accordingly. The set of states Q× S consists
of all ordered pairs of states (qi, sj) where qi is in Q and sj is in S. If δ(qi, a) = qk and
γ(sj, a) = sℓ, then we define

σ
(
(qi, sj), a

)
= (qk, sℓ).

Now, if we want to recognize L1 ∪ L2, we choose C to consist of exactly those pairs
(qi, sj) where qi is A or/and sj is in B, i.e., at least one of the automata is in a terminal
state after reading the input word. If, on the other hand, we want to recognize L1 ∩ L2,
we take in C all pairs (qi, sj) where qi is in A and sj is in B, that is, both automata finish
their reading in a terminal state. And, if we want to recognize L1 − L2, we take in C
those pairs (qi, sj) where qi is in A and sj is not in B, so that M1 finishes in a terminal
state after reading the input word but M2 does not.

(ii) An automaton recognizing the complement L is obtained fromM simply by chang-
ing the set of terminal states to its complement.

Any finite automaton can be represented graphically as a so-called state diagram. A
state is then represented by a circle enclosing the symbol of the state, and in particular a
terminal state is represented by a double circle:

qi qi
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A state transition δ(qi, a) = qj is represented by an arrow labelled by a, and in particular
the initial state is indicated by an incoming arrow:

qi qj
a q0

Such a representation is in fact an edge-labelled directed graph, see the course Graph
Theory.

Example. The automaton
(
{A,B, 10}, {0, 1}, A, δ, {10}

)
where δ is given by the state

transition table

δ 0 1
A A B
B 10 B
10 A B

is represented by the state transition diagram

A B1 10

0 1
0

1

0

The language recognized by the automaton is the regular language (0 + 1)∗10.

In general, the languages recognized by finite automata are exactly all regular languages
(so-called Kleene’s Theorem). This will be proved in two parts. The first part1 can be
taken care of immediately, the second part is given later.

Theorem 3. The language recognized by a finite automaton is regular.

Proof. Let us consider the finite automaton

M = (Q,Σ, q0, δ, A).

A state transition chain of M is a path if no state appears in it more than once. Further,
a state transition chain is a qi-tour if its first and last state both equal qi, and qi appears
nowhere else in the chain. A qi-tour is a qi-circuit if the only state appearing several times
in the chain is qi. Note that there are only a finite number of paths and circuits, but
there are infinitely many chains and tours. A state qi is both a path (a ”null path”) and
a qi-circuit (a ”null circuit”).

Each state transition chain is determined by at least one word, but not infinitely many.
Let us denote by Ri the language of words determining exactly all possible qi-tours. The
null circuit corresponds to the language {Λ}.

We show first that Ri is a regular language for each i. We use induction on the
number of distinct states appearing in the tour. Let us denote by RS,i the language of

1The proof can be transformed to an algorithm in a matrix formalism, the so-called Kleene Algorithm,

related to the well-known graph-theoretical Floyd–Warshall-type algorithms, cf. the course Graph Theory.
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words determining qi-tours containg only states in the subset S of Q, in particular of
course the state qi. Obviously then Ri = RQ,i. The induction is on the cardinality of S,
denoted by s, and will prove regularity of each RS,i.

Induction Basis, s = 1: Now S = {qi}, the only possible tours are qi and qi, qi, and
the language RS,i is finite and thus regular (indeed, RS,i contains Λ and possibly some of
the symbols).

Induction Hypothesis: The claim holds true when s < h where h ≥ 2.
Induction Statement: The claim holds true when s = h.
Proof of the Induction Statement: Each qi-tour containg only states in S can be

expressed—possibly in several ways—in the form

qi, qi1 , K1, . . . , qin, Kn, qi

where qi, qi1 , . . . , qin , qi is a qi-circuit and qij , Kj consists of qij -tours containing only states
in S − {qi}. Let us denote the circuit qi, qi1 , . . . , qin, qi itself by C. The set of words

aj0aj1 · · · ajn (j = 1, . . . , ℓ)

determining the circuit C as a state transition chain is finite. Now, the language RS−{qi},ij

of all possible words determining qij -tours appearing in qij , Kj is regular according to the
Induction Hypothesis. Let us denote the corresponding regular expression by rj. Then
the language

ℓ∑

j=1

aj0r
∗
1 aj1r

∗
2 · · · r∗najn =denote rC

of all possible words determining qi-tours of the given form qi, qi1 , K1, . . . , qin , Kn, qi is
regular, too.

Thus, if C1, . . . , Cm are exactly all qi-circuits containing only states in S, then the
claimed regular language RS,i is rC1 + · · ·+ rCm .

The proof of the theorem is now very similar to the induction proof above. Any state
transition chain leading from the initial state q0 to a terminal state will either consist of
q0-tours (in case the initial state is a terminal state) or is of the form

qi0 , K0, qi1 , K1, . . . , qin, Kn

where i0 = 0, qin is a terminal state, qi0 , qi1 , . . . , qin is a path, and qij , Kj consists of
qij -tours. As above, the language of the corresponding determining words will be regular.

Note. Since there often are a lot of arrows in a state diagram, a so-called partial state
diagram is used, where not all state transitions are indicated. Whenever an automaton,
when reading an input word, is in a situation where the diagram does not give a transition,
the input is immediately rejected. The corresponding state transition function is a partial
function, i.e., not defined for all possible arguments. It is fairly easy to see that this does
not increase the recognition power of finite automata. Every ”partial”finite automaton can
be made into an equivalent ”total” automaton by adding a new ”junk state”, and defining
all missing state transitions as transitions to the junk state, in particular transitions from
the junk state itself.

A finite automaton can also have idle states that cannot be reached from the initial
state. These can be obviously removed.
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2.3 Separation of Words. Pumping

The language L separates the words w and v if there exists a word u such that one of the
words wu and vu is in L and the other one is not. If L does not separate the words w and
v, then the words wu and vu are always either both in L or both in L, depending on u.

There is a connection between the separation power of a language recognized by a
finite automaton and the structure of the automaton:

Theorem 4. If the finite automaton M = (Q,Σ, q0, δ, A) recognizes the language L and
for the words w and v

δ∗(q0, w) = δ∗(q0, v),

then L does not separate w and v.

Proof. As is easily seen, in general

δ∗(qi, xy) = δ∗
(
δ∗(qi, x), y

)
.

So
δ∗(q0, wu) = δ∗

(
δ∗(q0, w), u

)
= δ∗

(
δ∗(q0, v), u

)
= δ∗(q0, vu).

Thus, depending on whether or not this is a terminal state, the words wu and vu are both
in L or both in L.

Corollary. If the language L separates any two of the n words w1, . . . , wn, then L is not
recognized by any finite automaton with less than n states.

Proof. If the finite automaton M = (Q,Σ, q0, δ, A) has less than n states then one of the
states appears at least twice among the states

δ∗(q0, w1) , . . . , δ∗(q0, wn).

The language Lpal of all palindromes over an alphabet is an example of a language
that cannot be recognized using only a finite number of states (assuming that there are
at least two symbols in the alphabet). A word w is a palindrome if ŵ = w. Indeed
Lpal separates all pairs of words, any two words can be extended to a palindrome and a
nonpalindrome. There are numerous languages with a similar property, e.g. the language
Lsqr of all so-called square words, i.e., words of the form w2.

Separation power is also closely connected with the construction of the smallest fi-
nite automaton recognizing a language, measured by the number of states, the so-called
minimization of a finite automaton. More about this later.

Finally let us consider a situation rather like the one in the above proof where a finite
automaton has exactly n states and the word to be accepted is at least of length n:

x = a1a2 · · · any,

where a1, . . . , an are input symbols and y is a word. Among the states

q0 = δ∗(q0,Λ) , δ∗(q0, a1) , δ∗(q0, a1a2) , . . . , δ∗(q0, a1a2 · · · an)

there at least two identical ones, say

δ∗(q0, a1a2 · · · ai) = δ∗(q0, a1a2 · · · ai+p).
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Let us denote for brevity

u = a1 · · · ai , v = ai+1 · · · ai+p and w = ai+p+1 · · · any.

But then the words uvmw (m = 0, 1, . . . ) clearly will be accepted as well! This result is
known as the

Pumping Lemma (”uvw-Lemma”). If the language L can be recognized by a finite
automaton with n states, x ∈ L and |x| ≥ n, then x can be written in the form x = uvw
where |uv| ≤ n, v 6= Λ and the ”pumped” words uvmw are all in L.

Pumping Lemma is often used to show that a language is not regular, since otherwise
the pumping would produce words easily seen not to be in the language.

2.4 Nondeterministic Finite Automata

Nondeterminism means freedom of making some choices, i.e., any of the several possible
given alternatives can be chosen. The allowed alternatives must however be clearly defined
and (usually) finite in number. Some alternatives may be better than others, that is, the
goal can be achieved only through proper choices.

In the case of a finite automaton nondeterminism means a choice in state transition,
there may be several alternative next states to be chosen from, and there may be several
initial states to start with. This is indicated by letting the values of the transition function
to be sets of states containing all possible alternatives for the next state. Such a set can
be empty, which means that no state transition is possible, cf. the Note on page 8 on
partial state diagrams.

Finite automata dealt with before were always deterministic. We now have to mention
carefully the type of a finite automaton.

Defined formally a nondeterministic finite automaton (NFA) is a quintuple M =
(Q,Σ, S, δ, A) where

• Q, Σ and A are as for the deterministic finite automaton;

• S is the set of initial states;

• δ is the (state) transition function which maps each pair (qi, a), where qi is a state
and a is an input symbol, to exactly one subset T of the state set Q: δ(qi, a) = T .

Note that either S or T (or both) can be empty. The set of all subsets of Q, i.e., the
powerset of Q, is usually denoted by 2Q.

We can immediately extend the state transition function δ in such a way that its first
argument is a set of states:

δ̂(∅, a) = ∅ and δ̂(U, a) =
⋃

qi∈U

δ(qi, a).

We can further define δ̂∗ as δ∗ was defined above:

δ̂∗(U,Λ) = U and δ̂∗(U, ua) = δ̂
(
δ̂∗(U, u), a

)
.

M accepts a word w if there is at least one terminal state in the set of states δ̂∗(S, w).
Λ is accepted if there is at least one terminal state in S. The set of exactly all words
accepted by M is the language L(M) recognized by M .
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The nondeterministic finite automaton may be thought of as a generalization of the
deterministic finite automaton, obtained by identifying in the latter each state qi by the
corresponding singleton set {qi}. It is however no more powerful in recognition ability:

Theorem 5. If a language can be recognized by a nondeterministic finite automaton, then
it can be recognized by deterministic finite automaton, too, and is thus regular.

Proof. Consider a language L recognized by the nondeterministic finite automaton M =
(Q,Σ, S, δ, A). The equivalent deterministic finite automaton is then M1 = (Q1,Σ, q0,
δ1, A1) where

Q1 = 2Q , q0 = S , δ1 = δ̂ ,

and A1 consists of exactly all sets of states having a nonempty intersection with A. The
states of M1 are thus all sets of states of M .

We clearly have δ∗1 (q0, w) = δ̂∗(S, w), so M and M1 accept exactly the same words,
and M1 recognizes the language L.

A somewhat different kind of nondeterminism is obtained when in addition so-called
Λ-transitions are allowed. The state transition function δ of a nondeterministic finite
automaton is then extended to all pairs (qi,Λ) where qi is a state. The resulting automaton
is a nondeterministic finite automaton with Λ-transitions (Λ-NFA). The state transition
δ(qi,Λ) = T is interpreted as allowing the automaton to move from the state qi to any of
the states in T , without reading a new input symbol. If δ(qi,Λ) = ∅ or δ(qi,Λ) = {qi},
then there is no Λ-transition from qi to any other state.

For transitions other than Λ-transitions δ can be extended to sets of states exactly as
before. For Λ-transitions the extension is analogous:

δ̂(∅,Λ) = ∅ and δ̂(U,Λ) =
⋃

qi∈U

δ(qi,Λ).

Further, we can extend δ to the ”star function” for the Λ-transitions”: δ̂∗(U,Λ) = V if

• states in U are also in V ;

• states in δ̂(V,Λ) are also in V ;

• each state in V is either a state in U or then it can be achieved by repeated
Λ-transitions starting from some state in U .

And finally we can extend δ for transitions other than the Λ-transitions:

δ̂∗(U, ua) = δ̂∗
(
δ̂
(
δ̂∗(U, u), a

)
,Λ

)
.

Note in particular that for an input symbol a

δ̂∗(U, a) = δ̂∗
(
δ̂
(
δ̂∗(U,Λ), a

)
,Λ

)
,

i.e., first there are Λ-transitions, then the ”proper” state transition determined by a, and
finally again Λ-transitions.

The words accepted and the language recognized by a Λ-NFA are defined as before.
But still there will be no more recognition power:

Theorem 6. If a language can be recognized by a Λ-NFA, then it can also be recognized
by a nondeterministic finite automaton without Λ-transitions, and is thus again regular.
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Proof. Consider a language L recognized by the Λ-NFA M = (Q,Σ, S, δ, A). The equiva-
lent nondeterministic finite automaton (without Λ-transitions) is then M1 = (Q,Σ, S1, δ1,
A) where

S1 = δ̂∗(S,Λ) and δ1(qi, a) = δ̂∗
(
{qi}, a

)
.

We clearly have δ̂∗1 (S1, w) = δ̂∗(S, w), so M and M1 accept exactly the same words, and
M1 recognizes the language L. Note especially that if M accepts Λ, then it is possible to
get from some state in S to some terminal state using only Λ-transitions, and the terminal
state is then in S1.

Also nonterministic automata—with or without Λ-transitions—can be given using
state diagrams in an obvious fashion. If there are several parallel arrows connecting a
state to another state (or itself), then they are often replaced by one arrow labelled by
the list of labels of the original arrows.

2.5 Kleene’s Theorem

In Theorem 3 above it was proved that a language recognized by a deterministic finite
automaton is always regular, and later this was shown for nondeterministic automata,
too. The converse holds true also.

Kleene’s Theorem. Regular languages are exactly all languages recognized by finite au-
tomata.

Proof. What remains to be shown is that every regular language can be recognized by a
finite automaton. Having the structure of a regular expression in mind, we need to show
first that the ”atomic” languages ∅, {Λ} and {a}, where a is a symbol, can be recognized
by finite automata. This is quite easy. Second, we need to show that if the languages L1

and L2 can be recognized by finite automata, then so can the languages L1∪L2 and L1L2.
For union this was done in Theorem 2. And third, we need to show that if the language L
is recognized by a finite automaton, then so is L+, and consequently also L∗ = L+∪{Λ}.

Let us then assume that the languages L1 and L2 are recognized by the nondetermin-
istic finite automata

M1 = (Q1,Σ1, S1, δ1, A1) and M2 = (Q2,Σ2, S2, δ2, A2),

respectively. It may be assumed that Σ1 = Σ2 =denote Σ (just add null transitions). And
further, it may be assumed that the sets of states Q1 and Q2 are disjoint. The new finite
automaton recognizing L1L2 is now

M = (Q,Σ, S1, δ, A2)

where Q = Q1 ∪Q2 and δ is defined by

δ(q, a) =

{
δ1(q, a) if q ∈ Q1

δ2(q, a) if q ∈ Q2

and δ(q,Λ) =





δ1(q,Λ) if q ∈ Q1 − A1

δ1(q,Λ) ∪ S2 if q ∈ A1

δ2(q,Λ) if q ∈ Q2.

A terminal state of M can be reached only by first moving using a Λ-transition from a
terminal state of M1 to an initial state of M2, and this takes place when M1 accepted the
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prefix of the input word then read. To reach the terminal state after that, the remaining
suffix must be in L2.

Finally consider the case where the language L is recognized by the nondeterministic
finite automaton

M = (Q,Σ, S, δ, A).

Then L+ is recognized by the finite automaton

M ′ = (Q,Σ, S, δ′, A)

where

δ′(q, a) = δ(q, a) and δ′(q,Λ) =

{
δ(q,Λ) if q /∈ A

δ(q,Λ) ∪ S if q ∈ A.

It is always possible to move from a terminal state to an initial state using a Λ-transition.
This makes possible repeated concatenation. If the input word is divided into subwords
according to where these Λ-transitions take place, then the subwords are all in the language
L.

Kleene’s Theorem and other theorems above give characterizations for regular lan-
guages both via regular expressions and as languages recognized by finite automata of
various kinds (DFA, NFA and Λ-NFA). These characterizations are different in nature
and useful in different situations. Where a regular expression is easy to use, a finite au-
tomaton can be a quite difficult tool to deal with. On the other hand, finite automata can
make easy many things which would be very tedious using regular expressions. This is seen
in the proofs above, too, just think how difficult it would be to show that the intersection
of two regular languages is again regular, by directly using regular expressions.

2.6 Minimization of Automata

There are many finite automata recognizing the same regular language L. A deterministic
finite automaton recognizing L with the smallest possible number of states is a minimal
finite automaton. Such a minimal automaton can be found by studying the structure of
the language L. To start with, L must then of course be regular and specified somehow.
Let us however consider this first in a quite general context. The alphabet is Σ.

In Section 2.3 separation of words by the language L was discussed. Let us now denote
w 6≡L v if the language L separates the words w and v, and correspondingly w ≡L v if
L does not separate w and v. In the latter case we say that the words w and v are
L-equivalent. We may obviously agree that always w ≡L w, and clearly, if w ≡L v then
also v ≡L w.

Lemma. If w ≡L v and v ≡L u, then also w ≡L u. (That is, ≡L is transitive.)

Proof. If w ≡L v and v ≡L u, and z is a word, then there are two alternatives. If vz is in
L, then so are wz and uz. On the other hand, if vz is not in L, then neither are wz and
uz. We deduce thus that w ≡L u.

As a consequence, the words in Σ∗ are partitioned into so-called L-equivalence classes:
Words w and v are in the same class if and only if they are L-equivalent. The class
containg the word w is denoted by [w]. The ”representative” can be any other word v in
the class: If w ≡L v, then [w] = [v]. Note that if w 6≡L u, then the classes [w] and [u]
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do not intersect, since a common word v would mean w ≡L v and v ≡L u and, by the
Lemma, w ≡L u.

The number of all L-equivalence classes is called the index of the language L. In
general it can be infinite, Theorem 4 however immediately implies

Theorem 7. If a language is recognized by a deterministic finite automaton with n states,
then the index of the language is at most n.

On the other hand,

Theorem 8. If the index of the language L is n, then L can be recognized by a determin-
istic finite automaton with n states.

Proof. Consider a language L of index n, and its n different equivalence classes

[x0], [x1], . . . , [xn−1]

where in particular x0 = Λ.
A deterministic finite automaton M =

(
Q,Σ, q0, δ, A

)
recognizing L is then obtained

by taking
Q =

{
[x0], [x1], . . . , [xn−1]

}
and q0 = [x0] = [Λ],

letting A consist of exactly those equivalence classes that contain words in L, and defining

δ
(
[xi], a

)
= [xia].

δ is then well-defined because if x ≡L y then obviously also xa ≡L ya. The corresponding
δ∗ is also immediate:

δ∗
(
[xi], y

)
= [xiy].

L(M) will then consist of exactly those words w for which

δ∗
(
[Λ], w

)
= [Λw] = [w]

is a terminal state of M , i.e., contains words of L.
Apparently L ⊆ L(M), because if w ∈ L then [w] is a terminal state of M . On the

other hand, if there is a word v of L in [w] then w itself is in L, otherwise we would have
wΛ /∈ L and vΛ ∈ L and L would thus separate w and v. In other words, if w ∈ L then
[w] ⊆ L. So L(M) = L.

Corollary. The number of states of a minimal automaton recognizing the language L is
the value of the index of L.

Corollary (Myhill–Nerode Theorem). A language is regular if and only if it has a
finite index.

If a regular language L is defined by a deterministic finite automaton M = (Q,Σ, q0,
δ, A) recognizing it, then the minimization naturally starts from M . The first step is to
remove all idle states of M , i.e., states that cannot be reached from the initial state. After
this we may assume that all states of M can expressed as δ∗(q0, w) for some word w.

For the minimization the states of M are partitioned into M-equivalence classes as
follows. The states qi and qj are not M-equivalent if there is a word u such that one of the
states δ∗(qi, u) and δ∗(qj , u) is terminal and the other one is not, denoted by qi 6≡M qj .
If there is no such word u, then qi and qj are M-equivalent, denoted by qi ≡M qj. We
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may obviously assume qi ≡M qi. Furthermore, if qi ≡M qj , then also qj ≡M qi, and
if qi ≡M qj and qj ≡M qk it follows that qi ≡M qk. Each equivalence class consists of
mutually M-equivalent states, and the classes are disjoint. (Cf. the L-equivalence classes
and the equivalence relation ≡L.) Let us denote the M-equivalence class represented by
the state qi by 〈qi〉. Note that it does not matter which of the M-equivalent states is
chosen as the representative of the class. Let us then denote the set of all M-equivalence
classes by Q.

M-equivalence and L-equivalence are related since
〈
δ∗(q0, w)

〉
=

〈
δ∗(q0, v)

〉
if and

only if [w] = [v]. Because now all states can be reached from the initial state, there are as
many M-equivalence classes as there are L-equivalence classes, i.e., the number given by
the index of L. Moreover, M-equivalence classes and L-equivalence classes are in a 1–1
correspondence: 〈

δ∗(q0, w)
〉
⇋ [w],

in particular 〈q0〉 ⇋ [Λ].
The minimal automaton corresponding to the construct in the proof of Theorem 8 is

now
Mmin =

(
Q,Σ, 〈q0〉, δmin,A

)

where A consists of those M-equivalence classes that contain at least one terminal state,
and δmin is given by

δmin

(
〈qi〉, a

)
=

〈
δ(qi, a)

〉
.

Note that if an M-equivalence class contains a terminal state, then all its states are
terminal. Note also that if qi ≡M qj , then δ(qi, a) ≡M δ(qj , a), so that δmin is well-defined.

A somewhat similar construction can be started from a nondeterministic finite au-
tomaton, with or without Λ-transitions.

2.7 Decidability Problems

Nearly every characterization problem is algorithmically decidable for regular languages.
The most common ones are the following (where L or L1 and L2 are given regular lan-
guages):

• Emptiness Problem: Is the language L empty (i.e., does it equal ∅)?

It is fairly easy to check for a given finite automaton recognizing L, whether or not
there is a state transition chain from an initial state to a terminal state.

• Inclusion Problem: Is the language L1 included in the language L2?

Clearly L1 ⊆ L2 if and only if L1 − L2 = ∅.

• Equivalence Problem: Is L1 = L2?

Clearly L1 = L2 if and only if L1 ⊆ L2 and L2 ⊆ L1.

• Finiteness Problem: Is L a finite language?

It is fairly easy to check for a given finite automaton recognizing L, whether or not it
has arbitrarily long state transition chains from an initial state to a terminal state.
Cf. the proof of Theorem 3.
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• Membership Problem: Is the given word w in the language L or not?

Using a given finite automaton recognizing L it is easy to check whether or not it
accepts the given input word w.

2.8 Sequential Machines and Tranducers (A Brief

Overview)

A sequential machine is simply a deterministic finite automaton equipped with output.
Formally a sequential machine (SM) is a sextuple

S = (Q,Σ,∆, q0, δ, τ)

where Q, Σ, q0 and δ as in a deterministic finite automaton, ∆ is the output alphabet and
τ is the output function mapping each pair (qi, a) to a symbol in ∆. Terminal states will
not be needed.

δ is extended to the corresponding ”star function” δ∗ in the usual fashion. The exten-
sion of τ is given by the following:

1. τ∗(qi,Λ) = Λ

2. For a word w = ua where a is a symbol,

τ∗(qi, ua) = τ∗(qi, u)τ
(
δ∗(qi, u), a

)
.

The output word corresponding to the input word w is then τ∗(q0, w). The sequential
machine S maps the language L to the language

S(L) =
{
τ∗(q0, w)

∣∣ w ∈ L
}
.

Using an automaton construct it is fairly simple to show that a sequential machine always
maps a regular language to a regular language.

A generalized sequential machine (GSM)2 is as a sequential machine except that values
of the output function are words over ∆. Again it is not difficult to see that a generalized
sequential machine always maps a regular language to a regular language.

If a generalized sequential machine has only one state, then the mapping of words
(or languages) defined by it is called a morphism. Since there is only one state, it is not
necessary to write it down explicitly:

τ∗(Λ) = Λ and τ∗(ua) = τ∗(u)τ(a).

We then have for all words u and v over Σ the morphic equality

τ∗(uv) = τ∗(u)τ∗(v).

It is particularly easy to see that a morphism maps a regular language to a regular
language: Just map the corresponding regular expression using the morphism.

There are nondeterministic versions of sequential machines and generalized sequen-
tial machines. A more general concept however is a so-called transducer. Formally a
transducer is a quintuple

T = (Q,Σ,∆, S, δ)

2Sometimes GSM’s do have terminal states, too, they then map only words leading to a terminal state.
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where Q, Σ and ∆ are as for sequential machines, S is a set of initial states and δ is the
transition-output function that maps each pair (qi, a) to a finite set of pairs of the form
(qj , u). This is interpreted as follows: When reading the input symbol a in state qi the
transducer T can move to any state qj outputting the word u, provided that the pair
(qj , u) is in δ(qi, a).

Definition of the corresponding ”hat-star function” δ̂∗ is now a bit tedious (omitted
here), anyway the transduction of the language L by T is

T (L) =
⋃

w∈L

{
u
∣∣ (qi, u) ∈ δ̂∗(S, w) for some state qi

}
.

In this case, too, it is the case that a transducer always maps a regular language to a
regular language, i.e., transduction preserves regularity.

The mapping given by a transducer with only one state is often called a finite substi-
tution. As for morphisms, it is simple to see that a finite substitution preserves regularity:
Just map the corresponding regular expression by the finite substitution.



Chapter 3

GRAMMARS

3.1 Rewriting Systems

A rewriting system, and a grammar in particular, gives rules endless repetition of which
produces all words of a language, starting from a given initial word. Often only words of
a certain type will be allowed in the language. This kind of operation is in a sense dual
to that of an automaton recognizing a language.

Definition. A rewriting system1 (RWS) is a pair R = (Σ, P ) where

• Σ is an alphabet;

• P =
{
(p1, q1), . . . , (pn, qn)

}
is a finite set of ordered pairs of words over Σ, so-called

productions. A production (pi, qi) is usually written in the form pi → qi.

The word v is directly derived by R from the word w if w = rpis and v = rqis for some
production (pi, qi), this is denoted by

w ⇒R v.

From ⇒R the corresponding ”star relation”2 ⇒∗
R is obtained as follows (cf. extension of a

transition function to an ”star function”):

1. w ⇒∗
R w for all words w over Σ.

2. If w ⇒R v, it follows that w ⇒∗
R v.

3. If w ⇒∗
R v and v ⇒∗

R u, it follows that w ⇒∗
R u.

4. w ⇒∗
R v only if this follows from items 1.–3.

If then w ⇒∗
R v, we say that v is derived from w by R. This means that either v = w

or/and there is a chain of direct derivations

w = w0 ⇒R w1 ⇒R · · · ⇒R wℓ = v,

a so-called derivation of v from w. ℓ is the length of the derivation.

1Rewriting systems are also called semi-Thue systems. In a proper Thue system there is the additional
requirement that if p → q is a production then so is q → p, i.e., each production p ↔ q is two-way.

2Called the reflexive-transitive closure of ⇒R.

18
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As such the only thing an RWS R does is to derive words from other words. However,
if a set A of initial words, so-called axioms, is fixed, then the language generated by R is
defined as

Lgen(R,A) = {v | w ⇒∗
R v for some word w ∈ A}.

Usually this A contains only one word, or it is finite or at least regular. Such an RWS is
”grammar-like”.

An RWS can also be made ”automaton-like” by specifying a language T of allowed
terminal words. Then the language recognized by the RWS R is

Lrec(R, T ) = {w | w ⇒∗
R v for some word v ∈ T}.

This T is usually regular, in fact a common choice is T = ∆∗ for some subalphabet ∆ of
Σ. The symbols of ∆ are then called terminal symbols (or terminals) and the symbols in
Σ−∆ nonterminal symbols (or nonterminals).

Example. A deterministic finite automaton M = (Q,Σ, q0, δ, B) can be transformed to
an RWS in (at least) two ways. It will be assumed here that the intersection Σ ∩ Q is
empty.

The first way is to take the RWS R1 = (Ω, P1) where Ω = Σ ∪ Q and P1 contains
exactly all productions

qia → qj where δ(qi, a) = qj ,

and the productions
a → q0a where a ∈ Σ.

Taking T to be the language B +Λ or B, depending on whether or not Λ is in L(M), we
have then

Lrec(R1, T ) ∩ Σ∗ = L(M).

A typical derivation accepting the word w = a1 · · · am is of the form

w ⇒R1
q0w ⇒R1

qi1a2 · · · am ⇒∗
R1

qim

where qim is a terminal state. Finite automata are thus essentially rewriting systems!
Another way to transform M to an equivalent RWS is to take R2 = (Ω, P2) where P2

contains exactly all productions

qi → aqj where δ(qi, a) = qj ,

and the production qi → Λ for each terminal state qi. Then

Lgen

(
R2, {q0}

)
∩ Σ∗ = L(M).

An automaton is thus essentially transformed to a grammar!

There are numerous ways to vary the generating/recognizing mechanism of a RWS.

Example. (Markov’s normal algorithm) Here the productions of an RWS are given
as an ordered list

P : p1 → q1, . . . , pn → qn,

and a subset F of P is specified, the so-called terminal productions. In a derivation it
is required that always the first applicable production in the list is used, and it is used
in the first applicable position in the word to be rewritten. Thus, if pi → qi is the first
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applicable production in the list, then it has to be applied to the leftmost subword pi of the
word to be rewritten. The derivation halts when no applicable production exists or when
a terminal production is applied. Starting from a word w the normal algorithm either
halts and generates a unique word v, or then it does not stop at all. In the former case
the word v is interpreted as the output produced by the input w, in the latter case there
is no output. Normal algorithms have a universal computing power, that is, everything
that can be computed can be computed by normal algorithms. They can also be used for
recognition of languages: An input word is recognized when the derivation starting from
the word halts. Normal algorithms have a universal recognition power, too.

3.2 Grammars

A grammar is a rewriting system of a special type where the alphabet is partitioned into
two sets of symbols, the so-called terminal symbols (terminals) or constants and the so-
called nonterminal symbols (nonterminals) or variables, and one of the nonterminals is
specified as the axiom (cf. above).

Definition. A grammar 3 is a quadruple G = (ΣN, ΣT, X0, P ) where ΣN is the nonter-
minal alphabet, ΣT is the terminal alphabet, X0 ∈ ΣN is the axiom, and P consists of
productions pi → qi such that at least one nonterminal symbol appears in pi.

If G is a grammar, then (ΣN∪ΣT, P ) is an RWS, the so-called RWS induced by G. We
denote Σ = ΣN ∪ ΣT in the sequel. It is customary to denote terminals by small letters
(a, b, c, . . . , etc.) and nonterminals by capital letters (X, Y, Z, . . . , etc.). The relations ⇒
and ⇒∗, obtained from the RWS induced by G, give the corresponding relations ⇒G and
⇒∗

G for G. The language generated by G is then

L(G) = {w | X0 ⇒
∗
G w and w ∈ Σ∗T}.

A grammar G is

• context-free or CF if in each production pi → qi the left hand side pi is a single
nonterminal. Rewriting then does not depend on which ”context” the nonterminal
appears in.

• linear if it is CF and the right hand side of each production contains at most one
nonterminal. A CF grammar that is not linear is nonlinear.

• context-sensitive or CS 4 if each production is of the form pi → qi where

pi = uiXivi and qi = uiwivi,

for some ui, vi ∈ Σ∗, Xi ∈ ΣN and wi ∈ Σ+. The only possible exception is the
production X0 → Λ, provided that X0 does not appear in the right hand side of
any of the productions. This exception makes it possible to include the empty
word in the generated language L(G), when needed. Rewriting now depends on the
”context” or neighborhood the nonterminal Xi occurs in.

3To be exact, a so-called generative grammar. There is also a so-called analytical grammar that works
in a dual automaton-like fashion.

4Sometimes a CS grammar is simply defined as a length-increasing grammar. This does not affect the
family of languages generated.
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• length-increasing if each production pi → qi satisfies |pi| ≤ |qi|, again with the
possible exception of the production X0 → Λ, provided that X0 does not appear in
the right hand side of any of the productions.

Example. The linear grammar

G =
(
{X}, {a, b}, X, {X → Λ, X → a,X → b,X → aXa,X → bXb}

)

generates the language Lpal of palindromes over the alphabet {a, b}. (Recall that a palin-
drome is a word w such that ŵ = w.) This grammar is not length increasing (why not?).

Example. The grammar

G =
(
{X0, $, X, Y }, {a}, X0, {X0 → $X$, $X → $Y, Y X → XXY,

Y $ → XX$, X → a, $ → Λ}
)

generates the language {a2
n

| n ≥ 0}. $ is an endmarker and Y ”moves” from left to
right squaring each X. If the productions X → a and $ → Λ are applied prematurely, it
is not possible to get rid of the Y thereafter, and the derivation will not terminate. The
grammar is neither CF, CS nor length-increasing.

3.3 Chomsky’s Hierarchy

In Chomsky’s hierachy grammars are divided into four types:

• Type 0: No restrictions.

• Type 1: CS grammars.

• Type 2: CF grammars.

• Type 3: Linear grammars having productions of the form Xi → wXj or Xj → w
whereXi andXj are nonterminals and w ∈ Σ∗T, the so-called right-linear grammars.5

Grammars of Types 1 and 2 generate the so-called CS-languages and CF-languages,
respectively, the corresponding families of languages are denoted by CS and CF .

Languages generated by Type 0 grammars are called computably enumerable languages
(CE-languages), the corresponding family is denoted by CE . The name comes from the
fact that words in a CE-language can be listed algorithmically, i.e., there is an algorithm
which running indefinitely outputs exactly all words of the language one by one. Such an
algorithm is in fact obtained via the derivation mechanism of the grammar. On the other
hand, languages other than CE-languages cannot be listed algorithmically this way. This
is because of the formal and generally accepted definition of algorithm!

Languages generated by Type 3 grammars are familiar:

Theorem 9. The family of languages generated by Type 3 grammars is the family R of
regular languages.

5There is of course the corresponding left-linear grammar where productions are of the formXi → Xjw

and Xj → w. Type 3 could equally well be defined using this.
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Proof. This is essentially the first example in Section 3.1. To get a right-linear grammar
just take the axiom q0. On the other hand, to show that a right-linear grammar generates
a regular language, a Λ-NFA simulating the grammar is used (this is left to the reader as
an exercise).

Chomsky’s hierarchy may thus be thought of as a hierarchy of families of languages
as well:

R ⊂ CF ⊂ CS ⊂ CE .

As noted above, the language Lpal of all palindromes over an alphabet containg at least
two symbols is CF but not regular, showing that the first inclusion is proper. The other
inclusions are proper, too, as will be seen later.

Regular languages are closed under many operations on languages, i.e., operating
on regular languages always produces a regular language. Such operations include e.g.
set-theoretic operations, concatenation, concatenation closure, and mirror image. Other
families of languages in Chomsky’s hierarchy are closed under quite a few language opera-
tions, too. This in fact makes them natural units of classification: A larger family always
contains languages somehow radically different, not only languages obtained from the ones
in the smaller family by some common operation. Families other than R are however not
closed even under all operations above, in particular intersection and complementation
are troublesome.

Lemma. A grammar can always be replaced by a grammar of the same type that generates
the same language and has no terminals on left hand sides of productions.

Proof. If the initial grammar is G = (ΣN,ΣT, X0, P ), then the new grammar is G′ =
(Σ′

N,ΣT, X0, P
′) where

Σ′
N = ΣN ∪ Σ′

T , Σ′
T = {a′ | a ∈ ΣT}

(Σ′
T is a disjoint ”shadow alphabet” of ΣT), and P ′ is obtained from P by changing each

terminal symbol a in each production to the corresponding ”primed”symbol a′, and adding
the terminating productions a′ → a.

Theorem 10. Each family in the Chomsky hierarchy is closed under the operations ∪,
concatenation, ∗ and +.

Proof. The case of the family R was already dealt with. If the languages L and L′ are
generated by grammars

G = (ΣN,ΣT, X0, P ) and G′ = (Σ′
N,Σ

′
T, X

′
0, P

′)

of the same type, then it may be assumed first that ΣN ∩ Σ′
N = ∅, and second that left

hand sides of productions do not contain terminals (by the Lemma above).
L ∪ L′ is then generated by the grammar

H = (∆N,∆T, Y0, Q)

of the same type where

∆N = ΣN ∪ Σ′
N ∪ {Y0} , ∆T = ΣT ∪ Σ′

T,

Y0 is a new nonterminal, and Q is obtained in the following way:
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1. Take all productions in P and P ′.

2. If the type is Type 1, remove the productions X0 → Λ and X ′
0 → Λ (if any).

3. Add the productions Y0 → X0 and Y0 → X ′
0.

4. If the type is Type 1 and Λ is in L or L′, add the production Y0 → Λ.

LL′ in turn is generated by the grammar H when items 3. and 4. are replaced by

3’. Add the production Y0 → X0X
′
0. If the type is Type 1 and Λ is in L (resp. L′), add

the production Y0 → X ′
0 (resp. Y0 → X0).

4’. If the type is Type 1 and Λ appears in both L and L′, add the production Y0 → Λ.

The type of the grammar is again preserved. Note how very important it is to make
the above two assumptions, so that adjacent derivations do not disturb each other for
grammars of Types 0 and 1.

If G is of Type 2, then L∗ is generated by the grammar

K =
(
ΣN ∪ {Y0},ΣT, Y0, Q

)

where Q is obtained from P by adding the productions

Y0 → Λ and Y0 → Y0X0.

L+ is generated if the production Y0 → Λ is replaced by Y0 → X0.
For Type 1 the construct is a bit more involved. If G is of Type 1, another new

nonterminal Y1 is added, and Q is obtained as follows: Remove from P the (possible)
production X0 → Λ, and add the productions

Y0 → Λ , Y0 → X0 and Y0 → Y1X0.

Then, for each terminal a, add the productions

Y1a → Y1X0a and Y1a → X0a.

L+ in turn is generated if the production Y0 → Λ is omitted (whenever necessary). Note
how important it is again for terminals to not appear on left hand sides of productions, to
prevent adjacent derivations from interfering with each other. Indeed, a new derivation
can only be started when the next one already begins with a terminal.

For Type 0 the construct is quite similar to that for Type 1.

An additional fairly easily seen closure result is that each family in the Chomsky hierarchy
is closed under mirror image of languages.

There are families of languages other than the ones in Chomsky’s hierarchy related to
it, e.g.

• languages generated by linear grammars, so-called linear languages (the family
LIN ),

• complements of CE languages, so-called co–CE-languages (the family co−CE), and

• the intersection of CE and co−CE , so-called computable languages (the family C).
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Computable languages are precisely those languages whose membership problem is algo-
rithmically decidable, simply by listing words in the language and its complement in turns,
and checking which list will contain the given input word.

It is not necessary to include in the above families of languages the family of languages
generated by length-increasing grammars, since it equals CS:

Theorem 11. For each length-increasing grammar there is a CS-grammar generating the
same language.

Proof. Let us first consider the case where in a length-increasing grammar G = (ΣN,ΣT,
X0, P ) there is only one length-increasing production p → q not of the allowed form, i.e.,
the grammar

G′ =
(
ΣN,ΣT, X0, P − {p → q}

)

is CS.
By the Lemma above, it may be assumed that there are no terminals in the left hand

sides of productions of G. Let us then show how G is transformed to an equivalent
CS-grammar G1 = (∆N, ΣT, X0, Q). For that we denote

p = U1 · · ·Um and q = V1 · · ·Vn

where each Ui and Vj is a nonterminal, and n ≥ m ≥ 2. We take new nonterminals
Z1, . . . , Zm and let ∆N = ΣN ∪ {Z1, . . . , Zm}. Q then consists of the productions of P ,
of course excluding p → q, plus new productions taking care of the action of this latter
production:

U1U2 · · ·Um → Z1U2 · · ·Um,

Z1U2U3 · · ·Um → Z1Z2U3 · · ·Um,

...

Z1 · · ·Zm−1Um → Z1 · · ·Zm−1ZmVm+1 · · ·Vn,

Z1Z2 · · ·ZmVm+1 · · ·Vn → V1Z2 · · ·ZmVm+1 · · ·Vn,

...

V1 · · ·Vm−1ZmVm+1 · · ·Vn → V1 · · ·Vm−1VmVm+1 · · ·Vn.

(Here underlining just indicates rewriting.) The resulting grammar G1 is CS and generates
the same language as G. Note how the whole sequence of the new productions should
always be applied in the derivation. Indeed, if during this sequence some other productions
could be applied, then they could be applied already before the sequence, or after it.

A general length-increasing grammar G is then transformed to an equivalent CS-
grammar as follows. We may again restrict ourselves to the case where there are no
terminals in the left hand sides of productions. Let us denote by G′ the grammar ob-
tained by removing from G all productions not of the allowed form (if any). The removed
productions are then added back one by one to G′ transforming it each time to an equiv-
alent CS-grammar as described above. The final result is a CS-grammar that generates
the same language as G.
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CF-LANGUAGES

4.1 Parsing of Words

We note first that productions of a CF-grammar sharing the same left hand side non-
terminal, are customarily written in a joint form. Thus, if the productions having the
nonterminal X in the left hand side are

X → w1 , . . . , X → wt,

then these can be written jointly as

X → w1 | w2 | · · · | wt.

Of course, we should then avoid using the vertical bar | as a symbol of the grammar!
Let us then consider a general CF-grammar G = (ΣN,ΣT, X0, P ), and denote Σ =

ΣN ∪ ΣT. To each derivation X0 ⇒∗
G w a so-called derivation tree (or parse tree) can

always be attached. The vertices of the tree are labelled by symbols in Σ or the empty
word Λ. The root of the tree is labelled by the axiom X0. The tree itself is constructed as
follows. The starting point is the root vertex. If the first production of the derivation is
X0 → S1 · · ·Sℓ where S1, . . . , Sℓ ∈ Σ, then the tree is extended by ℓ vertices labelled from
left to right by the symbols S1, . . . , Sℓ:

X0

S1 S2 Sl
…

On the other hand, if the first production is X0 → Λ, then the tree is extended by one
vertex labelled by Λ:

X0

Λ

25
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Now, if the second production in the derivation is applied to the symbol Si of the second
word, and the production is Si → R1 · · ·Rk, then the tree is extended from the corre-
sponding vertex, labelled by Si, by k vertices, and these are again labelled from left to
right by the symbols R1, . . . , Rk (similarly in the case of Si → Λ):

X0

S1 S2 Sl
…Si

…

R1 R2 Rk
…

Construction of the tree is continued in this fashion until the whole derivation is dealt
with. Note that the tree can always be extended from any ”free” nonterminal, not only
those added last. Note also that when a vertex is labelled by a terminal or by Λ, the tree
cannot any more be extended from it, such vertices are called leaves. The word generated
by the derivation can then be read catenating labels of leaves from left to right.

Example. The derivation

S ⇒ B ⇒ 0BB ⇒ 0B1B ⇒ 011B ⇒ 0111

by the grammar

G =
(
{A,B, S}, {0, 1}, S, {S → A | B,A → 0 | 0A | 1AA | AA1 | A1A,

B → 1 | 1B | 0BB | BB0 | B0B}
)

corresponds to the derivation tree

S

B

0 B B

1 1 B

1

By the way, this grammar generates exactly all words over {0, 1} with nonequal numbers
of 0’s and 1’s.

Derivation trees call to mind the parsing of sentences, familiar from the grammars of
many natural languages, and also the parsing of certain programming languages.
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Example. In the English language a set of simple rules of parsing might be of the form

〈declarative sentence〉 → 〈subject〉〈verb〉〈object〉

〈subject〉 → 〈proper noun〉

〈proper noun〉 → Alice | Bob

〈verb〉 → reminded

〈object〉 → 〈proper noun〉 | 〈reflexive pronoun〉

〈reflexive pronoun〉 → himself | herself

where a CF-grammar is immediately identified. The Finnish language is rather more
difficult because of inflections, cases, etc.

Example. In the programming language C a set of simple syntax rules might be

〈statement〉 → 〈statement〉〈statement〉 | 〈for-statement〉 | 〈if-statement〉 | · · ·

〈for-statement〉 → for ( 〈expression〉 ; 〈expression〉 ; 〈expression〉 ) 〈statement〉

〈if-statement〉 → if ( 〈expression〉 ) 〈statement〉

〈compound〉 → { 〈statement〉 }

etc., where again the structure of a CF-grammar is identified.

A derivation is a so-called leftmost derivation if it is always continued from the leftmost
nonterminal. Any derivation can be replaced by a leftmost derivation generating the same
word. This should be obvious already by the fact that a derivation tree does not specify
the order of application of productions, and a leftmost derivation can always be attached
to a derivation tree.

A CF-grammar G is ambiguous if some word of L(G) has at least two different leftmost
derivations, or equivalently at least two different derivation trees. A CF-grammar that
is not ambiguous is unambiguous. Grammars corresponding to parsing of sentences of
natural languages are typically ambiguous, the exact meaning of the sentence is given
by the semantic context. In programming languages ambiguity should be avoided (not
always so successfully, it seems).

Ambiguity is more a property of the grammar than that of the language generated.
On the other hand, there are CF-languages that cannot be generated by any unambiguous
CF-grammar, the so-called inherently ambiguous languages.

Example. The grammar

G =
(
{S, T, F}, {a,+,×, (, )}, S, {S → S + T | T, T → T × F | F, F → (S) | a}

)

generates simple arithmetical formulas. Here a is a ”placeholder” for numbers, variables
etc. Let us show that G is unambiguous. This is done by induction on the length ℓ of the
formula generated.

The basis of the induction is the case ℓ = 1 which is trivial, since the only way of
generating a is

S ⇒ T ⇒ F ⇒ a.

Let us then make the induction hypothesis, according to which all leftmost derivations of
words in L(G) up to the length p− 1 are unique, and consider a leftmost derivation of a
word w of length p in L(G).
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Let us take first the case where w has at least one occurrence of the symbol + that is
not inside parentheses. Occurrences of + via T and F will be inside parentheses, so that
the particular + can only be derived using the initial production S → S + T , where the +
is the last occurrence of + in w not inside parentheses. Leftmost derivation of w is then
of the form

S ⇒ S + T ⇒∗ u+ T ⇒∗ u+ v = w.

Its ”subderivations” S ⇒∗ u and T ⇒∗ v are both leftmost derivations, and thus unique
by the induction hypthesis, hence the leftmost derivation of w is also unique. Note that
the word v is in the language L(G) and its leftmost derivation S ⇒ T ⇒∗ v is unique.

The case where there is in w a (last) occurrence of × not inside parentheses, while all
occurrences of + are inside parentheses, is dealt with analogously. The particular × is
then generated via either S or T . The derivation via S starts with S ⇒ T ⇒ T × F , and
the one via T with T ⇒ T ×F . Again this occurrence of × is the last one in w not inside
parentheses, and its leftmost derivation is of the form

S ⇒ T ⇒ T × F ⇒∗ u× F ⇒∗ u× v = w,

implying, via the induction hypothesis, that w indeed has exactly one leftmost derivation.
Finally there is the case where all occurrences of both + and × are inside parentheses.

The derivation of w must in this case begin with

S ⇒ T ⇒ F ⇒ (S),

and hence w is of the form (u). Because then u, too, is in L(G), its leftmost derivation
is unique by the induction hypothesis, and the same is true for w.

4.2 Normal Forms

The exact form of CF-grammars can be restricted in many ways without reducing the
family of languages generated. For instance, as such a general CF-grammar is neither CS
nor length-increasing, but it can be replaced by such a CF-grammar:

Theorem 12. Any CF-language can be generated by a length-increasing CF-grammar.

Proof. Starting from a CF-grammar G = (ΣN,ΣT, X0, P ) we construct an equivalent
length-increasing CF-grammar

G′ =
(
ΣN ∪ {S},ΣT, S, P

′
)
.

If Λ is in L(G), then for S we take the productions S → Λ | X0, if not, then only the
production S → X0. To get the other productions we first define recursively the set ∆Λ

of nonterminals of G:

1. If P contains a production Y → Λ, then Y ∈ ∆Λ.

2. If P contains a production Y → w where w ∈ ∆+
Λ , then Y ∈ ∆Λ.

3. A nonterminal is in ∆Λ only if it is so by items 1. and 2.

Productions of P ′, other than those for the nonterminal S, are now obtained from pro-
ductions in P as follows:
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(i) Delete all productions of the form Y → Λ.

(ii) For each production Y → w, where w contains at least one symbol in ∆Λ, add in
P ′ all productions obtained from it by deleting in w at least one symbol of ∆Λ but
not all of its symbols.

It should be obvious that now L(G′) ⊆ L(G) since, for each derivation of G′, symbols
of ∆Λ in the corresponding derivation of G can always be erased if needed. On the other
hand, for each derivation of G there is an equivalent derivation of G′. The case of the
(possible) derivation of Λ is clear, so let us consider the derivation of the nonempty word
v. Again the case is clear if the productions used are all in P ′. In the remaining cases
we show how a derivation tree T of the word v for G is transformed to its derivation tree
T ′ for G′. Now T must have leaves labelled by Λ. A vertex of T that only has branches
ending in leaves labelled by Λ, is called a Λ-vertex. Starting from some leaf labelled by Λ
let us traverse the tree up as far as only Λ-vertices are met. In this way it is not possible
to reach the axiom, otherwise the derivation would be that of Λ. We then remove from
the tree T all vertices traversed in this way starting from all leaves labelled by Λ. The
remaining tree is a derivation tree T ′ for G′ of the word v.

Before proceeding, we point out an immediate consequence of the above theorem and
Theorem 11, which is of central importance to Chomsky’s hierarchy:

Corollary. CF ⊆ CS

To continue, we say that a productionX → Y is a unit production if Y is a nonterminal.
Using a deduction very similar to the one used above we can then prove

Theorem 13. Any CF-language can be generated by a CF-grammar without unit produc-
tions. In addition, it may be assumed that the grammar is length-increasing.

Proof. Let us just indicate some main points of the proof. We denote by ∆X the set of
all nonterminals ( 6= X) obtained from the nonterminal X using only unit productions. A
grammar G = (ΣN,ΣT, X0, P ) can then be replaced by an equivalent CF-grammar

G′ = (ΣN,ΣT, X0, P
′)

without unit productions, where P ′ is obtained from P in the following way:

1. For each nonterminal X of G find ∆X .

2. Remove all unit productions.

3. If Y ∈ ∆X and there is in P a production Y → w (not a unit production), then add
the production X → w.

It is apparent that if G is length-increasing, then so is G′.

A CF-grammar is in Chomsky’s normal form if its productions are all of the form

X → Y Z or X → a

where X , Y and Z are nonterminals and a is a terminal, the only possible exception being
the production X0 → Λ, provided that the axiom X0 does not appear in the right hand
sides of productions.
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Transforming a CF-grammar to an equivalent one in Chomsky’s normal form is started
by transforming it to a length-increasing CF-grammar without unit productions (Theorem
13). Next the grammar is transformed, again keeping it equivalent, to one where the only
productions containg terminals are of the form X → a where a is a terminal, cf. the
Lemma in Section 3.2 and its proof. After these operations productions of the grammar
are either of the indicated form X → a, or the form

X → Y1 · · ·Yk

where Y1, . . . , Yk are nonterminals (excepting the possible production X0 → Λ). The
latter production X → Y1 · · ·Yk is removed and its action is taken care of by several new
productions in normal form:

X → Y1Z1

Z1 → Y2Z2

...

Zk−3 → Yk−2Zk−2

Zk−2 → Yk−1Yk

where Z1, . . . , Zk−2 are new nonterminals to be used only for this production. We thus
get

Theorem 14. Any CF-language can be generated by a CF-grammar in Chomsky’s normal
form.

Another classical normal form is Greibach’s normal form. A CF-grammar is in Grei-
bach’s normal form if its productions are of the form

X → aw

where a is a terminal and w is either empty or consists only of nonterminals. Again
there is the one possible exception, the production X0 → Λ, assuming that the axiom
X0 does not appear in the right hand side of any production. Any CF-grammar can be
transformed to Greibach’s normal form, too, but proving this is rather more difficult, cf.
e.g. the nice presentation of the proof in Simovici & Tenney.

A grammar in Greibach’s normal form resembles a right-linear grammar in that it
generates words in leftmost derivations terminal by terminal from left to right. As such a
right-linear grammar is however not necessarily in Greibach’s normal form.

4.3 Pushdown Automaton

Languages having an infinite index cannot be recognized by finite automata. On the
other hand, it is decidedly difficult to deal with an infinite memory structure—indeed,
this would lead to a quite different theory—so it is customary to introduce the easier to
handle potentially infinite memory. In a potentially infinite memory only a certain finite
part is in use at any time, the remaining parts containing a constant symbol (”blank”).
Depending on how new parts of the memory are brought into use, and exactly how it is
used, several types of automata can be defined.

There are CF-languages with an infinite index—e.g. languages of palindromes over
nonunary alphabets—so recognition of CF-languages does require automata with infinitely
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many states. The memory structure is a special one, called pushdown memory, and it is
of course only potentially infinite. The contents of a pushdown memory may be thought
of as a word where only the first symbol can be read and deleted or rewritten, this is
called a stack. In the beginning the stack contains only one of the specified initial stack
symbols or bottom symbols. In addition to the pushdown memory, the automata also have
the ”usual” kind of finite memory, used as for Λ-NFA.

Definition. A pushdown automaton (PDA) is a septuple M = (Q,Σ,Γ, S, Z, δ, A) where

• Q = {q1, . . . , qm} is a finite set of states, the elements if which are called states;

• Σ is the input alphabet, the alphabet of the language;

• Γ is the finite stack alphabet, i.e., the set of symbols appearing in the stack;

• S ⊆ Q is the set of initial states;

• Z ⊆ Γ is the set of bottom symbols of the stack;

• δ is the transition function which maps each triple (qi, a,X), where qi is a state, a is
an input symbol or Λ andX is a stack symbol, to exactly one finite set T = δ(qi, a,X)
(possibly empty) of pairs (q, α) where q is a state and α is a word over the stack
alphabet; cf. the transition function of a Λ-NFA;

• A ⊆ Q is the set of terminal states.

In order to define the way a PDA handles its memory structure, we introduce the triples
(qi, x, α) where qi is a state, x is the unread part (suffix) of the input word and α is the
contents of the stack, given as a word with the ”topmost” symbol at left. These triples
are called configurations of M .

It is now not so easy to define and use a ”hat function” and a ”star function” as was
done for Λ-NFA’s, because the memory contents is in two parts, the state and the stack.
This difficulty is avoided by using the configurations. The configuration (qj, y, β) is said
to be a direct successor of the configuration (qi, x, α), denoted

(qi, x, α) ⊢M (qj , y, β),

if
x = ay , α = Xγ , β = ǫγ and (qj , ǫ) ∈ δ(qi, a,X).

Note that here a can be either an input symbol or Λ. We can then define the corresponding
”star relation” ⊢∗M as follows:

1. (qi, x, α) ⊢∗M (qi, x, α)

2. If (qi, x, α) ⊢M (qj , y, β) then also (qi, x, α) ⊢∗M (qj , y, β).

3. If (qi, x, α) ⊢∗M (qj , y, β) and (qj , y, β) ⊢M (qk, z, γ) then also (qi, x, α) ⊢∗M (qk, z, γ).

4. (qi, x, α) ⊢∗M (qj , y, β) only if this follows from items 1.–3. above.

If (qi, x, α) ⊢
∗
M (qj , y, β), we say that (qj, y, β) is a successor of (qi, x, α).
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A PDA M accepts 1 the input word w if

(qi, w,X) ⊢∗M (qj ,Λ, α),

for some initial state qi ∈ S, bottom symbol X ∈ Z, terminal state qj ∈ A and stack α.
The language L(M) recognized by M consists of exactly all words accepted by M .

The pushdown automaton defined above is nondeterministic by nature. In general
there will then be multiple choices for the transitions. In particular, it is possible that
there is no transition, indicated by an empty value of the transition function or an empty
stack, and the automaton halts. Unless the state then is one of the terminal states and
the whole input word is read, this means that the input is rejected.

Theorem 15. Any CF-language can be recognized by a PDA. Moreover, it may be assumed
that the PDA then has only three states, an initial state, an intermediate state and a
terminal state, and only one bottom symbol.

Proof. To make matters simpler we assume that the CF-language is generated by a CF-
grammar G = (ΣN,ΣT, X0, P ) which in Chomsky’s normal form.2 The recognizing PDA
is

M =
(
{A, V, T},ΣT,ΣN ∪ {U}, {A}, {U}, δ, {T}

)

where δ is defined by the following rules:

• If X → Y Z is a production of G, then (V, Y Z) ∈ δ(V,Λ, X).

• If X → a is a production of G such that a ∈ ΣT or a = Λ, then (V,Λ) ∈ δ(V, a,X).

• The initial transition is given by δ(A,Λ, U) =
{
(V,X0U)

}
, and the final transition

by δ(V,Λ, U) =
{
(T,Λ)

}
.

The stack symbols are thus the nonterminals of G plus the bottom symbol. Leftmost
derivations of G and computations by M correspond exactly to each other: Whenever G,
in its leftmost derivation of the word w = uv, is rewriting the word uα where u ∈ Σ∗T and

α ∈ Σ+N , the corresponding configuration of M is (V, v, αU). The terminal configuration
corresponding to the word w itself is (T,Λ,Λ).

The converse of this theorem holds true, too. To prove that an auxiliary result is
needed to transform a PDA to an equivalent PDA more like the one in the above proof.

Lemma. Any PDA can be transformed to an equivalent PDA with the property that the
stack is empty exactly when the state is terminal.

Proof. If a PDA M = (Q,Σ,Γ, S, Z, δ, A) does not have the required property, some
changes in its structure are made. First, a new bottom symbol U is taken, and the new
transitions

(qi, XU) ∈ δ(qi,Λ, U) (qi ∈ S and X ∈ Z)

1This is the so-called acceptance by terminal state. Contents of the stack then does not matter. There
is another customary mode of acceptance, acceptance by empty stack. An input word w is then accepted
if (qi, w,X) ⊢∗M (qj ,Λ,Λ), for some initial state qi, bottom symbol X and state qj . No terminal states
need to be specified in this mode. It is not at all difficult to see that these two modes of acceptance lead
to the same family of recognized languages. Cf. the proof of the Lemma below.

2It would in fact be sufficient to assume that if the right hand side of a production of G contains
terminals, then there is exactly one of them and it is the first symbol. Starting with a CF-grammar in
Greibach’s normal would result in a PDA with only two states and no Λ-transitions.
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are defined for it. Second, new states V and T are added, and the new transitions

(V,X) ∈ δ(qi,Λ, X) (qi ∈ A and X ∈ Γ),

δ(V,Λ, X) =
{
(V,Λ)

}
(X ∈ Γ)

and
δ(V,Λ, U) =

{
(T,Λ)

}

are defined. Finally we define the new set of stack symbols to be {U} and the new set of
terminal states to be {T}.

Theorem 16. For any PDA the language recognized by it is a CF-language.

Proof. Let us consider a PDAM = (Q,Σ,Γ, S, Z, δ, A), and show that the language L(M)
is CF. We may assume that M is of the form given by the Lemma above. Thus M accepts
an input if and only if its stack is empty after the input is read through. The idea of the
construct of the corresponding CF-grammar is to simulate M , and incorporate the state
somehow in the leftmost nonterminal of the word being rewritten. The new nonterminals
would thus be something like [X, qi] where X ∈ Γ and qi ∈ Q. The state can then be
updated via the rewriting. The problem with this approach however comes when the
topmost stack symbol is erased (replaced by Λ), the state can then not be updated. To
remedy this ”predicting” the next state qj is incorporated, too, and the new nonterminals
will be triples

[qi, X, qj ]

where X ∈ Γ and qi, qj ∈ Q. Denote then

∆ =
{
[qi, X, qj ]

∣∣ qi, qj ∈ Q and X ∈ Γ
}
.

Productions of the grammar are given by the following rules where a is either an input
symbol or Λ:

• If (qj , Y1 · · ·Yℓ) ∈ δ(qi, a,X) where ℓ ≥ 2 and Y1, . . . , Yℓ ∈ Γ, then the corresponding
productions are

[qi, X, pℓ] → a[qj , Y1, p1][p1, Y2, p2] · · · [pℓ−1, Yℓ, pℓ],

for all choices of p1, . . . , pℓ from Q. Note how the third component of a triple always
equals the first component of the next triple. Many of these ”predicted” states will
of course be ”misses”.

• If (qj , Y ) ∈ δ(qi, a,X), where Y ∈ Γ, then the corresponding productions are

[qi, X, p] → a[qj , Y, p],

for all choices of p from Q.

• If (qj ,Λ) ∈ δ(qi, a,X), then the corresponding production is

[qi, X, qj] → a.

The topmost stack symbol X can then be erased during the simulation only if the
predicted next state qj is correct, otherwise the leftmost derivation will stop.
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• Finally, for the axiom X0 (assumed not to be in ∆) there are the productions

X0 → [qi, X, qj]

where qi ∈ S, qj ∈ A and X ∈ Z.

A configuration chain of M accepting the word w (and ending with an empty stack) then
corresponds to a leftmost derivation of w by the CF-grammar3

G =
(
∆ ∪ {X0},Σ, X0, P

)

where the productions P are given above. Conversely, a leftmost derivation of the word
w by G corresponds to a chain of configurations of M accepting w.

Stack operations of PDA are often restricted. A stack operation, i.e., the stack part
of a transition, is of type

• pop if it is of the form (qj ,Λ) ∈ δ(qi, a,X).

• push if it is of the form (qj, Y X) ∈ δ(qi, a,X) where Y is a stack symbol.

• unit if it is of the form (qj , Y ) ∈ δ(qi, a,X) where Y is a stack symbol.

Theorem 17. Any PDA can be replaced by an equivalent PDA where the stack operations
are of types pop, push and unit.

Proof. The problematic transitions are of the form

(qj , Y1 · · ·Yℓ) ∈ δ(qi, a,X)

where Y1, . . . , Yℓ ∈ Γ and ℓ ≥ 2. Other transitions are of the allowed types pop or unit.
To deal with these problematic transitions, certain states of the form 〈qj , Y1 · · ·Yi〉 are
introduced and transitions for these defined. First, the problematic transition is removed
and replaced by the transition

(
〈qj , Y1 · · ·Yℓ−1〉, Yℓ

)
∈ δ(qi, a,X)

of type unit. Second, the transitions

δ
(
〈qj , Y1 · · ·Yi〉,Λ, Yi+1

)
=

{(
〈qj , Y1 · · ·Yi−1〉, YiYi+1

)}
(i = 2, . . . , ℓ− 1)

of type push are added, and finally the transition

δ
(
〈qj , Y1〉,Λ, Y2

)
=

{
(qj , Y1Y2)

}
.

One transition is thus replaced by several transitions of the allowed types.

There is a deterministic variant of the PDA. Four additional conditions are then re-
quired to make a PDA a deterministic pushdown automaton (DPDA):

• The set of initial states contains only one state or is empty.

• There is only one bottom symbol.

3If M has no Λ-transitions, it is easy to transform G to Greibach’s normal form.
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• δ(qi, a,X) always contains only one element, or is empty, i.e., there is always at most
one possible transition. Here a is an input symbol or Λ.

• If δ(qi,Λ, X) is not empty, then δ(qi, a,X) is empty for all a ∈ Σ, that is, if there is
a Λ-transition, then there are no other transitions.

Deterministic pushdown automata cannot recognize all CF-languages, the languages rec-
ognized by them are called deterministic CF-languages (DCF-languages). For instance,
the language of palindromes over a nonunary alphabet is not a DCF-language. DCF-
languages can be generated by unambiguous CF-grammars, this in fact follows by the
proof of Theorem 16.

Without its stack a PDA is a lot like a transducer: The symbol read is a pair formed
of an input symbol (or Λ) and a stack symbol, and the output is a word replacing the
topmost symbol of the stack. Therefore transducers are an important tool in the more
advanced theory of CF-languages. (And yes, there are pushdown transducers, too!)

4.4 Parsing Algorithms (A Brief Overview)

What the PDA in the proof of Theorem 15 essentially does is a top-down parse of the input
word. In other words, it finds a sequence of productions for the derivation of the word
generated. Unfortunately though, a PDA is nondeterministic by nature, and a parsing
algorithm cannot be that. To get a useful parser this nonterminism should be removed
somehow. So, instead of just accepting or rejecting the input word, a PDA should here
also ”output” sufficient data for the parse.

In many cases the nondeterminism can be removed by look-ahead, i.e., by reading more
of the input before giving the next step of the parse. A CF-grammar is an LL(k)-grammar
if in the top-down parsing it suffices to look at the next k symbols to find out the next
parse step of the PDA. Formally, an LL(k)-grammar4 is a CF-grammar satisfying the
following look-ahead condition, where (w)k is the prefix of length k of the word w, and
⇒left denotes a leftmost direct derivation step: If

X0 ⇒
∗
left uXv ⇒left uwv ⇒∗

left uz and

X0 ⇒
∗
left uXv′⇒left uw

′v′ ⇒∗
left uz

′

and
(z)k = (z′)k,

then
w = w′.

In the so-called bottom-up parsing a word is reduced by replacing an occurrence of the
right hand side of a production as a subword by the left hand side nonterminal of the
production. Reduction is repeated and data collected for the parse, until the axiom is
reached. This type of parsing can also be done using PDA’s.

Fast parsing is a much investigated area. A popular and still useful reference is the
two-volume book Sippu, S. & Soisalon-Soininen, E.: Parsing Theory. Volume I:
Languages and Parsing. Springer–Verlag (1988) and Volume II: LR(k) and LL(k) Parsing
(1990) by Finnish experts. The classical reference is definitely the ”dragon book”Aho,

A.V. & Sethi, R. & Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison–Wesley (1985), the latest edition from 2006 is updated by Monica Lam.

4There is also the corresponding concept for rightmost derivations, the so-called LR(k)-grammar.
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4.5 Pumping

We recall that in sufficiently long words of a regular language one subword can be pumped.
Now, there are CF-languages, other than the regular ones, having this property, too. It is
not, however, a general property of CF-languages. All CF-languages do have a pumping
property, but generally then two subwords must be pumped in synchrony.

The pumping property is easiest to derive starting from a CF-grammar in Chomsky’s
normal form. This of course in no way restricts the case, since pumping is a property of
the language, not of the grammar. The derivation tree of a CF-grammar in Chomsky’s
normal form is a binary tree, i.e., each vertex is extended by at most two new ones. We
define the height of a (derivation) tree to be the length of the longest path from the root
to a leaf.

Lemma. If a binary tree has more than 2h leaves, then its height is at least h+ 1.

Proof. This is definitely true when h = 0. We proceed by induction on h. According to
the induction hypothesis then, the lemma is true when h ≤ ℓ, and the induction statement
says that it is true also when h = ℓ+1 ≥ 1. Whenever the tree has at least two leaves, it
may be divided into two binary trees via the first branching, plus a number of preceding
vertices (always including the root). At least one of these binary subtrees has more than
2ℓ+1/2 = 2ℓ leaves and its height is thus at least ℓ+1 (by the induction hypothesis). The
height of the whole binary tree is then at least ℓ+ 2.

The basic pumping result is the

Pumping Lemma (”uvwxy-Lemma”). If a CF-language L can be generated by a
grammar in Chomsky’s normal form having p nonterminals, z ∈ L and |z| ≥ 2p+1, then
z may be written in the form z = uvwxy where |vwx| ≤ 2p+1, vx 6= Λ, w 6= Λ, and the
words uvnwxny are all in L.

Proof. The height of the derivation tree of the word z is at least p + 1 by the Lemma
above. Consider then a longest path from the root to a leaf. In addition to the leaf,
the path has at least p + 1 vertices, and they are labelled by nonterminals. We take
the lower p + 1 occurrences of such vertices. Since there are only p nonterminals, some
nonterminal X appears at least twice as a label. We choose two such occurrences of X .
The lower occurrence of X starts a subtree, and its leaves give a word w ( 6= Λ). The
upper occurrence of X then starts a subtree the leaves of which give some word vwx, and
we can write z in the form z = uvwxy. See the schematic picture below.
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We may interpret the subtree started from the upper occurrence of X as a (binary)
derivation tree of vwx. Its height is then at most p+1, and by the Lemma it has at most
2p+1 leaves, and hence |vwx| ≤ 2p+1. The upper occurrence of X has two descendants,
one of them is the ancestor of the lower occurrence of X , and the other one is not. The
label of the latter vertex is some nonterminal Y . The subtree started from this vertex is
the derivation tree of some nonempty subword of v or x, depending on which side of the
upper occurrence of X Y is in. So v 6= Λ or/and x 6= Λ.

A leftmost derivation of the word z is of the form

X0 ⇒
∗ uXy′ ⇒∗ uvXx′y′ ⇒∗ uvwxy.

We thus conclude that
X0 ⇒

∗ uXy′ ⇒∗ uwy,

X0 ⇒
∗ uvXx′y′ ⇒∗ uv2Xx′2y′ ⇒∗ uv2wx2y

and so on, are leftmost derivations, too.

The case where pumping of one subword is possible corresponds to the situation where
either v = Λ or x = Λ.

Using pumping it is often easy to show that a language is not CF.

Example. The language L = {a2
n

| n ≥ 0} is a CS-language, as is fairly easy to show
(left as an exercise). It is not however CF. To prove this, assume the contrary. Then
L can be generated by a grammar in Chomsky’s normal form with, say, p nonterminals,
and sufficiently long words can be pumped. This is not possible, since otherwise taking
n = p + 3 we can write 2p+3 = m1 +m2, where 0 < m2 ≤ 2p+1, and the word am1 is in
the language L (just choose m2 = |vx|). On the other hand,

m1 ≥ 2p+3 − 2p+1 > 2p+3 − 2p+2 = 2p+2,

and no word of L has length in the interval 2p+2 + 1, . . . , 2p+3 − 1.

A somewhat stronger pumping result can be proved by strengthening the above proof
a bit:
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Ogden’s Lemma. If a CF-language L can be generated by a grammar in Chomsky’s
normal form having p nonterminals, z ∈ L and |z| ≥ 2p+1, and at least 2p+1 symbols of
z are marked, then z can be written in the form z = uvwxy where v and x have together
at least one marked symbol, vwx has at most 2p+1 marked symbols, w has at least one
marked symbol, and the words uvnwxny are all in L.

4.6 Intersections and Complements of CF-Languages

The family of CF-languages is not closed under intersection. For instance, it is easily seen
that the languages

L1 = {aibiaj | i ≥ 0 and j ≥ 0} and L2 = {aibjaj | i ≥ 0 and j ≥ 0}

are CF while their intersection

L1 ∩ L2 = {aibiai | i ≥ 0}

is not (by the Pumping Lemma). (The intersection is CS, though.)
By the rules of set theory

L1 ∩ L2 = L1 ∪ L2.

So, since CF-languages are closed under union, it follows that CF-languages are not closed
under complementation. Indeed, otherwise the languages L1 and L2 are CF, and so is their
union and L1 ∩ L2. On the other hand, it can be shown that DCF-languages are closed
under complementation.

A state pair construct, very similar to the one in the proof of Theorem 2, proves

Theorem 18. The intersection of a CF-language and a regular language is CF.

Proof. From the PDA M = (Q,Σ,Γ, S, Z, δ, A) recognizing the CF-language L1 and the
deterministic finite automaton M ′ = (Q′,Σ, q′0, δ

′, A′) recognizing the regular language L2

a new PDA
M ′′ = (Q′′,Σ,Γ, S ′′, Z, δ′′, A′′)

is constructed. We choose

Q′′ =
{
(qi, q

′
j)

∣∣ qi ∈ Q ja q′j ∈ Q′
}
,

S ′′ =
{
(qi, q

′
0)

∣∣ qi ∈ S
}
, and

A′′ =
{
(qi, q

′
j)

∣∣ qi ∈ A ja q′j ∈ A′
}
,

and define δ′′ by the following rules:

• If (qj , α) ∈ δ(qi, a,X) and δ′(q′k, a) = q′ℓ, then
(
(qj, q

′
ℓ), α

)
∈ δ′′

(
(qi, q

′
k), a,X

)
,

i.e., reading the input symbol a results in the correct state transition in both au-
tomata.

• If (qj , α) ∈ δ(qi,Λ, X), then
(
(qj, q

′
k), α

)
∈ δ′′

(
(qi, q

′
k),Λ, X

)
,

i.e., in a Λ-transition state transition takes place only in the PDA.

This M ′′ recognizes the intersection L1 ∩ L2, as is immediately verified
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4.7 Decidability Problems. Post’s Correspondence

Problem

For regular languages just about any characterization problem is algorithmically solvable.
This is not any more true for CF-languages. Let us start with some problems that are
algorithmically decidable.

• Membership Problem: Is a given word w in the CF-language L?

To solve this problem, the language L is generated by a grammar in Chomsky’s
normal form. It is then trivial to check whether or not Λ is in the language L. There
exist only finitely many possible leftmost derivations of w, since in each derivation
step either a new terminal appears or the length is increased by one. These possible
derivations are checked.

Membership and parsing are of course related, if we only think about finding a
derivation tree or checking that there is no parse. Many fast methods for this
purpose are known, e.g. the so-called Earley Algorithm.

• Emptiness Problem: Is a given CF-language L empty (= ∅)?

Using the Pumping Lemma it is quite easy to see that if L is not empty, then it has
a word of length at most 2p+1 − 1.

• Finiteness Problem: Is a given CF-language L finite?

If a CF-language is infinite, it can be pumped. Using the Pumping Lemma it is
then easy to see that it has a word of length in the interval 2p+1, . . . , 2p+2 − 1.

• DCF-equivalence Problem: Are two given DCF-languages L1 and L2 the same?

This problem was for a long time a very famous open problem. It was solved only
comparatively recently by the French mathematician Géraud Sénizergues. This
solution by the way is extremely complicated.5

There are many algorithmically undecidable problems for CF-languages. Most of these
can be reduced more or less easily to the algorithmic undecidability of a single problem, the
so-called Post correspondence problem (PCP). In order to be able to deal with algorithmic
unsolvability, the concept of an algorithm must be exactly defined. A prevalent definition
uses so-called Turing machines, which in turn are closely related to Type 0 grammars.6

We will return to this topic later.
The input of Post’s correspondence problem consists of two alphabets Σ = {a1, . . . , an}

and ∆, and two morphisms σ1, σ2 : Σ∗ → ∆∗, cf. Section 2.8. The morphisms are given
by listing the images of the symbols of Σ (these are nonempty words7 over the alphabet
∆):

σ1(ai) = αi , σ2(ai) = βi (i = 1, . . . , n).

5It is presented in the very long journal article Sénizergues, G.: L(A) = L(B)? Decidability Results
from Complete Formal Systems. Theoretical Computer Science 251 (2001), 1–166. A much shorter variant
of the solution appears in the article Stirling, C.: Decidability of DPDA Equivalence. Theoretical
Computer Science 255 (2001), 1–31.

6Should there be an algorithm for deciding PCP, then there would also be an algorithm for deciding
the halting problem for Turing machines, cf. Theorem 30. This implication is somewhat difficult to prove,
see e.g. Martin.

7Unlike here, the empty word is sometimes allowed as an image. This is not a significant difference.
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The problem to be solved is to find out whether or not there is a word w ∈ Σ+ such that
σ1(w) = σ2(w). The output is the answer ”yes” or ”no”. The word w itself is called the
solution of the problem.

In connection with a given Post’s correspondence problem we will need the languages

L1 =
{
σ1(w)#ŵ

∣∣ w ∈ Σ+
}

and L2 =
{
σ2(w)#ŵ

∣∣ w ∈ Σ+
}

over the alphabet Σ ∪ ∆ ∪ {#} where # is a new symbol. It is fairly simple to check
that these languages as well as the complements L1 and L2 are all CF. Thus, as unions
of CF-languages, the languages

L3 = L1 ∪ L2 and L4 = L1 ∪ L2

are CF, too. The given Post’s correspondence problem then does not have a solution if
and only if the intersection L1 ∩ L2 is empty, i.e., if and only if L4 consists of all words
over Σ ∪∆ ∪ {#}. The latter fact follows because set-theoretically L4 = L1 ∩ L2.

We may also note that the language L4 is regular if and only if L1 ∩L2 is regular, and
that this happens if and only if L1 ∩L2 = ∅. Indeed, if L1 ∩L2 is regular and has a word

σ1(w)#ŵ = σ2(w)#ŵ,

then w 6= Λ and σ1(w) 6= Λ, and the words

σ1(w
n)#ŵn = σ2(w

n)#ŵn (n = 2, 3, . . . )

will all be in L1 ∩ L2, too. For large enough n the Pumping Lemma of regular languages
is applicable, and pumping produces words clearly not in L1 and L2.

The following problems are thus algorithmically undecidable by the above:

• Emptiness of Intersection Problem: Is the intersection of two given CF-languages
empty?

• Universality Problem: Does a given CF-language contain all words over its alphabet?

• Equivalence Problem: Are two given CF-languages the same?

This is reduced to the Universality Problem since the language of all words over an
alphabet is of course CF.

• Regularity Problem Is a given CF-language regular?

With a small additional device the algorithmic undecidability of ambiguity can be proved,
too:

• Ambiguity Problem: Is a given CF-grammar ambiguous?

Consider the CF-grammar

G =
(
{X0, X1, X2},Σ ∪∆ ∪ {#}, X0, P

)
,

generating the language L3 above, where P contains the productions X0 → X1 | X2

and
X1 → αiX1ai | αi#ai and X2 → βiX2ai | βi#ai (i = 1, . . . , n).

If now σ1(w) = σ2(w) for some word w ∈ Σ+, then the word

σ1(w)#ŵ = σ2(w)#ŵ

of L3 has two different leftmost derivations by G. If, on the other hand, some word
v#ŵ of L3 has two different leftmost derivations, then one of them must begin with
X0 ⇒G X1 and the other with X0 ⇒G X2, and v = σ1(w) = σ2(w).
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Inherent ambiguity of CF-languages is also among the algorithmically undecidable
problems. Moreover, not only are CF-languages not closed under intersection and comple-
mentation, possible closure is not algorithmic. Indeed, whether or not the intersection of
two given CF-languages is CF, and whether or not the complement of a given CF-language
is CF, are both algorithmically undecidable problems. Proofs of these undecidabilities are
however a lot more difficult than the ones above, see e.g. Hopcroft & Ullman.



Chapter 5

CS-LANGUAGES

5.1 Linear-Bounded Automaton

Reading and writing in a pushdown memory takes place on top of the stack, and there is
no direct access to other parts of the stack. Ratio of the height of the stack and the length
of the input word read in may in principle be arbitrarily large because of Λ-transitions.
On the other hand, Λ-transitions can be removed totally.1 Thus we might assume the
height of the stack to be proportionate to the length of the input word.

Changing the philosophy of pushdown automaton by allowing reading and writing
”everywhere in the stack”—writing meaning replacing a symbol by another one—and also
allowing reading the input word everywhere all the time, we get essentially an automaton
called a linear-bounded automaton (LBA). The amount (or length) of memory used is not
allowed to exceed the length of the input. Since it is possible to use more symbols in the
memory than in the input alphabet, the information stored in the memory may occasion-
ally be larger than what can be contained by the input, remaining however proportionate
to it. In other words, there is a coefficient C such that

information in memory ≤ C × information in input.

This in fact is the basis of the name ”linear-bounded”.
In practise, an LBA is usually defined in a somewhat different way, vis-à-vis the Turing

machine.

Definition. A linear-bounded automaton (LBA) is an octuple

M = (Q, Σ, Γ, S, XL, XR, δ, A)

where

• Q = {q1, . . . , qm} is the finite set of states, the elements are called states;

• Σ is the input alphabet (alphabet of the language);

• Γ is the tape alphabet (Σ ⊆ Γ);

• S ⊆ Q is the set of initial states;

• XL ∈ Γ− Σ is the left endmarker;

1Cf. footnotes in the proofs of Theorems 15 and 16. Basically, this corresponds to transforming a

grammar to Greibach’s normal form.

42
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• XR ∈ Γ− Σ is the right endmarker (XR 6= XL);

• δ is the transition function which maps each pair (qi, X), where qi is a state and X
is a tape symbol, to a set δ(qi, X) of triples of the form (qj, Y, s) where qj is a state,
Y is a tape symbol and s is one of the numbers 0, +1 and −1; in addition, it is
assumed that

– if qi ∈ A, then δ(qi, X) = ∅,

– if (qj , Y, s) ∈ δ(qi, XL), then Y = XL and s 6= −1, and

– if (qj , Y, s) ∈ δ(qi, XR), then Y = XR and s 6= +1;

• A ⊆ Q is the set of terminal states.

The memory of an LBA, the so-called tape, may be thought of as a word of the form

XLαXR

where α ∈ Γ∗. In the beginning the tape is XLwXR where w is the input word. Moreover,
|α| = |w|, i.e., the length of the tape is |w|+ 2 during the whole computation.

At any time an LBA is in exactly one state qi, reading exactly one symbol X in its
tape. In the beginning the LBA reads the left endmarker XL. One may illustrate the
situation by imagining that an LBA has a ”read-write head” reading the tape, and writing
on it:

XL a Y Z bX X b XR

read-write head

The transition function δ then tells the next move of the LBA. If

(qj , Y, s) ∈ δ(qi, X)

and the tape symbol X under scan is the ℓth symbol, then the LBA changes its state from
qi to qj , replaces the tape symbol X it reads by the symbol Y (Y may be X), and moves
on to read the (ℓ + s)th symbol in the tape. This operation amounts to one transition of
the LBA. Note that an LBA is nondeterministic by nature: it may be possible to choose
a transition from several available ones, or that there is no transition available.

As for the PDA, memory contents are given using configurations. A configuration is
a quadruple (qi, α, X, β) where qi is a state, αXβ is the tape and X is the tape symbol
under scan. Above then ℓ = |αX|. The length of the configuration (qi, α, X, β) is |αXβ|.
A configuration (qj , α

′, Y, β ′) is the direct successor of the configuration (qi, α, X, β) if it
is obtained from (qi, α, X, β) via one transition of the LBA M , this is denoted by

(qi, α, X, β) ⊢M (qj , α
′, Y, β ′).

Thus, corresponding to the transition (qj , Y,−1) ∈ δ(qi, X), we get e.g.

(qi, αZ, X, β) ⊢M (qj, α, Z, Y β)

where Z ∈ Γ. The ”star relation” ⊢∗M is defined exactly as it was for the PDA.
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In the beginning the tape contains the input word w (plus the endmarkers), and the
corresponding initial configuration is (qi, Λ, XL, wXR) where qi is an initial state. The
LBA M accepts the input w if

(qi, Λ, XL, wXR) ⊢∗M (qj, α, Y, β)

where qi is an initial state and qj is a terminal state. Note that there is no transition from
a terminal state, i.e., the LBA halts. An LBA may also halt in a nonterminal state, the
input is then rejected. The language of all words accepted by an LBA M is the language
recognized by it, denoted by L(M).

Since the complete definition of even a fairly simple LBA may be quite long, it is
customary to just describe the basic idea of working of the LBA, yet with sufficient detail
to leave no doubt about the correctness of the working.2

Example. The language L = {a2
n

| n ≥ 0} is recognized by the LBA

M =
(
Q, {a}, Γ, {q0},@, #, δ, {q1}

)
,

the working of which may be described briefly as follows. In addition to the symbol a,
Γ contains also the symbol a′. M first changes the leftmost occurrence of a to a′. After
that M repeatedly doubles the number of occurrences of the symbol a′, using the previous
occurrences of a′ as a counter. If, during such doubling process, M hits the right end-
marker #, it halts in a nonterminal state ( 6= q1). If, on the other hand, it hits # after
just finishing a doubling round, it moves to the terminal state q1. Obviously, many more
tape symbols and states will be needed to implement such a working.

Theorem 19. Each CS-language can be recognized by an LBA.

Proof. We take an arbitrary CS-grammar G = (ΣN, ΣT, X0, P ), and show how the lan-
guage it generates is recognized by an LBA

M = (Q, ΣT, Γ, S, XL, XR, δ, A).

In addition to the terminals of G, Γ also contains the symbols

[x, a] (x ∈ ΣN ∪ ΣT and a ∈ ΣT),

and the symbols
[Λ, a] (a ∈ ΣT).

M first changes each symbol a of the input to the symbol [Λ, a], except for the leftmost
symbol b of the input, which it changes to [X0, b]. In this way M stores the input in the
second (”lower”) components of the tape symbols, and uses the first (”higher”) components
to simulate the derivation by G. (Often these ”upper” and ”lower” parts of the tape are
called ”tracks”, and there may be more than two of them.) One simulation step goes as
follows:

1. M traverses the tape from left to right, using its finite state memory to search for
a subword equal to the left hand side of some production of G. For this, a number
of last read tape symbols remain stored in the state memory of M .

2”Designing Turing machines by writing out a complete set of states and a next-move function is a

noticeably unrewarding task.” (Hopcroft & Ullman).



CHAPTER 5. CS-LANGUAGES 45

2. After finding in this way a subword equal to left hand side of a production, M decides
whether or not it will use this production in the simulation (nondeterminism). If
not, M continues its search.

3. If M decides to use in the simulation the production it found, it next conducts the
simulation of the corresponding direct derivation by G. If this leads to lengthening
of the word, i.e., the right hand side of the production is longer than the left hand
side, a suffix of the word already derived must be moved to the right respectively,
if possible. This takes a lot of transitions. If there is not sufficient space available,
that is, the derived word is too long and there would be an overflow, M halts in a
nonterminal state. After simulating the direct derivation step, M again starts its
search from the left endmarker.

4. If there is no way of continuing the simulated derivation, that is, no applicable
production is found, M checks whether or not the derived word equals the input,
stored in the ”lower track” for this purpose, and in the positive case halts in a
terminal state. In the negative case, M halts in a nonterminal state.

In addition to the given tape symbols, many more are clearly needed as markers etc., and
also a lot of states.

Theorem 20. The language recognized by an LBA is CS.

Proof. Consider an arbitrary LBA

M = (Q, Σ, Γ, S, $, #, δ, A).

The length-increasing grammar G = (ΣN, Σ, X0, P ) generating L(M), is obtained as fol-
lowsi (cf. Theorem 11). First the nonterminals

[X, a] (for X ∈ Γ and a ∈ Σ),

are needed, as well as the endmarkers

[$, X, a] and [#, X, a] (for X ∈ Γ and a ∈ Σ).

To simulate a state transition, more nonterminals are needed:

[X, qi, a] and [X, qi, s, a] (for X ∈ Γ, qi ∈ Q, a ∈ Σ and s = 0,±1),

as well as the corresponding endmarkers

[$, qi, X, a] and [#, qi, X, a],

[$, X, qi, a] and [#, X, qi, a],

[$, X, qi, s, a] and [#, X, qi, s, a] (for X ∈ Γ, qi ∈ Q, a ∈ Σ and s = 0,±1).

Finally, one nonterminal Y is still needed.
G generates an arbitrary input word of length at least 3, stored in the last component

of the nonterminals. (Words shorter than that are taken care of separately.) For this the
productions

X0 → Y [#, a, a] (for a ∈ Σ) and

Y → Y [a, a] | [$, qi, a, a][b, b] (for a, b ∈ Σ and qi ∈ S)
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are needed. After that G simulates the working of M using the first components of the
nonterminals. Note how the endmarkers of M must be placed inside the endmost symbols
because a length-increasing grammar cannot erase them.

A transition
(qj , V, 0) ∈ δ(qi, U),

where the read-write head does not move, is simulated using the productions

[U, qi, a]→ [V, qj , a],

[$, qi, X, a]→ [$, qj, X, a] (for U = V = $),

[$, U, qi, a]→ [$, V, qj, a],

[#, qi, X, a]→ [#, qj , X, a] (for U = V = #) and

[#, U, qi, a]→ [#, V, qj , a].

A transition
(qj , V, +1) ∈ δ(qi, U),

where the read-write head moves to the right, is in turn simulated by the productions

[U, qi, a]→ [V, qj , +1, a] and

[$, U, qi, a]→ [$, V, qj, +1, a],

”declaring” that a move to the right is coming, and the productions

[V, qj, +1, a][X, b]→ [V, a][X, qj , b],

[V, qj, +1, a][#, X, b]→ [V, a][#, X, qj , b],

[#, U, qi, a]→ [#, qj, V, a],

[$, qi, X, a]→ [$, X, qj, a] (for U = V = $) and

[$, V, qj, +1, a][X, b]→ [$, V, a][X, qj, b],

taking care of the move itself. A transition, where the read-write head moves to the left,
is simulated by analogous productions (left to the reader).

Finally the terminating productions

[X, qi, a]→ a ,

[$, qi, X, a]→ a , [$, X, qi, a] → a ,

[#, qi, X, a]→ a , [#, X, qi, a] → a ,

where qi ∈ A, and

[X, a]→ a , [$, X, a]→ a , [#, X, a]→ a

are needed.
A word w in L(M) of length ≤ 2, is included using the production X0 → w.

As a consequence of Theorems 19 and 20, CS-languages are exactly all languages recognized
by linear-bounded automata.

An LBA is deterministic if δ(qi, X) always contains at most one element, i.e., either
there is no available transition or then there is only one, and there is at most one initial
state. Languages recognized by deterministic LBA’s are called deterministic CS-languages
or DCS-languages. It is a long-standing and famous open problem, whether or not all CS-
languages are deterministic.
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5.2 Normal Forms

A length-increasing grammar is in Kuroda’s normal form if its productions are of the form

X → a , X → Y , X → Y Z and XY → UV

where a is a terminal and X, Y, Z, U and V are nonterminals. Again there is the exception,
the production X0 → Λ, assuming the axiom X0 does not appear in the right hand side
of any production.

Theorem 21. Each CS-language can be generated by a length-increasing grammar in
Kuroda’s normal form.

Proof. The CS-language is first recognized by an LBA, and then the LBA is transformed
to a length-increasing grammar as in the proof of Theorem 20. The result is a grammar
in Kuroda’s normal form, as is easily verified.

A CS-grammar is in Penttonen’s normal form3 if its productions are of the form

X → a , X → Y Z and XY → XZ

where a is a terminal and X, Y and Z are nonterminals. (With the above mentioned
exception here, too, of course.) Each CS-grammar can be transformed to Penttonen’s
normal form, the proof of this is, however, quite difficult.

5.3 Properties of CS-Languages

CS-languages are computable, that is, their membership problem is algorithmically de-
cidable. This can be seen fairly easily: To find out whether or not a given word is in the
language recognized by the LBA M , just see through the steps taken by M with input
w, until either M halts or there is a repeating configuration. This should be done for all
alternative transitions (nondeterminism). On the other hand,

Theorem 22. There is a computable language over the unary alphabet {a} that is not
CS.

Proof. Let us enumerate all possible CS-grammars with terminal alphabet {a}: G1, G2, . . .
This can be done e.g. as follows. First replace the ith nonterminal of the grammar ev-
erywhere by #bi where bi is the binary representation of i. After this, the symbols used
are

a 0 1 , # ( ) { } →

and grammars can be ordered lexicographically, first according to length and then within
each length alphabetically.

Consider then the language

L =
{
an

∣
∣ an /∈ L(Gn)

}

3This is the so-called left normal form. There naturally is also the corresponding right normal form.

The original article reference is Penttonen, M.: One-Sided and Two-Sided Context in Formal Gram-

mars. Information and Control 25 (1974), 371–392. Prof. Martti Penttonen is a well-known Finnish

computer scientist.
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over the alphabet {a}. L is computable because checking membership of the word am in L
can be done as follows: (1) Find the grammar Gm. (2) Since membership is algorithmically
decidable for Gm, continue by checking whether or not am is in the language L(Gm).

On the other hand L is not CS. Otherwise it would be one of the languages L(G1),
L(G2), . . . , say L = L(Gk). But then the word ak is in L if and only if it is not in L!

The proof above is another example of the diagonal method, cf. the proof of Theorem
1. As a matter of fact, it is difficult to find ”natural” examples of non-CS languages,
without using the diagonal method or methods of computational complexity theory. Many
(most?) programming languages have features which in fact imply that they really are not
CF-languages. Still, just about every one of them is CS.

In Theorem 10 it was stated, among other things, that CS-languages are closed under
union, concatenation, concatenation closure, and mirror image. Unlike CF-languages,
CS-languages are closed under intersection and complementation, too.

Theorem 23. CS is closed under intersection.

Proof. Starting from LBA’s M1 and M2 recognizing the CS-languages L1 and L2, respec-
tively, it is not difficult to construct a third LBA M recognizing the intersection L1 ∩L2.
M will then simulate both M1 and M2 simultaneously in turns, storing the tapes, posi-
tions of read-write heads and states of M1 and M2 in its tape (using tracks and special
tape symbols). M accepts the input word if in this simulation both M1 and M2 accept
it.

Closure of CS under complementation was a celebrated result in discrete mathematics
in the 1980’s. After being open for a long time, it was proved at exactly the same time
but independently by Neil Immerman and Róbert Szelepcsényi.4 In fact they both proved
a rather more general result in space complexity theory.

Immerman–Szelepcsényi Theorem. CS is closed under complementation.

Proof. Let us take an LBA M , and construct another LBA MC recognizing L(M).
After receiving the input w, the first thing MC does is to count the number N of those

configurations of M which are successors of an initial configuration corresponding to w.
The length of these configurations is |w| + 2 = n. Let us denote by Nj the number of
all configurations that can be reached from an initial configuration corresponding to the
input w by at most j transitions. When, for such a j, the first value j = jmax is found
such that Njmax

= Njmax+1, then obviously N = Njmax
. The starting N0 is the number of

initial states of M . As is easily verified, the number N can be stored in the tape using,
say, a decimal expansion with several decimals encoded in one tape symbol, if necessary.
Similarly, several numbers of the same size can be stored in the tape. In what follows, an
initial configuration is always one corresponding to the input w.

After getting the number Nj, MC computes the next number Nj+1. For that MC

needs to store only the number Nj , but not the preceding numbers. MC goes through all
configurations of M of length n in an alphabetical order; for this it needs to remember only
the current configuration and its alphabetical predecessor, if needed, but no others. After
finishing the investigation of the configuration κℓ, MC uses it to find the alphabetically

4The original article references are Immerman, N.: Nondeterministic Space is Closed under Com-

plementation. SIAM Journal of Computing 17 (1988), 275–303 and Szelepcsényi, R.: The Method of

Forced Enumeration for Nondeterministic Automata. Acta Informatica 26 (1988), 279–284.
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succeeding configuration κ = κℓ+1. The aim is to find out, whether the configuration κ
could be reached from an initial configuration by at most j + 1 transitions.

MC maintains in its tape two counters λ1 and λ2. Each time a configuration κ is found
that can be reached by at most j +1 transitions from an initial configuration, the counter
λ1 is increased by one.

To investigate a configuration κ, MC searches through configurations κ′ of length n for
configurations that can be reached from an initial configuration by at most j transitions.
MC retains the number of such configurations in the counter λ2.

For each configuration κ′, MC first guesses nondeterministically whether or not this
configuration is among those Nj configurations that can be reached by at most j tran-
sitions from some initial configurations. If the guess is ”no”, then MC moves on to the
next configuration to be investigated without changing the counter λ2. If, on the other
hand, the guess is ”yes”, MC continues by guessing a chain of configurations leading to
the configuration κ′ from some initial configuration by at most j steps. This guessing is
done nondeterministically step by step. In case the configurations κ′ are all checked and
λ2 < Nj, then MC halts in a nonterminal state without accepting w.

MC checks whether or not the guessed chain of configurations ending in κ′ is correct,
i.e., consists of successive configurations. There are two alternatives.

(1) If the chain of configurations is correct, MC checks whether κ = κ′ or whether
κ′ ⊢M κ, and in the affirmative case increases the counter λ1 by one, and moves on
to investigate the configuration κℓ+2. If the counter λ2 hits its maximum value Nj

and a searched for configuration is not found, MC concludes that the configuration
κ cannot be reached by at most j + 1 transitions from an initial configuration, and
moves on to investigate the configuration κℓ+2 without changing the counter λ1.

(2) If the guessed chain of configurations is not correct, then MC halts in a nonterminal
state without accepting the input w.

Finally MC has checked all possible configurations κℓ, and found all numbers Nj ,
and thus also the number N . Note that always, when moving on to investigate a new
configuration κℓ, the LBA MC resets the counter λ2, and always, when starting to compute
the next number Nj , it resets the counter λ1.

The second stage of the working of MC is to again go through all configurations of
length n maintaining a counter λ. For each configuration κ, MC first guesses whether
or not it is a successor of an initial configuration. If the guess is ”no”, MC moves on to
the next configuration in the list without touching the counter λ. If, on the other hand,
the guess is ”yes”, then MC continues by guessing a chain of configurations leading to
the configuration κ from some initial configuration in at most jmax steps. There are now
several possible cases:

1. If the guessed chain of configurations is not correct (see above), or it is correct but
κ is an accepting terminal configuration of M , then MC halts in a nonterminal state
without accepting the input w.

2. If the guessed chain of configurations is correct and κ is not an accepting terminal
configuration of M and λ has not reached its maximum value N , then MC increases
the counter λ by one and moves on the next configuration in the list.

3. If the guessed chain of configurations is correct and κ is not an accepting terminal
configuration of M and the counter λ hits its maximum value N , then MC accepts
the input w by making a transition to a terminal state.
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Nearly every characterization problem is algorithmically undecidable for CS-languages.
Anyway, as noted, the membership problem is algorithmically decidable for them. In
particular, the emptiness, finiteness, universality, equivalence and regularity problems are
all undecidable. Universality, equivalence and regularity were undecidable already for
CF-languages, and hence for CS-languages, too, and since CS-languages are closed under
complementation, emptiness is undecidable as well.

To show algorithmic undecidability of finiteness, an additional device is needed, say,
via the Post correspondence problem introduced in Section 4.7. For each pair of PCP
input morphisms

σ1 : Σ∗ → ∆∗ and σ2 : Σ∗ → ∆∗

an LBA M with input alphabet {a} is constructed, which, after receiving the input an,
checks whether or not there is a word w ∈ Σ+ such that |w| ≤ n and σ1(w) = σ2(w).
(Clearly this is possible.) If such a word w exists, then M rejects the input an, otherwise
it accepts an. Thus L(M) is finite if and only if there exists a word w ∈ Σ+ such that
σ1(w) = σ2(w).

Using Post’s correspondence problem it is possible to show undecidability of emptiness
”directly”, without using the hard-to-prove Immerman–Szelepcsényi Theorem. Indeed, it
is easy to see that

{
w

∣
∣ w ∈ Σ+ and σ1(w) = σ2(w)

}

is a CS-language.
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CE-LANGUAGES

6.1 Turing Machine

A Turing machine (TM) is like an LBA except that there are no endmarkers, and the tape
is potentially infinite in both directions. In the tape alphabet there is a special symbol
B, the so-called blank. At each time, only finitely many tape symbols are different from
the blank. In the beginning the tape contains the input word, flanked by blanks, and
the read-write head reads the first symbol of the input. In case the input is empty, the
read-write head reads one of the blanks.

Formally a Turing machine is a septuple

M = (Q, Σ, Γ, S, B, δ, A)

where Q, Σ, Γ, S, δ and A as for the LBA, and B is the blank. A transition is also defined
as for the LBA, there are no restrictions for the movement of the read-write head since
there are no endmarkers. The only additional condition is that if (qj , Y, s) ∈ δ(qi, X),
then Y 6= B. The Turing machine defined in this way is nondeterministic by nature. The
deterministic Turing Machine (DTM) is defined as the deterministic LBA.

Definition of a configuration for a Turing machine M is a bit different from that for the
LBA. If the read-write head is not reading a blank, then the corresponding configuration
is a quadruple (qi, α, X, β) where qi is a state, αXβ is the longest subword in the tape not
containing any blanks, and X is the tape symbol read by M in this subword. If, on the
other hand, the read-write head is reading a blank, then the corresponding configuration
is (qi, Λ, B, β) (resp. (qi, α, B, Λ)) where β (resp. α) is the longest subword in the tape not
containing blanks. In particular, if the tape contains only blanks, i.e., the tape is empty,
then the corresponding configuration is (qi, Λ, B, Λ).

Acceptance of an input word and recognition of a language are defined as for the LBA.

Theorem 24. Each CE-language can be recognized by a Turing machine.

Proof. The proof is very similar to that of Theorem 19. The only real difference is that a
Type 0 grammar can erase symbols, and a word may be shortened when rewritten. The
corresponding suffix of the derived word must then be moved to the left.

Theorem 25. Languages recognized by Turing machines are all CE.

Proof. The proof is more or less as that of Theorem 20. Let us just mention a few details.
There are two blanks used, one in each end of the word to be rewritten. These will be
erased in the end. Symbols containing the stored input will be terminated in the end,

51
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while all other symbols will be erased. This process begins only when the TM being
simulated is in a terminal state, and proceeds ”as a wave” in both directions.

Languages recognized by Turing machines are thus exactly all CE-languages.
Thinking of recognizing languages, we could as well restrict ourselves to deterministic

Turing machines. Indeed, a Turing machine M can always be simulated by a DTM M ′

recognizing the same language. In the ith stage of its working, the simulating DTM M ′

has in its tape somehow encoded all those configurations M that can be reached from an
initial configuration corresponding to the input w in at most i transitions, one after the
other. In the 0th stage (beginning) M ′ computes in its tape all initial configurations of
M corresponding to the input w, as many as there are initial states. When moving from
stage i to stage i + 1 the DTM M ′ simply goes through all last computed configurations
of M continuing each of them in all possible ways (nondeterminism) by one transition of
M , and stores the results in its tape. M ′ halts when it finds a terminal configuration of
M .

It was already noted that the family CE is closed under union, concatenation, concate-
nation closure, and mirror image. In exactly the same way as for Theorem 23, we can
prove

Theorem 26. CE is closed under intersection.

Despite the fact that all languages in CE can be recognized by deterministic Turing
machines, CE is not closed under complementation. The reason for this is that a DTM
may take infinitely many steps without halting at all. This is, by the way, true for the
LBA, too, but can then be easily prevented by a straightforward use of counters (left as
an exercise for the reader). For a more detailed treatment of the matter, the so-called
universal Turing machine is introduced. It will suffice to restrict ourselves to Turing
machines with input alphabet {0, 1}.1 Such Turing machines can be encoded as binary
numbers. This can be done e.g. by first presenting δ as a set P of quintuples:

(qj , Y, s, qi, X) ∈ P

if and only if (qj , Y, s) ∈ δ(qi, X). After that the symbols used are encoded in binary: The
symbols

( ) { } , 0 1 + −

are encoded, in this order, as the binary words 10i (i = 1, . . . , 9). The ith state is then
encoded as the binary word 110i, and the jth tape symbol as the word 1110j. After these
encodings a Turing machine M can be given as a binary number β(M).

A universal Turing machine (UTM) is a Turing machine U which, after receiving an
input2 w$β(M), where w ∈ {0, 1}∗, simulates the Turing machine M on input w. In
particular, U accepts its input if M accepts the input w. All other inputs are rejected by
U .

Theorem 27. There exists a universal Turing machine U .

Proof. Without going into any further details, the idea of working of U is the following.
First U checks that the input is of the correct form w$β(M). In the positive case U
”decodes” β(M) to be able to use M ’s transition function δ. After that U simulates M
on input w transition by transition, fetching in between the transition rules it needs from
the decoded presentation of δ. When M enters a terminal state, then so does U .

1This alphabet could in fact be of any kind whatsoever, even unary!
2The language formed of exactly all inputs of this form can be recognized by an LBA, as one can see

fairly easily.
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Theorem 28. CE is not closed under complementation.

Proof. The ”diagonal language”

D =
{
w

∣
∣ w$w ∈ L(U)

}

is CE, as is seen quite easily—just make a copy of the w and then simulate U . D then
contains those encoded Turing machines that ”accept themselves”. On the other hand,
the complement D is not CE. In the opposite case it would be recognized by a Turing
machine M , and the word β(M) would be in the language D if and only if it is not!

The above proof again uses the diagonal method, cf. the proofs of Theorems 1 and 22. The
language D in the proof is an example of a language with a definitely finite description,
and yet not CE.

D is a co–CE-language that is not CE. Correspondingly, D is CE-language that is not
co–CE. The intersection of the families CE and co−CE is C (computable languages), and
it is thus properly included in both families.

6.2 Algorithmic Solvability

A deterministic Turing machine can be equipped with output. When the machine enters
a terminal state, the output is in the tape properly indicated and separated from the rest
of the tape contents. Note that occasionally there might be no output, the machine may
halt in a nonterminal state or not halt at all.

According to the prevailing conception, algorithms are methods that can be realized
using Turing machines, and only those. This is generally known as the Church–Turing
thesis. Problems that can be solved algorithmically are thus exactly those problems that
can be solved by Turing machines, at least in principle if not in practise.

One consequence of the Church–Turing thesis is that there clearly are finitely defined
problems that cannot be solved algorithmically.

Theorem 29. There exists a CE-language whose membership problem is not algorithmi-
cally decidable. Recall that the algorithm should then always output the answer yes/no
depending on whether or not the input word is in the language.

Proof. The diagonal language D in the proof of Theorem 28 is a CE-language whose
membership problem is not algorithmically decidable. Indeed, otherwise the membership
problem could be decided for the language D by a deterministic Turing machine, too, and
D would thus be CE.

The Halting problem for a deterministic Turing machine M asks whether or not M
halts after receiving an input word w (also the input of the problem).

Theorem 30. There is a Turing machine whose Halting problem is algorithmically un-
decidable.

Proof. It is easy to transform the Turing machine to one halting only when in a terminal
state, by adding, if needed, a behavior which leaves the machine in an infinite loop when
the original machine is about to halt in a nonterminal state. The theorem now follows
from the one above.
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Just about all characterization problems for CE-languages are algorithmically unde-
cidable. Indeed, every nontrivial property is undecidable. Here, a property is called
nontrivial if some CE-languages have it but not all of them.

Rice’s Theorem. If O is a nontrivial property of CE-languages, then it is algorithmically
undecidable. The input here is a CE-language, given via a Turing machine recognizing it.

Proof. The empty language ∅ either has the property O or it does not. By interchanging,
if needed, the property O with its negation, we may assume that that the empty language
does not have the property O. Since the property O is nontrivial, there is a CE-language
L1 that has O, and a Turing machine M1 recognizing L1.

Let us then fix a CE-language L with an algorithmically undecidable membership
problem, and a Turing machine M recognizing L.

For each word w over the alphabet of the language L, we define a Turing machine
Mw as follows. The input alphabet of Mw is the same as that of M1. After receiving an
input v, Mw starts by trying to find out whether w is in the language L by simulating
the Turing machine M . In the affirmative case Mw continues by simulating the Turing
machine M1 on input v, which it carefully stored for this purpose, and accepts the input
if and only if M1 does. In the negative case Mw does not accept anything. Note especially
that even if the simulation of M does not halt, the result is correct! Note also that even
though no Turing machine can find out whether or not M halts on input w, the Turing
machine Mw can still be algorithmically constructed.

With this a word w is transformed to a Turing machine Mw with the following property:
The language L(Mw) has the property O if and only if w ∈ L. Since the latter membership
is algorithmically undecidable, then so is the property O.

As an immediate consequence of Rice’s Theorem, the following problems are algorith-
mically undecidable for CE-languages:

• Emptiness problem

• Finiteness problem

• Universality problem

• Regularity problem

• Computability problem: Is a given language computable?

Of course then e.g. the Equivalence problem is undecidable for CE-languages since already
the ”weaker” Universality problem is so. And many of these problems were undecidable
already for CF- and CS-languages.

There are numerous variants of the Turing machine, machines with several tapes or
many-dimensional tapes, etc. None of these, nor any of the other definitions of an algo-
rithm, lead to a family of recognized languages larger than CE .

On the other hand, CE-languages can be recognized by Turing machines of even more
restricted nature than the determistic ones. A DTM M is called a reversible Turing
machine (RTM) if there is another DTM M ′ with the property that if κ1 ⊢M κ2 for the
configurations κ1 and κ2, then (with some insignificant technical changes) κ2 ⊢M ′ κ1.
The DTM M ′ thus works as the time reverse of M ! Yves Lecerf proved already in 1962
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that each CE-language can be recognized by an RTM.3 Similarly, any algorithm can be
replaced by an equivalent reversible one. This result has now become very important e.g.
in the theory of quantum computing.

6.3 Time Complexity Classes (A Brief Overview)

For automata Chomsky’s hierarcy is mostly about the effects various limitations on mem-
ory usage have. Similar limitations can be set for time, i.e., the number of computational
steps (transitions) taken.

Rather than setting strict limits for the number of steps, it is usually better to set them
asymptotically, that is, only for input words of sufficient length and modulo a constant
coefficient. Indeed, a Turing machine can easily be ”accelerated linearly”, and short inputs
quickly dealt with separately.

The time complexity class T IME
(
f(n)

)
then is the family of those languages L that

can be recognized by a deterministic Turing machine M with the following property:
There are constants C and n0 (depending on L) such that M uses at most Cf(n) steps
for any input word of length n ≥ n0. The time complexity classNT IME

(
f(n)

)
is defined

similarly, using nondeterministic Turing machines. Choosing different functions f(n), a
complicated infinite hierarchy inside C is thus created.

Thinking about practical realization of algorithms, for instance the time complexity
classes T IME(2n) and NT IME(2n) are unrealistic, computations are just too time-
consuming. On the other hand, the classes T IME(nd) (deterministic polynomial-time
languages) are much better realizable in this sense. Indeed, the family of all deterministic
polynomial-time languages

P =
⋃

d≥1

T IME(nd)

is generally thought to be the family of tractably recognizable languages.
The classes NT IME(nd) are not similarly clearly practically realizable as P is. The

family

NP =
⋃

d≥1

NT IME(nd)

can of course be defined, it is however a long-standing and very famous open problem
whether or not P = NP! Moreover, the class NP has turned out to contain numerous
”universal” languages, the so-called NP-complete languages, having the property that if
any one of them is in P, then P = NP.

3The original article reference is Lecerf, M.Y.: Machines de Turing réversibles. Récursive insolubilité

en n ∈ N de l’équation u = θ
n
u, où θ est un ”isomorphisme de codes”. Comptes Rendus 257 (1963),

2597–2600.
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CODES

7.1 Code. Schützenberger’s Criterium

A language L is a code if it is nonempty and the words of L∗ can be uniquely expanded
as a concatenation of words of L. This expansion is called decoding. To be more exact, if
u1, . . . , um and v1, . . . , vn are words in L and

u1 · · ·um = v1 · · · vn,

then u1 = v1, which, sufficiently many times repeated, quarantees uniqueness of decoding.
Error-correcting codes (see the course Coding Theory) and some cryptographic codes

(see the course Mathematical Cryptology) are codes in this sense, too, even if rather
specialized such. On the other hand, codes used in data compression (see the course
Information Theory) are of a fairly general type of codes.

Some general properties may be noticed immediately:

• A code does not contain the empty word.

• Any nonempty sublanguage of a code is also a code, a so-called subcode.

• If the alphabet of the code is unary (contains only one symbol), then the code
consists of exactly one nonempty word.

Since codes over a unary alphabet are so very simple, it will be assumed in the sequel
that alphabets contain at least two symbols. Codes do not have many noticeable closure
properties. The intersection of two codes is a code if it is nonempty. Mirror images and
powers of codes are codes, too.

A code can be defined and characterized by various conditions on its words. A language
L is said to be catenatively independent if

L ∩ LL+ = ∅,

i.e., no word of the language L can be given as a concatenation of several words of L.
Clearly a code is always catenatively independent, but the converse is not true in general.
Therefore additional conditions are needed to specify a code. One such is given by

Schützenberger’s Criterium. A catenatively independent language L over the alphabet
Σ is a code if and only if the following condition is valid for all words w ∈ Σ∗:

(∗) If there exist words t, x, y and z in L∗ such that wt = x and yw = z, then w ∈ L∗.

56
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Proof. Let us first assume that the condition (∗) holds true and show that then L is a
code. Suppose the contrary is true: L is not a code. Then there are words u1, . . . , um and
v1, . . . , vn in L such that

u1 · · ·um = v1 · · · vn,

but u1 6= v1. One of the words u1 and v1 is a proper prefix of the other, say v1 = u1w
where w 6= Λ. Now w is a suffix of v1 and a prefix of u2 · · ·um, so that according to
the condition (∗) w is in L+. This however means that L is catenatively dependent, a
contradiction.

Assume second that L is a code and show validity of condition (∗). Let us again
suppose the contrary is true: There exist words t, x, y and z in L∗ such that wt = x and
yw = z, but w /∈ L∗. None of the words t, x, y, z and w can then be empty. Writing the
words y and z as concatenations of words in L as

y = u1 · · ·um and z = v1 · · · vn,

it follows that
u1 · · ·umw = v1 · · · vn.

Obviously it may be assumed that u1 6= v1. But now

v1 · · · vnt = u1 · · ·umwt = u1 · · ·umx

and u1 6= v1, and L cannot possibly be a code, a contradiction again.

7.2 The Sardinas–Patterson Algorithm

As such Schützenberger’s criterium does not give an algorithm for deciding whether or
not a given finite language L is a code. It is, however, possible to use it to derive such
algorithms1, e.g. the classical Sardinas–Patterson algorithm:

1. Set i← 0 and Li ← L.

2. Set i← i + 1 and

Li ← {w | w 6= Λ, and xw = y or yw = x for some words x ∈ L and y ∈ Li−1}.

3. If Li ∩ L 6= ∅, then return ”no” and quit.

4. If Li = Lj for an index j, 1 ≤ j < i, then return ”yes” and quit. Otherwise go to
item 2.

Theorem 31. The Sardinas–Patterson algorithm gives the correct answer.

Proof. Let us first show that if L is not a code, then one of the languages L1, L2, . . . will
contain a word in L. We assume thus that L is not a code. The case where Λ ∈ L is
immediately clear, because then L1 ∩ L 6= ∅, and we move on to the other cases. There
are thus words u1, . . . , um and v1, . . . , vn in L such that

u1 · · ·um = v1 · · · vn = w,

but u1 6= v1. This situation can be illustrated graphically:

1Cf. e.g. Berstel & Perrin & Reutenauer.
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Pm–1 Pm

Qn–1 Qn

P0 P1 P2

Q0 Q1 Q2 Q3 Q4

u1 u2 um
v1 v2 v3 v4 vn

In the figure subwords are indicated as line segments and their ends by points in the line.
Thus for example always

Pi−1Pi = ui and Qj−1Qj = vj .

The initial point is P0 = Q0 and the terminal point Pm = Qn. We may assume that these
are the only cases where the points Pi and Qj coincide, otherwise we simply replace w
by one of its prefixes. Let us then expand w to a concatenation of subwords using all the
points P1, . . . , Pm, Q1, . . . , Qn. Subwords (line segments) of the form PiQj or QjPi, where
Pi and Qj are consequtive and i, j ≥ 1, are now in the union L1 ∪ L2 ∪ · · · , as is easily
seen from the description of the algorithm, starting from the beginning of the word w.

Now, if the point immediately preceding the terminal point Pm = Qn is Pm−1, as it
is in the above figure, then the subword Qn−1Pm−j , where Pm−j is the point immediately
succeeding Qn−1, is in one of the languages Li (i ≥ 1). But this implies that um = Pm−1Pm

is in the language Li+j. The case where the point immediately preceding the terminal
point Pm = Qn is Qn−1, is dealt with analogously. This concludes the first part of the
proof.

Second we show that if L is a code, then none of the languages L1, L2, . . . contains
words in L. For this, Schützenberger’s criterium will be needed.

We begin by showing that for each word w ∈ Li we have L∗w∩L∗ 6= ∅, in other words,
there are words s, t ∈ L∗ such that sw = t. This is trivial in case i = 0. We continue from
this by induction on i, and set the induction hypothesis according to which each word in
Li−1 is a suffix of some word in L∗, as indicated. Consider then a word w in Li. The way
Li is defined by the algorithm implies that there are words x ∈ L and y ∈ Li−1 such that

xw = y or yw = x.

On the other hand, the induction hypothesis implies that there words s, t ∈ L∗ such that
sy = t. We deduce that

sxw = sy = t or sx = syw = tw,

and the claimed result is valid for Li, too.
To proceed with the second part of the proof, we assume the contrary, i.e., that there

actually is a word w ∈ L ∩ Li for some index value i ≥ 1, and derive a contradiction.
Following the algorithm there then are words x ∈ L and y ∈ Li−1 such that

yw = x or xw = y.

If yw = x, it follows that L∗y ∩ L∗ 6= ∅ (by the above) and L∗ ∩ yL∗ 6= ∅, and, as a
consequence of the Schützenberger criterium, that y ∈ L∗, a contradiction. (Note that
the case i = 1 is clear anyway.) The other alternative xw = y then must be true, and
consequently i ≥ 2 (why?) and y ∈ L∗. Again by the algorithm there are words x′ ∈ L
and y′ ∈ Li−2 such that

y′y = x′ or x′y = y′.

The former alternative is again excluded using the Schützenberger criterium as above.
The latter alternative x′y = y′ then must hold true, and consequently i ≥ 3 (why?) and
y′ ∈ L∗.
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We may continue in this way indefinitely. Thus a contradiction arises for each value
of i.

Finally we note that if L is a code, then the algorithm eventually stops in item 4.
There are only finitely many possible languages Li because L is finite and lengths of
words cannot increase indefinitely.

For infinite languages the case is more complicated. Deciding whether or not a given
regular language L is a code can be done algorithmically as follows. First, the case where
L contains the empty word is clear, of course. Excluding that, it is fairly easy to transform
a DFA recognizing L to a Λ-NFA M , which accepts exactly all words that can be written
as a concatenation of words in L in at least two different ways (cf. the proof of Kleene’s
Theorem). The problem is then reduced to deciding emptiness of the regular language
L(M).2

On the other hand, there is no general algorithm for deciding whether or not a given
CF-language is a code. This can be shown using e.g. the Post correspondence problem
introduced in Section 4.7. For each pair of PCP input morphisms

σ1 : Σ∗ → ∆∗ and σ2 : Σ∗ → ∆∗

we just construct the language

L =
{
σ1(w)#ŵ$

∣
∣ w ∈ Σ+}

∪
{
σ2(w)#ŵ$σ1(v)#v̂$

∣
∣ w, v ∈ Σ+}

over the alphabet Σ ∪∆ ∪ {#, $}. It is not difficult to see that L is CF, and that it is a
code if and only if there is no word w ∈ Σ+ such that σ1(w) = σ2(w).

7.3 Indicator Sums. Prefix Codes

Various numerical sums make it possible to arithmetize the theory of codes, and form an
important tool—especially for error-correcting codes but in general as well, cf. the course
Coding Theory.

One such sum is the indicator sum of a language L over the alphabet Σ

is(L) =
∑

w∈L

M−|w|

where M is the cardinality of Σ. In general, the indicator sum may be infinite, e.g.

is(Σ∗) =

∞∑

n=0

MnM−n =∞.

In codes, on the other hand, words appear sparsely and the situation is different:

Markov–McMillan Theorem. For every code L (finite or infinite) is(L) ≤ 1.

Proof. Let us first consider a finite code {w1, w2, . . . , wk} such that the lengths of the
words are

l1 ≤ l2 ≤ · · · ≤ lk.

2This idea works of course especially for finite languages, but Sardinas–Patterson is much better!
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We take an arbitrary positive integer r (and finally the limit r →∞). Then

( k∑

n=1

M−ln

)r

=
( k∑

n=1

M−ln

)

· · ·
( k∑

n=1

M−ln

)

︸ ︷︷ ︸

r copies

=
k∑

n1=1

k∑

n2=1

· · ·
k∑

nr=1

M−ln1
−ln2

−···−lnr .

The sum ln1
+ ln2

+ · · · + lnr
is the length of the concatenation of the r code words

wn1
wn2
· · ·wnr

. When the indices n1, n2, . . . , nr independently run through the values
1, 2, . . . , k, all possible concatenations of r code words will be included, in particular
possible multiple occurrences.

Let us then denote by sj the number of all words of length j obtained by concatenating
r code words, including possible multiple occurrences. It is not however possible to get
the same word by different concatenations of code words, so sj ≤M j . The possible values
of j are clearly

rl1 , rl1 + 1 , . . . , rlk.

Hence
( k∑

n=1

M−ln

)r

=

rlk∑

j=rl1

sjM
−j ≤

rlk∑

j=rl1

M jM−j = rlk − rl1 + 1 ≤ rlk.

Extracting the rth root on both sides and letting r →∞ we get

k∑

n=1

M−ln ≤ r
√

rlk → 1,

since

lim
r→∞

ln r
√

rlk = lim
r→∞

ln r + ln lk
r

= 0.

The left hand side of this inequality does not depend on r, and thus the inequality must
hold true in the limit r →∞ as well.

For infinite codes the result follows from the above. Indeed, if it is not true for some
infinite code, this will be so for some of its finite subcodes, too.

The special case where is(L) = 1 has to do with so-called maximal codes. A code L
is maximal if it is not a proper subcode of another code, that is, it is not possible to add
even one word to L without losing unique decodability.3 Indeed,

Corollary. If is(L) = 1 for a code L, then the code is maximal.

It may be noted that the converse is true for finite codes, but not for infinite codes in
general.

The converse of the Markov–McMillan Theorem is not true in general, because there
are noncodes with is(L) ≤ 1 (can you find one?). Some sort of a converse is, however,
valid:

Kraft’s Theorem. If
∑

n=1,2,...M
−ln ≤ 1 and l1 > 0, then there is a code (finite or

infinite) over an alphabet of cardinality M such that the lengths of its words are l1, l2, . . .
In addition the code may be chosen to be a prefix code, i.e., a code where no code word is
a prefix of another code word.4

3In the literature this is sometimes also called a complete code, and ”maximality” is reserved for other

purposes.
4Equally well it could be chosen to be a suffix code where no code word is a suffix of another code

word.
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Proof. First, it may be noted that the prefix condition alone guarantees that the language
is a code. That is, if no word is a prefix of another word in a language (6= {Λ}), then the
language is a code. Second, it is noted that the sum condition implies

(∗)
j∑

n=1

M lj−ln ≤M lj (j = 1, 2, . . . ).

Apparently we may assume 1 ≤ l1 ≤ l2 ≤ · · ·
The following process, iterated sufficiently many times, produces the desired prefix

code.

1. Set L← ∅, i← 1 and
Wj ← Σlj (j = 1, 2, . . . ).

Note that Wj then contains M lj words.

2. Choose a word wi in Wi (any word) and set

Wj ←Wj − wiΣ
lj−li (j = i, i + 1, . . . ).

Before this operation, altogether

M lj−l1 + M lj−l2 + · · ·+ M lj−li−1

words were removed from the original Wj . According to the inequality (∗), Wi may
then be empty, but Wi+1, Wi+2, . . . are not empty.

3. Set L ← L ∪ {wi}. Assuming that there still are given lengths of words not dealt
with, set i ← i + 1 and go to item 2. Otherwise return L and stop. In case the
number of given lengths of words is infinite, the process runs indefinitely producing
the prefix code L in the limit.

Corollary. Any code can be replaced by a prefix code over the same alphabet preserving
all lengths of code words.

This result is very important because a prefix code is extremely easily decoded (can you
see how?).

Prefix codes are closely connected with certain tree structures, cf. the derivation tree
in Section 4.1. A tree T is a prefix tree over the alphabet Σ if

• the branches (edges) of T are labelled by symbols in Σ,

• branches leaving a vertex all have different label symbols, and

• T has vertices other than the root (T may even be infinite).

The following tree is an example of a prefix tree over the alphabet {a, b}:

a b

a

a b
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Any prefix tree T determines a language L(T ), obtained by traversing all paths from the
root to the leaves collecting and concatenating labels of branches. In the example above
L(T ) = {a, bb, baa}. Because of its construction, for any prefix tree T the language L(T )
is a prefix code. The converse result holds true, too: For each prefix code L there is a
prefix tree T such that L = L(T ). This prefix tree is obtained as follows:

1. First set T to the root vertex.

2. Sort the words of L lexicographically, i.e., first according to length and then alpha-
betically inside each length: w1, w2, . . . Set i← 1.

3. Find the longest word u in T , as traversed from the root to a vertex V , that is a
prefix of wi and write wi = uv. Extend then the tree T by annexing a path starting
from the vertex V and with branches labelled in order by the symbols of v. In the
beginning V is the root.

4. If L is finite and its words are all dealt with, then return T and stop. Otherwise
set i← i + 1 and go to item 3. If L is infinite, then the corresponding prefix tree is
obtained in the limit of infinitely many iterations.

7.4 Bounded-Delay Codes

It is clearly not possible to decode an infinite code using a generalized sequential machine
(GSM, cf. Section 2.8). On the other hand, there are finite codes that cannot be decoded
by a GSM either. For example, for the code {a, ab, bb}, not one code word of the word
abn can be decoded until it is read through.

A finite code L has decoding delay p if u1 = v1 whenever

u1, . . . , up ∈ L and v1, . . . , vn ∈ L

and u1 · · ·up is a prefix of v1 · · · vn. This means that a look-ahead of p code words is
needed for decoding one code word. A code that has a decoding delay p for some p, is a
so-called bounded-delay code. Note in particular that codes of decoding delay 1 are the
prefix codes in the previous section.

A finite code L of decoding delay p over the alphabet Σ can be decoded using a GSM
S as follows:

1. If m is the length of the longest word in Lp, then the states of S are 〈w〉 where w
goes through all words of length at most m. The initial state is 〈Λ〉.

2. The input/output alphabet of S is Σ ∪ {#}. The special symbol # marks the end
of the input word so that S will know when to empty its memory. The decoding is
indicated by putting # between code words of L.

3. If S is in the state 〈w〉 and w /∈ Lp, then on input a ∈ Σ it moves to the state 〈wa〉
outputting Λ.

4. If S is in a state 〈u1u2 · · ·up〉 where u1, u2, . . . , up are code words, then on input
a ∈ Σ it moves to the state 〈u2 · · ·upa〉 outputting u1#. (Especially, if p = 1, then
S just moves to the state 〈a〉.)
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5. If S is in a state 〈u1 · · ·uk〉 where k ≥ 2 and u1, . . . , uk are code words, then on
input # it moves to the state 〈Λ〉 outputting u1# · · ·#uk.

6. If S is in a state 〈u〉 where u ∈ L or u = Λ, then on input # it moves to the state
〈Λ〉 outputting u.

For the sake of completeness, state transitions and outputs of S dealing with words outside
L∗ should be added.

Prefix codes are especially easy to decode in this way. Thus, if what is important about
code words is their lengths, say, getting as short code words as possible, it is viable to
use prefix codes. This is always possible, by the Markov–McMillan Theorem and Kraft’s
Theorem.

7.5 Optimal Codes and Huffman’s Algorithm

In optimal coding first the alphabet Σ = {c1, c2, . . . , cM} is fixed, and then the number k
and the weights P1, P2, . . . , Pk of the code words. The weights are nonnegative real num-
bers summing to 1. When relevant, they may be interpreted as probabilities, frequencies,
etc. In what follows it will be assumed that the weights are indexed in nonincreasing
order:

P1 ≥ P2 ≥ · · · ≥ Pk (≥ 0).

Thus, the extreme cases are P1 = 1, P2 = · · · = Pk = 0 and P1 = · · · = Pk = 1/k.
The problem then is to find code words w1, w2, . . . , wk, corresponding to the given

weights, such that the mean length

P1|w1|+ P2|w2|+ · · ·+ Pk|wk|

is the smallest possible. The code thus obtained is a so-called optimal code. Since mean
length depends on the code words only via their lengths, it may be assumed in addition
that the code is a prefix code. We will denote |wi| = li (i = 1, 2, . . . , k), and the mean
length by l. Optimal coding may then be given as the following integer optimization
problem:







l =

k∑

i=1

Pili = min!

k∑

i=1

M−li ≤ 1

l1, l2, . . . , lk ≥ 1.

Optimal codes are closely connected with information theory5 and data compression.
Indeed, numerous algorithms were developed for finding them. The best known such is
probably Huffman’s algorithm. Using the above notation we proceed by first showing that

Lemma. The code words w1, w2, . . . , wk of an optimal prefix code may be chosen in such
a way that

5According to the classical Shannon Coding Theorem, H ≤ l ≤ H + 1 where

H = −P1 logM P1 − · · · − Pk logM Pk

is the so-called entropy, cf. the course Information Theory.
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• l1 ≤ · · · ≤ lk−s ≤ lk−s+1 = · · · = lk where 2 ≤ s ≤ M and s ≡ k mod M − 1,6

• wk−s+1, . . . , wk differ only in their last symbol, which is ci for wk−s+i, and

• the common prefix of length lk − 1 of wk−s+1, . . . , wk is not a prefix of any of the
words w1, . . . , wk−s.

Proof. Some optimal (prefix) code {w′
1
, w′

2
, . . . , w′

k} of course exists, with lengths of code
words l′

1
, l′

2
, . . . , l′k. If now l′i > l′i+1

for some i, then we exchange w′
i and w′

i+1
. This

changes the mean length by

Pil
′
i+1

+ Pi+1l
′
i − (Pil

′
i + Pi+1l

′
i+1

) = (Pi − Pi+1)(l
′
i+1
− l′i) ≤ 0.

The code is optimal, so the change is = 0, and the code remains optimal. After repeating
this operation sufficiently many times we may assume that the lengths satisfy

l1 ≤ l2 ≤ · · · ≤ lk.

Even so, there may be several such optimal codes. We choose the code to be used in such
way that the sum l1 + l2 + · · ·+ lk is the smallest possible, and denote

(∗) ∆ = M lk −
k∑

i=1

M lk−li .

By the Markov–McMillan Theorem, ∆ ≥ 0. On the other hand, if ∆ ≥ M − 1, then
the lengths l1, . . . , lk−1, lk − 1 would satisfy the condition of Kraft’s Theorem, which is
impossible because l1+l2+· · ·+lk is the smallest possible. We deduce that 2 ≤M−∆ ≤M .

Let us then denote by r the number of code words of length lk. We then have r ≥ 2.
Indeed, otherwise removing the last symbol of wk would not destroy the prefix property
of the code, which is again impossible because l1 + l2 + · · ·+ lk is the smallest possible.
The equality (∗) implies

∆ ≡ −r mod M , i.e. , r ≡M −∆ mod M.

We know that 2 ≤M −∆ ≤M , so r can be written as

r = tM + (M −∆)

where t ≥ 0. The equality (∗) further implies

∆ ≡ 1− k mod M − 1

since
M ≡ 1 mod M − 1 , i.e. , M −∆ ≡ k mod M − 1.

Hence M −∆ must be exactly the number s in the lemma, and r ≥ s.
Reindexing if necessary we may assume that among the code words wk−r+1, . . . , wk

of length lk the words wk−t, . . . , wk have different prefixes of length lk − 1, denoted by
z1, . . . , zt+1. Recall that r = tM + s. Finally we replace the words wk−r+1, . . . , wk by the
words

z1c1 , . . . , z1cM , z2c1 , . . . , z2cM , . . . , ztc1 , . . . , ztcM , zt+1c1 , . . . , zt+1cs.

This destroys neither the prefix property nor the optimality of the code.

6The congruence or modular equality a ≡ b mod m means that a− b is divisible by m.
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Huffman’s algorithm is a recursive algorithm. To define the recursion, consider the
words v1, . . . , vk−s+1, obtained from the code {w1, w2, . . . , wk} given by the Lemma, as
follows:

(a) v1 = w1, . . . , vk−s = wk−s, and

(b) vk−s+1 is obtained by removing the last symbol (= c1) of wk−s+1.

The words v1, . . . , vk−s+1 then form a prefix code. Taking the corresponding weights to
be

P1, . . . , Pk−s, Pk−s+1 + · · ·+ Pk

gives the mean length

l′ =

k−s∑

i=1

Pili +

k∑

i=k−s+1

Pi(lk − 1) = l −
k∑

i=k−s+1

Pi.

This means that the code {v1, . . . , vk−s+1} is optimal, too. Indeed, otherwise there would
be a prefix code {v′

1
, . . . , v′

k−s+1
} with a smaller mean length, and the mean length of the

prefix code
{v′

1
, . . . , v′

k−s, v
′
k−s+1

c1, . . . , v
′
k−s+1

cs}

would be smaller than
l′ + Pk−s+1 + · · ·+ Pk = l.

On the other hand, if {v′
1
, . . . , v′

k−s+1
} is an optimal prefix code, corresponding to the

weights
P1, . . . , Pk−s, Pk−s+1 + · · ·+ Pk,

then its mean length is l′ and

{v′
1
, . . . , v′

k−s, v
′
k−s+1

c1, . . . , v
′
k−s+1

cs}

is an optimal prefix code corresponding to the weights P1, P2, . . . , Pk. If this is not so, the
Lemma would give an optimal code with mean length less than

l′ + Pk−s+1 + · · ·+ Pk,

and this would further give a code even ”more optimal” than the code {v′
1
, . . . , v′

k−s+1
}.

Huffman’s algorithm is the following recursion which, as shown above, outputs an
optimal prefix code after receiving as input the weights P1, P2, . . . , Pk in nonincreasing
order. Note in particular that a zero weight is by no means excluded.

1. If k ≤M , then return w1 = c1, w2 = c2, . . . , wk = ck, and quit.

2. Otherwise the optimal code {w1, w2, . . . , wk}, corresponding to the input weights
P1, P2, . . . , Pk is immediately obtained, once the code {v1, v2, . . . , vk−s+1} is known,
by taking

w1 = v1 , w2 = v2 , . . . , wk−s = vk−s

and
wk−s+1 = vk−s+1c1 , . . . , wk = vk−s+1cs.
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3. To get the code {v1, . . . , vk−s+1} compute first s and set

Q1 ← P1 , . . . , Qk−s ← Pk−s and Qk−s+1 ← Pk−s+1 + · · ·+ Pk.

Set further the new values of the weights P1, P2, . . . , Pk−s+1 to be Q1, Q2, . . . , Qk−s+1

in nonincreasing order, and k ← k − s + 1, and go to item 1.

The recursion is finite because the number of weights decreases in each iteration, reaching
finally a value ≤M .

Note. The first value of s satisfies s ≡ k mod M −1. The ”next k” will then be k−s+1
and

k − s + 1 ≡ 1 mod M − 1.

Thus the next value of s is in fact M . Continuing in this way it is further seen that all
remaining values of s equal M , hence only the first value of s needs to be computed! Note
also that in the case M = 2 (the binary Huffman algorithm) we always have s = 2.

Huffman’s algorithm essentially constructs a prefix tree (the so-called Huffman tree),
corresponding to an optimal prefix code, using the following ”bottom-up” method:

• The branches of the tree are labelled by the symbolds of Σ, as was done before. The
vertices are labelled by weights.

• In the beginning only the leaves are labelled by the weights P1, P2, . . . , Pk. The
leaves are then also labelled as unfinished.

• At each stage a value of s is computed according to the number of unfinished vertices,
cf. the Note above. Then a new vertex is added to the tree and the unfinished vertices
corresponding to the s smallest labels (weights) are connected to the new vertex by
branches labelled by the symbols c1, . . . , cs. These s vertices are then labelled as
finished, and the new vertex receives a weight label which is the sum of the s smallest
weights, and is also labelled as unfinished. The process then continues.

• The tree is ready when the weight label 1 is reached and the root is found.

This procedure offers a ”graphical” way of finding an optimal code, for relatively small
numbers of words anyway. Below there is an example of such a ”graphical” Huffman tree.
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The branches of the tree are in black, the grey ones are there only for the sorting of
weights. The tree defines the code words a, bb, baa, babb, baba of an optimal prefix code
over the alphabet {a, b} for the weights 0.4, 0.3, 0.1, 0.1, 0.1.

The optimal code returned by Huffman’s algorithm is not in general unique, owing
to occasional occurrences of equal weights. A drawback of the algorithm is the intrinsic
trickiness of fast implementations.

An example of a problem that can be dealt with by Huffman’s algorithm is the so-called
query system. The goal is to find out the correct one of the k given alternatives V1,. . . ,Vk

using questions with answers always coming from a fixed set of M choices. (Usually
”yes” and ”no” when M = 2.) The frequencies (probabilities) P1, . . . , Pk of the possible
alternatives V1,. . . ,Vk as correct solutions are known. How should you then choose yoAn
Overview



Chapter 8

LINDENMAYER’S SYSTEMS

8.1 Introduction

All rewriting systems so far dealt with are sequential, that is, only one symbol or (short)
subword is rewritten at each step of the derivation. The corresponding parallel rewriting
systems have been quite popular, too. The best known of these are Lindenmayer’s systems
or L-systems. Originally L-systems were meant to model morphology of plants, and of
cellular structures in general. Nowadays their use is almost entirely in computer graphics,
as models of plants and to generate fractals for various purposes.

Compared with grammars the standard terminology of Lindenmayer’s systems is a bit
different. In particular the following acronyms should be mentioned:

• 0: a context-free system

• I: a context-sensitive system

• E: terminal symbols are used

• P: productions are length-increasing

8.2 Context-Free L-Systems

Formally a 0L-system is a triple G = (Σ, α, P ) where Σ is the alphabet (of the language),
α ∈ Σ∗ is the so-called axiom and P is the set of productions. In particular, it is required
that there is in P at least one production of the form a→ w for each symbol a of Σ.

Derivations are defined as for grammars, except that at each step of the derivation some
production must be applied to each symbol of the word (parallelism). Such a production
may well be an identity production of the form a→ a. The language generated by G is

L(G) = {w | α⇒∗G w}.

A 0L-system is

• deterministic or a D0L-system if there is exactly one production a → w for each
symbol a of the alphabet.

• length-increasing or propagating or a P0L-system if in each production a → w we
have w 6= Λ, a PD0L-system then appearing as a special case.

68



CHAPTER 8. LINDENMAYER’S SYSTEMS 69

The corresponding families of languages are denoted by 0L, D0L etc.

Example. The language {a2
n

| n ≥ 0} is generated by the simple PD0L-system G =
(
{a}, a, {a→ a2}

)
. Note that this language is not CF but it is CS.

Theorem 32. 0L ⊂ CS

Proof. The proof is very similar to that of Theorem 12. For a 0L-system G = (Σ, α, P )
we denote

∆ = {a ∈ Σ | a⇒∗G Λ}.

For each symbol a ∈ ∆ we also define the number

da = min
a⇒n

G
Λ

n.

It is fairly easy to construct an LBA M recognizing L(G). M simulates each derivation
of G starting from the axiom α. When it meets a symbol a ∈ ∆ the LBA M decides
whether it continues with a derivation where a ⇒∗G Λ, or not. In the former case it
immediately erases a in its tape moving the remaining suffix to the left, and it must then
simulate the derivation of G at least da steps. This M remembers using its states. For the
simulation M compresses several symbols of Σ into one tape symbol, if needed, so that
the symbols of ∆ to be erased can be fitted in, too. If the simulation overflows, i.e., uses
more than the allowed space, M halts in a nonterminal state. Note how the simulation is
especially easy for P0L-systems.

The language {anbn | n ≥ 1} is a CF-language that clearly is not 0L.

Adding a terminal alphabet ΣT ⊆ Σ in a 0L-system G = (Σ, α, P ) we get an E0L-
system G′ = (Σ, ΣT, α, P ). The language generated is then

L(G′) = {w | α⇒∗G′ w and w ∈ Σ∗
T
}.

Example. The language {anbn | n ≥ 1} is an E0L-language, it is generated by the E0L-
system G =

(
{a, b, c}, {a, b}, c, P

)
where P contains the productions

a→ a , b→ b , c→ acb | ab.

Theorem 33. CF ⊂ E0L ⊂ CS

Proof. It is easy to transform a CF-grammar into an equivalent E0L-system, just add
identity productions for all symbols. On the other hand, there are D0L-languages that
are not CF (the example above). Thus CF ⊂ E0L.

It is an immediate consequence of Theorem 32 that E0L ⊆ CS. It is however rather
more difficult to find a CS-language that is not E0L. An example of such a language is
the so-called Herman’s language

H =
{
w

∣
∣ |w|a = 2n, n = 0, 1, 2, . . .

}

over the alphabet {a, b}. Here |w|a denotes number of occurrences of the symbol a in the
word w. It is not difficult to show that H is CS but a lot more difficult to show that it is
not E0L (skipped here).
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In computer graphics symbols are interpreted as graphical operations performed in
the order given by the derivation of the word.

Example. In the beginning the picture window is the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
Symbols of the alphabet {a, b, c} are interpreted as follows:

• a: a line segment connecting the points (1/3, 1/2) and (2/3, 1/2).

• b: a line segment connecting the points (0, 0) and (1/3, 1/2); scaling to fit into the
rectangle 0 ≤ x ≤ 1/3, 0 ≤ y ≤ 1/2.

• c: a line segment connecting the points (2/3, 1/2) and (1, 1); scaling + translation
into the rectangle 2/3 ≤ x ≤ 1, 1/2 ≤ y ≤ 1.

The D0L-system
G =

(
{a, b, c}, bac, {a→ a, b→ bac, c→ bac}

)

then generates the words

bac , bacabac , bacabacabacabac , . . .

Interpreted graphically the limiting picture is a fractal, the so-called Devil’s staircase:

This is a graph of a continuous function that is almost everywhere differentiable, the
derivative however being always = 0.

When modelling plants etc. the operations are three-dimensional: parts of trunk, leaves,
branches, flowerings, and so on.
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8.3 Context-Sensitive L-Systems or L-Systems with

Interaction

An IL-system is a quintuple G = (Σ, XL, XR, α, P ) where Σ is the alphabet (of the lan-
guage), XL, XR /∈ Σ are the endmarkers (left and right), α ∈ Σ∗ is the so-called axiom
and P is the set of productions. These productions are of the special type

〈u, a, v〉 → w

where a ∈ Σ and u is the so-called left context and v is the right context.
To explain in more detail let us denote by dL (resp. dR) the length of the longest

occurring left context (resp. right context), and define the sets

YL =
{
XLx

∣
∣ x ∈ Σ∗ and |x| < dL

}
∪ΣdL and YR =

{
yXR

∣
∣ y ∈ Σ∗ and |y| < dR

}
∪ΣdR .

It then will be required that for every symbol a ∈ Σ and every word u ∈ YL and every word
v ∈ YR there is a suffix u′ of u and a prefix v′ of v such that for some w the production
〈u′, a, v′〉 → w is in P . This particular condition guarantees that rewriting is possible in
all situations. If there always is exactly one such production, the system is a deterministic
IL-system or DIL-system.

The production 〈u, a, v〉 → w is interpreted as being available for rewriting a only
when the occurrence of a in the word being rewritten is in between the subwords u and
v, in this order. As for L-systems in general, rewriting is parallel, that is, every symbol of
a word must be rewritten simultaneously. If no symbol is ever erased or rewritten as Λ,
i.e., w 6= Λ in each production 〈u, a, v〉 → w, then the system is propagating or a so-called
PIL-system.

The language generated by G is

L(G) = {w | XLαXR ⇒
∗
G XLwXR}.

Note that the endmarkers are never rewritten, they are just there to indicate the bound-
aries.

Adding a terminal alphabet ΣT ⊆ Σ to an IL-system G = (Σ, XL, XR, α, P ) makes it
a so-called EIL-system: G′ = (Σ, ΣT, XL, XR, α, P ). The generated language is then

L(G′) = {w | XLαXR ⇒
∗
G′ XLwXR and w ∈ Σ∗

T
}.

Theorem 34. EPIL = CS and EIL = CE .

Proof. The proofs of these equalities are very similar to those of Theorems 19 and 20.

Since context-sensitive L-families thus are the same as the corresponding families in
Chomsky’s hierarchy, they do not have as significant a role as the context-free ones do. It
should be noted, however, that IL-systems form a curious parallel alternative for modelling
computation.

It is interesting that for deterministic IL-systems the results are quite similar. The
proofs are then however somewhat more complicated than that of Theorem 34.1

1The original reference is the doctoral thesis Vitányi, P.M.B.: Lindenmayer Systems: Structure,

Languages, and Growth Functions. Mathematisch Centrum. Amsterdam (1978).
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Theorem 35. EPDIL = DCS and EDIL = CE .

This gives deterministic grammatical characterizations for the families DCS and CE , and
also a deterministic model for parallel computation.

An IL-system is structurally so close to a Turing machine that it can be regarded as
one of the fairly few parallel-computation variants of the Turing machine. This does not
offer much advantage for space complexity, for time complexity the question remains more
or less open.



Chapter 9

FORMAL POWER SERIES

9.1 Language as a Formal Power Series

The characteristic function of the language L over the alphabet Σ is defined by

χL(w) =

{

1 if w ∈ L

0 otherwise.

Obviously the characteristic function χL completely determines the language L. Moreover,
as of operations of languages, we see that

χL1∪L2
(w) = max

(
χL1

(w), χL2
(w)
)
,

χL1∩L2
(w) = min

(
χL1

(w), χL2
(w)
)

= χL1
(w)χL2

(w),

χL1L2
(w) = max

uv=w

(
χL1

(u)χL2
(v)
)
.

Thinking of maximization as a kind of sum, these operations remind us of the basic
operations of power series, familiar from calculus: sum (sum of coefficients), Hadamard’s
product (product of coefficients) and Cauchy’s product (product of series, convolution). It
is then natural to adopt a formal notation

∑

w∈Σ∗

χL(w)w,

the so-called formal power series of the language L. Here we consider symbols of the
alphabet Σ = {x1, . . . , xk} as a set of noncommuting variables.

9.2 Semirings

As such the only novelty in representing a language as a formal power series is in the ”fa-
miliarity” of the power series notation. Moreover, the operation of concatenation closure,
so central for languages, has no equivalent for formal power series. The importance of
the notion of formal power series however becomes obvious when more general coefficients
are allowed, since this naturally leads to generalizations of languages via changing the
set concept. The coefficients are then assumed to come from a certain class of algebraic
structures, the so-called semirings, where addition and multiplication are defined, and the
usual laws of arithmetic hold true. Furthermore, semirings have a zero element and an
identity element.
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A semiring is an algebraic structure R = (C, +, ·, 0, 1) where C is a nonempty set
(the elements) and the ”arithmetic” operations have the desired properties—in addition
to giving unique results and being always defined:

• The operations + (addition) and · (multiplication) are both associative, i.e.,

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.

It follows from these that in chained sums and products parentheses can be placed
in any proper way whatsoever and the result is always the same, indeed, it is then
not necessary to use any parentheses at all:

a1 + a2 + · · · + an and a1 · a2 · · · · · an.

In particular, this makes it possible to adopt the usual handy notation for multiples
and powers

na = a + a + · · ·+ a
︸ ︷︷ ︸

n copies

and an = a · a · · · · · a
︸ ︷︷ ︸

n copies

,

and especially 1a = a and a1 = a. The usual rules of calculation apply here:

(n + m)a = (na) + (ma) and an+m = an · am.

• Addition is commutative, i.e., a + b = b + a.

Quite often multiplication is commutative, too, i.e., a · b = b · a. The semiring is
then commutative or Abelian.

• Multiplication is distributive with respect to addition, i.e.,

a · (b + c) = (a · b) + (a · c) and (a + b) · c = (a · c) + (b · c).

• 0 ∈ C is the so-called zero element satisfying a + 0 = 0 + a = a for all elements a.
In the notation for multiples we then agree that 0a = 0. Note that there can be
only one zero element (why?).

• 1 ∈ C is the so-called identity element satisfying 1 · a = a · 1 = a for all elements a.
In the power notation we then agree that a0 = 1, and especially that 00 = 1. It is
assumed in addition that 0 6= 1. (A semiring thus has at least two elements.) Note
that there can be only one identity element (why?).

• 0 · a = a · 0 = 0
Parentheses may be omitted by agreeing that multiplication always precedes addition.
The dot symbol for multiplication is often omitted, too, as usual.

Familiar examples of semirings are N = (N, +, ·, 0, 1) (natural numbers and the usual
arithmetic operations) and (R+, +, ·, 0, 1) (nonnegative real numbers and the usual arith-
metic operations). Of course, all integers Z as well as all reals R equipped with the usual
arithmetic operations form semirings, too. In the formal power series of a language the
coefficients will be in a semiring, the so-called Boolean semiring B = (B, max, min, 0, 1)
where B = {0, 1} (bits) and thus the only elements are the zero element and the identity
element. Associativity and distributivity are quite easy to verify. All these semirings are
in fact commutative. An example of a noncommutative semiring would be the semiring
(Nn×n, +, ·,On, In) of n×n-matrices with elements in N where addition and multiplication
are the customary matrix operations, On is the zero matrix and In is the identity matrix,
and n > 1.
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9.3 The General Formal Power Series

Defined analogously to the formal power series of a language, a general formal power series
in the semiring R = (C, +, ·, 0, 1) over the alphabet Σ = {x1, x2, . . . , xk} is a mapping
κ : Σ∗ −→ C. It is traditionally denoted by an infinite formal sum (series)

∑

w∈Σ∗

κ(w)w

where the summands κ(w)w are called terms. Often terms κ(w)w where κ(w) = 0 will
be omitted, and customary shorthand notations are used:

κ(Λ)Λ = κ(Λ) and 1w = w.

The κ(w) in the term κ(w)w is the coefficient. Parentheses closing a coefficient are also
often omitted if no confusion can arise. The set of all such power series is denoted by
R〈〈Σ〉〉.

As for the formal power series of languages, the operations + and · of the semiring
lead to operations for formal power series. Let

S1 =
∑

w∈Σ∗

κ1(w)w and S2 =
∑

w∈Σ∗

κ2(w)w.

Then

• S1 + S2 =
∑

w∈Σ∗

(
κ1(w) + κ2(w)

)
w (sum).

• S1 ⊗ S2 =
∑

w∈Σ∗

κ1(w)κ2(w)w (Hadamard’s product).

• S1S2 =
∑

w∈Σ∗

κ(w)w (Cauchy’s product) where κ(w) =
∑

uv=w

κ1(u)κ2(v).

The products in turn lead to powers, especially Cauchy’s product leads to the mth Cauchy
power

Sm =
∑

w∈Σ∗

κ′(w)w

of the series
S =

∑

w∈Σ∗

κ(w)w

where
κ′(w) =

∑

u1u2···um=w

κ(u1)κ(u2) · · ·κ(um).

Note in particular that the first power S1 of the series is then the series itself, as it should
be.

A formal power series where only finitely many coefficients are 6= 0 is called a formal
polynomial. Formal power series of finite languages are exactly all formal polynomials of
the Boolean semiring B. Formal polynomials containing only one term, i.e., polynomials
of the form aw for some nonzero element a ∈ C and word w ∈ Σ∗, are the so-called
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monomials. Further, polynomials where κ(Λ) is the only nonzero coefficient are the so-
called constant series and they are usually identified with elements of the semiring. For
a constant series a Cauchy’s product is very simple:

a
( ∑

w∈Σ∗

κ(w)w
)

=
∑

w∈Σ∗

aκ(w)w.

By convention, the zeroth power S0 of the formal power series S is defined to be the
constant series 1. The series where all coefficients are = 0 is the so-called zero series 0.

Series with κ(Λ) = 0, i.e., with a zero constant term, are called quasi-regular. A
quasi-regular formal power series

S =
∑

w∈Σ∗

κ(w)w =
∑

w∈Σ+

κ(w)w

has the so-called quasi-inverses

S+ =
∑

w∈Σ+

κ+(w)w and S∗ = 1 + S+

(note that κ+(Λ) = 0) where

κ+(w) =

|w|
∑

m=1

∑

u1u2···um=w

κ(u1)κ(u2) · · ·κ(um).

The basic property of quasi-inverses is then given by

Theorem 36. The quasi-inverses of a quasi-regular formal power series S satisfy the
equalities

S + SS+ = S + S+S = SS∗ = S∗S = S+.

Proof. To give the idea, let us prove the equality S + SS+ = S+. (The other equalities
are left as exercises for the reader.) We denote

SS+ =
∑

w∈Σ∗

κ′(w)w.

According to the definitions above, then

κ′(w) =
∑

uv=w

κ(u)

|v|
∑

m=1

∑

u1···um=v

κ(u1) · · ·κ(um) =
∑

uv=w

|v|
∑

m=1

∑

u1···um=v

κ(u)κ(u1) · · ·κ(um)

=

|w|
∑

k=2

∑

u1u2···uk=w

κ(u1)κ(u2) · · ·κ(uk).

The last equality can be verified by checking through the suffixes v of w. We see thus
that κ(w) + κ′(w) = κ+(w).
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The formal power series S of a language L that does not contain the empty word
is quasi-regular, and S+ (resp. S∗) is the formal power series of L+ (resp. L∗). Quasi-
inversion thus is the ”missing operation” that corresponds to concatenation closure of
languages. It is, however, not defined for all power series, while concatenation closure is
defined for all languages. It also behaves a bit differently, as we will see.

Even though elements in a semiring may not have opposite elements (or negatives), it
is nevertheless customary to write

S+ =
S1− S

and S∗ =
11− S

.

Another way of expressing quasi-inverses is to use Cauchy’s powers:

S+ =

∞∑

m=1

Sm and S∗ =

∞∑

m=0

Sm.

Example. The power series of the (single) variable x, familiar from basic courses in
calculus, may be thought of as formal power series of the semiring (Q, +, ·, 0, 1) (rational
numbers), or (R, +, ·, 0, 1) (reals). E.g. the Maclaurin series of the function xex

S =
∞∑

m=1

1

(m − 1)!
xm

can be interpreted as such a formal power series over the alphabet {x}. Its quasi-inverses
S+ and S∗ are the Maclaurin series of the functions xex/(1 − xex) and 1/(1 − xex), as
one might expect.

But note that now (S+)+ 6= S+. For languages (L+)+ = L+, so not all rules of
calculation for languages are valid for formal power series!

Sum, Cauchy’s product and quasi-inversion are the so-called rational operations of
formal power series. Those formal power series of the semiring R over the alphabet Σ =
{x1, x2, . . . , xk} that can be obtained using rational operations starting from constants
and monomials of the form xl (i.e., variables), are the so-called R-rational power series
over Σ. The set of all R-rational power series over Σ is denoted by Rrat〈〈Σ〉〉. Considering
the connections to operations of languages, and the definition of regular languages via
regular expressions, we see that

Theorem 37. The formal power series of regular languages over the alphabet Σ form
exactly the set Brat〈〈Σ〉〉, that is, they are exactly all B-rational power series over Σ.

Proof. Thinking of defining regular languages using regular expressions in Section 2.1,
and quasi-inversion, all we need to show is that in the expressions concatenation closure
can always be given in the form r∗ = Λ + r+

1
where the regular language corresponding

to r1 does not contain the empty word. This follows in a straightforward way from the
following rules that ”separate” the empty word::

r1 + (Λ + r2) = Λ + (r1 + r2) ,

(Λ + r1) + (Λ + r2) = Λ + (r1 + r2) ,

r1(Λ + r2) = r1 + r1r2 ,

(Λ + r1)r2 = r2 + r1r2 ,

(Λ + r1)(Λ + r2) = Λ + (r1 + r2 + r1r2) ,

(Λ + r)∗ = r∗ = Λ + r+.
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Applying these rules, any regular language can be given in an equivalent form Λ + r or r
where the regular language corresponding to r does not contain the empty word. (Recall
that Λ∗ = ∅∗ = Λ.)

Rational formal power series are thus the counterpart of regular languages.1

A formal power series in R〈〈Σ〉〉

S =
∑

w∈Σ∗

κ(w)w

is never too far from a language, indeed, it always determines the language

L(S) =
{
w
∣
∣ κ(w) 6= 0},

the so-called support language of S. The support language of the zero series (all coefficients
= 0) is the empty language, for a formal polynomial it is a finite language. On the other
hand, it is the extra structure in R, when compared to B, that makes formal power series
an interesting generalization of languages.

Note. It is fairly easy to see that
(
R〈〈Σ〉〉, +, ·, 0, 1), where · is Cauchy’s product, is itself

a semiring—and it could be used as the coefficient semiring of a formal power series!

9.4 Recognizable Formal Power Series. Schützenber-

ger’s Representation Theorem

For regular languages, definitions using regular expressions on the one hand, and using
finite automata on the other, together form a strong machinery for proving properties
of the languages. It was noted above that the family RΣ of regular languages over Σ is
respective to Rrat〈〈Σ〉〉, and the latter was defined via rational operations. This corresponds
to use of regular expressions. There is an automata-like characterization, too, the so-called
recognizability.

In order to get a grasp of recognizability we first give, as a preamble, a representation
of a nondeterministic finite automaton (without Λ-transitions) M = (Q, Σ, S, δ, A) via the
Boolean semiring B. The stateset of the automaton is Q = {q1, . . . , qm}. For each symbol

xl ∈ Σ there is a corresponding m × m-bitmatrix Dl = (d
(l)

ij ) where

d
(l)

ij =

{

1 if qj ∈ δ(qi, xl)

0 otherwise.

Furthermore, for the sets of initial states and terminal states there are corresponding
m-vectors (row vectors) s = (s1, . . . , sm) and a = (a1, . . . , am) where

si =

{

1 if qi ∈ S

0 otherwise
and ai =

{

1 if qi ∈ A

0 otherwise.

Then the states that can be reached from some initial state after reading the input symbol
xl, are given by the elements equal to 1 in the vector sDl. In general, those states that can

1The counterpart of CF-languages, the so-called algebraic formal power series, can be obtained by

allowing algebraic operations (i.e., solutions of polynomial equations).
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be reached from some initial state after reading the input w = xl1xl2 · · ·xlk , ie., δ̂∗(S, w),
are given by the elements 1 in the vector

sDl1Dl2 · · ·Dlk .

For brevity, let us now denote

µ(w) = Dl1Dl2 · · ·Dlk ,

and especially µ(xl) = Dl and µ(Λ) = Im (an identity matrix whose elements are in B).
Remember that all calculation is now in the Boolean semiring B. Associativity of the
matrix product then follows from the associativity and distributivity of the operations of
B.

An input w is now accepted exactly in the case when the set δ̂∗(S, w) contains at least
one terminal state, that is, when

sµ(w)aT = 1.

In particular, the empty word Λ is accepted exactly when sa
T = 1.

The formal power series of the language L(M) is thus

∑

w∈Σ∗

sµ(w)aTw.

Such a formal power series is called B-recognizable.
The definition of a recognizable formal power series over the alphabet Σ = {x1, . . . , xk}

in the case of a general semiring R = (C, +, ·, 0, 1) is quite similar. The formal power
series

S =
∑

w∈Σ∗

κ(w)w

is R-recognizable if there exists a number m ≥ 1 and m × m-matrices D1, . . . ,Dk and
m-vectors s and a (row vectors) such that

κ(w) = sµ(w)aT,

the so-called matrix representation 2 of S where

• µ(w) is an m × m-matrix over R,

• µ(Λ) = Im (an m × m identity matrix formed using the elements 0 and 1),
• µ(xl) = Dl (l = 1, . . . , k), and

• µ satisfies the condition

µ(uv) = µ(u)µ(v) (for all u, v ∈ Σ∗).

Here, too, associativity of the matrix product follows from the associativity and
distributivity of the operations of R.

2Note that here sµ(w)aT is a linear combination of elements of the matrix µ(w) with fixed coefficients

obtained from the vectors s and a. Indeed, the matrix representation is sometimes defined as being just

a linear combination of elements of the matrices with fixed coefficients. This gives the same concept of

recognizability as our definition.
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A matrix representation is a kind of automaton that recognizes the series. The set of
R-recognizable power series over the alphabet Σ is denoted by Rrec〈〈Σ〉〉.

All operations of formal power series dealt with above preserve recognizability. Let us
start with the rational operations:

Theorem 38. (i) If the formal power series S1 and S2 are R-recognizable, then so are
S1 + S2 and S1S2.

(ii) If the quasi-regular formal power series S is R-recognizable, then so are S+ and S∗.

Proof. Proofs of these are rather similar to those of Theorem 2 and Kleene’s Theorem.
(i) Assume the series S1 and S2 are recognizable with matrix representations

κ1(w) = s1µ1
(w)aT

1
and κ2(w) = s2µ2

(w)aT

2
,

respectively. A matrix representation of the sum S1 + S2

γ(w) = tν(w)bT

is obtained by taking
t =

(
s1 s2

)
and b =

(
a1 a2

)

and

ν(xl) =

(

µ
1
(xl) O

O µ
2
(xl)

)

(l = 1, . . . , k)

(block matrix). Here the O’s are zero matrices of appropriate sizes, formed using the zero
element of R. This follows since

γ(w) =
(
s1 s2

)

(

µ
1
(w) O

O µ
2
(w)

)(
a
T

1

a
T

2

)

=
(
s1 s2

)

(
µ

1
(w)aT

1

µ
2
(w)aT

2

)

= κ1(w) + κ2(w).

The case of the Cauchy product S1S2 is somewhat more complicated. Let us denote
C = a

T

1
s2. We take now

t =
(
s1 0

)
and b =

(
a2C

T
a2

)
,

where 0 is a zero vector of the same size as a2, and

ν(xl) =

(

µ
1
(xl) Cµ

2
(xl)

O µ
2
(xl)

)

(l = 1, . . . , k).

Now

ν(w) =

(

µ
1
(w) η(w)

O µ
2
(w)

)

where
η(w) =

∑

uv=w
v 6=Λ

µ
1
(u)Cµ

2
(v).
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This is shown by induction on the length of w. Clearly the result is true when w = Λ
(the sum is empty and η(Λ) = O). On the other hand, the upper right hand block of the
matrix ν(wxl) is

µ
1
(w)Cµ

2
(xl) +

(
∑

uv=w
v 6=Λ

µ
1
(u)Cµ

2
(v)

)

µ
2
(xl) = µ

1
(w)Cµ

2
(xl) +

∑

uv=w
v 6=Λ

µ
1
(u)Cµ

2
(vxl)

=
∑

uv=wxl
v 6=Λ

µ
1
(u)Cµ

2
(v).

The matrix representation

tν(w)bT = s1µ1
(w)Ca

T

2
+
∑

uv=w
v 6=Λ

s1µ1
(u)Cµ

2
(v)aT

2
=
∑

uv=w

s1µ1
(u)aT

1
s2µ2

(v)aT

2

=
∑

uv=w

κ1(u)κ2(v)

is then the matrix representation of the Cauchy product.
(ii) Assume the quasi-regular formal power series S is recognizable with a matrix

representation
κ(w) = sµ(w)aT

where sa
T = κ(Λ) = 0. We denote again C = a

T
s whence

sC = 0.

A matrix representation for the series S+ is now

sµ
+(w)aT

where
µ

+(xl) = µ(xl) + Cµ(xl) (l = 1, . . . , k).

This representation is evidently correct when w = Λ. For a nonempty word w =
xl1xl2 · · ·xln we get, multiplying out,

sµ
+(w)aT = s

(
µ(xl1) + Cµ(xl1)

)(
µ(xl2) + Cµ(xl2)

)
· · ·
(
µ(xln) + Cµ(xln)

)
a
T

=

|w|
∑

m=1

∑

u1u2···um=w

sµ(u1)Cµ(u2)C · · ·Cµ(um)aT.

Indeed, in the expanded product terms containing sC will be zero elements and can be
omitted, leaving exactly the terms appearing in the sum. Hence

sµ
+(w)aT =

|w|
∑

m=1

∑

u1u2···um=w

κ(u1)κ(u2) · · ·κ(um) = κ+(w)

and the matrix representation of the quasi-inverse S+ is correct.
The constant series 1 is recognizable (see below), and so is then the quasi-inverse

S∗ = 1 + S+.

As an immediate consequence we get
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Corollary. R-rational formal power series are R-recognizable.

Proof. By the previous theorem and the definition of rationality all we need to show is
that constant series and the monomials xl are recognizable. For constant series this is
trivial, the matrix representation of the constant a is

κ(w) = aµ(w)1
where µ(xl) = 0 (l = 1, . . . , k). Recall that 00 = 1. The matrix representation of the
monomial xl is

κ(w) =
(1 0)µ(w)

(01)
where

µ(xl) =

(0 10 0) and µ(xi) =

(0 00 0) (for i 6= l).

The converse result holds true, too, i.e., R-recognizable formal power series are
R-rational. The proof of this is similar to the proof of Theorem 3, and is based on
the fact that m × m-matrices over the semiring R form a semiring, too, when the oper-
ations are sum and product of matrices, and the zero element and the identity element
are the zero matrix Om and the identity matrix Im over R. This semiring is denoted by
Rm×m.

Formal power series of Rm×m〈〈Σ〉〉 may be interpreted either as formal power series
with m × m-matrix coefficients (the usual interpretation), or as m × m-matrices whose
elements are formal power series in R〈〈Σ〉〉. The matrix product of matrices with power
series elements is then the same as the Cauchy product of the corresponding power series
with matrix coefficients (why?).

To prove the converse we need the following technical lemma.

Lemma. Assume P ∈ Rm×m〈〈Σ〉〉 is quasi-regular and Z and Q are m-vectors (row vec-
tors) over R〈〈Σ〉〉. Then the only solution of the equation

Z = Q + ZP

is Z = QP
∗. Furthermore, if the elements of P and Q are R-rational, then so are the

elements of Z.

Proof. By Theorem 36, P
∗ = Im + P

∗
P so that Z = QP

∗ indeed is a solution of the
equation. On the other hand, the solution satisfies also the equations

Z = Q

n−1∑

i=0

P
i + ZP

n (n = 1, 2, . . . ),

obtained by ”iteration”, where the ”remainder term” ZP
n contains all terms of (word)

length ≥ n (remember that P is quasi-regular). The solution is thus unique.
Let us then assume that the elements of P and Q are R-rational power series, and

show that so are the elements of the solution Z, using induction on m.
The Induction Basis, the case m = 1, is obvious. Let us then assume (Induction

Hypothesis) that the claimed result is correct when m = l − 1, and consider the case
m = l (Induction Statement). For the proof of the Induction Statement let us denote

Z = (Z1, . . . , Zl) and Q = (Q1, . . . , Ql),
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and P = (Pij). Then
Zl = Rl + ZlPll

where
Rl = Ql + Z1P1l + · · ·+ Zl−1Pl−1,l.

Clearly Rl is an R-rational power series if Z1, . . . , Zl−1 are such. By the above

Zl =

{

Rl if Pll = 0
RlP

∗
ll if Pll 6= 0.

(Note that Pll is quasi-regular.) Substituting the Zl thus obtained into the equation
Z = Q + ZP we get an equation of the lower dimension m = l − 1 whose matrix of
coefficients is a quasi-regular formal power series in R(l−1)×(l−1)〈〈Σ〉〉. By the Induction
Hypothesis, the elements of its solution Z1, . . . , Zl−1 are R-rational power series. Hence
Zl, too, is R-rational.

We then get the following famous result, the equivalent of Kleene’s Theorem for lan-
guages:

Schützenberger’s Representation Theorem. R-rational formal power series are ex-
actly all R-recognizable formal power series.

Proof. It remains to be proved that an R-recognizable formal power series over the alpha-
bet Σ = {x1, . . . , xk}, with the m × m-matrix representation

S =
∑

w∈Σ∗

sµ(w)aTw,

is R-rational. The formal power series (polynomial)

P = µ(x1)x1 + · · ·µ(xk)xk

of the semiring Rm×m〈〈Σ〉〉 is quasi-regular and its elements are R-rational. Furthermore

P
∗ =

∑

w∈Σ∗

µ(w)w and S = sP
∗
a

T.

By the Lemma Z = sP
∗ is the only solution of the equation Z = s+ZP and its elements

are R-rational, hence S = sP
∗
a

T is R-rational, too.

9.5 Recognizability and Hadamard’s Product

Hadamard’s products of recognizable formal power series are always recognizable, too.
This can be shown fairly easily using Kronecker’s product of matrices.

Kronecker’s product 3 of the matrices A = (aij) (an n1 × m1-matrix) and B = (bij)
(an n2 × m2-matrix) is the n1n2 × m1m2-matrix

A⊗ B =










a11B a12B · · · a1m1
B

a21B a22B · · · a2m1
B

...
...

. . .
...

an11B an12
B · · · an1m2

B










3Often called tensor product.
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(block matrix). A special case is Kronecker’s product of two vectors (take n1 = n2 = 1 or
m1 = m2 = 1). The following basic properties of Kronecker’s product are easily verified.
It is assumed here that all appearing matrix products are well-defined.

1. Associativity:
(A ⊗ B) ⊗C = A ⊗ (B⊗ C)

As a consequence chained Kronecker’s products can be written without parentheses.

2. Matrix multiplication of Kronecker’s products (this follows more or less directly
from multiplication of block matrices):

(A1 ⊗ B1)(A2 ⊗ B2) = (A1A2) ⊗ (B1B2)

3. The Kronecker product of two identity matrices is again an identity matrix.

4. Inverse of a Kronecker product (follows from the above rule for matrix multiplica-
tion):

(A⊗ B)−1 = A
−1 ⊗ B

−1

5. Transposition of a Kronecker product (follows directly from transposition of block
matrices):

(A ⊗ B)T = A
T ⊗ B

T

A similar formula holds for conjugate-transposition of complex matrices:

(A⊗ B)† = A
† ⊗ B

†

6. Kronecker’s products of unitary matrices are unitary. (Follows from the above.)

Note especially that Kronecker’s product of 1× 1-matrices is simply a scalar multipli-
cation. Thus, the matrix representations of the formal power series S1 ja S2

κ1(w) = s1µ1
(w)aT

1
and κ2(w) = s2µ2

(w)aT

2
,

respectively, can now be multiplied using Kronecker’s product:

κ1(w)κ2(w) = κ1(w) ⊗ κ2(w) =
(
s1µ1

(w)aT

1

)
⊗
(
s2µ2

(w)aT

2

)

= (s1 ⊗ s2)
(
µ

1
(w) ⊗ µ

2
(w)
)
(aT

1
⊗ a

T

2
).

A matrix representation κ(w) = sµ(w)aT for the Hadamard product S1 ⊗ S2 is thus
obtained by taking

s = s1 ⊗ s2 and a = a1 ⊗ a2

and
µ(xl) = µ

1
(xl) ⊗ µ

2
(xl) (l = 1, . . . , k).

Indeed, the matrix multiplication rule then gives us

µ(w) = µ
1
(w) ⊗ µ

2
(w).

We thus get

Theorem 39. Hadamard’s products of R-recognizable formal power series are again
R-recognizable.

By Schützenberger’s Representation Theorem we get further

Corollary. Hadamard’s products of R-rational formal power series are again R-rational.
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9.6 Examples of Formal Power Series

9.6.1 Multilanguages

Let us return to the representation of a nondeterministic finite automaton (without
λ-transitions) M = (Q, Σ, S, δ, A) in Section 9.4. Recall that the stateset of the au-
tomaton was {q1, . . . , qm}. Here, however, the semiring is N = (N, +, ·, 0, 1), and not B.
The automaton is then considered as a multiautomaton. This means that

• the value δ(qi, xl, qj) of the transition function—note the three arguments—tells in
how many ways the automaton can move from the state qi to the state qj after
reading xl. This value may be = 0, meaning that there is no transition from qi to
qj after reading xl.

• the set S of initial states and the set A of terminal states are both multisets, i.e., a
state can occur many times in them.

In the matrix representation the symbol xl ∈ Σ corresponds to an m × m-matrix
µ(xl) = Dl = (d

(l)

ij ) with integral elements where d
(l)

ij = δ(qi, xl, qj). The sets of initial and
terminal states correspond to the row vectors s = (s1, . . . , sm) and a = (a1, . . . , am) with
integral elements where si tells how many times qi is an initial state and ai how many
times qi is a terminal state. If si = 0, then qi is not an initial state, and similarly, if ai = 0,
then qi is not a terminal state.

The number of ways of reaching each state from some initial state after reading xl can
then be seen in the vector sDl. In general, the number of ways of reaching various states
starting from initial states reading the input w = xl1xl2 · · ·xlk appear in the vector

sDl1Dl2 · · ·Dlk = sµ(w).

Hence the number of ways of accepting the word w—including the value 0 when the word
is not accepted at all—is

sµ(w)aT = κ(w).

The formal power series

S(M) =
∑

w∈Σ∗

κ(w)w,

the so-called multilanguage recognized by M , is then N -recognizable, and by Schützen-
berger’s Representation Theorem also N -rational. κ(w) is the so-called multiplicity of the
word w.

Every N -recognizable, and thus also N -rational, multilanguage can thus be interpreted
as the multilanguage recognized by a finite multiautomaton. In general formal power series
in N〈〈Σ〉〉 may be thought of as multilanguages over the alphabet Σ, but the situation
may not then have so straightforward an interpretation.

9.6.2 Stochastic Languages

A row vector v with real elements is called stochastic if the elements are ≥ 0 and sum to
= 1. A real matrix is stochastic if its rows are stochastic vectors.

Let us now transform the finite automaton of Section 9.4 to a stochastic finite automa-
ton by adding a probabilistic behaviour:
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• The initial state vector is replaced by a stochastic vector s = (s1, . . . , sm) where si

is the probability P(qi is an initial state).

• The terminal state vector is replaced by the vector of terminal state probabilities a =
(a1, . . . , am) (not necessarily stochastic!) where ai is the probability P(qi is a terminal
state).

• The state transition matrices are replaced by the stochastic matrices of state tran-
sition probabilities Dl = (d

(l)

ij ) where

d
(l)

ij = P(the next state is qj when xl is read | the present state is qi),

that is, the conditional probability that after reading xl the next state is qj when
the present state is known to be qi.

According to the rules of probability calculus

P(the next state is qj when xl is read) =

m∑

i=1

d
(l)

ij P(the present state is qi).

Thus the vector sDl gives the state probabilities when the first input symbol xl is read.
In general, the state probabilities after reading the input w appear in the vector

sµ(w).

(In mathematical terms, the state transition chain is a so-called Markov process.) Rules
of probability calculus give further

P(the state after reading the input word w is terminal)

=

m∑

i=1

P(the state after reading the input w is qi)P(qi is a terminal state)

= sµ(w)aT = κ(w).

Thus we get the formal power series

P =
∑

w∈Σ∗

κ(w)w,

recognizable in the semiring (R+, +, ·, 0, 1), where κ(w) is the probability of the word
w belonging in the language the language. This power series is a so-called stochastic
language.

Obviously stochastic languages are not closed under sum, Cauchy’s product or quasi-
inversion since stochasticity requires that κ(w) ≤ 1. We have, however,

Theorem 40. Stochastic languages are closed under Hadamard’s product.

Proof. Based on the construction in Section 9.5, it remains to just show that the Kronecker
product of two stochastic vectors is stochastic, and that this is true for stochastic matrices
as well. Nonnegativity of elements is clearly preserved by Kronecker’s products. For the
m-vector v and m × m-matrix M the stochasticity conditions can be written as

v1m = 1 and M1m = 1m
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where 1m is the m-vector (column vector) all elements of which are = 1. Now, if v1 and
v2 are stochastic vectors of dimensions m1 and m2, respectively, then

(v1 ⊗ v2)1m1m2
= (v11m1

) ⊗ (v21m2
) = 1 · 1 = 1

(note that 1m1
⊗ 1m2

= 1m1m2
). Thus the vector v1 ⊗ v2 is stochastic. In an analogous

way it is shown that the Kronecker product of two stochastic matrices is stochastic (try
it!).

Any stochastic language P gives rise to ”usual languages” when thresholds for the
probabilities are set, e.g.

{
w
∣
∣ κ(w) > 0.5

}

is such a language. These languages are called stochastic, too. For stochastic languages of
this latter ”threshold type” there is a famous characterization result. They can be written
in the form

{
w
∣
∣ κ′(w) > 0

}

where ∑

w∈Σ∗

κ′(w)w

is an R-rational formal power series in the semiring R = {R, +, ·, 0, 1} of real numbers
(with the usual arithmetic operations). Conversely, any language of this form is stochastic.
This characterization result is known as Turakainen’s Theorem.4

9.6.3 Length Functions

The length function of the language L is the mapping

λL(n) = number of words of length n in L.

The corresponding formal power series over the unary alphabet {x} in the semiring N =
(N, +, ·, 0, 1) is

SL =
∞∑

n=0

λL(n)xn.

Theorem 41. For a regular language L the formal power series SL is N-rational (and
thus also N-recognizable).

Proof. Consider a deterministic finite automaton M = (Q, Σ, q0, δ, A) recognizing L. We
transform M to a finite multiautomaton M ′ =

(
Q, {x}, S, δ′, B

)
as follows. The state

transition number
δ′(qi, x, qj) = n

holds exactly in the case when there are n symbols xl such that δ(qi, xl) = qj . In particular,
δ′(qi, x, qj) = 0 if and only if δ(qi, xl) 6= qj for all symbols xl. Further, in S there is only
the initial state q0 of M with multiplicity 1, and in B only the states of A appear each
with multiplicity 1.

The multilanguage S(M ′) apparently then is the power series SL.

4The original article reference is Turakainen, P.: Generalized Automata and Stochastic Languages.

Proceedings of the American Mathematical Society 21 (1969), 303–309. Prof. Paavo Turakainen is a

well-known Finnish mathematician.
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9.6.4 Quantum Languages

A quantum automaton in the alphabet Σ = {x1, . . . , xl} is obtained by taking a positive
integer m, an m-vector (row vector) s = (s1, . . . , sm) with complex entries, a so-called
initial state satisfying

‖s‖2 = ss
† =

m∑

i=1

|si|
2 = 1,

and finally complex state transition matrices

Ul = µ(xl)

corresponding to the symbols in Σ. The state transition matrices should be unitary,
i.e., always U

−1

l = U
†
l , otherwise state transition is not a meaningful quantum-physical

operation.
The quantum language 5, corresponding to the quantum automaton above, is the formal

power series

Q =
∑

w∈Σ∗

κ(w)w

where
κ(w) = sµ(w)

is the state of the quantum automaton after reading the word w. Again here µ is deter-
mined by the matrices µ(xl) = Ul and the rules µ(Λ) = Im and µ(uv) = µ(u)µ(v). It
should be noted that this Q really is not a formal power series since its coefficients are
vectors. Any of its components on the other hand is a recognizable formal power series in
the semiring (C, +, ·, 0, 1) (complex numbers and the usual arithmetic operations).

As was the case for stochastic languages, quantum languages have rather poor clo-
sure properties. Again as stochastic languages, quantum languages are closed under
Hadamard’s product because

(s1 ⊗ s2)(s1 ⊗ s2)
† = (s1 ⊗ s2)(s

†
1
⊗ s

†
2
) = (s1s

†
1
) ⊗ (s2s

†
2
) = 1 · 1 = 1

and Kronecker’s product preserves unitarity, cf. the previous section. Indeed, Hadamard’s
product corresponds physically to the important operation of combining quantum registers
to longer registers, cf. e.g. Nielsen & Chuang. Naturally here Hadamard’s product is
given via Kronecker’s products of coefficient vectors.

The terminal states of the construction are in some sense obtained by including a final
quantum physical measuring of the state. The state κ(w) is then multiplied by some
projection matrix P.6 Multiplication by P projects the vector orthogonally to a certain
linear subspace H of Cm. According to the so-called probability interpretation of quantum
physics then

∥
∥κ(w)P

∥
∥

2

gives the probability that after the measuring κ(w) is found to be in H . Note that µ(w)
is a unitary matrix and that

∥
∥κ(w)P

∥
∥2

≤
∥
∥κ(w)

∥
∥2

= sµ(w)µ(w)†s† = ss
† = 1.

5The original article refence is Moore,C. & Crutchfield, J.P.: Quantum Automata and Quantum

Grammars. Theoretical Computer Science 237 (2000), 257–306.
6A projection matrix P is always self-adjunct, i.e., P

† = P, and idempotent, i.e., P
2 = P. Moreover,

always ‖xP‖ ≤ ‖x‖, since orthogonal projections cannot increase length.
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The purpose of the measuring is to find out whether or not the state is in the subspace H .
A physical measuring operation always gives a yes/no answer. A positive answer might
then be thought as accepting the input in some sense. It is known that the languages
recognized in this way are in fact exactly all regular languages. The advantage of quantum
automata over the usual ”classical” deterministic finite automata is that they may have
far fewer states.7

Considered as a kind of sequential machines and combined using Hadamard’s product,
quantum automata are considerably faster than classical computers, the latter, too, really
being large (generalized) sequential machines. So much faster, in fact, that they could be
used to break most generally used cryptosystems, cf. the course Mathematical Cryptology
and Nielsen &Chuang. So far, however, only some fairly small quantum computers
have been physically constructed.

9.6.5 Fuzzy Languages

Changing the ”usual” two-valued logic to some many-valued logic, gives a variety of
Boolean-like semirings.8 As an example we take the simple semiring S =

{
[0, 1], +, ·, 0, 1

}

where [0, 1] is a real interval and the operations are defined by

a + b = max(a, b) and a · b = max(0, a + b − 1).

The graphs (surfaces) of these operations are depicted below (by Maple), the third picture
is the graph of the expression c = a ·

(
a + b · (1 + a)

)
.
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It is easily seen that S indeed is a semiring (try it!). Taking only the elements 0 and 1
returns us to the usual Boolean semiring B.

For each word w the number κ(w) is some kind of ”degree of membership” of the word
in the language. The matrix representation of an S-recognizable formal power series in
turn gives the corresponding fuzzy automaton whose working resembles that of a stochastic
automaton.

7Se e.g. Ambainis, A, & Nahimovs, N.: Improved Constructions of Quantum Automata. Theoretical

Computer Science 410 (2009), 1916–1922 and Freivalds, R. & Ozolsa, M. & Mančinskaa, L.:

Improved Constructions of Mixed State Quantum Automata. Theoretical Computer Science 410 (2009),

1923–1931.
8In fact, any so-called MV-algebra determined by a many-valued logic gives several such semirings,

see the course Applied Logics.
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